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A STABLE MATRIX VERSION OF THE FAST MULTIPOLE METHOD:
STABILIZATION STRATEGIES AND EXAMPLES*

DIFENG CAIT AND JIANLIN XIAf

Abstract. The fast multipole method (FMM) is an efficient method for evaluating matrix-vector products related
to certain discretized kernel functions. The method involves an underlying FMM matrix given by a sequence of
smaller matrices (called generators for convenience). Although there have been extensive work in designing and
applying FMM techniques, the stability of the FMM and the stable FMM matrix factorization have rarely been studied.
In this work, we propose techniques that lead to stable operations with FMM matrices. One key objective is to give
stabilization strategies that can be used to provide low-rank approximations and translation relations in the FMM
satisfying some stability requirements. Standard Taylor expansions used in FMM methods yield basis generators
susceptible to instability. Here, we introduce some scaling factors to control relevant norms of the generators and give
rigorous analysis on the bounds of entrywise magnitudes. The second objective is to use the one-dimensional case as
an example to show an intuitive construction of FMM matrices satisfying some stability conditions and then convert
an FMM matrix into a hierarchically semiseparable (HSS) form that admits stable ULV-type factorizations. This
bridges the gap between the FMM and stable FMM matrix factorizations. The HSS construction is done analytically
and does not need expensive algebraic compression. Relevant stability studies are given and show that the resulting
matrix forms are suitable for stable operations. Note that the essential stabilization ideas are also applicable to higher
dimensions. Extensive numerical tests are given to illustrate the reliability and accuracy.

Key words. numerical stability, fast multipole method, FMM matrix, scaling factor, low-rank approximation,
HSS matrix

AMS subject classifications. 65F30, 65F35, 15A23, 15A60

1. Introduction. Let x(z, y) be a kernel function in a form suchas 1/(z—y), 1/(z—y)?,
log(x — y), and log |z — y|, where x,y € C, x # y. Given a set of points

(1.1) SE{JTl,...,Z‘n}, xieca
let A be an n x n discretized matrix with entries
(1.2) Aij = kw4, 25), i F# ]

(The diagonal entries A;; are defined separately and do not concern us so far.) It is well known
that the fast multipole method (FMM) [16, 29] can be used to evaluate the product of A with
a vector to a given accuracy in linear complexity. As shown in [32], the FMM essentially
yields a hierarchical structured approximation to A to a given accuracy. Such a structured
approximation is also an example of an 2-matrix [18, 20]. For convenience, we refer to this
approximation derived with the FMM procedure as an FMM matrix.

The construction of an FMM matrix often involves appropriate degenerate approximations
or truncated expansions of k(z,y). Commonly used expansions are Taylor expansions,
multipole expansions, and spherical harmonic expansions. Such expansions provide convenient
ways to obtain low-rank approximations of off-diagonal blocks (k(,¥;)))z;ex,.,y;ex, Of A
that correspond to well-separated subsets x; and x5 of s. (This will be made more precise
later.)

Practical implementations of the FMM have usually been very successful in achieving
both high efficiency and nice accuracy. On the other hand, it has also been noticed that
numerical stability issues may arise under certain circumstances [10, 11, 12, 17, 28]. Here in
particular, we are interested in the stability of the FMM based on Taylor expansions of x(x,y).

*The research of Jianlin Xia was supported in part by an NSF grant DMS-1819166.
TDepartment of Mathematics, Emory University, Atlanta, GA 30322, USA (difeng.cai@emory.edu).
IDepartment of Mathematics, Purdue University, West Lafayette, IN 47907, USA (xiaj@purdue.edu).
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2 D. CAI AND J. XIA

Taylor expansions can produce low-rank basis matrices with very large entries, although
the original matrix entries x(x;, y,;) may only have modest magnitudes. Examples of such
terms are factorials and powers. The artificially large terms may lead to stability issues in
relevant matrix operations, as pointed out in [17]. They can cause loss of accuracy (due to the
magnification of numerical errors) or even overflow. Note that these stability risks can arise
even if k(x, y) is non-oscillatory as considered here. This happens especially when the data
points are not nicely distributed, like in the case in [28] where accuracy is crucial when dealing
with data points that are clustered eigenvalues. Thus, it is important to study the relevant
numerical stability. A heuristic strategy to improve the stability is briefly mentioned in [17],
but is lack of rigorous justification or guarantee of the performance. (Note that, despite the
stability risks, the FMM has worked well for many different problems, likely due to the use of
certain basis or translation operators that have some structures or sparsity.)

Here, for the FMM based on Taylor expansions, our first objective is to provide a stabi-
lization strategy by analytically obtaining low-rank basis matrices and translation matrices
that satisfy some stability requirements. More specifically, we design a scaling strategy where
some appropriate scaling factors are chosen to modify the individual terms in the Taylor ex-
pansions. Then for well-separated subsets X1, Xo C s, the block (k(z4,¥;)))z; ex,,y;ex, €an

be approximated by a low-rank form UBVT, where the entries of [/ and V have magnitudes
bounded by 1 and, moreover, the entries of B have magnitudes bounded by a small multiple
of |k(z,y)| evaluated at appropriate centers of x; and x2. See Theorem 2.5 for details. The
low-rank approximations in the FMM also involve the key concept of a translation matrix. We
give one specific form of the translation matrix and further show that, after scaling with our
scaling factors, the entries of the translation matrix also have entrywise magnitudes bounded
by 1. See Theorem 2.7. Based on these bounds, the stability of matrix operations with the
resulting structured forms can be naturally shown. We illustrate a basic idea of the backward
stability analysis in Theorem 2.9.

Our second objective is to extend the stabilization to another structured matrix form
so as to bridge the gap between the FMM and stable direct factorizations. We use the one-
dimensional (1D) case as an example to provide an intuitive way to write an explicit form of
the FMM matrix based on the stabilization strategies. Then the 1D FMM matrix is converted
into a hierarchical semiseparable (HSS) form [5, 7, 38] that is frequently used to design
structured direct solvers. The 1D case is very useful for computations such as such as PDE
solutions, Toeplitz solutions, polynomial computations, and eigenvalue solutions. See, e.g.,
[5, 8, 13, 25, 26, 31, 33]. The original FMM [16] explains the method in terms of potential
evaluations. Here, we show a stable matrix version that can be conveniently understood based
on appropriate basis matrices as contributions, organized at different hierarchical levels by
a nested basis relation. This matrix form is convenient for non-experts to grasp the FMM.
An FMM matrix A ~ A is given in terms of a sequence of smaller matrices (which we call
FMM generators) such as U B V as above and some translation matrices. A enables fast
matrix-vector multiplications, but the stable factorization has been unknown. By converting A
into an HSS form, we can take advantage of many fast and stable HSS algorithms, especially
the so-called HSS ULV factorization [7] with proven nice backward stability [34, 35]. The
FMM to HSS conversion is done analytically and avoids explicit algebraic compression like
expensive truncated SVDs or randomized sampling used in [23, 24, 30, 38, 39]. The resulting
HSS form is represented by a sequence of so-called HSS generators and can be factorized in
O(n) complexity. All the FMM and HSS generators satisfy some norm bounds (see Corollary
3.4) that can be used to show the stability of FMM and HSS algorithms. The techniques can
also be generalized to the 2D case.

Overall, this work provides useful stability safeguards for matrix operations using the
FMM matrices. We show how and why the stabilization works and illustrate some essential
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A STABLE MATRIX VERSION OF THE FAST MULTIPOLE METHOD 3

ideas for the relevant backward stability analysis. We further give an example to illustrate
an intuitive matrix version of the stable FMM. An analytical construction of HSS matrices
from FMM matrices is also given so as to facilitate stable direct ULV factorizations. Our
stabilization strategies are derived in terms of 2D point sets. We would like to emphasize
that the stabilization strategies and the stability studies are not restricted to 2D cases and are
also applicable to higher dimensions. Also, the use of the 1D example to illustrate the FMM
matrix form is merely for convenience. The stabilization can also be applied to several kernel
functions with related Taylor series expansions.

The structure of the paper is as follows. Section 2 shows the ideas of stabilizing the FMM
via stable analytical low-rank approximations and translation operations. In Section 3, the
ideas are then used for the construction of the FMM matrix, which is further converted into an
HSS matrix. Some discussions and extensive numerical tests are given in Section 4 to illustrate
the stability and accuracy.

2. Stabilization of the FMM: stable low-rank approximation and translation oper-
ation. In this section, we show how to obtain low-rank kernel matrix approximations that are
suitable for stable operations. We further provide a stable translation relation to derive nested
basis matrices. The techniques give essential components for stabilizing the FMM.

