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Complex body movements require complex dynamics and coordina-
tion among neurons in motor cortex. Conversely, a long-standing
theoretical notion supposes that if many neurons in motor cortex be-
come excessively synchronized, they may lack the necessary com-
plexity for healthy motor coding. However, direct experimental sup-
port for this idea is rare and underlying mechanisms are unclear.
Here we recorded three-dimensional body movements and spiking
activity of many single neurons in motor cortex (M1) of rats with en-
hanced synaptic inhibition and a transgenic rat model of Rett syn-
drome (RTT). For both cases, we found a collapse of complexity in
the motor system. Reduced complexity was apparent in lower di-
mensional, stereotyped brain-body interactions, neural synchrony,
and simpler behavior. Our results demonstrate how imbalanced in-
hibition can cause excessive synchrony in motor cortex, and con-
sequently, a stereotyped motor code. Excessive inhibition and syn-
chrony may underlie abnormal motor function in RTT.

motor cortex | inhibition | Rett syndrome | synchrony | canonical corre-

lation analysis | dimensionality | body movement

diverse and complex repertoire of body movements re-
quires diverse and complex neural activity in primary
motor cortex (M1). Moreover, interactions betweenMt—and
the body must be sufficiently high-dimensional to carry these
movement signals with hrgh—ﬁdel-rt—y—”llhe—com-p}exrt-y—o%neﬁra:l-
vi interactions can be compromised
if synchrony among neurons is excessive. Indeed, it is well
understood theoretically that excessive correlations can limit
the information capacity of any neural code (1-3) - if all neu-
rons are perfectly synchronized, then different neurons cannot
encode different motor signals. Synchrony is also known to
play a role in pathophysiology of movement related disorders,
like Parkinson’s disease (4-6). However, synchrony and corre-
lations also contribute to healthy function in the motor system
(7-14). For instance, particular groups of synchronized neu-
rons seem to send control signals to particular muscle groups
(7, 8) and propagation of correlated firing contributes to motor
planning (10). Synchrony can also play a role in motor learning
(12-14). These findings suggest that correlated activity among
specific subsets of neurons encode specific motor functions.
Thus, it stands to reason that if this synchrony became less
selective and more stereotyped across neurons, then the motor
code would become less complex and lose specificity, resulting
in compromised motor function.
Here we explored thls poss1b1hty in primary-motor-cortex
. First, we studied a transgenic
rat model of Rett syndrome (RTT)7 which has disrupted ex-
pression of the MeCP2 gene. Second, we studied normal
rats with acutely altered inhibitory neural interactions. Both
these cases are associated with abnormal motor behavior and,
possibly, abnormal synchrony. Abnormal synchrony is a pos-
sibility, because both these cases are linked to an imbalance

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

between excitatory (E) and inhibitory (I) neural interactions,
which in turn is likely to result in abnormal synchrony. For
instance, many computational models suggest that synchrony
is strongly dependent on E/I interactions (15-18). Likewise,
in experiments, pharmacological manipulation of E/I causes
changes in synchrony (16, 19, 20) and the excessive synchrony
that occurs during epileptic seizures is often attributed to
an E/I imbalance (21, 22). Similarly, the majority of people
with RTT suffer from seizures (23) and many previous studies
establish E/I imbalance as a common problem in RTT (24).
MeCP2 dysfunction, which is known to cause RTT, seems
to be particularly important in inhibitory neurons (25). For
instance, two studies have shown that disrupting MeCP2 only
in specific inhibitory neuron types can recapitulate the ef-
fects of brain-wide disruption of MeCP2 (26, 27). However,
whether the E/I imbalance favors E or I at the population level
seems to vary across different brain regions in RTT. Studies
of visual cortex (26) and hippocampus (28) suggest that the
balance tips towards too much excitation (perhaps explaining
the prevalence of seizures), while studies of somatosensory
cortex (29, 30) and a brain-wide study of Fos expression (31)
suggest that frontal areas, including motor cortex, are tipped
towards excessive inhibition. These facts motivated our choice
to study pharmacological disruption of inhibition here. While
it is clear that E/I imbalance is important in RTT, it is much
less clear how it manifests at the level of dynamics and com-
plexity of neural activity that is responsible for coordinating
body movements. Thus, in addition to pursuing the general
questions about synchrony and complexity in the motor sys-
tem discussed above, a second goal of our work was to improve
understanding of motor dysfunction due to MeCP2 disruption.

Taken together, these facts led us to the following exper-
imental questions. How does MeCP2 disruption impact the
complexity of body movements, M1 neural activity, and motor
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coding? Are abnormalities in the MeCP2-disrupted motor sys-
tem consistent with excessive inhibition in motor cortex? Gur
workhere-shows that both MeCP2 disruption and excessive
inhibition lead to reduced complexity of interactions between
M1 and body movements, excessive synchrony in M1, and
reduced complexity of body movements. Our findings suggest
that RTT-related motor dysfunction may be due, in part, to
excessive synchrony and inhibition in motor cortex.

