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A STABLE MATRIX VERSION OF THE FAST MULTIPOLE METHOD:1

STABILIZATION STRATEGIES AND EXAMPLES∗2

DIFENG CAI† AND JIANLIN XIA‡3

Abstract. The fast multipole method (FMM) is an efficient method for evaluating matrix-vector products related4

to certain discretized kernel functions. The method involves an underlying FMM matrix given by a sequence of5

smaller matrices (called generators for convenience). Although there have been extensive work in designing and6

applying FMM techniques, the stability of the FMM and the stable FMM matrix factorization have rarely been studied.7

In this work, we propose techniques that lead to stable operations with FMM matrices. One key objective is to give8

stabilization strategies that can be used to provide low-rank approximations and translation relations in the FMM9

satisfying some stability requirements. Standard Taylor expansions used in FMM methods yield basis generators10

susceptible to instability. Here, we introduce some scaling factors to control relevant norms of the generators and give11

rigorous analysis on the bounds of entrywise magnitudes. The second objective is to use the one-dimensional case as12

an example to show an intuitive construction of FMM matrices satisfying some stability conditions and then convert13

an FMM matrix into a hierarchically semiseparable (HSS) form that admits stable ULV-type factorizations. This14

bridges the gap between the FMM and stable FMM matrix factorizations. The HSS construction is done analytically15

and does not need expensive algebraic compression. Relevant stability studies are given and show that the resulting16

matrix forms are suitable for stable operations. Note that the essential stabilization ideas are also applicable to higher17

dimensions. Extensive numerical tests are given to illustrate the reliability and accuracy.18
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1. Introduction. Let κ(x, y) be a kernel function in a form such as 1/(x−y), 1/(x−y)2,22

log(x− y) , and log |x− y|, where x, y ∈ C, x 6= y. Given a set of points23

(1.1) s ≡ {x1, . . . , xn}, xi ∈ C,

let A be an n× n discretized matrix with entries24

(1.2) Aij = κ(xi, xj), i 6= j.

(The diagonal entries Aii are defined separately and do not concern us so far.) It is well known25

that the fast multipole method (FMM) [16, 29] can be used to evaluate the product of A with26

a vector to a given accuracy in linear complexity. As shown in [32], the FMM essentially27

yields a hierarchical structured approximation to A to a given accuracy. Such a structured28

approximation is also an example of anH2-matrix [18, 20]. For convenience, we refer to this29

approximation derived with the FMM procedure as an FMM matrix.30

The construction of an FMM matrix often involves appropriate degenerate approximations31

or truncated expansions of κ(x, y). Commonly used expansions are Taylor expansions,32

multipole expansions, and spherical harmonic expansions. Such expansions provide convenient33

ways to obtain low-rank approximations of off-diagonal blocks (κ(xi, yj)))xi∈x1,yj∈x2
of A34

that correspond to well-separated subsets x1 and x2 of s. (This will be made more precise35

later.)36

Practical implementations of the FMM have usually been very successful in achieving37

both high efficiency and nice accuracy. On the other hand, it has also been noticed that38

numerical stability issues may arise under certain circumstances [10, 11, 12, 17, 28]. Here in39

particular, we are interested in the stability of the FMM based on Taylor expansions of κ(x, y).40
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Taylor expansions can produce low-rank basis matrices with very large entries, although41

the original matrix entries κ(xi, yj) may only have modest magnitudes. Examples of such42

terms are factorials and powers. The artificially large terms may lead to stability issues in43

relevant matrix operations, as pointed out in [17]. They can cause loss of accuracy (due to the44

magnification of numerical errors) or even overflow. Note that these stability risks can arise45

even if κ(x, y) is non-oscillatory as considered here. This happens especially when the data46

points are not nicely distributed, like in the case in [28] where accuracy is crucial when dealing47

with data points that are clustered eigenvalues. Thus, it is important to study the relevant48

numerical stability. A heuristic strategy to improve the stability is briefly mentioned in [17],49

but is lack of rigorous justification or guarantee of the performance. (Note that, despite the50

stability risks, the FMM has worked well for many different problems, likely due to the use of51

certain basis or translation operators that have some structures or sparsity.)52

Here, for the FMM based on Taylor expansions, our first objective is to provide a stabi-53

lization strategy by analytically obtaining low-rank basis matrices and translation matrices54

that satisfy some stability requirements. More specifically, we design a scaling strategy where55

some appropriate scaling factors are chosen to modify the individual terms in the Taylor ex-56

pansions. Then for well-separated subsets x1,x2 ⊂ s, the block (κ(xi, yj)))xi∈x1,yj∈x2
can57

be approximated by a low-rank form Û B̂V̂ T , where the entries of Û and V̂ have magnitudes58

bounded by 1 and, moreover, the entries of B̂ have magnitudes bounded by a small multiple59

of |κ(x, y)| evaluated at appropriate centers of x1 and x2. See Theorem 2.5 for details. The60

low-rank approximations in the FMM also involve the key concept of a translation matrix. We61

give one specific form of the translation matrix and further show that, after scaling with our62

scaling factors, the entries of the translation matrix also have entrywise magnitudes bounded63

by 1. See Theorem 2.7. Based on these bounds, the stability of matrix operations with the64

resulting structured forms can be naturally shown. We illustrate a basic idea of the backward65

stability analysis in Theorem 2.9.66

Our second objective is to extend the stabilization to another structured matrix form67

so as to bridge the gap between the FMM and stable direct factorizations. We use the one-68

dimensional (1D) case as an example to provide an intuitive way to write an explicit form of69

the FMM matrix based on the stabilization strategies. Then the 1D FMM matrix is converted70

into a hierarchical semiseparable (HSS) form [5, 7, 38] that is frequently used to design71

structured direct solvers. The 1D case is very useful for computations such as such as PDE72

solutions, Toeplitz solutions, polynomial computations, and eigenvalue solutions. See, e.g.,73

[5, 8, 13, 25, 26, 31, 33]. The original FMM [16] explains the method in terms of potential74

evaluations. Here, we show a stable matrix version that can be conveniently understood based75

on appropriate basis matrices as contributions, organized at different hierarchical levels by76

a nested basis relation. This matrix form is convenient for non-experts to grasp the FMM.77

An FMM matrix Â ≈ A is given in terms of a sequence of smaller matrices (which we call78

FMM generators) such as Û , B̂, V̂ as above and some translation matrices. Â enables fast79

matrix-vector multiplications, but the stable factorization has been unknown. By converting Â80

into an HSS form, we can take advantage of many fast and stable HSS algorithms, especially81

the so-called HSS ULV factorization [7] with proven nice backward stability [34, 35]. The82

FMM to HSS conversion is done analytically and avoids explicit algebraic compression like83

expensive truncated SVDs or randomized sampling used in [23, 24, 30, 38, 39]. The resulting84

HSS form is represented by a sequence of so-called HSS generators and can be factorized in85

O(n) complexity. All the FMM and HSS generators satisfy some norm bounds (see Corollary86

3.4) that can be used to show the stability of FMM and HSS algorithms. The techniques can87

also be generalized to the 2D case.88

Overall, this work provides useful stability safeguards for matrix operations using the89

FMM matrices. We show how and why the stabilization works and illustrate some essential90
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ideas for the relevant backward stability analysis. We further give an example to illustrate91

an intuitive matrix version of the stable FMM. An analytical construction of HSS matrices92

from FMM matrices is also given so as to facilitate stable direct ULV factorizations. Our93

stabilization strategies are derived in terms of 2D point sets. We would like to emphasize94

that the stabilization strategies and the stability studies are not restricted to 2D cases and are95

also applicable to higher dimensions. Also, the use of the 1D example to illustrate the FMM96

matrix form is merely for convenience. The stabilization can also be applied to several kernel97

functions with related Taylor series expansions.98

The structure of the paper is as follows. Section 2 shows the ideas of stabilizing the FMM99

via stable analytical low-rank approximations and translation operations. In Section 3, the100

ideas are then used for the construction of the FMM matrix, which is further converted into an101

HSS matrix. Some discussions and extensive numerical tests are given in Section 4 to illustrate102

the stability and accuracy.103

2. Stabilization of the FMM: stable low-rank approximation and translation oper-104

ation. In this section, we show how to obtain low-rank kernel matrix approximations that are105

suitable for stable operations. We further provide a stable translation relation to derive nested106

basis matrices. The techniques give essential components for stabilizing the FMM.107

2.1. Kernel expansions and low-rank kernel matrix approximations. Suppose a ker-108

nel function κ(x, y) has a degenerate approximation of the following form for some x, y109

points:110

(2.1) κ(x, y) ≈
r−1∑
k=0

k∑
l=0

αk,lφl(x)ψk−l(y).

We suppose the points are from 2D point sets and are treated as complex numbers. (This can be111

modified to accommodate higher dimensions.) It is well-known that, if r is small compared to112

the numbers of x, y points, (2.1) yields a low-rank approximation to the kernel matrix (defined113

by the evaluation of κ(x, y) at those x, y points). Here for simplicity, we mainly illustrate our114

techniques in terms of the following kernel:115

(2.2) κ(x, y) =
1

x− y
, x 6= y.

Note that the use of this kernel is only for convenience since the ideas can be immediately116

extended to several other kernels with similar degenerate approximations (see Section 2.4117

below). For such kernels, Taylor expansions can be used to obtain (2.1).118

We show some details of the expansion following a strategy in [32] so as to facilitate our119

later derivations. For a set of points x ⊂ C, a point z ∈ C is said to be a center for x with a120

corresponding radius if |x − z| ≤ δ for any x ∈ x. Such a definition for z and δ is used in121

[32] and some other FMM work. It is clear that z and δ may not be unique. In case unique z122

and δ are to be defined, we may use a disk enclosing the points with the smallest radius. Since123

the uniqueness is not a concern here, we simply follow the tradition in [32]. The following124

definition from [32] is a generalization of the classical definition of well-separated sets.125

DEFINITION 2.1. [32] Suppose x1 and x2 are two sets of points in C respectively126

corresponding to centers z1 ∈ C and z2 ∈ C and radii δ1 > 0 and δ2 > 0. x1 and x2 are said127

to be (well) separated (with separation ratio τ ) if the following admissibility condition holds:128

(2.3) δ1 + δ2 ≤ τ |z1 − z2|, τ ∈ (0, 1).
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For two well-separated sets x1,x2 ⊂ s as in Definition 2.1 with s in (1.1), (2.3) implies,129

for any x ∈ x1 and y ∈ x2,130

(2.4)
∣∣∣∣ (x− z1)− (y − z2)

z2 − z1

∣∣∣∣ ≤ δ1 + δ2
|z2 − z1|

≤ τ.