2.1. Kernel expansions and low-rank kernel matrix approximations. Suppose a ker-
nel function x(z,y) has a degenerate approximation of the following form for some z,y
points:

|
—

T

k
@.1) K(x >k adi(@) ik -i(y)-

01=0

>
Il

We suppose the points are from 2D point sets and are treated as complex numbers. (This can be
modified to accommodate higher dimensions.) It is well-known that, if 7 is small compared to
the numbers of x, y points, (2.1) yields a low-rank approximation to the kernel matrix (defined
by the evaluation of x(x, y) at those x, y points). Here for simplicity, we mainly illustrate our
techniques in terms of the following kernel:

(2.2) k(z,y) = prat T £y

Note that the use of this kernel is only for convenience since the ideas can be immediately
extended to several other kernels with similar degenerate approximations (see Section 2.4
below). For such kernels, Taylor expansions can be used to obtain (2.1).

We show some details of the expansion following a strategy in [32] so as to facilitate our
later derivations. For a set of points x C C, a point z € C is said to be a center for x with a
corresponding radius if |z — z| < ¢ for any z € x. Such a definition for z and ¢ is used in
[32] and some other FMM work. It is clear that z and § may not be unique. In case unique z
and § are to be defined, we may use a disk enclosing the points with the smallest radius. Since
the uniqueness is not a concern here, we simply follow the tradition in [32]. The following
definition from [32] is a generalization of the classical definition of well-separated sets.

DEFINITION 2.1. [32] Suppose x1 and x5 are two sets of points in C respectively
corresponding to centers z1 € C and zo € C and radii 51 > 0 and 65 > 0. x1 and x5 are said
to be (well) separated (with separation ratio 7) if the following admissibility condition holds:

2.3) 51 + 52 < T|Zl — 22|, T E (0, ].)
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For two well-separated sets x1,Xs C s as in Definition 2.1 with s in (1.1), (2.3) implies,
for any x € x; and y € xo,

(2.4) (13—2’1)—(y—z2) < 01 + 9o <7
Z9 — 21 |22*21|
Applying Taylor expansion leads to
(2.5) (z,9) .
. k(x,y) =—
(x=21)=(y—=22)
(22 — 21)[1 — — ]
L W [E—z)— (-]
D
Z9 — 21 =0 Z2 — 21
r—1 j k—j
—z —z
-3 mz s
= =m-a) (k=)
r—1 k
= akZ VoI i — 21) ey (y — 22) + €,
k=0 j=
where
xd k! T
2.6 ; = — = — A<
R il P
Note that, by (2.4),
@ In(ay)| > :
. k(x, >
==~ (=2 + 21— 2|
1 1
= k(21,22)]|.
T Tlz1 — 22| + |21 — 22 1+7'| (21, 22)]
Hence, the truncation error ¢,. can be estimated by
T 1
el < T In(z1, )| < 7Tl vl

1
which indicates that the relative error of approximation (2.5) is bounded by 7" 1

consistent with a conclusion in [32].

According to (2.5) and (2.6), we can then write

(2.8)

where

(2.9)

fo(x — 21)
Jo(y — 22)
(7)) a1

Q1

k(z,y) = uTBv +¢,,

filz —z1)
fl(y— 22)
Qp_1

0

fr—l(qf - Zl)]T )
fraly—2)]",

diag ((—

1)°, (~1)L,...

T Thisis
-7
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Here, diag(. .. ) is used to represent a diagonal matrix (or a block diagonal matrix later).
Then we consider the low-rank approximation of the discretized matrix defined by the
evaluation of k(z,y) on x1, Xa:

(210) K= (K(xiaxj))fiGXLIijm

which has the (4, j) entry x(z;,y;). K is m x p with m = [x;|, p = |x2|, and is sometimes
referred to as the interaction (matrix) between x; and x,. Based on (2.8), K has a low-rank
approximation

(2.11) K=UBV' +KoE~UBVT,

where ® denotes the entrywise (Hadamard) product and

(2.12) U= (fi-1@i = 21))prrs V= (Fi-1(vi = 22)
(2.13) ] gf”i .

(Here, notation like (A;;)mxn» means an m x n matrix with the (4, j) entry A;;.) We see that
U and V are fully determined by the sets x; and x5, respectively. The matrix Bisanr X r
matrix that depends only on z5 — 27.

2.2. Stable low-rank approximation with scaling factors and analysis of entrywise
magnitudes. According to (2.9) and (2.12), the matrices U, B, V in the low-rank approxima-
tion (2.11) may have large entrywise magnitudes. This is because of the powers and factorials
in (2.6). As mentioned in the introduction, directly using the forms of U, B, V may cause
stability issues in the low-rank approximation (2.11) and later operations. The stability issue
gets more severe when r or the size of K increases. To ensure numerical stability, we introduce
a scaling strategy so as to bound the entries of the factors in the low-rank approximation. We
further rigorously justify the effectiveness of the scaling.

One set of scaling parameters is used for each set of points x; C s for s in (1.1). Suppose
x; has center z; and radius ;. (Here, we use subscripts in bold fonts to denote indices of point
sets.) For a set x;, define scaling factors

1, Jj=0,
2.14 =4, j
@19 i (%(%r)z%;) L i=1,2,.. . —1.

(We would like to point out that we first showed these scaling factors 7; ; in our earlier
unsubmitted preprint [4]. Later, the paper [3] briefly mentioned 7; ; by citing [4].) Such a
form is motivated by Stirling’s formula:
| r

lim 7"77 =1, or rl~+271r (i) for large 7.

r—o0 \/271 (1 /e€) e
We use 7); ; to modify the approximation to K in (2.10) with two separated sets x; and x».
For x € x; and y € x9, the expansion in (2.5) can be rewritten as

(2.15)
r—1 k

(e y) =Y o > (=) aw—g) " (i fi(w—21)) M2k frmy (y—22)) 60
k=0  j=0

Compared with (2.11), the approximation to K now becomes

(2.16) K=UBV'+K®E~UBVT,
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6 D. CAI AND J. XIA
where
U (mj—1fi(xi = 21)),, = USI,
(2.17) Vo= (njfilyi— ), =V,
B = S;'BS;!,
and fori=1,2,
(2.18) Si = diag (11,0, 7,15 - - - > Miyr—1) -

REMARK 2.2. Here, U is a basis matrix that only depends on x;. In fact, if K is replaced
by the interaction between x; and any other separated set, U remains the same. Thus, U can be
viewed as the contribution of x; (to the FMM). V can be viewed similarly. An intuitive way of
understanding the matrix form of the FMM is to treat the basis matrices as such contributions
to the FMM.

To investigate how the new approximation (2.16) enhances the stability, we give bounds
for the entries of the matrices U , V, B. The following lemmas will be used.

LEMMA 2.3. For any integer r > 0 and any number 7 € (0, %)

1 /j 1\’ i ,
— ((27rr)2r> <1, hj=—<3r, j=12,...,m

(2.19) 9 = =
VE e g]

Proof. Lets = L(27r)3=. Then L < s < land g; = JJ—J,SJ Since

, 1\’
gJ‘H:s<1_|_.> ,
9;j J

as j increases, g; either increases monotonically, decreases monotonically, or first decreases
and then increases, depending on r. Thus,

T
<1
7!

(r/e)"v/2mr }
|

9j < max{ghg?“} = max {S,
To show the second inequality in (2.19), notice that for any 5 > 1,
h; : 17 4 1\’
ML I gl (1+.> <e(1+_) <L
h; gi+1 J 5 J
Then for j > 1, h; decreases as j increases. Thus,

max hj < max{hq, ho} = max {67’(271’7")217', (67’)2(271'7")}'} < 3T.
j=1,...,r

N =

LEMMA 2.4. Let k be any positive integer and 7 > 0. Then

; i (PN (k="
2.20 tH(r — )k = £ s i=1,2,... k—1.
(2.20) ax, (r—1) T (k) ( : ) . J=12,...,

Proof. Let ¢(t) = t/ (1 — t)*=7,¢ € (0, 7). Since

)

d i k—j
Z(logp(t)) == —
S log (1) =3 — 2=
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we can see that log ¢(t) has only one critical point ty = j7/k in (0,7) for j < k. It can
be verified that ¢(to) is the maximum in (0, 7). Since p(to) = 7 (1)’ (k%)k ! we get
(2.20). a
_ Based on the lemmas, we can estimate the magnitudes of the entries of the matrices
U,V,Bin (2.17).