Results

We performed simultaneous measurements of body movements
and spiking activity of many single neurons in motor cortex
of rats (Fig. la-c). We compared five different experimen-
tal groups: normal rats (rattus norvegicus, n = 6, Sprague
Dawley, Harlan Labs, TX, USA), normal rats with systemic
pharmacological changes to inhibition (n = 3), normal rats
with pharmacological changes to inhibition locally in motor
cortex (n = 3), transgenic RTT rats (n = 4, HET KO, SD-
Mecp2tmlsage , Horizon Labs, MO, USA), and RTT rats with
systemically altered inhibition. The rat model of RTT we
study here has been shown to recapitulate important dysfunc-
tions and behaviors found in RTT humans including impaired
motor functions (32-34). During each 30 minute recording
session (n = 234 sessions in total), the rats behaved freely - e.g.
walking, grooming, and changing posture - on a 30 cm x 30 cm
platform inside a dark enclosure. To capture body movement,
we recorded the three-dimensional positions of eight reflective
beads positioned along the neck, back, rear hips, and the base
of the tail of each rat, using a infrared multi-camera motion
tracking system (Optitrack Flex: V100R2) with millimeter
spatial resolution and 10 ms temporal resolution. We note that
basic motility was not significantly different between normal
(WT) rats and the RTT rats, but application of GABA ago-
nist musicmol tended to cause a decrease in animal movement
(Fig. S1). Neural activity was recorded (Cerebus, Blackrock
Microsystems) with a 32 channel, 4 shank microelectrode array
chronically implanted in deep layers (1300um from the pia)
of primary-motor—eortex-{vH). The electrode array sampled

units in total (n = 2079 from normal rats, n = 3843 from RTT
rats, average n = 25 units per recording, Fig. S2a-c). Spike
rates were not significantly different between WT and RTT
rats, but were reduced by muscimol application, as expected
(Fig. S2d).

M1-body interactions. Our first goal was to quantitatively as-
sess relationships between M neurons and body movements.
We met this goal in two ways. First, we asked how each single
neuron fired in relation to body movements. For each neuron,
we calculated a spike-triggered average of body speed in a 2
second window centered on the triggering spike time, similar
to a cross correlation function (CCF) between the triggering
neuron’s spikes and the body speed (Fig. 1d). Hereafter, we
refer to this spike-triggered average body speed function as a
body cross-correlation function (BCCF). Here, for simplicity,
we used the center-of-mass speed of the eight motion track-
ing beads to calculate the BCCF’s; below we consider more
detailed aspects of body motion. We obtained one BCCF
for each neuron and compared the shape of BCCF’s across

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX
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After spike sorting (Kilosort (39)), we obtained 5922 single

neurons in each recording. The shape of a BCCF reveals
whether and how the trigger neuron leads or lags body move-
ment. A flat line in the BCCF would indicate a neuron that
fires independently of the body, Additional considerations for
interpreting BCCF’s are in the Discussion section.

We found that neurons recorded in RT'T animals tended to
have stereotyped BCCF’s, while normal rats tended to have
more diverse BCCF’s across neurons (e.g. Fig. 1d, top). To
quantify the similarity of BCCF’s across neurons we calculated
the correlation of each pair of BCCF’s and then averaged
these correlations across all pairs. Distributions of all of these
pairwise correlations are shown in Fig. 1d (bottom) for the two
example recordings in Fig. 1d (top). Thus, we obtain a single
number for each recording that we interpret as a measure of
the stereotypy of the motor code. As summarized in Fig. 1e,
motor code stereotypy was significantly higher (p<0.01, t-
test) for RTT animals (0.40 + 0.27, mean+SD) than normal
rats (0.28 £ 0.21) and was also significantly increased due
to enhancement of inhibition (p<0.01, t-test, 0.80 + 0.21 for
WT + systemic muscimol, 0.45 4+ 0.30 for WT + local mus,
0.49 + 0.25 for RTT + low dose mus, 0.71 4+ 0.26 for RTT +
high dose mus).