Applying Taylor expansion leads to

κ(x, y) =− 1

(z2 − z1)[1− (x−z1)−(y−z2)
z2−z1 ]

(2.5)

=− 1

z2 − z1

r−1∑
k=0

[
(x− z1)− (y − z2)

z2 − z1

]k
+ εr

=−
r−1∑
k=0

k!

(z2 − z1)k+1

k∑
j=0

(−1)k−j
(x− z1)

j

j!

(y − z2)
k−j

(k − j)!
+ εr

=

r−1∑
k=0

αk

k∑
j=0

(−1)k−jfj(x− z1)fk−j(y − z2) + εr,

where131

(2.6) fj(x) =
xj

j!
, αk = − k!

(z2 − z1)k+1
, |εr| ≤

τ r

|z2 − z1|(1− τ)
.

Note that, by (2.4),

|κ(x, y)| ≥ 1

|(x− z1)− (y − z2)|+ |z1 − z2|
(2.7)

≥ 1

τ |z1 − z2|+ |z1 − z2|
=

1

1 + τ
|κ(z1, z2)|.

Hence, the truncation error εr can be estimated by132

|εr| ≤
τ r

1− τ
|κ(z1, z2)| ≤ τ r 1 + τ

1− τ
|κ(x, y)|,

which indicates that the relative error of approximation (2.5) is bounded by τ r
1 + τ

1− τ
. This is133

consistent with a conclusion in [32].134

According to (2.5) and (2.6), we can then write135

(2.8) κ(x, y) = uT B̄v + εr,

where

u =
[
f0(x− z1) f1(x− z1) · · · fr−1(x− z1)

]T
,

v =
[
f0(y − z2) f1(y − z2) · · · fr−1(y − z2)

]T
,

B̄ =


α0 α1 · · · αr−1

α1
... ...

...
...

αr−1 0

 diag
(
(−1)0, (−1)1, . . . , (−1)r−1

)
.(2.9)
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Here, diag(. . . ) is used to represent a diagonal matrix (or a block diagonal matrix later).136

Then we consider the low-rank approximation of the discretized matrix defined by the137

evaluation of κ(x, y) on x1,x2:138

(2.10) K = (κ(xi, xj))xi∈x1,xj∈x2
,

which has the (i, j) entry κ(xi, yj). K is m× p with m = |x1|, p = |x2|, and is sometimes139

referred to as the interaction (matrix) between x1 and x2. Based on (2.8), K has a low-rank140

approximation141

(2.11) K = Ū B̄V̄ T +K � E ≈ Ū B̄V̄ T ,

where � denotes the entrywise (Hadamard) product and

Ū = (fj−1(xi − z1))m×r , V̄ = (fj−1(yi − z2))p×r ,(2.12)

|Eij | ≤ τ r
1 + τ

1− τ
.(2.13)

(Here, notation like (Aij)m×n means an m× n matrix with the (i, j) entry Aij .) We see that142

Ū and V̄ are fully determined by the sets x1 and x2, respectively. The matrix B̄ is an r × r143

matrix that depends only on z2 − z1.144

2.2. Stable low-rank approximation with scaling factors and analysis of entrywise145

magnitudes. According to (2.9) and (2.12), the matrices Ū , B̄, V̄ in the low-rank approxima-146

tion (2.11) may have large entrywise magnitudes. This is because of the powers and factorials147

in (2.6). As mentioned in the introduction, directly using the forms of Ū , B̄, V̄ may cause148

stability issues in the low-rank approximation (2.11) and later operations. The stability issue149

gets more severe when r or the size ofK increases. To ensure numerical stability, we introduce150

a scaling strategy so as to bound the entries of the factors in the low-rank approximation. We151

further rigorously justify the effectiveness of the scaling.152

One set of scaling parameters is used for each set of points xi ⊂ s for s in (1.1). Suppose153

xi has center zi and radius δi. (Here, we use subscripts in bold fonts to denote indices of point154

sets.) For a set xi, define scaling factors155

(2.14) ηi,j =

1, j = 0,(
j
e (2πr)

1
2r

1
δi

)j
, j = 1, 2, . . . , r − 1.

(We would like to point out that we first showed these scaling factors ηi,j in our earlier156

unsubmitted preprint [4]. Later, the paper [3] briefly mentioned ηi,j by citing [4].) Such a157

form is motivated by Stirling’s formula:158

lim
r→∞

r!√
2πr (r/e)

r = 1, or r! ∼
√

2πr
(r
e

)r
for large r.

We use ηi,j to modify the approximation to K in (2.10) with two separated sets x1 and x2.159

For x ∈ x1 and y ∈ x2, the expansion in (2.5) can be rewritten as160

(2.15)

κ(x, y) =
r−1∑
k=0

αk

k∑
j=0

(−1)k−j(η1,j)
−1(η2,k−j)

−1(η1,jfj(x−z1)
)(
η2,k−jfk−j(y−z2)

)
+εr.

Compared with (2.11), the approximation to K now becomes161

(2.16) K = Û B̂V̂ T +K � E ≈ Û B̂V̂ T ,
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where162

(2.17)

Û = (η1,j−1fj(xi − z1))m×r ≡ ŪS1,

V̂ = (η2,j−1fj(yi − z2))p×r ≡ V̄ S2,

B̂ = S−11 B̄S−12 ,

and for i = 1, 2,163

(2.18) Si = diag (ηi,0, ηi,1, . . . , ηi,r−1) .

REMARK 2.2. Here, Û is a basis matrix that only depends on x1. In fact, if K is replaced164

by the interaction between x1 and any other separated set, Û remains the same. Thus, Û can be165

viewed as the contribution of x1 (to the FMM). V̂ can be viewed similarly. An intuitive way of166

understanding the matrix form of the FMM is to treat the basis matrices as such contributions167

to the FMM.168

To investigate how the new approximation (2.16) enhances the stability, we give bounds169

for the entries of the matrices Û , V̂ , B̂. The following lemmas will be used.170

LEMMA 2.3. For any integer r > 0 and any number τ ∈ (0, 45 ),171

(2.19) gj ≡
1

j!

(
j

e
(2πr)

1
2r

)j
≤ 1, hj ≡

τ j

gj
< 3τ, j = 1, 2, . . . , r.

Proof. Let s = 1
e (2πr)

1
2r . Then 1

e < s < 1 and gj = jj

j! s
j . Since172

gj+1

gj
= s

(
1 +

1

j

)j
,

as j increases, gj either increases monotonically, decreases monotonically, or first decreases173

and then increases, depending on r. Thus,174

gj ≤ max{g1, gr} = max

{
s,

(r/e)r
√

2πr

r!

}
≤ 1.

To show the second inequality in (2.19), notice that for any j > 1,175

hj+1

hj
= τ

gj
gj+1

= τs−1
(

1 +
1

j

)−j
<

4

5
e

(
1 +

1

j

)−j
< 1.

Then for j > 1, hj decreases as j increases. Thus,176

max
j=1,...,r

hj ≤ max{h1, h2} = max

{
eτ(2πr)−

1
2r ,

1

2
(eτ)2(2πr)−

1
r

}
< 3τ.

177

LEMMA 2.4. Let k be any positive integer and τ > 0. Then178

(2.20) max
t∈(0,τ)

tj(τ − t)k−j = τk
(
j

k

)j (
k − j
k

)k−j
, j = 1, 2, . . . , k − 1.

Proof. Let ϕ(t) = tj(τ − t)k−j , t ∈ (0, τ). Since179

d

dt
(logϕ(t)) =

j

t
− k − j
τ − t

,
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we can see that logϕ(t) has only one critical point t0 = jτ/k in (0, τ) for j < k. It can180

be verified that ϕ(t0) is the maximum in (0, τ). Since ϕ(t0) = τk
(
j
k

)j (k−j
k

)k−j
, we get181

(2.20).182

Based on the lemmas, we can estimate the magnitudes of the entries of the matrices183

Û , V̂ , B̂ in (2.17).184

THEOREM 2.5. Suppose K is given in (2.10) and x1 and x2 are two separated sets185

with separation ratio τ ∈ (0, 45 ) and with centers z1 and z2, respectively. Then for the186

approximation in (2.16)–(2.17), the (i, j) entries of the matrices Û , V̂ , B̂ satisfy187

|Ûij | ≤ 1, |V̂ij | ≤ 1, |B̂ij | ≤ max{1, 3τ}|κ(z1, z2)|.

Proof. According to (2.17), Ûij = η1,j−1fj−1(xi− z1), where η1,j−1 is defined in (2.14).
Clearly, |Ûij | = 1 for j = 1. For j = 2, . . . , r,

|Ûij | = |η1,j−1fj−1(xi − z1)| =
(
j − 1

e
(2πr)

1
2r

1

δ1

)j−1 |xi − z1|j−1
(j − 1)!

(2.21)

=
1

(j − 1)!