THEOREM 2.5. Suppose K is given in (2.10) and x1 and X2 are two separated sets
with separation ratio 7 € (0, 5) and with centers z1 and 2, respectlvely Then for the

approximation in (2.16)—(2.17), the (i, j) entries of the matrices U V B satisfy
Uil <1, Vil <1, |Biy| < max{1,37}|r(z1, 22)|-

Proof. According to (2.17), Uij =1 -1fj—1(x; — 2z1), where 1 j_1 is defined in (2.14).
Clearly, |U;j| =1forj=1.Forj=2,...,r,

221

- —1, 1\ oy — !
10431 = Iy fyo (21— 21)]| = (] (2r) % 51) Y

_ 1 J—1 A i — 21\
_(j—l)!< e (2mr) ) ( 51 — 9 5 ’

where g;_ is defined following (2.19). By Lemma 2.3, g;_1; < 1. This together with
|x; — 21| < 61 leads to |[AI”| < 1. Similarly, V”| < 1. We then estimate |32J| According to
(2.9) and (2.17),

|Bij| = lakln ) qma)q i4+i<r+1,

where k = z + j — 2 and o is given in (2.6). For k = 0 or i = j = 1, we simply have

|Bi1| = =] Fork = 1, we look at different cases of ¢, j. Fori = 1 and j > 1, we have
Ni—1 =1 and

: G=D' (G=D a1

|Buj| = lawny;— 1|*| — 7 e (2mr) 2 =

- ﬁ(;’ —1)! ((jel)(%”“ ”)_JH <|Z1 - 22|)

11 ( 8 )j
|21 — 22 gj—1 \ |21 — 22|

According to (2.3),

52 7'52

(2.22) < .
|21 — 22| = 01402
Then
Ly (. T L S SO
) = 37|k(21, 2
vl= |21 — 22| gj—1 \ 01 + 02 |z — 2 be2b
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8 D. CAI AND J. XIA

where Lemma 2.3 is used. For j = 1, the derivation is similar to the case when ¢ = 1. For
i,j > 1, we have 2 < k < r and

|Bij| = lowny _1m51_1]
k! i—1 L1\ T - L1\
= o) 2 — T (onr)E —
|21 — zp|FF1 ( € (2mr) 51) ( e (2r) 52)
—k
_ b 1(2ma)$ (i — 1)~ (G — 1)t
|21 — 23] e J
(225) (%)
|21 — 22 |21 — 22
1k : . s\ e VT
im0 () (22 )
|21 — 22| g |21 — 22 |21 — 22
k i—1 j—1
< ;’i(i _ )i - 1) (7‘51> (”52) 7
|21 — 22| g 01 + 02 01 + 02
0 0 )
where | ! | < 5 T+16 and (2.22) are used. By setting t = 67le5 < 7in Lemma 2.4,
21 — 22 1 2 1 2
we further get
. Tk i—1\"'/j—-1\'"!
|Bij| < mg:( -1 +1(] -1 i+l k (k> (k>
1 Tk 3T
= ———— < —— =37|x(21, 22)|,
|21 — 22| g T |21 — 22|
where Lemma 2.3 is used. This completes the proof. 0

Hence, the entries of the basis matrices U and Vin (2.17) have magnitudes bounded
by 1. Bis just a small matrix with order r and its entries have magnitudes bounded by a
small multiple of |«(z1, 22)| which depends on the two centers only. These bounds ensure the
stability of matrix operations with the low-rank approximation UBVT. See Section 2.5 later.

REMARK 2.6. It is clear that our scaling strategy can control the entrywise magnitudes
of not only U , V, but also B. This is a significant advantage over simple methods such
as straightforward scaling/normalization of the columns of U, V. The latter can make the
entries of the resulting B matrix poorly scaled or even cause numerical overflow. Even if the
simple scaling factors from the latter strategy can be represented as separate diagonal matrices,
forming these scaling factors and the entries of B in a separate manner can pose numerical
issues (since they may still be very large for some cases). The entries of B may still be much
larger than the original entries in K and thus not be well controlled. With our strategy, the
entrywise magnitudes of B are under control and we can integrate our scaling factors into the
computation of the entries of B if needed.

2.3. Stable translation relation and analysis of entrywise magnitudes. A key idea for
the FMM to reach linear complexity is to exploit a translation relation between the so-called
local expansions associated with one point set and its subsets [16]. This is essentially to use
nested basis matrices in off-diagonal approximations. Here, we give an explicit matrix relation
that ensures stable operations. To facilitate later discussions, we assume a set x; C s has
center z; and radius J;, as mentioned at the beginning of Section 2.2, and a subset x. C x; has
center z. and radius d.

As mentioned in Remark 2.2, we can derive a basis matrix Ui as the contribution of x;
and a basis matrix 0.: as the contribution of x.. In the FMM, the translation relation is used to
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connect Uc to the contribution of x. to Ui. Specifically, the translation relation in our context
can be derived for f; in (2.6) as follows:

(z — Zi)j (= ze) + (2c — Zi))j
(2.23) fJ(aj — Zi) = 7 — i
(w _Z.|ZC) (Zc - Zi) - = (nc,ifi(l' _ Zc)) (n;gfjfi(zc _ Zi)),
=0 : —0

G-

i

where we have included the scaling factor 7. ; for stability purpose. Therefore, a row in U;
can be written as

(2.24) [mofolx—z) - mr_1fro1(z—2)]

=[Meofo(®—ze) -+ Ner—1fro1(z — 2c)] Tes,
where [nqofo(a: —Zze) 0 Mer—1fro1(x — zc)] is a row of Uy and Te ;i is the translation
matrix

fo(ze —2) -+ fro1(2e — %)
(2.25) Te; =St - :

) (&

: Si7
fo(ze — z1)
with S; in (2.18) and S, defined in the same way. With the translation matrix T¢;, the

contribution of x to Uc is related to the contribution of x to Ui as in (2.24).

We then study the entrywise magnitudes of 7; ;. To accommodate the general situation
that X, may be any subset of x; resulting from the partitioning of x;, we suppose

(2.26) 0 — 0 > |ze — 2l
so that the disk defined by |z — z¢| < d. (that encloses x.) is fully located inside the disk

|& — 2| < &; (that encloses x;).

THEOREM 2.7. Suppose (2.26) holds. Then the (i,j) entry (Tc )i ; of Te, defined in
(2.25) satisfies |(Tci)i ;] < 1.
Proof. Te; is an upper triangular matrix and the (¢, j) entry for 1 <i < j <ris

(Tei)ing = Mij—1Meq1 fi—i(ze — 2)-

If j =1, (Tc,i)i,; = 1. Then suppose j > 1. We look at different cases of 4.
1. When ¢ = 1, just like the derivation in (2.21),

(& 5i

|2e — 2 a
=975 <1

where Lemma 2.3 and (2.26) are used.

i —1 a1 j_lz—zij_l
[(Tei)igl = Imj—1fi-1(ze — 21)[ = (j(QWT)”) (E]_1|)|
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2. Whenl<i< j,

(Teabigl = G = 177 = ) (5 ()

<@G-1N -1
(by (2.26))
<@G-1 -1

(by Lemma 2.4)
L (i
~ (e
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R ]

)j_i o ' |ze — !

o) () (-8)”

<jiw!<i@””$)ji<;:i>i1<§:i

1 ]_Z
”) =gj-i <1,

where the last inequality is due to Lemma 2.3.
3. When ¢ = j,

i—1
( c1)zj|—|7]u 177“ 1|— <> <1.

ad

In Section 3.1, we show how the translation matrix 7¢ ; is used to build a nested basis

form for Ui.

REMARK 2.8. It is worth pointing out that there are also other analytical methods that can
produce translation matrices that satisfy similar entrywise bounds. For example, the method
in [15] uses an integral form and quadrature approximation to obtain translation operators in
diagonal forms with entrywise magnitudes bounded by 1. On the other hand, the resulting
basis matrices depend on the quadrature weights and bounds on their entries are not studied in
[15]. Here, our idea is to integrate scaling into simple Taylor expansions so as to control the
entrywise magnitudes of all the relevant matrices.

2.4. Generalizations. It can be shown that our results can be generalized to various
useful kernels like 1/(x — y)* with integer k > 0, log(z — y), log |z — y|, and other kernels
with expansions similar to (2.5). In fact, by using the same set of scaling factors as in Section
2.2, we can get bounds similar to those in Theorem 2.5. That is, the entrywise bound for the
U,V basis matrices remain to be 1. The relative entrywise bound for the B generators only

changes slightly. In our numerical tests in Section 4, tests for different kernels will be given.

For some kernels that do not have similar Taylor expansions, the stabilization is beyond the

scope of this work.

2.5. Stability. Our stabilization strategies ensure the stability of operations involving the
resulting structured forms in the FMM. For example, the stability of multiplying UBVT and
vectors can be shown as follows.