One limitation of our analysis of BCCF’s was that it was
based on the center-of-mass speed of the rat, thus reducing
the potentially complex motion of the rat to a one dimensional
variable. To account for higher dimensional relationships
between Mt neurons and body movements, we adopted a
second approach based on canonical correlation analysis (CCA;
for a review of CCA see (40, 41)). If many neurons have
similar BCCF’s, i.e. high motor code stereotypy, this would
suggest that they have a low-dimensional motor code. We
used CCA to test this possibility, treating both the neural
activity and body movements as high dimensional variables;
n neural dimensions for a population of n recorded neurons
and 8 body dimensions, 1 dimension for the speed of each
tracking bead. CCA identifies special directions in these two
high-dimensional "spaces". When projected onto these special
dimensions, the neural activity and body activity are correlated
with each other; the first dimension (CC1) is most correlated,
the second dimension (CC2) is the second-most correlated,
and so on (Fig. 1f). Here we define the dimensionality of
interactions between the neurons and the body as the number
of CCA dimensions with a statistically significant correlation
between brain an body (Methods). We considered only periods
when the animal was active to avoid confounding movement
complexity with general motivation to move (Methods).

In line with our analysis of BCCF’s, we found that the
dimensionality of interactions between M4 and the body for
RTT animals (1.67 & 0.89) was significantly lower (p<0.01,
Wilcoxon rank sum test) than that of WT rats (2.18 £ 0.90),
as summarized in Fig. 1g. Moreover, we found that CCA
dimensionality was significantly anticorrelated with motor code
stereotypy in RTT animals (p<0.01, Spearman correlation,
Fig. 1h). In WT rats, CCA dimensionality did not correlate
with motor code stereotypy, which may explain why CCA
dimensionality was not reduced by muscimol for the WT

group.

M1-neural complexity. So far, the findings we present in Fig. 1
demonstrate that both MeCP2 disruption (RTT) and increased
inhibition result in a motor code with reduced complexity com-
pared to normal rats. This suggests that the complexity of the
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Spearman correlation), but not in WT animals (right).

neural activity by itself, independent of body movment, could
also be reduced in these cases. Alternatively, it is also possible
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that the complexity of neural activity does not change and
that the trends in Fig. 1 manifest in subspaces of neural ac-
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tivity that are not apparent when considering neural activity
separately from the body activity. To test these possibili-
ties, we quantified complexity of neural activity in three ways
(Fig. 2). First, we examined pairwise correlations among the
recorded neurons. We constructed spike count time series for
each neuron and then computed the correlation coefficient for
each pair of neurons (Fig. 2a,b); distributions of such pairwise
correlation coefficients are shown in Fig. 2b for two example
recordings, one from a normal rat, the other from an RTT rat.
We averaged across all pairwise correlations to obtain a sin-
gle number for each recording, termed ’synchrony’ in Fig. 2c,
which quantifies the tendency for neurons to fire together. We
interpret higher levels of synchrony as less complex neural
activity. Similar to the trends in Fig. 1, we found that syn-
chrony in RTT animals (0.13 & 0.06) was significantly higher
(p<0.01, t-test) than in WT animals (0.10 £ 0.08). These
results are summarized for all recordings and experimental
groups in Fig. 2c. Pharmacological enhancement of inhibition
(both local and systemic) also resulted in increased synchrony
(p<0.01, t-test, 0.40 £ 0.19 for WT + systemic muscimol,
0.23 + 0.14 for WT + local mus, 0.15 £ 0.07 for RTT + low
dose mus, 0.24+0.11 for RTT + high dose mus). This result is
somewhat surprising considering that stronger inhibition is of-
ten associated with reduced synchrony in theory (e.g. (15, 42))
and GABA agonists can result in reduced synchrony (16), but
our finding is consistent with a recent study that applied low
dose muscimol in motor cortex of awake rats (20).

Next we assessed complexity of neural activity using prin-
cipal component analysis (PCA, Methods). Similar to CCA,
PCA identifies special directions in high-dimensional neural
"space". But, instead of finding directions that are correlated
with the body (as in CCA), PCA finds directions along which
the neural activity has the greatest variance (without regard
to the body). The first principal component (PC1) explains
the most variance, the second component (PC2) explains the
second-most variance, and so on. In this context, higher com-
plexity neural activity requires more components to explain
its variance; if a greater fraction of the total variance can be
explained by the first PC, we interpret this as lower complexity
(Fig. 2d). We found that the amount of variance explained by
the first principal component was highly correlated with our
synchrony measurements (Fig. S3a, Pearson R = 0.96, p<0.01).
Like synchrony, the variance explained by PC1 for RTT rats
(26.97 + 4.80) was significantly higher (p<0.01, t-test) than in
WT animals (24.49 + 6.09). These results are summarized for
all recordings and experimental groups in Fig. 2e. Increased
inhibition (both local and systemic) also resulted in increased
variance explained by PC1 (p<0.01, t-test, 49.30 + 15.55 for
WT + systemic muscimol, 37.31 £ 12.40 for WT + local mus,
29.70 + 5.65 for RTT + low dose mus, 34.73 £ 10.42 for RTT
+ high dose mus).