(
j − 1

e
(2πr)

1
2r

)j−1( |xi − z1|
δ1

)j−1
= gj−1 ·

(
|xi − z1|

δ1

)j−1
,

where gj−1 is defined following (2.19). By Lemma 2.3, gj−1 ≤ 1. This together with188

|xi − z1| ≤ δ1 leads to |Ûij | ≤ 1. Similarly, |V̂ij | ≤ 1. We then estimate |B̂ij |. According to189

(2.9) and (2.17),190

|B̂ij | = |αk|η−11,i−1η
−1
2,j−1, i+ j ≤ r + 1,

where k = i + j − 2 and αk is given in (2.6). For k = 0 or i = j = 1, we simply have
|B̂11| = 1

|z1−z2| . For k ≥ 1, we look at different cases of i, j. For i = 1 and j > 1, we have
η1,i−1 = 1 and

|B̂1j | = |αkη−12,j−1| =
(j − 1)!

|z2 − z1|j

(
(j − 1)

e
(2πr)

1
2r

1

δ2

)−j+1

=
1

|z1 − z2|
(j − 1)!

(
(j − 1)

e
(2πr)

1
2r

)−j+1(
δ2

|z1 − z2|

)j−1
=

1

|z1 − z2|
1

gj−1

(
δ2

|z1 − z2|

)j−1
.

According to (2.3),191

(2.22)
δ2

|z1 − z2|
≤ τδ2
δ1 + δ2

.

Then192

|B̂1j | ≤
1

|z1 − z2|
τ j−1

gj−1

(
δ2

δ1 + δ2

)j−1
≤ 3τ

|z1 − z2|
= 3τ |κ(z1, z2)|,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

8 D. CAI AND J. XIA

where Lemma 2.3 is used. For j = 1, the derivation is similar to the case when i = 1. For
i, j > 1, we have 2 < k < r and

|B̂ij | = |αkη−11,i−1η
−1
2,j−1|

=
k!

|z1 − z2|k+1

(
i− 1

e
(2πr)

1
2r

1

δ1

)−i+1(
j − 1

e
(2πr)

1
2r

1

δ2

)−j+1

=
1

|z1 − z2|
k!

(
1

e
(2πr)

1
2r

)−k
(i− 1)−i+1(j − 1)−j+1

·
(

δ1
|z1 − z2|

)i−1(
δ2

|z1 − z2|

)j−1
=

1

|z1 − z2|
kk

gk
(i− 1)−i+1(j − 1)−j+1

(
δ1

|z1 − z2|

)i−1(
δ2

|z1 − z2|

)j−1
≤ 1

|z1 − z2|
kk

gk
(i− 1)−i+1(j − 1)−j+1

(
τδ1

δ1 + δ2

)i−1(
τδ2

δ1 + δ2

)j−1
,

where
δ1

|z1 − z2|
≤ τδ1
δ1 + δ2

and (2.22) are used. By setting t =
τδ1

δ1 + δ2
< τ in Lemma 2.4,

we further get

|B̂ij | ≤
1

|z1 − z2|
kk

gk
(i− 1)−i+1(j − 1)−j+1τk

(
i− 1

k

)i−1(
j − 1

k

)j−1
=

1

|z1 − z2|
τk

gk
≤ 3τ

|z1 − z2|
= 3τ |κ(z1, z2)|,

where Lemma 2.3 is used. This completes the proof.193

Hence, the entries of the basis matrices Û and V̂ in (2.17) have magnitudes bounded194

by 1. B̂ is just a small matrix with order r and its entries have magnitudes bounded by a195

small multiple of |κ(z1, z2)| which depends on the two centers only. These bounds ensure the196

stability of matrix operations with the low-rank approximation Û B̂V̂ T . See Section 2.5 later.197

REMARK 2.6. It is clear that our scaling strategy can control the entrywise magnitudes198

of not only Û , V̂ , but also B̂. This is a significant advantage over simple methods such199

as straightforward scaling/normalization of the columns of Ū , V̄ . The latter can make the200

entries of the resulting B̂ matrix poorly scaled or even cause numerical overflow. Even if the201

simple scaling factors from the latter strategy can be represented as separate diagonal matrices,202

forming these scaling factors and the entries of B̄ in a separate manner can pose numerical203

issues (since they may still be very large for some cases). The entries of B̄ may still be much204

larger than the original entries in K and thus not be well controlled. With our strategy, the205

entrywise magnitudes of B̂ are under control and we can integrate our scaling factors into the206

computation of the entries of B̂ if needed.207

2.3. Stable translation relation and analysis of entrywise magnitudes. A key idea for208

the FMM to reach linear complexity is to exploit a translation relation between the so-called209

local expansions associated with one point set and its subsets [16]. This is essentially to use210

nested basis matrices in off-diagonal approximations. Here, we give an explicit matrix relation211

that ensures stable operations. To facilitate later discussions, we assume a set xi ⊂ s has212

center zi and radius δi, as mentioned at the beginning of Section 2.2, and a subset xc ⊂ xi has213

center zc and radius δc.214

As mentioned in Remark 2.2, we can derive a basis matrix Ûi as the contribution of xi

and a basis matrix Ûc as the contribution of xc. In the FMM, the translation relation is used to
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connect Ûc to the contribution of xc to Ûi. Specifically, the translation relation in our context
can be derived for fj in (2.6) as follows:

fj(x− zi) =
(x− zi)j

j!
=

((x− zc) + (zc − zi))j

j!
(2.23)

=

j∑
i=0

(x− zc)
i

i!

(zc − zi)j−i

(j − i)!
=

j∑
l=0

(
ηc,ifi(x− zc)

)(
η−1c,i fj−i(zc − zi)

)
,

where we have included the scaling factor ηc,i for stability purpose. Therefore, a row in Ûi

can be written as [
ηi,0f0(x− zi) · · · ηi,r−1fr−1(x− zi)

]
(2.24)

=
[
ηc,0f0(x− zc) · · · ηc,r−1fr−1(x− zc)

]
Tc,i,

where
[
ηc,0f0(x− zc) · · · ηc,r−1fr−1(x− zc)

]
is a row of Ûc and Tc,i is the translation215

matrix216

(2.25) Tc,i = S−1c

f0(zc − zi) · · · fr−1(zc − zi)
. . .

...
f0(zc − zi)

Si,

with Si in (2.18) and Sc defined in the same way. With the translation matrix Tc,i, the217

contribution of x to Ûc is related to the contribution of x to Ûi as in (2.24).218

We then study the entrywise magnitudes of Tc,i. To accommodate the general situation219

that xc may be any subset of xi resulting from the partitioning of xi, we suppose220

(2.26) δi − δc ≥ |zc − zi|,

so that the disk defined by |x − zc| ≤ δc (that encloses xc) is fully located inside the disk221

|x− zi| ≤ δi (that encloses xi).222

THEOREM 2.7. Suppose (2.26) holds. Then the (i, j) entry (Tc,i)i,j of Tc,i defined in223

(2.25) satisfies |(Tc,i)i,j | ≤ 1.224

Proof. Tc,i is an upper triangular matrix and the (i, j) entry for 1 ≤ i ≤ j ≤ r is225

(Tc,i)i,j = ηi,j−1η
−1
c,i−1fj−i(zc − zi).

If j = 1, (Tc,i)i,j = 1. Then suppose j > 1. We look at different cases of i.226

1. When i = 1, just like the derivation in (2.21),

|(Tc,i)i,j | = |ηi,j−1fj−1(zc − zi)| =
(
j − 1

e
(2πr)

1
2r

1

δi

)j−1 |zc − zi|j−1
(j − 1)!

= gj−1 ·
(
|zc − zi|

δi

)j−1
≤ 1,

where Lemma 2.3 and (2.26) are used.227
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2. When 1 < i < j,

|(Tc,i)i,j | = (j − 1)j−1(i− 1)−i+1

(
1

e
(2πr)

1
2r

)j−i
δi−1c

δj−1i

|zc − zi|j−i

(j − i)!

≤ (j − 1)j−1(i− 1)−i+1 1

(j − i)!

(
1

e
(2πr)

1
2r

)j−i(
δc
δi

)i−1(
1− δc

δi

)j−i
(by (2.26))

≤ (j − 1)j−1(i− 1)−i+1 1

(j − i)!

(
1

e
(2πr)

1
2r

)j−i(
i− 1

j − 1

)i−1(
j − i
j − 1

)j−i
(by Lemma 2.4)

=
1

(j − i)!

(
j − i
e

(2πr)
1
2r

)j−i
= gj−i ≤ 1,

where the last inequality is due to Lemma 2.3.228

3. When i = j,229

|(Tc,i)i,j | = |ηi,i−1η−1c,i−1| =
(
δc
δi

)i−1
≤ 1.

230

In Section 3.1, we show how the translation matrix Tc,i is used to build a nested basis231

form for Ûi.232

REMARK 2.8. It is worth pointing out that there are also other analytical methods that can233

produce translation matrices that satisfy similar entrywise bounds. For example, the method234

in [15] uses an integral form and quadrature approximation to obtain translation operators in235

diagonal forms with entrywise magnitudes bounded by 1. On the other hand, the resulting236

basis matrices depend on the quadrature weights and bounds on their entries are not studied in237

[15]. Here, our idea is to integrate scaling into simple Taylor expansions so as to control the238

entrywise magnitudes of all the relevant matrices.239

2.4. Generalizations. It can be shown that our results can be generalized to various240

useful kernels like 1/(x− y)k with integer k > 0, log(x− y) , log |x− y|, and other kernels241

with expansions similar to (2.5). In fact, by using the same set of scaling factors as in Section242

2.2, we can get bounds similar to those in Theorem 2.5. That is, the entrywise bound for the243

Û , V̂ basis matrices remain to be 1. The relative entrywise bound for the B̂ generators only244

changes slightly. In our numerical tests in Section 4, tests for different kernels will be given.245

For some kernels that do not have similar Taylor expansions, the stabilization is beyond the246

scope of this work.247

2.5. Stability. Our stabilization strategies ensure the stability of operations involving the248

resulting structured forms in the FMM. For example, the stability of multiplying Û B̂V̂ T and249

vectors can be shown as follows.250

THEOREM 2.9. For them×p interaction matrixK in (2.10), suppose the same conditions
as in Theorem 2.5 hold and K̂ = Û B̂V̂ T is the approximation to K as in (2.16)–(2.17). Then
the matrix-vector multiplication b̂ = Û B̂V̂ Tw ≈ Kw for a vector w satisfies

fl(b̂) = (Û B̂V̂ T + ∆K̂)w, with

‖∆K̂‖F ≤ max{1, 3τ}(1 + τ)r2
√
mpγp+2r‖K‖F +O(ε2mach),

where fl(·) denotes the numerical result in floating point operations, εmach denotes the machine251

epsilon, and γk = kεmach

1−kεmach
.252
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Proof. It is commonly known that (see, e.g., [22]), for a matrix C with column size p, the253

matrix-vector multiplication Cw satisfies the following backward error result:254

fl(Cw) = (C + ∆C)w, |∆C| ≤ γp|C|.