THEOREM 2.9. For the m X p interaction matrix K in (2.10), suppose the same conditions
as in Theorem 2.5 hold and K = UBV'T is the approximation to K as in (2.16)—(2.17). Then
the matrix-vector multiplication b=UBVTw~ Kw for a vector w satisfies

fi(b)

= (UBVT + AK)w, with

IAK|[F < max{1,37}(1+7)r* /mppior | K| F + Oenaen);

where fl(-) denotes the numerical result in floating point operations, €macn denotes the machine

epsilon, and y;, =

k€mach
1—kemacn
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Proof. It is commonly known that (see, e.g., [22]), for a matrix C' with column size p, the
matrix-vector multiplication C'w satisfies the following backward error result:

A(Cw) = (C+ AC)w, [AC| < ,[C].
Thus, when the matrix-vector multiplication Kw=UBVTwis considered, we have
AV w) = (V7 + AV )w,  [AVT] < 7,07,

by =fi(Bby) = (B+ AB)by, |AB|<~,|B|,
b=A(Uby) = (U + AU)by, |AU| <, |U].

o
S
I

(Note that K is m x p and Bisrxr) Combining these results, we get
AUBVTw) = (U + AU)B + AB)Y(VT + AVTYw = (UBVT + AK)w,
where
IAK||r < [UBAVT) |7+ [UAB)VT|[p + [(AU)BVT || + Oemaen)
< (0 + 20U EIBIE IV || + O(efnaen)-

(Here, we use Frobenius norm in the backward error instead of the max-norm since the former
is sub-multiplicative but the latter is not.) According to Theorem 2.5, we have

1O1lr < Vir|Ullnax < Ve, VIE < rallV llmax < V74

1Bl < 7| Bllmax < rmax{1,37}|x(21, )],

where z; and 25 are the centers of x; and x5 in (2.10), respectively. Due to the separation
condition in Definition 2.1, we have (2.7) for any = € x; and y € x2. Thus,

||B||F < rmax{1,37}(1+ 7)|k(z,y)| < rmax{l,37}(1+ )| K| F.
Accordingly,

IAK|r < (3 + 23)v/mr/ip(r max{1, 37} (1 + 7) | K| 7) + O(€haen)

+ 27)€mach — 3rpe>
= max{1,37}(1 + 7)r?\/mp (p Jemach Pomach IK|lp + O(€mach)

1-— (p + T)Emach + Tpegnach
< max{1,37}(1 4+ 7)r*Vmpypior | K| F + O(€2ach)-

a
This theorem shows the backward stability of using the low-rank approximation K to
compute the matrix-vector product Kuw that approximates Kw. (For this reason, it makes
somewhat more sense to use K in the backward error bound.)
Note that, if no scaling is used like in the usual FMM, then ||U||max ||V ||max» and/or
|| B||max may potentially get very large, leading to significantly larger backward error bounds.
The impact can be observed from the numerical results later.

3. Extension of the stabilization from FMM to HSS matrices. We then show an
example of an intuitive analytical construction of an FMM matrix satisfying some stability
requirements and, moreover, extend the stabilization from the FMM matrix to an HSS form.
This further connects the FMM with stable and fast ULV factorizations for HSS matrices.
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3.1. An example for the FMM matrix representation. We first integrate the stabiliza-
tion strategy in the previous section into the FMM framework for constructing an FMM matrix
example. For convenience, we consider the 1D case and suppose the set of points s in (1.1) is
located in an interval Z C R. Note that 1D cases are very useful for many different situations
[5, 8, 13, 25, 26, 31, 33]. (The 1D point set is also just used to simplify the presentation. The
strategy below can be easily adapted to more general 1D curves. The essential ideas can also
be extended to 2D sets.) We consider A in (1.2) as the discretization of « in (2.2) on s. Given
an accuracy €, we follow a general framework in [32] and use the 1D FMM scheme to produce
an FMM matrix A such that

(3.1) A=A+AGOE, with|Ej| <e.

T
<e

According to (2.13), r can be chosen to make 7" 1

3.1.1. Set partitioning and far-field interaction. To conveniently organize the FMM
matrix representation, we use a postordered binary tree 7 with nodes i = 1,2, ..., root(7T),
where root(7) denotes the root node. See Figure 3.1. Suppose 7 has L levels such that
n/2E=1 = O(r) and root(T) is at level 0. Partition the set s hierarchically following 7.
That is, suppose each node i is associated with a subset x; C s s0 that X,o0¢(7) = s and
Xi = X¢; UXe,, Xe, NXe, = 0 for any nonleaf node i with children ¢, and co. Based on the
subinterval where x; is located, we can conveniently determine a center z; and a radius d; of
x;. For each leaf i, the cardinality m; = |x;| = O(r).

1 245

FIG. 3.1. Example of a postordered tree T used for the FMM.

Later for convenience, when x; is used, we may simply refer to node i of 7. For example,
given two nodes i and j of 7 corresponding to two separated sets x; and x; (as defined in
Definition 2.1), respectively, we just say i and j are separated.

Suppose x; corresponds to the index set Z; so that the submatrix of A corresponding to
the row index set Z; and column index set Zj is A|z;xz; = (k(24,%5))x; exi,2,€x;» Which is
the interaction between i and j. When i and j are separated, A|z, xz; can be approximated by a
low-rank form like in (2.16) and is said to be a far-field interaction. For notational convenience,
we rewrite (2.16) as

(3.2) A oixz; © Bij =~ UiBi,jVjTa

TixT; = UiBi,jVjT +A

where appropriate sets used for the definition of the matrices in (2.17) are replaced by x; and
x;. Correspondingly, the centers 23, 2j, the radii d;, 05, and the scaling factors 7 ;,7;,; as in
(2.14) are used for the definition of Uz, B; j, Vi in (3.2).

As mentioned in Remark 2.2, we call ﬁi the contribution (matrix) from node i. Clearly,
U; = V;. However, to accommodate more general matrix forms, we still use ViT for the row
basis matrix in (3.2).
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When i and j are not separated, they are said to be near neighbors, and A|z,xz; is a
near-field interaction. Near-field interactions may be further partitioned so as to generate
far-field interactions at finer levels.

3.1.2. Levelwise low-rank approximation. In the FMM, far-field interactions are orga-
nized with the aid of interaction lists [16], which encode the interactions to consider at each
level of partition. Specifically for our case, the interaction list L; for node i of T is the set of
nodes j at the same level as i but well-separated from i, and with its parent a near neighbor of
i.

Corresponding to level [ of T, let A®) be the submatrix extracted from A by retaining
only the blocks A|z, xz; for all nodes i at level / and j € L; and zeroing out other blocks
in A. For example, for [ = 2, the four nodes in Figure 3.1 have interaction lists L7 =
{22,29}, L14 = {29}, Loz = {7}, L29 = {7, 14}. The corresponding far-field interactions
are shown in Figure 3.2(a). Similarly, the far-field interactions for [ = 3, 4 are shown in Figure
3.2(b—c). Correspondingly, the matrix A can be decomposed levelwise into the following sum
of matrices corresponding to far-field interactions and near-field interactions:

(3.3) A= A® o AL g

where AY) denotes all the near-field interactions at the leaf level L of the partition. AXN) is a
block banded matrix.

() A®@ (b) A®)

FIG. 3.2. Nonzero patterns of A1 and how AW appears in A, where the grey band in (d) corresponds to AN,

For | > 2, the nonzero block A|z, x I for each node i at level [ and j € £; has a low-rank
approximation as in (3.2). For convenience, let iy, ..., ig be the nodes at level [ of T, ordered
from left to right. Then, we can write

(3.4) AW = gOBOWNT 1 AD  EO & gOBOWY WY with
(3.5) U0 = diag(Us, ..., Ui,), VW =diag(Vi,,...,Vi,),

and B and E() have the same block nonzero patterns as A() with the nonzero blocks
Alz;xz, of AW replaced by B; j and Ej ;, respectively. See Figure 3.3.

50 [
o [
[=] [}
oo —

AD =

FIG. 3.3. Nonzero patterns offJ(l), BW, and VY in (3.4) for AW with | = 2 in Figure 3.2(a).


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

ETNA

Kent State University and
Johann Radon Institute (RICAM)

14 D. CAI AND J. XIA

From (3.3) and (3.4), we have the following approximation of A:

L L
36 A=) UWBOVT + AN L A0 E~ > UOWBHWIT + AN = 4,
=2 =2

where E = E® + ... + E(), Since the nonzero blocks of E® for different [ do not overlap,
FE satisfies the bound in (3.1).

Thus, Ais an approximation to A with entrywise relative accuracy € as in (3.1). It can be
easily seen that A can be used to compute matrix-vector products in O(rnL) = O(rnlogn)
flops with r = O(|loge]). Assume ¢ is fixed and then this cost becomes O(n logn).

3.1.3. Nested basis and FMM matrix in a telescoping expansion form. The essential
strategy to reduce the matrix-vector multiplication cost from O(n logn) to O(n) in the FMM is
to use nested basis matrices in the off-diagonal approximations. This can utilize the translation
relation in Section 2.3. According to the relation in (2.24), the basis matrices or contributions
from a parent node i of 7 and its children c; and ¢, are related by

§ UCI RCI o ‘/;11 WCI :
G7 = { U} {R] Sy [ v} [W} it
(3.8) Rey = We, =T, 5, Rey = Wey = Teys.

(3.7) shows how the nested basis matrices are obtained.

REMARK 3.1. Note that the translation relation (2.23) is a result of the binomial expansion.
Although here c; and ¢ are children of i, the translation relation in Section 2.3 is not restricted
to the case where c is a child of i. That is, T¢ ; in (2.25) can be used for any descendant c of i.