We quantified complexity of neural activity in a third way,
similar to our analysis of BCCF’s and motor code stereo-
typy (Fig. 1d-e). For each single neuron, we computed a
spike-triggered average of the spike activity of the rest of
the population of neurons from the same recording (Fig. 2f).
We refer to these as intracortical cross correlation functions
(ICCF’s). ICCF’s have been used in previous studies of popu-
lation coupling (20, 43, 44). We obtained one ICCF for each
neuron in a recording and compared the shape of the ICCF’s
across neurons. The shape of an ICCF reveals whether and
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how the trigger neuron leads or lags the activity of the net-
work in which it is embedded. A flat line in the ICCF would
indicate a neuron that fires independently of the population.
Additional considerations for interpreting ICCF’s is in the
Discussion section. After obtaining an ICCF for each single
neuron, we then asked how similar the ICCF’s were across
neurons.

We found that for normal rats, ICCF’s were diverse; some
neurons lead, others lag the population; some neurons had
sharply peaked ICCF’s, others had broader peaks (Fig. 2f,
gray). In contrast, in the RTT rats, neurons tended to have
stereotyped ICCF’s (Fig. 2f); each neuron tends to partici-
pate with the population in the same way in RTT Mi= We
quantified this stereotypy of intracortical interactions by cal-
culating correlations between all pairs of ICCF’s (Fig. 2g)
for each recording and then averaging across all pairs, to
obtain a single intracortical stereotypy number for each record-
ing. Intracortical stereotypy was correlated with synchrony,
but not as strongly as PC1 variance (Fig. S3b, Pearson R =
0.54, p<0.01). Comparing across our experimental groups, we
found that intracortical stereotypy in RTT rats (0.90 £ 0.03)
was significantly greater (p<0.01, t-test) than in normal rats
(0.86+0.05), as summarized in Fig. 2h. We found that systemic
application of muscimol increased intracortical stereotypy for
both normal and RTT rats (p<0.01, t-test, 0.95+0.03 for WT
+ systemic muscimol, 0.92 £+ 0.03 for RTT + low dose mus,
0.95 £ 0.02 for RTT + high dose mus), but the increase due
to local muscimol application was not significant (0.88 £ 0.05
for WT + local mus).

Complexity of body motion. Figs. 1 and 2 show that both M+
neural activity and its relationship to body movements are
reduced in complexity for RTT animals and for enhanced
inhibition. Does this reduced complexity also manifest in the
body movements considered alone, without reference to neural
activity? This is a possibility but is not guaranteed; it could be
that the trends in Figs. 1 and 2 are fully explained by trends
in neural activity, with body movements playing a lesser role.
To sort this out, we next aimed to directly measure body
movement complexity. We did this in two ways. First, we
used a PCA-based analysis of the 8-dimensional bead speed
data during periods when the rats were not at rest (as for our
CCA analysis in Fig. 1). Similar to our PCA analysis of neural
activity, we defined the complexity of body movements based
on the variance explained by different principle components.
However, correlations among neurons were weak compared to
correlations among the 8 motion tracking beads on the body
(Fig. 3a). Thus, the variance explained by PC1 was always
quite high and did not serve well as a measure of complexity. A
more sensitive measure of complexity was the number of PC’s
needed to explain 95% of variance (termed N95 in Fig. 3c). As
demonstrated in Fig. 3a, N95 was low when body movements
were highly correlated across all 8 tracking beads (e.g. during
locomotion) and N95 was higher when different body parts
moved more independently (e.g. moving the head, grooming,
or changing posture). This is also apparent when examining
how different body parts contribute to different PCs for low
and high N95 (Fig. 3b). Compared to high N95 cases, low N95
cases tended to have all beads contribute more equally to PC1.
We found that N95 for RT'T rats (2.88+£0.87) was significantly
lower (p<0.01, Wilcoxon rank sum test) than that of normal
rats (3.59 £ 0.87). Local muscimol application also resulted
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in reduced N95 compared to normal rats (p<0.05, Wilcoxon
rank sum test). In RTT animals, muscimol application did
not further lower N95. Fig. 3d summarizes N95 results across
all recordings and experimental groups (3.19 £ 0.75 for WT +
systemic muscimol, 3.11+0.47 for WT + local mus, 2.85+0.71
for RTT + low dose mus, 3.00 £ 0.95 for RTT + high dose
mus).