Thus, when the matrix-vector multiplication K̂w = Û B̂V̂ Tw is considered, we have

b1 = fl(V̂ Tw) = (V̂ T + ∆V̂ T )w, |∆V̂ T | ≤ γp|V̂ T |,
b2 = fl(B̂b1) = (B̂ + ∆B̂)b1, |∆B̂| ≤ γr|B̂|,

b̂ = fl(Ûb2) = (Û + ∆Û)b2, |∆Û | ≤ γr|Û |.

(Note that K̂ is m× p and B̂ is r × r.) Combining these results, we get255

fl(Û B̂V̂ Tw) = (Û + ∆Û)(B̂ + ∆B̂)(V̂ T + ∆V̂ T )w ≡ (Û B̂V̂ T + ∆K̂)w,

where

‖∆K̂‖F ≤ ‖Û B̂(∆V̂ T )‖F + ‖Û(∆B̂)V̂ T ‖F + ‖(∆Û)B̂V̂ T ‖F +O(ε2mach)

≤ (γp + 2γr)‖Û‖F ‖B̂‖F ‖V̂ ‖F +O(ε2mach).

(Here, we use Frobenius norm in the backward error instead of the max-norm since the former
is sub-multiplicative but the latter is not.) According to Theorem 2.5, we have

‖Û‖F ≤
√
mr‖Û‖max ≤

√
mr, ‖V̂ ‖F ≤

√
rq‖V̂ ‖max ≤

√
rq,

‖B̂‖F ≤ r‖B̂‖max ≤ rmax{1, 3τ}|κ(z1, z2)|,

where z1 and z2 are the centers of x1 and x2 in (2.10), respectively. Due to the separation
condition in Definition 2.1, we have (2.7) for any x ∈ x1 and y ∈ x2. Thus,

‖B̂‖F ≤ rmax{1, 3τ}(1 + τ)|κ(x, y)| ≤ rmax{1, 3τ}(1 + τ)‖K‖F .

Accordingly,

‖∆K̂‖F ≤ (γp + 2γr)
√
mr
√
rp(rmax{1, 3τ}(1 + τ)‖K‖F ) +O(ε2mach)

= max{1, 3τ}(1 + τ)r2
√
mp

(p+ 2r)εmach − 3rpε2mach

1− (p+ r)εmach + rpε2mach

‖K‖F +O(ε2mach)

≤ max{1, 3τ}(1 + τ)r2
√
mpγp+2r‖K‖F +O(ε2mach).

256

This theorem shows the backward stability of using the low-rank approximation K̂ to257

compute the matrix-vector product K̂w that approximates Kw. (For this reason, it makes258

somewhat more sense to use K in the backward error bound.)259

Note that, if no scaling is used like in the usual FMM, then ‖Û‖max, ‖V̂ ‖max, and/or260

‖B̂‖max may potentially get very large, leading to significantly larger backward error bounds.261

The impact can be observed from the numerical results later.262

3. Extension of the stabilization from FMM to HSS matrices. We then show an263

example of an intuitive analytical construction of an FMM matrix satisfying some stability264

requirements and, moreover, extend the stabilization from the FMM matrix to an HSS form.265

This further connects the FMM with stable and fast ULV factorizations for HSS matrices.266
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3.1. An example for the FMM matrix representation. We first integrate the stabiliza-267

tion strategy in the previous section into the FMM framework for constructing an FMM matrix268

example. For convenience, we consider the 1D case and suppose the set of points s in (1.1) is269

located in an interval I ⊂ R. Note that 1D cases are very useful for many different situations270

[5, 8, 13, 25, 26, 31, 33]. (The 1D point set is also just used to simplify the presentation. The271

strategy below can be easily adapted to more general 1D curves. The essential ideas can also272

be extended to 2D sets.) We consider A in (1.2) as the discretization of κ in (2.2) on s. Given273

an accuracy ε, we follow a general framework in [32] and use the 1D FMM scheme to produce274

an FMM matrix Â such that275

(3.1) A = Â+A� E, with |Eij | ≤ ε.

According to (2.13), r can be chosen to make τ r
1 + τ

1− τ
≤ ε.276

3.1.1. Set partitioning and far-field interaction. To conveniently organize the FMM277

matrix representation, we use a postordered binary tree T with nodes i = 1, 2, . . . , root(T ),278

where root(T ) denotes the root node. See Figure 3.1. Suppose T has L levels such that279

n/2L−1 = O(r) and root(T ) is at level 0. Partition the set s hierarchically following T .280

That is, suppose each node i is associated with a subset xi ⊂ s so that xroot(T ) = s and281

xi = xc1 ∪ xc2 , xc1 ∩ xc2 = ∅ for any nonleaf node i with children c1 and c2. Based on the282

subinterval where xi is located, we can conveniently determine a center zi and a radius δi of283

xi. For each leaf i, the cardinality mi ≡ |xi| = O(r).

1 2 4 5

3 6

7 14 22 29

l = 1

l = L

...

l = 0

...

FIG. 3.1. Example of a postordered tree T used for the FMM.

284

Later for convenience, when xi is used, we may simply refer to node i of T . For example,285

given two nodes i and j of T corresponding to two separated sets xi and xj (as defined in286

Definition 2.1), respectively, we just say i and j are separated.287

Suppose xi corresponds to the index set Ii so that the submatrix of A corresponding to288

the row index set Ii and column index set Ij is A|Ii×Ij ≡ (κ(xi, xj))xi∈xi,xj∈xj
, which is289

the interaction between i and j. When i and j are separated, A|Ii×Ij can be approximated by a290

low-rank form like in (2.16) and is said to be a far-field interaction. For notational convenience,291

we rewrite (2.16) as292

(3.2) A|Ii×Ij = ÛiB̂i,jV̂
T
j +A|Ii×Ij � Ei,j ≈ ÛiB̂i,jV̂

T
j ,

where appropriate sets used for the definition of the matrices in (2.17) are replaced by xi and293

xj. Correspondingly, the centers zi, zj, the radii δi, δj, and the scaling factors ηi,j , ηj,j as in294

(2.14) are used for the definition of Ûi, B̂i,j, V̂
T
j in (3.2).295

As mentioned in Remark 2.2, we call Ûi the contribution (matrix) from node i. Clearly,296

Ûi = V̂i. However, to accommodate more general matrix forms, we still use V̂ Ti for the row297

basis matrix in (3.2).298
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When i and j are not separated, they are said to be near neighbors, and A|Ii×Ij is a299

near-field interaction. Near-field interactions may be further partitioned so as to generate300

far-field interactions at finer levels.301

3.1.2. Levelwise low-rank approximation. In the FMM, far-field interactions are orga-302

nized with the aid of interaction lists [16], which encode the interactions to consider at each303

level of partition. Specifically for our case, the interaction list Li for node i of T is the set of304

nodes j at the same level as i but well-separated from i, and with its parent a near neighbor of305

i.306

Corresponding to level l of T , let A(l) be the submatrix extracted from A by retaining307

only the blocks A|Ii×Ij for all nodes i at level l and j ∈ Li and zeroing out other blocks308

in A. For example, for l = 2, the four nodes in Figure 3.1 have interaction lists L7 =309

{22, 29},L14 = {29},L22 = {7},L29 = {7, 14}. The corresponding far-field interactions310

are shown in Figure 3.2(a). Similarly, the far-field interactions for l = 3, 4 are shown in Figure311

3.2(b–c). Correspondingly, the matrix A can be decomposed levelwise into the following sum312

of matrices corresponding to far-field interactions and near-field interactions:313

(3.3) A = A(2) + · · ·+A(L) +A(N),

where A(N) denotes all the near-field interactions at the leaf level L of the partition. A(N) is a314

block banded matrix.315

(a) A(2) (b) A(3) (c) A(4) (d) A

FIG. 3.2. Nonzero patterns of A(l) and how A(l) appears in A, where the grey band in (d) corresponds to A(N).