The approximation in (3.6) can then be converted into a nested form. That is, let

3.9 UW=pWHRED O =y =12 L—1, with

RMY — diag ([gcl} , €1, Ca: children of each node i at level l> ,
co

WD = diag < [%Cl] , C1,Cy: children of each node i at level l) .
co

We can then rewrite the approximation in (3.4) as a recursive relation
(3.10)  TOBOWO)T = gL RE-1 ... RO BO G O)T ... (JyE=D)T (7 (D)T

where UL) and V(E) are defined for the leaf level L as in (3.5). A
Inserting (3.10) into (3.6), we obtain the following telescoping expansion of A:

3.11) A=p® (1%@*1)(. (RPBOWENT 4 BG)
L (WEIT 4 E(L))(V(L))T + A,

which is the hierarchical matrix form produced by the FMM or the FMM matrix. For conve-
nience, we call the matrices Ui, Vi7 Rh Wi7 Bi FMM generators. We also suppose that each
node i of the FMM tree 7 is associated with FMM generators Ui, Vi, Ri, Wi, Bi. Due to the
nested bases, the Ui, Vi generators associated with a nonleaf node i are not explicitly stored.
The total storage for the FMM matrix A is then just O(rn). The cost to multiply the FMM
matrix and a vector now becomes O(rn).


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

ETNA

Kent State University and
Johann Radon Institute (RICAM)

A STABLE MATRIX VERSION OF THE FAST MULTIPOLE METHOD 15

3.2. General idea of transforming FMM into HSS matrices. We now consider the
conversion of the FMM matrix A in (3.11) into an HSS form. Note that in [3, 38, 39], the
construction of HSS matrices is based on algebraic strategies. It is also possible to use
analytical compression like the methods in [25, 41, 42, 43] for HSS constructions, but it is
unclear whether the resulting HSS forms satisfy the stability requirements or not. Here, we
use an analytical way to convert the FMM matrix to an HSS form. The resulting HSS form
has a generator representation with the generators satisfying proper norm bounds.

An HSS matrix can be organized with the aid of a binary tree called HSS tree [38]. Here,
we can use the same binary tree T like in Figure 3.1. An HSS form for A can be defined with
the aid of a set of HSS generators D;, U, Vi, Ry, Wi, Bi:

N B L DC1 UC1 BCl VCT
(3.12) A= Droor(r), Di= [UCZBCQVE De, |

. — UCl RCI : — Vcl Wcl
(3.13) Ui = |: Ucz:| |:Rcz:| o N= [ Ves | Weo

where c1, ¢, are the left and right children of a nonleaf node i, respectively.

Use {1 : n} to denote the set {1,2,...,n}. Also, let Z; be the index set associated with
Dj such that D; = A|Ii x7;- Then we see from (3.12)—(3.13) that the columns of U; span the
column space of the block Az, ({1:n}\7;)- Similarly, the columns of V; span the column space
of the block (A|({1:n}\zi)><zi)T- (3.13) indicates that the Uj;, V; basis matrices have nested
forms.

The HSS form also has a telescoping expansion [24]:

(G.14) A=U®D (R<L—1>(... (ROBOWENT 4 p@)y...)y(wE-D)T 4 B(L—l))
. (V(L))T + D),
where

D) = diag(D;, i: each node at level L),
U = diag(Uj;, i: each node at level L),
VL) = diag(V4, i: each node at level L),

RY = diag <[§°1} , €1, Co: children of each node i at level [ < L) ,

C2

W = diag ([%‘31] , C1,Co: children of each node i at level | < L) ,
co

BO = diag <[BO Bocl] , C1,Co: children of each node i at level [ < L) .
ca

The telescoping expansion in (3.14) has a form similar to the expansion in (3.11) for the FMM.
These two telescoping expansions have the following differences:

e In (3.11), the last term AW for the near-field interactions has a block banded form,
while in (3.14), only the diagonal blocks are considered as near-field interactions so
that the last term D () has a block diagonal form.

e Accordingly, the U(F), V(L) basis matrices in (3.11) are different from U(%), v (Z)
in (3.14), respectively, since they are basis matrices for different off-diagonal blocks.
RO, W in (3.11) are also different from R, W in (3.14), respectively.

e In (3.11), B® has a block nonzero pattern similar to A®) illustrated in Figure 3.2,
while in (3.14), B has a block-diagonal form.
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We will resolve these differences by showing how to construct an HSS form from the
FMM form. It should be noted that the HSS form we are constructing is for the FMM matrix
Ain (3.11). That is, we are constructing an HSS approximation to A.

The basic idea of constructing the HSS form of Ais to find HSS representations for the
far-field matrix AF) = A— AN and the near-field matrix AXY) separately and then to merge
the two sets of HSS generators. In Figure 3.2(d), A" corresponds to the grey banded matrix
along the diagonal and AF) corresponds to the remaining part of the matrix. To distinguish
the generators for different matrices, we use the following notation.

o U,V, etc.: FMM generators of AF) from the FMM procedure in Section 3.1.
e U,V, etc.: HSS generators for the HSS form of A.

e U, V, etc.: HSS generators for the HSS form of A(),

e U,V,etc.: HSS generators for the HSS form of AV,

The HSS representation for the near-field part A(N) can be explicitly written out based on
its block banded form. The main task is then to find the HSS representation of the far-field
part A(F) We do this in two steps:

1. First, we write each off-diagonal block in a low-rank form

(3.15) AP |77, = BV,

where i and j are sibling nodes in 7 (denoted j = sib(i)) with the corresponding
index sets Z; and Z; in A, respectively. As in Section 3.1, we suppose each node i is
associated with a set of points x; € s.
2. Then we write the U , V basis matrices in nested forms. That is, we obtain the R, W
generators in (3.13).
The two steps above will be elaborated in Sections 3.3 and 3.4, respectively. The HSS
representations for A®) and AN will be merged to form an HSS representation for Ain
Section 3.5.

3.3. Low-rank forms of off-diagonal blocks of A(F), For sibling nodes i, j of T, we
find the HSS generators Ul, B,, Vj so as to write AF \I XTI in the form of (3.15).

The FMM procedure yields a partition that accounts for all far-field interactions between
subsets of x; and s\x;. Accordingly, Z; is partitioned into subsets following the partitioning
of x;. Later for convenience, we consider the partition of the index set Z; instead of x;. Note
that subsets resulting from the partitioning of Z; correspond to the descendants of the node i in
T. Figure 3.4 illustrates the partitioning of Z; and the subsets correspond to the nodes marked
in Figure 3.5. These nodes form a set which we call the partition list associated with i.

DEFINITION 3.2. Suppose T is a postordered full binary tree. Let ci and cg be the
leftmost and rightmost leaf descendants of a node i, respectively. Let Py be the set of all the
nodes in the path from par(cy ) (the parent of c1) to the left child of i and Py be the set of all
the nodes in the path from par(cg) to the right child of i. Then the partition list associated
withiof T is

Q; = {c1} U {the right child of each j € P1} U {the left child of each j € P2} U {cs}.

FIG. 3.4. Partitioning of the index set T; associated with node i.

Thus, €); consists of nodes ¢; and cg corresponding to the boundaries of Z; and nodes at
levels as high as possible for the interior subsets of Z;. When we study the interaction between
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Cp Cpt1

AWAWA

C1 C2 Cp-1Cp

FIG. 3.5. Nodes in the partition list Q3 (marked as red solid nodes) corresponding to the partition of Z; in
Figure 3.4.

i and other nodes, §2; is used to provide a way to systematically organize the partition of Z;.
The resulting partition like in Figure 3.4 is also used in [7].

‘We then find Ui, ‘73, and Bi in (3.15). The FMM procedure yields a partition of Z; U Z;,
leading to a blockwise agglomeration [21] of AF) |z, x 1. For convenience, suppose {2; has
the following form as marked in Figures 3.4-3.5:

(3.16) O ={ci,¢2,...,¢p,Cpp1,...,C5},

where ¢, and ¢, are the left and right children of i, respectively. Similarly, suppose €2; has
the following form:

(3.17) Q; ={dy,ds,...,de,degr,...,dg}.

where d¢ and d¢ are the left and right children of j, respectively. As shown in Section 3.1.1,
for each pair of separated sets c; and d;, we can find a low-rank form

vl

J

(3.18) APz w1, = Ue,Be,
Note that AF )|Ici xTa, = 0 if c¢; and d; are near neighbors. In such a case, we can set
Bc“dj = 0 50 that (3.18) still holds. Then we can assemble all the blocks A(F)| T, xZa, fOT

i=1,....8j=1,...,0 into Ui B;V{" in (3.15), where

(3.19) U; = diag(Us,, ..., Us,), V;=diag(Va,,..., Va,),
Bea, - Bea,

(3.20) By :
Beya, - Beyd,

An illustration of (3.15) with (3.19)—(3.20) is shown in Figure 3.6.

d ... de deyi -+ dy

C1

c,

A(F)\Iixlj =

Cp+1

[}

FIG. 3.6. lllustration of (3.15) with (3.19)—(3.20) for the low-rank form ofA(F) Iz, X T where j = sib(i).
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3.4. Nested U , V basis matrices. We then derive the nested forms of the basis matrices.
Suppose i and j are a pair of sibling nodes with parent p = par(i). Suppose the partition lists
Q; and 5 associated with i and j are in (3.16) and (3.17), respectively, which are used for the
partitioning of the corresponding index sets Z; and Z;. Let the index set associated with p in
Abe I, = I; UZ;. Then the partition list ), associated with p can be obtained by merging
and modifying €; and ;. This is illustrated in Figure 3.7. We can then let

Qp = {Cla C2,...,Cp, €1, €2, df-‘rla ) d9}7

where e; = par(c,41) and e = par(de¢). Note that the nodes ¢, 1, . . ., cg are descendants
of e; and dy, ..., d¢ are descendants of es.

cicy - c, e € defr - dy

I | | 11

IP
C1C2 s Cp Cpt1 - cg didy .- d{ d{+1 S dy
I | | I I R N B | | | T
I T

FI1G. 3.7. Merging the partitions of L; and I to form the partition of Lp.