Finally, we assessed complexity of body motion with an
alternative approach based on the recently developed B-SOiD
algorithm (45). B-SOID was originally developed for classi-
fying behaviors based on limb position data obtained from
markerless pose estimation software (e.g. DeepLabCut (46)).
Here we applied the B-SOiD algorithm to classify repeating
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behaviors based on the data from our 8 tracking beads (Meth-
ods). In addition to the 8 speeds we used in our PCA-based
analysis, B-SOiD also uses distances and angles among the
8 beads to identify behaviors. The output of the B-SOiD
algorithm is a behavioral state time series - a sequence of
labels, with a unique label for each behavior, and one label at
each time point (e.g. Fig. 3e). After excluding periods of rest
(as we did for our N95 and CCA analyses), we calculated the
Shannon entropy of the behavioral state time series (Methods).

Entropy, in this context, measures the complexity of behavior.

The highest possible entropy would occur for an animal that
spent equal time in every behavioral state. The lowest possible
entropy (0 bits) would occur if the animal spent the entire
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time in one behavioral state. We found that entropy was
highest in the normal rats (2.91 4+ 0.46) and was significantly
reduced (p<0.05, t-test) for RTT animals (2.71 + 0.54) and
for systemically applied muscimol (2.16 £ 1.20). Fig. 3f sum-
marizes entropy across all recordings and experimental groups
(2.78 £ 0.30 for WT + local mus, 2.57 £+ 0.55 for RTT + low
dose mus, 1.93 £ 0.91 for RTT + high dose mus).

Discussion

Here we have shown that MeCP2 disruption and increased
inhibition cause a similar reduction in complexity of the rat
motor system. Compared to normal rats with intact inhibition,
this reduced complexity manifested in multiple ways. First, the
dimensionality of the motor system was reduced. This lower
dimensionality was apparent at three levels: M+ neural activity
(Fig. 2d,e), body movements (Fig. 3a-d), and interactions
between M and body movements (Fig. 1f,g). Second, Mt
neural activity became more synchronized (Fig. 2a-c). Third,
the way that different Mi—neurons participate in motor system
dynamics became more stereotyped. This stereotypy was
apparent when considering how each Mi-neuron participates
in the collective activity of the Mt neural population (Fig. 2g,h)
and when considering how each M+ neuron relates to body
movements (Fig. 1d,e).

Returning to the questions we posed at the start, one
possible interpretation of our observations is that MeCP2 dis-
ruptions cause an imbalance favoring inhibition in ¥4, This
E/I imbalance results in excessive neural synchrony, thereby
limiting the information capacity of the motor code; the com-
mands—sent-to-the-spinal-ecordfromMi—are less complex. In
this view, the reductions in complexity of behavior and neuron-
to-body relationships are a natural consequence of the less
complex commands-isstred—freny neurons in M1.

This interpretation is supported by the fact that local
application of muscimol #13M1 of normal rats recapitulated
many of our observed differences between RTT rats and normal
rats. This observation is also consistent with previous studies
that point to an imbalance favoring too much inhibition in
frontal areas as a circuit-level problem associated with RTT
(29-31). Also consistent with this possibility, we found that
spike rates are lower i+ for RTT rats compared to normal
rats (Fig. S2). However, this observation also deserves more
careful attention. A few aspects of our measurements of RTT
rats did not parallel the effects of local muscimol application
in normal rats. The most prominent example of this was the
CCA dimensionality of M4 body interactions, which was not
lower then normal for local muscimol application. How is this
possible, considering that the synchrony and dimensionality
of M4, activity and dimensionality of body movements were
reduced for local muscimol application? The most general
answer to this question could be compensatory mechanisms
which are a well known challenge of studying long term E/I
imbalance in neural disorders that may differ for acute E/I
manipulations (24). Nonetheless, a more specific possible
explanation is suggested by a recent study inwhieh-we-showed;
innermal-rats-that-the Mineurons that are most correlated
with each other are also the least correlated with the body (20).
This relationship suggests that the prominent low dimensional
M1 activity that occurs for local muscimol in WT rats will not
be noticed by CCA which selects dimensions that are correlated
with body movements. Our results in Fig. 1h suggest that this
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distinction maynet-bepresent-inREFFMineurons Further

studies will be required to better understand these issues.

To further explore the role of inhibition in our RTT rat
model, we performed additional experiments in which we re-
duced inhibition by applying systemic GABA antagonists.
Our original motivation for this was the possibility of rescuing
normal motor function in RTT rats. However, we found that
partially blocking inhibition did not recover normal motor
function. Perhaps consistent with compensatory mechanisms,
we found that RTT rats were more sensitive to reduced inhibi-
tion than normal rats, but we did not find a return to normal
motor function (Figs. S2 and S3).