For l ≥ 2, the nonzero block A|Ii×Ij for each node i at level l and j ∈ Li has a low-rank
approximation as in (3.2). For convenience, let i1, . . . , iβ be the nodes at level l of T , ordered
from left to right. Then, we can write

A(l) = Û (l)B̂(l)(V̂ (l))T +A(l) � E(l) ≈ Û (l)B̂(l)(V̂ (l))T , with(3.4)

Û (l) = diag(Ûi1 , . . . , Ûiβ ), V̂ (l) = diag(V̂i1 , . . . , V̂iβ ),(3.5)

and B̂(l) and E(l) have the same block nonzero patterns as A(l) with the nonzero blocks316

A|Ii×Ij of A(l) replaced by B̂i,j and Ei,j, respectively. See Figure 3.3.317

A
(l) ~~ =

FIG. 3.3. Nonzero patterns of Û(l), B̂(l), and V̂ (l) in (3.4) for A(l) with l = 2 in Figure 3.2(a).
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From (3.3) and (3.4), we have the following approximation of A:318

(3.6) A =
L∑
l=2

Û (l)B̂(l)(V̂ (l))T +A(N) +A� E ≈
L∑
l=2

Û (l)B̂(l)(V̂ (l))T +A(N) ≡ Â,

where E = E(2) + · · ·+E(L). Since the nonzero blocks of E(l) for different l do not overlap,319

E satisfies the bound in (3.1).320

Thus, Â is an approximation to A with entrywise relative accuracy ε as in (3.1). It can be321

easily seen that Â can be used to compute matrix-vector products in O(rnL) = O(rn log n)322

flops with r = O(| log ε|). Assume ε is fixed and then this cost becomes O(n log n).323

3.1.3. Nested basis and FMM matrix in a telescoping expansion form. The essential
strategy to reduce the matrix-vector multiplication cost fromO(n log n) toO(n) in the FMM is
to use nested basis matrices in the off-diagonal approximations. This can utilize the translation
relation in Section 2.3. According to the relation in (2.24), the basis matrices or contributions
from a parent node i of T and its children c1 and c2 are related by

Ûi =

[
Ûc1

Ûc2

] [
R̂c1

R̂c2

]
, V̂i =

[
V̂c1

V̂c2

] [
Ŵc1

Ŵc2

]
, with(3.7)

R̂c1 = Ŵc1 = Tc1,i, R̂c2 = Ŵc2 = Tc2,i.(3.8)

(3.7) shows how the nested basis matrices are obtained.324

REMARK 3.1. Note that the translation relation (2.23) is a result of the binomial expansion.325

Although here c1 and c2 are children of i, the translation relation in Section 2.3 is not restricted326

to the case where c is a child of i. That is, Tc,i in (2.25) can be used for any descendant c of i.327

The approximation in (3.6) can then be converted into a nested form. That is, let

Û (l) = Û (l+1)R̂(l+1), V̂ (l) = V̂ (l+1)Ŵ (l+1), l = 1, 2, . . . , L− 1, with(3.9)

R̂(l+1) = diag

([
R̂c1

R̂c2

]
, c1, c2: children of each node i at level l

)
,

Ŵ (l+1) = diag

([
Ŵc1

Ŵc2

]
, c1, c2: children of each node i at level l

)
.

We can then rewrite the approximation in (3.4) as a recursive relation328

(3.10) Û (l)B̂(l)(V̂ (l))T = Û (L)R̂(L−1) · · · R̂(l)B̂(l)(Ŵ (l))T · · · (Ŵ (L−1))T (V̂ (L))T ,

where Û (L) and V̂ (L) are defined for the leaf level L as in (3.5).329

Inserting (3.10) into (3.6), we obtain the following telescoping expansion of Â:

Â = Û (L)
(
R̂(L−1)( · · · (R̂(2)B̂(2)(Ŵ (2))T + B̂(3))(3.11)

· · ·
)
(Ŵ (L−1))T + B̂(L)

)
(V̂ (L))T +A(N),

which is the hierarchical matrix form produced by the FMM or the FMM matrix. For conve-330

nience, we call the matrices Ûi, V̂i, R̂i, Ŵi, B̂i FMM generators. We also suppose that each331

node i of the FMM tree T is associated with FMM generators Ûi, V̂i, R̂i, Ŵi, B̂i. Due to the332

nested bases, the Ûi, V̂i generators associated with a nonleaf node i are not explicitly stored.333

The total storage for the FMM matrix Â is then just O(rn). The cost to multiply the FMM334

matrix and a vector now becomes O(rn).335
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3.2. General idea of transforming FMM into HSS matrices. We now consider the336

conversion of the FMM matrix Â in (3.11) into an HSS form. Note that in [3, 38, 39], the337

construction of HSS matrices is based on algebraic strategies. It is also possible to use338

analytical compression like the methods in [25, 41, 42, 43] for HSS constructions, but it is339

unclear whether the resulting HSS forms satisfy the stability requirements or not. Here, we340

use an analytical way to convert the FMM matrix to an HSS form. The resulting HSS form341

has a generator representation with the generators satisfying proper norm bounds.342

An HSS matrix can be organized with the aid of a binary tree called HSS tree [38]. Here,
we can use the same binary tree T like in Figure 3.1. An HSS form for Â can be defined with
the aid of a set of HSS generators Di, Ui, Vi, Ri,Wi, Bi:

Â = Droot(T ), Di =

[
Dc1 Uc1Bc1V

T
c2

Uc2
Bc2

V Tc1
Dc2

]
,(3.12)

Ui =

[
Uc1

Uc2

] [
Rc1

Rc2

]
, Vi =

[
Vc1

Vc2

] [
Wc1

Wc2

]
,(3.13)

where c1, c2 are the left and right children of a nonleaf node i, respectively.343

Use {1 : n} to denote the set {1, 2, . . . , n}. Also, let Ii be the index set associated with344

Di such that Di = Â|Ii×Ii . Then we see from (3.12)–(3.13) that the columns of Ui span the345

column space of the blockA|Ii×({1:n}\Ii). Similarly, the columns of Vi span the column space346

of the block (A|({1:n}\Ii)×Ii)T . (3.13) indicates that the Ui, Vi basis matrices have nested347

forms.348

The HSS form also has a telescoping expansion [24]:

Â = U (L)
(
R(L−1)( · · · (R(2)B(1)(W (2))T +B(2)) · · ·

)
(W (L−1))T +B(L−1)

)
(3.14)

· (V (L))T +D(L),

where349

D(L) = diag(Di, i: each node at level L),

U (L) = diag(Ui, i: each node at level L),

V (L) = diag(Vi, i: each node at level L),

R(l) = diag

([
Rc1

Rc2

]
, c1, c2: children of each node i at level l < L

)
,

W (l) = diag

([
Wc1

Wc2

]
, c1, c2: children of each node i at level l < L

)
,

B(l) = diag
([

0 Bc1

Bc2 0

]
, c1, c2: children of each node i at level l < L

)
.

The telescoping expansion in (3.14) has a form similar to the expansion in (3.11) for the FMM.350

These two telescoping expansions have the following differences:351

• In (3.11), the last term A(N) for the near-field interactions has a block banded form,352

while in (3.14), only the diagonal blocks are considered as near-field interactions so353

that the last term D(L) has a block diagonal form.354

• Accordingly, the Û (L), V̂ (L) basis matrices in (3.11) are different from U (L), V (L)
355

in (3.14), respectively, since they are basis matrices for different off-diagonal blocks.356

R̂(l), Ŵ (l) in (3.11) are also different from R(l), W (l) in (3.14), respectively.357

• In (3.11), B̂(l) has a block nonzero pattern similar to A(l) illustrated in Figure 3.2,358

while in (3.14), B(l) has a block-diagonal form.359
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We will resolve these differences by showing how to construct an HSS form from the360

FMM form. It should be noted that the HSS form we are constructing is for the FMM matrix361

Â in (3.11). That is, we are constructing an HSS approximation to A.362

The basic idea of constructing the HSS form of Â is to find HSS representations for the363

far-field matrix Â(F ) ≡ Â−A(N) and the near-field matrix A(N) separately and then to merge364

the two sets of HSS generators. In Figure 3.2(d), A(N) corresponds to the grey banded matrix365

along the diagonal and Â(F ) corresponds to the remaining part of the matrix. To distinguish366

the generators for different matrices, we use the following notation.367

• Û , V̂ , etc.: FMM generators of Â(F ) from the FMM procedure in Section 3.1.368

• U, V , etc.: HSS generators for the HSS form of Â.369

• Ũ , Ṽ , etc.: HSS generators for the HSS form of Â(F ).370

• Ǔ , V̌ , etc.: HSS generators for the HSS form of Â(N).371

The HSS representation for the near-field part A(N) can be explicitly written out based on372

its block banded form. The main task is then to find the HSS representation of the far-field373

part Â(F ). We do this in two steps:374

1. First, we write each off-diagonal block in a low-rank form375

(3.15) Â(F )|Ii×Ij = ŨiB̃iṼ
T
j ,

where i and j are sibling nodes in T (denoted j = sib(i)) with the corresponding376

index sets Ii and Ij in A, respectively. As in Section 3.1, we suppose each node i is377

associated with a set of points xi ∈ s.378

2. Then we write the Ũ , Ṽ basis matrices in nested forms. That is, we obtain the R̃, W̃379

generators in (3.13).380

The two steps above will be elaborated in Sections 3.3 and 3.4, respectively. The HSS381

representations for Â(F ) and Â(N) will be merged to form an HSS representation for Â in382

Section 3.5.383

3.3. Low-rank forms of off-diagonal blocks of Â(F ). For sibling nodes i, j of T , we384

find the HSS generators Ũi, B̃i, Ṽj so as to write Â(F )|Ii×Ij in the form of (3.15).385

The FMM procedure yields a partition that accounts for all far-field interactions between386

subsets of xi and s\xi. Accordingly, Ii is partitioned into subsets following the partitioning387

of xi. Later for convenience, we consider the partition of the index set Ii instead of xi. Note388

that subsets resulting from the partitioning of Ii correspond to the descendants of the node i in389

T . Figure 3.4 illustrates the partitioning of Ii and the subsets correspond to the nodes marked390

in Figure 3.5. These nodes form a set which we call the partition list associated with i.391

DEFINITION 3.2. Suppose T is a postordered full binary tree. Let c1 and cβ be the392

leftmost and rightmost leaf descendants of a node i, respectively. Let P1 be the set of all the393

nodes in the path from par(c1) (the parent of c1) to the left child of i and P2 be the set of all394

the nodes in the path from par(cβ) to the right child of i. Then the partition list associated395

with i of T is396

Ωi = {c1} ∪ {the right child of each j ∈ P1} ∪ {the left child of each j ∈ P2} ∪ {cβ}.

Ii

c1 c2 cρ· · · · · ·cρ+1 cβ

FIG. 3.4. Partitioning of the index set Ii associated with node i.