Like in (3.19), we have
Up = diag(ffcl, e ,Ucp, Uel7ﬁ927 Ud5+17. ey Udg)'

From the translation relations like in (2.24) and (3.8) and noticing Remark 3.1, Uel and Ue2
satisfy

Ue, = diag(Uc,,, Te, 1011+ UcyTepier)s Usy = diag(Ua, T, ess - - - » Udc Ta, e0),

where the translation matrices T¢ e, , Tq,e, are defined like in (2.25). Then

Up = diag(Us,, ..., Ue,,Ue,,,T. o Ue, T

Cp+1-Cpt1,€17 ° B8:€19
Uled1,927 ) UdgTds,ez7 Ud5+17 ) Udg)
= diag(Us s, Us R;),
where
TCp+1-,91 Td1,92
(3.21) R; = |diag | I, : 0|, R;y= |0 diag : i
TCL%el ng792

Here, the zero blocks are chosen to make Ri and Rj have the same column size as Up. Then
we get the nested basis relationship

- Ui R
o[ E)

This yields the nested relation for the U basis matrices. We can similarly derive a nested basis
relationship for V. Since the translation matrices only depend on relevant centers of subsets,
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R; and W; are only determined by the partition of Z; and are independent of the actual points
in Z;. It follows that the HSS generator

(3.23) W; = R;.

At this point, we obtain all the U,V,R,W,B generators for AF) The D generators of
AW are zero blocks. Clearly, the generators have block structures that can be explored to
save storage and computational costs.

3.5. HSS representation for A. We then write an HSS representation for AXN) so as to
get an HSS form for A = A + A(N) - AN i a block banded matrix. Suppose A and
AW) are partitioned conformably. Then the HSS form of AXY) can be explicitly written as
[36]:

Uy=1, Vi=1, foraleafi,

[I 0] ifiis aleafand i < sib(i),

- 0 I ifiis aleafand i > sib(i), ,

diag (I,0), ifiis anonleaf node and i < sib(i),
diag (0,7), ifiisanonleaf node andi > sib(i),

=
I

W;: in the same form as R;,

(3.24)
Al x Ty ifiisaleafandi < sib(i),
AlZ )% T if iis aleaf and i > sib(i),
. 0
B; = , ifiis anonleaf node and i < sib(i),
Alz, X Zsib (1)
AlZ o xT
0 Lavy xTi if i is a nonleaf node and i > sib(i).

With the HSS generators for AT and AN) at hand, it is easy to verify (see, e.g., [36])
that the HSS generators for A are given by:

D; = Di + Di, B; = diag(éi, Bi),
(3.25) Ui=[0: U], Vi=[W% V],
Ri = diag(f%i, Ri), Wi = diag(Wi, Wl)

Due to the summation, the sizes of some generators such as B; may be larger than necessary.
If a more compact HSS form is desired, a recompression step may be applied like in some
other HSS methods [9, 14, 37].

It can be shown that the cost to construct the HSS matrix is also O(rn). The ULV
factorization of the resulting HSS form costs O(r%n).

REMARK 3.3. Here in the 1D case, both the FMM and the HSS forms use binary trees.
For 2D problems, quad-trees are typically used for the FMM. If there is a need to convert
a 2D FMM matrix to an HSS form, we may re-derive the FMM matrix form based on the
repeated bisection of the domain so as to generate a binary tree structure. Then the conversion
to an HSS form can follow a procedure similar to the 1D case, by agglomerating low-rank
subblocks to form an approximation to an off-diagonal block. However, there will be a lot
more such subblocks (as many as O(/n)) than the 1D case (at most O(log n)). The maximum
off-diagonal rank in the HSS form will be as high as O(y/n). This makes the resulting HSS
form less attractive than the 1D case. In three dimensions, the off-diagonal rank will be even
higher.
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3.6. Norm bounds of generators and additional stability discussions. Now we would
like to briefly illustrate that the structured representations given in the previous sections satisfy
some stability requirements of computations such as matrix-vector multiplications (with the
FMM or HSS form) and ULV factorizations (with the HSS form). The backward stability of
several commonly used HSS algorithms has been studied in [7, 34, 35], where the stability
analysis essentially relies on the following conditions.

e The U,V generators have bounded norms.
e The B generators have norms bounded by a small constant multiple of the norm of
A.

Thus, our purpose is to show that, the FMM and HSS generators we obtain using our
stabilization strategy satisfy such norm requirements. Based on the analysis in Section 2, we
have the following bounds for the norms of the FMM and HSS generators.

COROLLARY 3.4. Suppose (2.26) holds for any descendant c of a nonleaf node i in T .
Then for the approximation AtoAin (1.2) with (2.2) and 7 € (0, %), the FMM generators

U,V,Bin(2.17) and R, W in (3.8) satisfy

HU”max S 17 HVHmax S ]-7 ||]:2||max S 17 HW”max S 1;
”B”max < max{1,37}(1 + 7)[| Al max-

The HSS generators U, V, R, W, B in (3.25) satisfy

HU”max < 17 HVHmax < ]-7 ||R||max < ]-a HW”max < 1a
|Bllmax < max{1,37}(1 4+ 7)||A]lmax-

Proof. The max-norm results for the generators U , V, R, W are immediate from Theorems
2.5 and 2.7. When A|z, xI; = UiB; ; V}T like in (3.2) for two separated point sets X; and xj,
we can use Theorem 2.5 and the derivation like in the proof for Theorem 2.9 to get

(3.26) || Bi;llmax < max{1,37}(1+7)||A ZixZ||max < max{1,37}(1 + 7)[| Al max-

Next, it is clear from (3.24) that the HSS generators U,V,R,W for AW have entrywise
magnitudes bounded by 1. Then it can be seen from (3.25) that the HSS generators U, V, R, W
for A have entrywise magnitudes bounded by 1. The HSS generators B like in (3.20) also
satisfy the bound in (3.26). Then

HB”maX < maX{HBHmaxv ||BHmax} < InaX{InaX{l,?)’T}(]. + 7')||A||max7 ”A”maX}
< max{1,37H1 + 7)|| A|lmax-

We thus get the bound for || B||max- ad

Based on these norm bounds and the stability study in Section 2.5, the stability of the
overall FMM algorithm and the HSS matrix-vector multiplication can be naturally shown.
The stability analysis is similar to that in [34]. In fact, such stability can be conveniently
understood based on the telescoping expansions in (3.11) and (3.14). The stability of ULV
factorizations and solutions for the HSS form of A can be shown similarly to the work in
[34, 35]. The actual derivations involve lengthy technical details and thus the readers are
referred to [34, 35].

4. Numerical tests. Here, we use some numerical examples to demonstrate the per-
formance of our techniques and support the analysis. We show how our stable FMM/HSS
constructions with the scaling strategy control the norms of the generators and the approxi-
mation accuracy. We also test the accuracy of direct solution. Different types of kernels as


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

472

473

474

475

476

477

478

479

481

482

483

484

485

486

487

488

490

491

492

493

494

ETNA

Kent State University and
Johann Radon Institute (RICAM)

A STABLE MATRIX VERSION OF THE FAST MULTIPOLE METHOD 21

follows are tested:

1 .
(41) K/l(l‘,y) :{ Ha if © 7& Y,

1,  otherwise,

1 ; o _ if x #
fa#y, log |z |, ifz
— (z—y)?’ ! = & yh -
42)  ka(z,y) { 1, otherwise, r3(z,y) { 1, otherwise.

To account for factors like the scale and distribution of point sets, the kernels are evaluated
at various 1D and 2D point sets.
e Setsi: A set of uniform grid points in [0, 1].
e Set sy: A set of randomly generated points in [0, 1].
e Set s3: A set of points on the boundary curve of a stingray shape defined by coordi-
nates

2t —1 2(21 —1 21 —1
<4Osin(l)7r+40cos4(l)7r, 40 cos® MT), i=12,...,n.
n n n

See Figure 4.1(a) for an illustration.

Set s4: A set of uniform grid points in [0, 400] x [0, 400].

Set s5: A set of randomly generated points in [0, 400] x [0, 400]. See Figure 4.1(b)
for an example.

-40 -20 0 20 40 60 80 0
(a) s3 (b) ss5

FIG. 4.1. Illustration of points in examples of s3 and ss.