Finally, we point out a limitation to our interp.c vations
of spike-triggered average body speed (BCCF) and spike-
triggered average population spike activity (ICCF). We in-
terpreted these spike-triggered average functions in terms of
"interactions" between the triggering neuron and the body
(BCCF, Fig. 1d-e) or "interactions" between the triggering
neuron and the population neural activity (ICCF, Fig. 2f-h).
However, in principle, such spike-triggered averages can reveal
not only cross-correlations (i.e. interactions), but also the au-
tocorrelation of the triggering neuron. To clarify whether our
results are related to such autocorrelations we performed a con-
trol analysis, repeating our measurements of motor code stereo-
typy and intracortical stereotypy, but with a random time shift
applied to the spike times of each neuron. This control keeps
autocorrelations intact, but destroys cross-correlations. We
found that motor code stereotypy was very low and with no
significant differences across groups for this control (Fig. Sba),
indicating that our motor code stereotypy is indeed appropri-
ately interpreted in terms of interactions (cross-correlations).
However, as shown in Fig. S5b-c, for intracortical stereotypy,
autocorrelations may play a role in the difference between WT
and RTT (but not for the effects of muscimol). This may
indicate that the functional implications of different autocor-
relations (e.g. (47-49)) should also be considered in etiology
of RTT related dysfunction.

Our work highlights the complex role of synchrony and
high-dimensional interactions in motor system function and
dysfunction. We show that MeCP2 disruption can lead to
excessive synchrony and a collapse of complexity in the rela-
tionships among M1 neurons and the relationships between M1
neurons and the body. Our findings suggest that stereotypy at
the level of motor coding may play a role in the stereotyped
body movements of Rett syndrome.

Materials and Methods

Animals. All procedures followed the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health and were ap-
proved by University of Arkansas Institutional Animal Care and Use
Committee (protocol #14048). We studied normal Sprague-Dawley
male rats (n = 6, Harlan Labs, TX, USA; 3 for systemic pharmaco-
logical manipulation and 3 for local pharmacological manipulation)
and transgenic MeCP2 knockout female rats (n = 4, HET KO,
SD-Mecp2t™15%9¢ Horizon Lab, MO, USA). The raw data from the
normal rats was collected and first reported in our previous study
(20), but reanalyzed here. The RTT rats have a 71 base pair deletion
in Exon 4, and are maintained by breeding heterozygous females
with wild type males, both with Sprague Dawley backgrounds. This
animal model has been shown in other studies to recapitulate impor-
tant dysfunctions and behaviors found in RT'T humans including
breathing abnormalities, unusual social interactions, exaggerated
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a high density of corticospinal neurons related to hindlimb 423
and forelimb control (15, 17). But, this location also contains 424
hindlimb somatosensory neurons (38). Such sensory neurons 425
could provide sensory feedback used to guide hindlimb move- 426
ments. In this context, the reduced complexity we observed 427
for RTT and muscimol may manifest as limits on somatosen- 428
sorimotor activty. Moreover, there could be a purely sensory 429
component to the reductions in complexity we observed; sen- 430
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in RTT and for increased inhibition. Sorting out these inter- 432
esting possibilities requires further study.
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Fig. 3. Reduced body movement complexity due to MeCP2 disruption and excessive inhibition. a, Examples of tracking bead speed speed data with higher complexity
(top, speeds less correlated across beads) and lower complexity (bottom, highly correlated bead speeds), b, Principal components for the two examples in panel a. Each
component is scaled by the variance it explains. Color indicates bead location. For the low complexity example, notice that PC1 has similar contributions from all beads and
other PCs explain a relatively small amount of variance. ¢, The number of PC’s needed to explain 95% of variance, i.e. N95, is lower for less complex body movements. d,
Summary of N95 for all recordings and experimental groups reveals that N95 is highest for the WT rats. N95 is significantly lower for local muscimol application (p<0.05,
Wilcoxon rank sum) and for RTT rats (p<0.01). e, Two example recordings showing behavioral classification time series from B-SOiD analysis. The example with less complex
behavior, i.e. smaller entropy, spends most time in just a few behaviors. f, Summary of B-SOiD entropy across all recordings and experimental groups. WT rats had the highest
entropy. Systemic muscimol application and RTT rats had significantly lower entropy (p<0.05). Muscimol also reduced entropy for the RTT group (p<0.01).

response to auditory stimuli, reduced gross locomotion, weak grip,
and shortened lifespan (32, 33). In addition, these rats have also
been shown to manifest many of the same behavioral abnormalities
found in some RTT mouse models including stunted body growth,
maloccluded teeth, and reduced interest in social novelty (32).