Thus, Ωi consists of nodes c1 and cβ corresponding to the boundaries of Ii and nodes at397

levels as high as possible for the interior subsets of Ii. When we study the interaction between398
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c1 c2

cρ cρ+1

cβcβ−1

i

FIG. 3.5. Nodes in the partition list Ωi (marked as red solid nodes) corresponding to the partition of Ii in
Figure 3.4.

i and other nodes, Ωi is used to provide a way to systematically organize the partition of Ii.399

The resulting partition like in Figure 3.4 is also used in [7].400

We then find Ũi, Ṽj, and B̃i in (3.15). The FMM procedure yields a partition of Ii ∪ Ij,401

leading to a blockwise agglomeration [21] of Â(F )|Ii×Ij . For convenience, suppose Ωi has402

the following form as marked in Figures 3.4–3.5:403

(3.16) Ωi = {c1, c2, . . . , cρ, cρ+1, . . . , cβ},

where cρ and cρ+1 are the left and right children of i, respectively. Similarly, suppose Ωj has404

the following form:405

(3.17) Ωj = {d1,d2, . . . ,dξ,dξ+1, . . . ,dθ}.

where dξ and dξ+1 are the left and right children of j, respectively. As shown in Section 3.1.1,406

for each pair of separated sets ci and dj , we can find a low-rank form407

(3.18) Â(F )|Ici×Idj = ÛciB̂ci,dj V̂
T
dj .

Note that Â(F )|Ici×Idj = 0 if ci and dj are near neighbors. In such a case, we can set

B̂ci,dj = 0 so that (3.18) still holds. Then we can assemble all the blocks Â(F )|Ici×Idj for

i = 1, . . . , β, j = 1, . . . , θ into ŨiB̃iṼ
T
j in (3.15), where

Ũi = diag(Ûc1
, . . . , Ûcβ ), Ṽj = diag(V̂d1

, . . . , V̂dθ ),(3.19)

B̃i =

B̂c1,d1 . . . B̂c1,dθ
... · · ·

...
B̂cβ ,d1

. . . B̂cβ ,dθ

 .(3.20)

An illustration of (3.15) with (3.19)–(3.20) is shown in Figure 3.6.408

d1 dξ· · · · · ·dξ+1 dθ

c1

cρ

cρ+1

cβ

...

...

= Ũi

B̃i Ṽ T
j

Â(F )|Ii×Ij

FIG. 3.6. Illustration of (3.15) with (3.19)–(3.20) for the low-rank form of Â(F )|Ii×Ij , where j = sib(i).
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3.4. Nested Ũ , Ṽ basis matrices. We then derive the nested forms of the basis matrices.409

Suppose i and j are a pair of sibling nodes with parent p = par(i). Suppose the partition lists410

Ωi and Ωj associated with i and j are in (3.16) and (3.17), respectively, which are used for the411

partitioning of the corresponding index sets Ii and Ij. Let the index set associated with p in412

A be Ip = Ii ∪ Ij. Then the partition list Ωp associated with p can be obtained by merging413

and modifying Ωi and Ωj. This is illustrated in Figure 3.7. We can then let414

Ωp = {c1, c2, . . . , cρ, e1, e2,dξ+1, . . . ,dθ},

where e1 = par(cρ+1) and e2 = par(dξ). Note that the nodes cρ+1, . . . , cβ are descendants415

of e1 and d1, . . . ,dξ are descendants of e2.416

Ii

c1 c2 cρ· · · · · ·cρ+1 cβ

Ij

d1d2 dξ· · · · · ·dξ+1 dθ

Ip

c1 c2 cρ· · · e1 e2 · · ·dξ+1 dθ

︷ ︸︸ ︷ ︷ ︸︸ ︷

FIG. 3.7. Merging the partitions of Ii and Ij to form the partition of Ip.

Like in (3.19), we have417

Ũp = diag(Ûc1
, . . . , Ûcρ , Ûe1

, Ûe2
, Ûdξ+1

, . . . , Ûdθ ).

From the translation relations like in (2.24) and (3.8) and noticing Remark 3.1, Ûe1
and Ûe2

418

satisfy419

Ûe1
= diag(Ûcρ+1

Tcρ+1,e1
, . . . , ÛcβTcβ ,e1

), Ûe2
= diag(Ûd1

Td1,e2
, . . . , ÛdξTdξ,e2

),

where the translation matrices Tc,e1
, Td,e2

are defined like in (2.25). Then

Ũp = diag(Ûc1
, . . . , Ûcρ , Ûcρ+1

Tcρ+1,e1
, . . . , ÛcβTcβ ,e1

,

Ûd1Td1,e2 , . . . , ÛdξTdξ,e2 , Ûdξ+1
, . . . , Ûdθ )

= diag(ŨiR̃i, ŨjR̃j),

where420

(3.21) R̃i =

diag

I,
Tcρ+1,e1

...
Tcβ ,e1


 0

 , R̃j =

0 diag


Td1,e2

...
Tdξ,e2

 , I

 .

Here, the zero blocks are chosen to make R̃i and R̃j have the same column size as Ũp. Then421

we get the nested basis relationship422

(3.22) Ũp =

[
Ũi

Ũj

] [
R̃i

R̃j

]
.

This yields the nested relation for the Ũ basis matrices. We can similarly derive a nested basis423

relationship for Ṽi. Since the translation matrices only depend on relevant centers of subsets,424

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

A STABLE MATRIX VERSION OF THE FAST MULTIPOLE METHOD 19

R̃i and W̃i are only determined by the partition of Ii and are independent of the actual points425

in Ii. It follows that the HSS generator426

(3.23) W̃i = R̃i.

At this point, we obtain all the Ũ , Ṽ , R̃, W̃ , B̃ generators for Â(F ). The D̃ generators of427

Â(F ) are zero blocks. Clearly, the generators have block structures that can be explored to428

save storage and computational costs.429

3.5. HSS representation for Â. We then write an HSS representation for A(N) so as to430

get an HSS form for A = Â(F ) +A(N). A(N) is a block banded matrix. Suppose A(F ) and431

A(N) are partitioned conformably. Then the HSS form of A(N) can be explicitly written as432

[36]:433

(3.24)

Ǔi = I, V̌i = I, for a leaf i,

Ři =


[I 0] if i is a leaf and i < sib(i),
[0 I] if i is a leaf and i > sib(i), ,
diag (I, 0) , if i is a nonleaf node and i < sib(i),
diag (0, I) , if i is a nonleaf node and i > sib(i),

W̌i: in the same form as Ři,

B̌i =



A|Ii×Isib(i) , if i is a leaf and i < sib(i),
A|Isib(i)×Ii , if i is a leaf and i > sib(i),[

0

A|Ii×Isib(i)

]
, if i is a nonleaf node and i < sib(i),[

A|Isib(i)×Ii
0

]
, if i is a nonleaf node and i > sib(i).

With the HSS generators for A(F ) and A(N) at hand, it is easy to verify (see, e.g., [36])
that the HSS generators for Â are given by:

Di = D̃i + Ďi, Bi = diag(B̃i, B̌i),

Ui =
[
Ũi Ǔi

]
, Vi =

[
Ṽi V̌i

]
,(3.25)

Ri = diag(R̃i, Ři), Wi = diag(W̃i, W̌i).

Due to the summation, the sizes of some generators such as Bi may be larger than necessary.434

If a more compact HSS form is desired, a recompression step may be applied like in some435

other HSS methods [9, 14, 37].436

It can be shown that the cost to construct the HSS matrix is also O(rn). The ULV437

factorization of the resulting HSS form costs O(r2n).438

REMARK 3.3. Here in the 1D case, both the FMM and the HSS forms use binary trees.439

For 2D problems, quad-trees are typically used for the FMM. If there is a need to convert440

a 2D FMM matrix to an HSS form, we may re-derive the FMM matrix form based on the441

repeated bisection of the domain so as to generate a binary tree structure. Then the conversion442

to an HSS form can follow a procedure similar to the 1D case, by agglomerating low-rank443

subblocks to form an approximation to an off-diagonal block. However, there will be a lot444

more such subblocks (as many asO(
√
n)) than the 1D case (at mostO(log n)). The maximum445

off-diagonal rank in the HSS form will be as high as O(
√
n). This makes the resulting HSS446

form less attractive than the 1D case. In three dimensions, the off-diagonal rank will be even447

higher.448
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3.6. Norm bounds of generators and additional stability discussions. Now we would449

like to briefly illustrate that the structured representations given in the previous sections satisfy450

some stability requirements of computations such as matrix-vector multiplications (with the451

FMM or HSS form) and ULV factorizations (with the HSS form). The backward stability of452

several commonly used HSS algorithms has been studied in [7, 34, 35], where the stability453

analysis essentially relies on the following conditions.454

• The U, V generators have bounded norms.455

• The B generators have norms bounded by a small constant multiple of the norm of456

A.457

Thus, our purpose is to show that, the FMM and HSS generators we obtain using our458

stabilization strategy satisfy such norm requirements. Based on the analysis in Section 2, we459

have the following bounds for the norms of the FMM and HSS generators.460

COROLLARY 3.4. Suppose (2.26) holds for any descendant c of a nonleaf node i in T .
Then for the approximation Â to A in (1.2) with (2.2) and τ ∈ (0, 45 ), the FMM generators
Û , V̂ , B̂ in (2.17) and R̂, Ŵ in (3.8) satisfy

‖Û‖max ≤ 1, ‖V̂ ‖max ≤ 1, ‖R̂‖max ≤ 1, ‖Ŵ‖max ≤ 1,

‖B̂‖max ≤ max{1, 3τ}(1 + τ)‖A‖max.

The HSS generators U, V,R,W,B in (3.25) satisfy

‖U‖max ≤ 1, ‖V ‖max ≤ 1, ‖R‖max ≤ 1, ‖W‖max ≤ 1,

‖B‖max ≤ max{1, 3τ}(1 + τ)‖A‖max.

Proof. The max-norm results for the generators Û , V̂ , R̂, Ŵ are immediate from Theorems461

2.5 and 2.7. When Â|Ii×Ij = ÛiB̂i,jV̂
T
j like in (3.2) for two separated point sets xi and xj,462

we can use Theorem 2.5 and the derivation like in the proof for Theorem 2.9 to get463

(3.26) ‖B̂i,j‖max ≤ max{1, 3τ}(1 + τ)‖A|Ii×Ij‖max ≤ max{1, 3τ}(1 + τ)‖A‖max.