To generate a binary tree 7 for the FMM/HSS matrix construction, we hierarchically
bisect each set. Separated subsets are adaptively identified in the partitioning process.

4.1. Entrywise magnitudes of generators. We illustrate the benefit of the proposed
stable FMM/HSS matrix construction by investigating the entrywise magnitudes of the genera-
tors with and without applying the scaling strategy (denoted New and Unscaled in the tests,
respectively). According to (3.25) and Corollary 3.4, we just need to report the entrywise
magnitudes for the HSS version since the results are almost the same for the FMM case. To
inspect how New differs from Unscaled, we report the entrywise magnitudes of the HSS
generators of A®) a5 follows:

(43) B= rl%%z{ ||Bi||maxa U= rl%%z( HUiHmaX; R= Ilrg?%{ ||Ri||max~

Results for the generators V and W are not shown since they are similar to those for U/ and R,
respectively.

We pick the number of points in each point set (or the order of A) as n = 4096 and set
each leaf level partition to include at most 256 points. The separation ration 7 in Definition 2.1
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is set to be % for sets s1, s and @ for s3, s4, s5. The number of expansion terms 7 increases
from 5 to 30 so as to show how the standard Taylor series expansion leads to large entrywise
magnitudes of the generators.

For the kernel k1 (x,y) in (4.1), the results on the maximum entrywise magnitudes (4.3)
are given in Tables 4.1 and 4.2. As r increases, the maximum entrywise magnitudes of some
generators from Unscaled get quite large. For some cases, even a small increase in r leads to
a rapid increase in the entrywise magnitudes and the magnitudes become significantly larger
than || A||max. Such large magnitudes occur in different generators, depending on the point
set. On the other hand, New fully resolves this issue and produces generators with uniformly
bounded matrix entries regardless of the scale and the distribution of the point sets. That is, all
U, R are bounded by 1, which is consistent with Corollary 3.4. The 5 values are also bounded
by modest constants.

TABLE 4.1
Maximum entrywise magnitudes of the HSS generators of AXF) obtained with Unscaled and New for 1 (z,v)
discretized on the sets s1, S2.

Set | [|A| , Unscaled New
max B max{U, R} B max{U, R}

5 | 1.04e05 1.00 5.33e00 1.00
10 | 6.77el12 1.00 5.33e00 1.00

st 41063 15 | 7.03e21 1.00 5.33e00 1.00
20 | 4.24e31 1.00 5.33e00 1.00
25 | 9.34e41 1.00 5.33e00 1.00
30 | 5.75e52 1.00 5.33e00 1.00
5 1.06e08 1.00 2.13e01 1.00
10 | 7.09¢18 1.00 2.13e01 1.00

S 3.60e7 15 | 7.52e30 1.00 2.13e01 1.00
20 | 4.64e43 1.00 2.13e01 1.00
25 | 1.05e57 1.00 2.13e01 1.00
30 | 6.58e70 1.00 2.13e01 1.00

Similar results can also observed for other kernel functions. We repeat some tests with
the kernels ko (z,y) and k3(z,y) in (4.2). The results are shown in Table 4.3. Again, while
some generators from Unscaled have large magnitudes, the generators from New always
have well-controlled entrywise magnitudes.

Other than increasing 7, another way to demonstrate the advantage of New over Unscaled
is to increase the number of points n in a set while keeping the points still within the given
interval. In this way, the points get more clustered and the entries in (2.9) and (2.12) used in
Unscaled get larger. For example, for x1(x, y) discretized on so, we fix r = 20 and increase
n. The B magnitudes are plotted in Figure 4.2. It can be observed that B from Unscaled
increases quickly with n, while it remains well bounded from New. We can observe similar
comparisons for the other sets and kernels.

REMARK 4.1. In practice, even if r is very small (say, smaller than 10), Unscaled
may still provide generators with huge entries that pose stability risks. Also, we have used
computational domains with different sizes to show that Unscaled is susceptible to problem
settings but New is much more robust.

4.2. Accuracy and efficiency. The large magnitudes of the entries of the generators can
cause accuracy loss to structured algorithms using the generators. To demonstrate this, we
perform some operations on the generators in (3.25). The recompression step mentioned


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

525

526

527

528

529

530

531

532

533

534

535

536

ETNA

Kent State University and
Johann Radon Institute (RICAM)

A STABLE MATRIX VERSION OF THE FAST MULTIPOLE METHOD 23

TABLE 4.2
Maximum entrywise magnitudes of the HSS generators of ACF) obtained with Unscaled and New for 1 (z,y)
discretized on the sets s3,S4, S5.

Set | ||A] , Unscaled New
e B U R B max{U, R}
5 | 2.35e — 02 1.49¢04 1.96e02 | 2.35¢ — 02 1.00
10 | 2.35e — 02 8.59¢06 5.49¢02 | 2.69¢ — 02 1.00
ss | 47lel3 15 | 2.35e — 02 3.12e08 5.49¢02 | 3.00e — 02 1.00
20 | 2.35e —02 1.95e09 5.49¢02 | 3.20e — 02 1.00
25 | 2.35e — 02 3.34e09 5.49¢02 | 3.32¢ — 02 1.00
30 | 2.35e — 02 3.34e09 5.49¢02 | 3.42¢ — 02 1.00
5 | 3.59¢ — 03 9.78¢05 1.00 3.59¢ — 03 1.00
10 | 3.59¢ — 03 1.06ell 1.00 4.39¢ — 03 1.00
s 1.00 15 | 3.59¢ — 03 7.19¢14 1.00 4.90e — 03 1.00
20 | 3.59¢ — 03 8.42¢l7 1.00 5.21e — 03 1.00
25 | 3.59¢ — 03 2.70e20 1.00 5.42¢ — 03 1.00
30 | 3.59¢ — 03 3.09e22 1.00 5.57e — 03 1.00
5 | 9.30e — 03 5.90e06 1.00 9.30e — 03 1.00
10 | 9.30e — 03  6.02¢12 1.00 1.09¢e — 02 1.00
ss | 2.98¢1 15 | 9.30e — 03 3.86el7 1.00 1.22¢ — 02 1.00
20 | 9.30e — 03 4.27e21 1.00 1.30e — 02 1.00
25 | 9.30e — 03 1.29e25 1.00 1.35¢ — 02 1.00
30 | 9.30e — 03 1.40e28 1.00 1.39¢ — 02 1.00

1080

~ ® =Unscaled
- & —New e
1050 e
e
PUEEY e
40 L
@ 1090} -
102
P S S Sy S S oF Lk 1=

10*
n

FIG. 4.2. Maximum entrywise magnitude B in (4.3) from Unscaled and New for AE) with k1 (z, y) discretized
on sg of different sizes n.

after (3.25) is first applied with the full machine precision as the tolerance so as to avoid
introducing extra approximation errors. The resulting generators are used for matrix-vector
multiplications and linear system solutions via ULV factorizations and solutions. Without
the recompression, the unscaled version can sometimes give reasonable accuracies in matrix-
vector multiplications. However, it is quite sensitive to more complicated operations such as
recompression. In addition, it can encounter overflow for larger ranks.

For each matrix-vector multiplication, we generate a random vector w and multiply the
approximate matrix with w to get a vector b, which approximates the exact vector b = Aw.

For k1 (x,y) discretized on the point sets as above, the resulting matrix-vector multiplication

b—b . . . . .
errors I ol 1” L are shown in Table 4.4. In exact arithmetic, when 7 increases, the approximate

matrix gets more accurate and the error Hlﬁ;ﬂh should decrease. However, with Unscaled,

only modest accuracies are achieved. Specifically for the sets s1, s, the accuracy in Table
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TABLE 4.3
Maximum entrywise magnitudes of the HSS generators of AF) obtained with Unscaled and New for the
kernels in (4.2) discretized on the sets s2, S5.

Kernel | Set | ||Allmax | 7 Unscaled New

B max{U, R} B max{U,R}

) 1.13e10 1.00 5.63e02 1.00

10 | 1.51e21 1.00 7.41e02 1.00

so | 1.30el5 | 15 | 2.41e33 1.00 8.28e02 1.00

20 | 1.98e46 1.00 8.80e02 1.00

25| 5.57e59 1.00 9.16e02 1.00

ko (2, ) 30| 4.21e73 1.00 9.41e02 1.00
ALY B U R B max{U, R}

5 | 8.65e — 05 5.90e06 1.00 | 2.22¢ — 04 1.00

10 | 8.65e — 05 6.02¢12 1.00 | 2.93e — 04 1.00

s5 | 8.90e02 | 15 | 8.65e — 05 3.86el7 1.00 | 3.33e — 04 1.00

20 | 8.65e — 05 4.27e21 1.00 | 3.65e — 04 1.00

25 | 8.65e — 05 1.29e25 1.00 | 3.87e — 04 1.00

30 | 8.65e — 05 1.40e28 1.00 | 4.03e — 04 1.00
B max{U, R} B max{U, R}

5 1.24e06 1.00 3.06 1.00

10 | 3.69e16 1.00 3.06 1.00

so | 1.74e01 | 15 | 2.52e28 1.00 3.06 1.00

20| 1.14e41 1.00 3.06 1.00

25| 2.04e54 1.00 3.06 1.00

30| 1.06e68 1.00 3.06 1.00
ris(,9) B U R B max{U, R}

5 5.76 5.90e06 1.00 5.76 1.00

10 0.76 6.02¢12 1.00 5.76 1.00

s5 | 8.90e02 | 15 5.76 3.86el7 1.00 5.76 1.00

20 5.76 4.27e21 1.00 5.76 1.00

25 5.76 1.29¢25 1.00 5.76 1.00

30 5.76 1.40e28 1.00 5.76 1.00

4.4 does not improve much for increasing r. For the sets s3, s4, S5, the accuracy in Table 4.4
initially improves with increasing r but then decreases. On the other hand, such situations
do not occur with New. For all the sets, the accuracy increases with r to near the machine
precision.