Pharmacology. On each recording day, we performed one no-drug
recording first and one muscimol recording after at least 1 hour for
each rat. We used muscimol to induce pharmacological enhancement
of inhibition. Muscimol is a GABA agonist that increases the
strength of inhibitory signaling (50). For systemic pharmacological
manipulation, the rats were given either 2 ml muscimol diluted in
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saline solution through intraperitoneal (IP) injection 50 minutes
before every recording. For normal rats, the dose for muscimol is 2
mg/kg body weight; for RTT rats, we applied lower dose varying
from 0.25, 0.5, 1 to 2 mg/kg body weight because these animals
seemed to be more sensitive to altered inhibition than normal rats.
In the main text and figures, the concentration of 0.25 mg/kg body
weight is refered to as ‘low dose muscimol’; higher concentrations
are grouped into ‘high dose muscimol’ for RT'T animals. For local
pharmacological manipulation, 1 uL. of muscimol dissolved in ster-
ile saline solution was injected through the chronically implanted
microcannula with a syringe pump (Bioanalytical Systems, Inc., IN,
USA) slowly over a 5 minute period. Multiple concentrations were
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tested and grouped for local muscimol including 80, 160, 320, 640,
and 1280 puM. For no drug recordings preceding systemic muscimol
application a sham ip injection of 2 ml saline was performed. For
no drug recordings preceding local muscimol application, a sham
injection of 1 pL saline was injected via the microcanula.

Electrophysiology. Microelectrode arrays were chronically implanted
1300 um deep in a 2 mm X 2 mm craniotomy with the center located
0.5 mm posterior to bregma and 2 mm lateral from midline. Thus,
the recorded neurons were located in deep layers of the primary
motor cortex and at positions associated with a wide range of body
movements (51). For the normal rat systemic manipulation group,
we used one type of microelectrode array (A8x4-2mm-200-200-413-
CM32, Neuronexus); for the normal rat local manipulation group
and RTT rats, we used a different type of microelectrode array
(Buzsaki32-CM32, Neuronexus) for improved spike sorting (52).
For all groups, the plane of microelectrode arrays was oriented
perpendicular to the dorsal surface and parallel to the midline.
For local drug delivery, a microcannula was included in the chronic
implant (26GA guide cannula, 33GA injection cannula, Plastics One,
Roanoke, VA, USA), where the guide cannula had its tip touching,
but not penetrating the surface of cortex about 0.5 mm from the
electrodes. After implantation surgery, the rats recovered for at least
2 weeks before recordings began. During each 30-minute recording,
extracellular voltage fluctuations were recorded with 30 kHz sample
rate (Cerebus, Blackrock Microsystems). Signals were digitized
by a headstage connected to the electrode, and transmitted by a
commutator connected to the recording system. Spike sorting was
done with the Kilosort (https://github.com/cortex-lab/KiloSort),
a fast and accurate spike sorting algorithm for high-channel count
probes (39). Then, we manually curated the spike sorting results
with the graphical user interface Phy (https://github.com/cortex-
lab/phy). Criteria for a good unit included clear and distinct
waveform shapes, refractory periods in auto-correlograms, stability
in amplitudes, and distinct principal components in feature space
(Fig. S2a-c).

Motion tracking. As in our previous work (20), body movement
was recorded with a infra-red nine-camera motion tracking system
(OptiTrack Flex:V100R2), where the three-dimensional coordinate
of eight reflective beads (MCP1125, Naturalpoint, 3 mm diameter)
temporarily adhered along the spine from neck to tail and on each
lateral side of rear hips. The tracking system has 10 ms time
resolution and millimeter spatial resolution. The recordings took
place in a dark enclosed space. During a 30 minute recording, the
rats were allowed to freely move on a 30 cm x 30 cm platform
placed at the center of the recording space. The lightweight cable
is attached to the ceiling and the length is carefully measured so
that it does not impede the free movement of the rats. Each rat
went through three acclimatization sessions before recording with
the same setup to avoid stress and anxiety. After recordings were
completed, the tracking trajectories were manually corrected with
the software, Motive (https://optitrack.com/software/motive) and
smoothed by a 5 Hz low-pass filter. The speed of center of mass and
beads were then obtained by calculating differentiated positions.