Next, it is clear from (3.24) that the HSS generators Ǔ , V̌ , Ř, W̌ for Â(N) have entrywise
magnitudes bounded by 1. Then it can be seen from (3.25) that the HSS generators U, V,R,W
for Â have entrywise magnitudes bounded by 1. The HSS generators B̃ like in (3.20) also
satisfy the bound in (3.26). Then

‖B‖max ≤ max{‖B̃‖max, ‖B̌‖max} ≤ max{max{1, 3τ}(1 + τ)‖A‖max, ‖A‖max}
≤ max{1, 3τ}(1 + τ)‖A‖max.

We thus get the bound for ‖B‖max.464

Based on these norm bounds and the stability study in Section 2.5, the stability of the465

overall FMM algorithm and the HSS matrix-vector multiplication can be naturally shown.466

The stability analysis is similar to that in [34]. In fact, such stability can be conveniently467

understood based on the telescoping expansions in (3.11) and (3.14). The stability of ULV468

factorizations and solutions for the HSS form of Â can be shown similarly to the work in469

[34, 35]. The actual derivations involve lengthy technical details and thus the readers are470

referred to [34, 35].471

4. Numerical tests. Here, we use some numerical examples to demonstrate the per-
formance of our techniques and support the analysis. We show how our stable FMM/HSS
constructions with the scaling strategy control the norms of the generators and the approxi-
mation accuracy. We also test the accuracy of direct solution. Different types of kernels as
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follows are tested:

κ1(x, y) =

{ 1
x−y , if x 6= y,
1, otherwise,

(4.1)

κ2(x, y) =

{ 1
(x−y)2 , if x 6= y,

1, otherwise,
κ3(x, y) =

{
log |x− y|, if x 6= y,

1, otherwise.(4.2)

To account for factors like the scale and distribution of point sets, the kernels are evaluated472

at various 1D and 2D point sets.473

• Set s1: A set of uniform grid points in [0, 1].474

• Set s2: A set of randomly generated points in [0, 1].475

• Set s3: A set of points on the boundary curve of a stingray shape defined by coordi-476

nates477 (
40 sin

(2i− 1)π

n
+ 40 cos4

2(2i− 1)π

n
, 40 cos5

(2i− 1)π

n

)
, i = 1, 2, . . . , n.

See Figure 4.1(a) for an illustration.478

• Set s4: A set of uniform grid points in [0, 400]× [0, 400].479

• Set s5: A set of randomly generated points in [0, 400]× [0, 400]. See Figure 4.1(b)480

for an example.481

-40 -20 0 20 40 60 80

-40

-30

-20

-10

0

10

20

30

40

0 100 200 300 400

0

50

100

150

200

250

300

350

400

(a) s3 (b) s5

FIG. 4.1. Illustration of points in examples of s3 and s5.

To generate a binary tree T for the FMM/HSS matrix construction, we hierarchically482

bisect each set. Separated subsets are adaptively identified in the partitioning process.483

4.1. Entrywise magnitudes of generators. We illustrate the benefit of the proposed484

stable FMM/HSS matrix construction by investigating the entrywise magnitudes of the genera-485

tors with and without applying the scaling strategy (denoted New and Unscaled in the tests,486

respectively). According to (3.25) and Corollary 3.4, we just need to report the entrywise487

magnitudes for the HSS version since the results are almost the same for the FMM case. To488

inspect how New differs from Unscaled, we report the entrywise magnitudes of the HSS489

generators of Â(F ) as follows:490

(4.3) B ≡ max
i∈T
‖B̃i‖max, U ≡ max

i∈T
‖Ũi‖max, R ≡ max

i∈T
‖R̃i‖max.

Results for the generators Ṽ and W̃ are not shown since they are similar to those for Ũ and R̃,491

respectively.492

We pick the number of points in each point set (or the order of A) as n = 4096 and set493

each leaf level partition to include at most 256 points. The separation ration τ in Definition 2.1494
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is set to be 1
2 for sets s1, s2 and

√
2
2 for s3, s4, s5. The number of expansion terms r increases495

from 5 to 30 so as to show how the standard Taylor series expansion leads to large entrywise496

magnitudes of the generators.497

For the kernel κ1(x, y) in (4.1), the results on the maximum entrywise magnitudes (4.3)498

are given in Tables 4.1 and 4.2. As r increases, the maximum entrywise magnitudes of some499

generators from Unscaled get quite large. For some cases, even a small increase in r leads to500

a rapid increase in the entrywise magnitudes and the magnitudes become significantly larger501

than ‖A‖max. Such large magnitudes occur in different generators, depending on the point502

set. On the other hand, New fully resolves this issue and produces generators with uniformly503

bounded matrix entries regardless of the scale and the distribution of the point sets. That is, all504

U ,R are bounded by 1, which is consistent with Corollary 3.4. The B values are also bounded505

by modest constants.506

TABLE 4.1
Maximum entrywise magnitudes of the HSS generators of Â(F ) obtained with Unscaled and New for κ1(x, y)

discretized on the sets s1, s2.

Set ‖A‖max r
Unscaled New

B max{U ,R} B max{U ,R}

s1 4.10e3

5 1.04e05 1.00 5.33e00 1.00
10 6.77e12 1.00 5.33e00 1.00
15 7.03e21 1.00 5.33e00 1.00
20 4.24e31 1.00 5.33e00 1.00
25 9.34e41 1.00 5.33e00 1.00
30 5.75e52 1.00 5.33e00 1.00

s2 3.60e7

5 1.06e08 1.00 2.13e01 1.00
10 7.09e18 1.00 2.13e01 1.00
15 7.52e30 1.00 2.13e01 1.00
20 4.64e43 1.00 2.13e01 1.00
25 1.05e57 1.00 2.13e01 1.00
30 6.58e70 1.00 2.13e01 1.00

Similar results can also observed for other kernel functions. We repeat some tests with507

the kernels κ2(x, y) and κ3(x, y) in (4.2). The results are shown in Table 4.3. Again, while508

some generators from Unscaled have large magnitudes, the generators from New always509

have well-controlled entrywise magnitudes.510

Other than increasing r, another way to demonstrate the advantage of New over Unscaled511

is to increase the number of points n in a set while keeping the points still within the given512

interval. In this way, the points get more clustered and the entries in (2.9) and (2.12) used in513

Unscaled get larger. For example, for κ1(x, y) discretized on s2, we fix r = 20 and increase514

n. The B magnitudes are plotted in Figure 4.2. It can be observed that B from Unscaled515

increases quickly with n, while it remains well bounded from New. We can observe similar516

comparisons for the other sets and kernels.517

REMARK 4.1. In practice, even if r is very small (say, smaller than 10), Unscaled518

may still provide generators with huge entries that pose stability risks. Also, we have used519

computational domains with different sizes to show that Unscaled is susceptible to problem520

settings but New is much more robust.521

4.2. Accuracy and efficiency. The large magnitudes of the entries of the generators can522

cause accuracy loss to structured algorithms using the generators. To demonstrate this, we523

perform some operations on the generators in (3.25). The recompression step mentioned524
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TABLE 4.2
Maximum entrywise magnitudes of the HSS generators of Â(F ) obtained with Unscaled and New for κ1(x, y)

discretized on the sets s3, s4, s5.

Set ‖A‖max r
Unscaled New

B U R B max{U ,R}

s3 4.71e13

5 2.35e− 02 1.49e04 1.96e02 2.35e− 02 1.00
10 2.35e− 02 8.59e06 5.49e02 2.69e− 02 1.00
15 2.35e− 02 3.12e08 5.49e02 3.00e− 02 1.00
20 2.35e− 02 1.95e09 5.49e02 3.20e− 02 1.00
25 2.35e− 02 3.34e09 5.49e02 3.32e− 02 1.00
30 2.35e− 02 3.34e09 5.49e02 3.42e− 02 1.00

s4 1.00

5 3.59e− 03 9.78e05 1.00 3.59e− 03 1.00
10 3.59e− 03 1.06e11 1.00 4.39e− 03 1.00
15 3.59e− 03 7.19e14 1.00 4.90e− 03 1.00
20 3.59e− 03 8.42e17 1.00 5.21e− 03 1.00
25 3.59e− 03 2.70e20 1.00 5.42e− 03 1.00
30 3.59e− 03 3.09e22 1.00 5.57e− 03 1.00

s5 2.98e1

5 9.30e− 03 5.90e06 1.00 9.30e− 03 1.00
10 9.30e− 03 6.02e12 1.00 1.09e− 02 1.00
15 9.30e− 03 3.86e17 1.00 1.22e− 02 1.00
20 9.30e− 03 4.27e21 1.00 1.30e− 02 1.00
25 9.30e− 03 1.29e25 1.00 1.35e− 02 1.00
30 9.30e− 03 1.40e28 1.00 1.39e− 02 1.00

10
4

10
0

10
20

10
40

10
60

10
80

Unscaled

New

FIG. 4.2. Maximum entrywise magnitude B in (4.3) from Unscaled and New for Â(F ) with κ1(x, y) discretized
on s2 of different sizes n.

after (3.25) is first applied with the full machine precision as the tolerance so as to avoid525

introducing extra approximation errors. The resulting generators are used for matrix-vector526

multiplications and linear system solutions via ULV factorizations and solutions. Without527

the recompression, the unscaled version can sometimes give reasonable accuracies in matrix-528

vector multiplications. However, it is quite sensitive to more complicated operations such as529

recompression. In addition, it can encounter overflow for larger ranks.530

For each matrix-vector multiplication, we generate a random vector w and multiply the531

approximate matrix with w to get a vector b̂, which approximates the exact vector b = Aw.532

For κ1(x, y) discretized on the point sets as above, the resulting matrix-vector multiplication533

errors ‖b̂−b‖1‖b‖1 are shown in Table 4.4. In exact arithmetic, when r increases, the approximate534

matrix gets more accurate and the error ‖b̂−b‖1‖b‖1 should decrease. However, with Unscaled,535

only modest accuracies are achieved. Specifically for the sets s1, s2, the accuracy in Table536
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TABLE 4.3
Maximum entrywise magnitudes of the HSS generators of Â(F ) obtained with Unscaled and New for the

kernels in (4.2) discretized on the sets s2, s5.