For the kernels k2 (z,y) and x3(x,y), the results are given in Table 4.5.

We then fix r» = 20 and increase n. Figure 4.3(a) shows the relative errors of the matrix-
vector multiplications for one case. Much higher accuracies are achieved for all n with New
than with Unscaled.

We can similarly compare the accuracies in linear system solution with ULV factorization
and ULV solution. We form the right-hand side vector b = Aw with random w and suppose
W is the approximate solution. For 1 (x, y) discretized on the five sets as above, Table 4.6
gives the relative residuals %. With Unscaled, only modest accuracies can be achieved
for some cases and very inaccurate results are produced for the other cases. With New, the
relative residuals reduce with increasing r to near the machine precision.

Similarly, with » = 20 and varying n, the accuracy results for one test is given in Figure
4.3(b). While the accuracy with Unscaled remains modest and gets worse with increasing n,
the accuracy with New stays high for all the n values.
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) TABLE 4.4
HZ‘TH L : accuracy of matrix-vector multiplications based on Unscaled and New with the kernel k1 (x, y).
T S1 S92 S3 Sa S5
5 | 7.03¢ —06 | 1.34e — 06 | 4.13¢e — 13 | 1.11e — 04 | 1.20e — 04
10 | 8.30e — 08 | 5.55e — 08 | 1.50e — 10 | 6.32e — 07 | 6.93¢ — 07
15 | 8.35e — 08 | 5.50e — 08 | 1.05e — 08 | 7.18e — 09 | 1.98e — 01
Unscaled
20 | 8.47¢ — 08 | 5.49¢ — 08 | 7.24e — 06 | 2.95¢ — 01 | 2.62e¢ — 01
25 | 7.61le — 08 | 5.49¢ — 08 | 9.78¢ — 02 | 3.21e — 01 | 2.91e — 01
30 | 7.65e — 08 | 5.49¢ — 08 | 2.13e — 01 | 3.25¢ — 01 | 2.99¢ — 01
5 | 7.083¢ —06 | 1.33¢ — 06 | 6.84e — 14 | 1.11e — 04 | 1.20e — 04
10 | 1.14e — 08 | 2.67e — 09 | 1.78e — 14 | 6.32e — 07 | 6.93e¢ — 07
New 15 | 2.72e — 11 | 5.55e — 12 | 3.26e — 14 | 7.18e — 09 | 7.20e — 09
20 | 7.84e — 14 | 1.81le — 14 | 3.17e — 14 | 9.93e — 11 | 1.08¢ — 10
25 | 1.62e — 15 | 1.83e — 15 | 2.16e — 14 | 1.76e — 12 | 1.92e¢ — 12
30 | 1.54e —15 | 1.81e — 15 | 4.60e — 14 | 3.49¢ — 14 | 4.17e — 14
R TABLE 4.5
\llﬂ;“bl\ll : accuracy of matrix-vector multiplications based on Unscaled and New with the kernels k2 (x,y)
and k3(z,y).
r /‘62(1‘7?4) KB(‘Q?) y)
S2 S5 S2 S5
5 2.66e — 11 | 4.40e — 06 | 1.11e—04 | 2.11e — 05
10 | 1.26e — 12 | 4.76e — 08 | 2.80e — 06 | 6.07e — 08
Unscaled 15 | 1.26e — 12 | 1.55¢ — 02 | 2.80e — 06 | 5.43e — 01
20 | 1.26e — 12 | 1.94e — 02 | 2.80e — 06 | 6.67¢ — 01
25 | 1.26e —12 | 1.97e — 02 | 2.80e — 06 | 7.14e — 01
30 | 1.26e — 12 | 2.03e — 02 | 2.80e — 06 | 6.71e — 01
) 2.66e — 11 | 4.40e — 06 | 1.11e— 04 | 2.11e — 05
10 | 7.88¢ — 14 | 4.76e — 08 | 9.99¢ — 08 | 6.07e — 08
New 15 | 2.14e— 15 | 7.26e — 10 | 1.71e — 10 | 4.22¢ — 10
20 | 1.89¢ — 15 | 1.45e — 11 | 3.60e — 13 | 4.98e — 12
25 | 1.89¢ — 15 | 3.16e — 13 | 3.97e — 15 | 6.22e — 14
30 | 1.89¢ — 15 | 9.29¢ — 15 | 4.00e — 15 | 4.14e — 15
_ 10 - = 10°® T
P Rt ekt NPV e R R s M
(a) Hl‘?‘;ﬁllh in matrix-vector multiplications (b) “Alﬁ b1 in linear system solutions

FIG. 4.3. Accuracies of matrix-vector multiplications and linear system solutions based on Unscaled and New
with the kernel k1 (x,y) discretized on s of different size n.
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TABLE 4.6
Residuals of ULV solutions after ULV factorizations based on New with the kernel k1 (z, y).

r S1 So S3 S4 S5

5 | 7.03e — 06 | 1.34e — 06 | 4.75e — 10 | 8.85e — 04 | 2.54e — 04
10 | 8.30e — 08 | 5.55e — 08 | 3.62e — 07 | 2.47e — 06 | 1.41e — 06
15 | 8.35e — 08 | 5.50e — 08 | 4.40e — 04 | 1.42e — 08 | 5.34e + 02

Unscaled | o | g 47¢ — 08 | 5.49¢ — 08 | 9.20e + 01 | 1.32¢ + 01 | 4.13¢ + 02
25 | 7.61e — 08 | 5.49¢ — 08 | 3.08¢ + 10 | 1.36¢ + 01 | 2.59¢ + 02

30 | 7.65¢ — 08 | 5.49¢ — 08 | 6.73¢ + 08 | 2.55¢ + 01 | 8.92¢ + 03

5 | 7.03¢ — 06 | 1.33¢ — 06 | 4.79¢ — 09 | 8.85¢ — 04 | 2.54¢ — 04

10 | 1.14¢ — 08 | 2.67¢ — 09 | 2.10¢ — 12 | 2.47¢ — 06 | 1.41c — 06

New | 15| 272 — 11 | 5.55¢ — 12 | 1.04e — 12 | 1.42¢ — 08 | 1.82¢ — 08

20 | 7.96e — 14 | 2.0le — 14 | 2.33e — 13 | 2.53e — 10 | 2.22¢ — 10
25 | 441e—15 | 6.77e — 15 | 2.93e — 13 | 2.61le — 12 | 2.13e — 12
30 | 4.90e — 15 | 6.49e — 15 | 4.23e — 13 | 4.83e — 14 | 8.30e — 14

Finally, it is convenient to check the efficiency of relevant structured algorithms. Such
efficiency studies have been done extensively in many existing literatures. Here, we just
use Figure 4.4 with » = 20 to show the storage needed for the generators for A®) | which
essentially reflects the cost needed to multiply A(F) with a vector. The storage in Figure 4.4 is
roughly linear in n.

k1 (x,y) discretized on so with different number of points n.

5. Conclusions. In this paper, stabilization strategies and backward stability studies are
given for relevant low-rank approximations and translation relations in an intuitive matrix
version of the FMM. An FMM matrix example is also shown, followed by ideas to convert
the FMM matrix into an HSS form that admits stable factorizations. The stable matrix
version FMM employs a scaling strategy to revise the low-rank approximations based on
Taylor expansions for some kernel functions. Rigorous norm bounds are shown for the
FMM and HSS generators. These bounds lead to the backward stability of fast matrix-vector
multiplications with the matrices. The HSS form can be used for stable linear system solution
via ULV factorization and solution.

Since the approximation based on Taylor expansions can be substituted by other approxi-
mations such as polynomial interpolations [13, 19, 40], numerical integrations [1, 41], kernel
independent FMM [25, 42, 43], etc., we expect that our ideas can also be generalized to
various other types of FMM. Our stabilization strategies are derived based on 2D point sets,
but can also be extended to higher dimensions. It is convenient to generalize the norm bounds
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and stability analysis in Sections 2.5 and 3.6. Although we only give the FMM matrix using
one-dimensional sets as an example, the essential ideas can be directly modified for higher
dimensions. Some details will appear in [27].
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