Kernel Set ‖A‖max r Unscaled New

κ2(x, y)

B max{U ,R} B max{U ,R}
5 1.13e10 1.00 5.63e02 1.00
10 1.51e21 1.00 7.41e02 1.00

s2 1.30e15 15 2.41e33 1.00 8.28e02 1.00
20 1.98e46 1.00 8.80e02 1.00
25 5.57e59 1.00 9.16e02 1.00
30 4.21e73 1.00 9.41e02 1.00

B U R B max{U ,R}
5 8.65e− 05 5.90e06 1.00 2.22e− 04 1.00
10 8.65e− 05 6.02e12 1.00 2.93e− 04 1.00

s5 8.90e02 15 8.65e− 05 3.86e17 1.00 3.33e− 04 1.00
20 8.65e− 05 4.27e21 1.00 3.65e− 04 1.00
25 8.65e− 05 1.29e25 1.00 3.87e− 04 1.00
30 8.65e− 05 1.40e28 1.00 4.03e− 04 1.00

κ3(x, y)

B max{U ,R} B max{U ,R}
5 1.24e06 1.00 3.06 1.00
10 3.69e16 1.00 3.06 1.00

s2 1.74e01 15 2.52e28 1.00 3.06 1.00
20 1.14e41 1.00 3.06 1.00
25 2.04e54 1.00 3.06 1.00
30 1.06e68 1.00 3.06 1.00

B U R B max{U ,R}
5 5.76 5.90e06 1.00 5.76 1.00
10 5.76 6.02e12 1.00 5.76 1.00

s5 8.90e02 15 5.76 3.86e17 1.00 5.76 1.00
20 5.76 4.27e21 1.00 5.76 1.00
25 5.76 1.29e25 1.00 5.76 1.00
30 5.76 1.40e28 1.00 5.76 1.00

4.4 does not improve much for increasing r. For the sets s3, s4, s5, the accuracy in Table 4.4537

initially improves with increasing r but then decreases. On the other hand, such situations538

do not occur with New. For all the sets, the accuracy increases with r to near the machine539

precision.540

For the kernels κ2(x, y) and κ3(x, y), the results are given in Table 4.5.541

We then fix r = 20 and increase n. Figure 4.3(a) shows the relative errors of the matrix-542

vector multiplications for one case. Much higher accuracies are achieved for all n with New543

than with Unscaled.544

We can similarly compare the accuracies in linear system solution with ULV factorization545

and ULV solution. We form the right-hand side vector b = Aw with random w and suppose546

ŵ is the approximate solution. For κ1(x, y) discretized on the five sets as above, Table 4.6547

gives the relative residuals ‖Aŵ−b‖1‖b‖1 . With Unscaled, only modest accuracies can be achieved548

for some cases and very inaccurate results are produced for the other cases. With New, the549

relative residuals reduce with increasing r to near the machine precision.550

Similarly, with r = 20 and varying n, the accuracy results for one test is given in Figure551

4.3(b). While the accuracy with Unscaled remains modest and gets worse with increasing n,552

the accuracy with New stays high for all the n values.553
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TABLE 4.4
‖b̂−b‖1
‖b‖1

: accuracy of matrix-vector multiplications based on Unscaled and New with the kernel κ1(x, y).

r s1 s2 s3 s4 s5

Unscaled

5 7.03e− 06 1.34e− 06 4.13e− 13 1.11e− 04 1.20e− 04
10 8.30e− 08 5.55e− 08 1.50e− 10 6.32e− 07 6.93e− 07
15 8.35e− 08 5.50e− 08 1.05e− 08 7.18e− 09 1.98e− 01
20 8.47e− 08 5.49e− 08 7.24e− 06 2.95e− 01 2.62e− 01
25 7.61e− 08 5.49e− 08 9.78e− 02 3.21e− 01 2.91e− 01
30 7.65e− 08 5.49e− 08 2.13e− 01 3.25e− 01 2.99e− 01

New

5 7.03e− 06 1.33e− 06 6.84e− 14 1.11e− 04 1.20e− 04
10 1.14e− 08 2.67e− 09 1.78e− 14 6.32e− 07 6.93e− 07
15 2.72e− 11 5.55e− 12 3.26e− 14 7.18e− 09 7.20e− 09
20 7.84e− 14 1.81e− 14 3.17e− 14 9.93e− 11 1.08e− 10
25 1.62e− 15 1.83e− 15 2.16e− 14 1.76e− 12 1.92e− 12
30 1.54e− 15 1.81e− 15 4.60e− 14 3.49e− 14 4.17e− 14

TABLE 4.5
‖b̂−b‖1
‖b‖1

: accuracy of matrix-vector multiplications based on Unscaled and New with the kernels κ2(x, y)

and κ3(x, y).

r
κ2(x, y) κ3(x, y)

s2 s5 s2 s5

Unscaled

5 2.66e− 11 4.40e− 06 1.11e− 04 2.11e− 05
10 1.26e− 12 4.76e− 08 2.80e− 06 6.07e− 08
15 1.26e− 12 1.55e− 02 2.80e− 06 5.43e− 01
20 1.26e− 12 1.94e− 02 2.80e− 06 6.67e− 01
25 1.26e− 12 1.97e− 02 2.80e− 06 7.14e− 01
30 1.26e− 12 2.03e− 02 2.80e− 06 6.71e− 01

New

5 2.66e− 11 4.40e− 06 1.11e− 04 2.11e− 05
10 7.88e− 14 4.76e− 08 9.99e− 08 6.07e− 08
15 2.14e− 15 7.26e− 10 1.71e− 10 4.22e− 10
20 1.89e− 15 1.45e− 11 3.60e− 13 4.98e− 12
25 1.89e− 15 3.16e− 13 3.97e− 15 6.22e− 14
30 1.89e− 15 9.29e− 15 4.00e− 15 4.14e− 15

10
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-14
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10
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Unscaled

New

10
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10
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-12
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10
-8

10
-6

Unscaled

New

(a) ‖b̂−b‖1
‖b‖1

in matrix-vector multiplications (b) ‖Aŵ−b‖1
‖b‖1

in linear system solutions

FIG. 4.3. Accuracies of matrix-vector multiplications and linear system solutions based on Unscaled and New
with the kernel κ1(x, y) discretized on s2 of different size n.
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TABLE 4.6
Residuals of ULV solutions after ULV factorizations based on New with the kernel κ1(x, y).

r s1 s2 s3 s4 s5

Unscaled

5 7.03e− 06 1.34e− 06 4.75e− 10 8.85e− 04 2.54e− 04
10 8.30e− 08 5.55e− 08 3.62e− 07 2.47e− 06 1.41e− 06
15 8.35e− 08 5.50e− 08 4.40e− 04 1.42e− 08 5.34e+ 02
20 8.47e− 08 5.49e− 08 9.20e+ 01 1.32e+ 01 4.13e+ 02
25 7.61e− 08 5.49e− 08 3.08e+ 10 1.36e+ 01 2.59e+ 02
30 7.65e− 08 5.49e− 08 6.73e+ 08 2.55e+ 01 8.92e+ 03

New

5 7.03e− 06 1.33e− 06 4.79e− 09 8.85e− 04 2.54e− 04
10 1.14e− 08 2.67e− 09 2.10e− 12 2.47e− 06 1.41e− 06
15 2.72e− 11 5.55e− 12 1.04e− 12 1.42e− 08 1.82e− 08
20 7.96e− 14 2.01e− 14 2.33e− 13 2.53e− 10 2.22e− 10
25 4.41e− 15 6.77e− 15 2.93e− 13 2.61e− 12 2.13e− 12
30 4.90e− 15 6.49e− 15 4.23e− 13 4.83e− 14 8.30e− 14

Finally, it is convenient to check the efficiency of relevant structured algorithms. Such554

efficiency studies have been done extensively in many existing literatures. Here, we just555

use Figure 4.4 with r = 20 to show the storage needed for the generators for Â(F ), which556

essentially reflects the cost needed to multiply Â(F ) with a vector. The storage in Figure 4.4 is557

roughly linear in n.558

10 4
10 5

10 6

10 7

O(n)

New

FIG. 4.4. Storage (number of nonzero entries) for the D̃, Ũ , Ṽ , R̃, W̃ , B̃ generators for Â(F ) from New for
κ1(x, y) discretized on s2 with different number of points n.

5. Conclusions. In this paper, stabilization strategies and backward stability studies are559

given for relevant low-rank approximations and translation relations in an intuitive matrix560

version of the FMM. An FMM matrix example is also shown, followed by ideas to convert561

the FMM matrix into an HSS form that admits stable factorizations. The stable matrix562

version FMM employs a scaling strategy to revise the low-rank approximations based on563

Taylor expansions for some kernel functions. Rigorous norm bounds are shown for the564

FMM and HSS generators. These bounds lead to the backward stability of fast matrix-vector565

multiplications with the matrices. The HSS form can be used for stable linear system solution566

via ULV factorization and solution.567

Since the approximation based on Taylor expansions can be substituted by other approxi-568

mations such as polynomial interpolations [13, 19, 40], numerical integrations [1, 41], kernel569

independent FMM [25, 42, 43], etc., we expect that our ideas can also be generalized to570

various other types of FMM. Our stabilization strategies are derived based on 2D point sets,571

but can also be extended to higher dimensions. It is convenient to generalize the norm bounds572
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and stability analysis in Sections 2.5 and 3.6. Although we only give the FMM matrix using573

one-dimensional sets as an example, the essential ideas can be directly modified for higher574

dimensions. Some details will appear in [27].575
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