Body motion data analysis. We used the distance traveled by the
rat during the recording to represent the general motility (Fig. S1).
The distance traveled was calculated for each recording as the cumu-
lative distance traveled by the center of mass of the tracking beads.
Complexity of movements was assessed in two ways: PCA-based
analysis and B-SOIiD analysis (Fig. 3). For PCA-based analysis, we
performed principle component analysis on the speed of 8 beads
using the Matlab function ‘pca’. We excluded time periods when
the rats were at rest for more than 1.5 s. We defined the animal
to be ‘at rest’ if it met two conditions: 1) speed of center of mass
less than 0.8 cm/s; 2) speed of each bead less than 1 cm/s. Brief
periods of motion, shorter than 0.5 s, preceded and followed by rest
were considered rest. After excluding rest periods and applying
principle component analysis, we counted the number of principal
components that explains 95 percent of variance, defined as N95.
Our B-SOiD analysis was performed using B-SOiD version 2.0
(https://github.com/YttriLab/B-SOID). Version 2.0 builds upon
the first version which was previously described (45). We used 12
representative recordings (2 from each of the experimental groups:
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WT, WT + systemic mus, WT + local mus, RTT, RTT + low
mus, RTT + high mus) to train a classifier. And then we used the
classifier on all recordings. We used the 2-dimensional horizontal
position coordinates (x and y in Fig. 1a) of the 8 tracking beads as
input to B-SOiD. For classification, B-SOiD 2.0 uses 28 distances
among the 8 tracking beads, 28 angles, and the speeds of the 8
beads. The inter-bead angles and speeds were the most useful for
B-SOiD classification (Fig. S6). We set the B-SOiD parameters
as follows: frame rate was 100 fps, training input fraction was 1,
cluster size ranged from 0.14% and 0.64%. The output of B-SOiD
was a behavioral state time series, s(t), where s is a label that ranges
from 1 to m if there are m behavioral states defined by B-SOiD.
We excluded periods when the animal was inactive (as done for
CCA and N95 analysis). We found that m = 26.4 + 14.4 (mean
+ SD) for our recordings. Considering all recordings together, 58
behavioral states were identified that had at occurred for at least one
minute (totaled over all recordings). To assess complexity of body
movements, we computed Shannon entropy H of the behavioral
state time series: H = — Zl piloga(pi) where i ranges from 1 to m
and p; = n;/N is the probability of state ¢ estimated by the number
of occurrences n; of state i divided by the total number of time
points N.

Spike data analysis. Spike rate of a recording was obtained by the
average spike rate across all units during the recording (Fig. S2d).
‘Synchrony’ was defined as the average of pairwise correlations of
spike count time series across all pairs of neurons (Fig. 2a-c). The
spike count time series were calculated for each neuron using 1
second time bins. The PCA-based analysis of spikes (Fig. 2d-e) was
also done on spike count time series with 1 second time bins. We
performed principle component analysis on the spike count times
series of 8 randomly picked neurons in the recording, and repeated
10 times to obtain an average for each recording. We used the
percentage of variance explained by the first component, named as
‘PC1 variance explained’, to represent complexity of neural activity.
Intracortical stereotypy (Fig. 2f-h) was defined based on spike-
triggered average population activity functions ICCF’s. For each
neuron (trigger neuron), we counted the number of spikes from
the population (with 10 ms time bin) in a +1 second time window
centered on the spike times of the trigger neuron. We then averaged
these spike-triggered spike counts across all spikes from the trigger
neuron to obtain ICCF’s (Fig. 2f). Intracortical stereotypy was
calculated by averaging pairwise correlations of ICCF’s across all
pairs of units as a single number for each recording (Fig. 2g).

Analysis of interactions between body and neural activity. Motor
code stereotypy (Fig. 1d-e) was defined based on spike-triggered
average body speed functions BCCF’s. Similar to ICCF’s, we ob-
tained BCCF’s for each neuron (the trigger neuron) by averaging
the speed of center of mass in a £1 second time window centered
on the spike times of the trigger neuron (Fig. 1d). BCCF’s was
then smoothed by a 1.5 Hz low pass filter and normalized by its
mean. Motor code stereotypy was defined as the average of pairwise
correlations of BCCFE’s across all pairs of units to obtain a single
number for each recording.

We performed canonical correaltion analysis (CCA) on the two
high dimensional variables: neural activity and body activity. For
neural activity, we used the spike count time series (with 10 ms
time bin) of 8 randomly selected neurons as neural dimensions; for
body activity, we used the speeds of 8 reflective beads as body
dimensions. We excluded time periods when the rats were at rest
(same as in PCA-based and B-SOiD analysis of body motion). Then,
we performed CCA (using Matlab function ‘canoncorr’) to obtain
canonical correlations between the two variables on each of 8 CCA
dimensions. We defined a p-value to measure whether the canonical
correlation coefficient in each dimension is significant, compared to
chance. Our p-value is the probability of a chance-level canonical
correlation coefficient being greater than the measured value. To
define chance-level canonical correlations, we repeated the CCA
calculation using randomly shuffled the temporal order of bead
speeds measurements, keeping the temporal order of spike counts
fixed. We repeated this control CCA calculation 200 times to obtain
8 x 200 = 1600 chancel-level canonical correlation coefficients. The
p-value for was defined as the fraction of the chance-level canonical
correlations that were larger than shuffled canonical correlation in
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a dimension. The dimensions with p-value < 0.01 were defined as
dimensions having significant correlation between neural activity
and body activity. We defined CCA dimensionality as the number of
CCA dimensions with significant correlation. CCA dimensionality
was calculated 10 times for each recording, each time with a different
randomly selected 8 neurons. Then we averaged over these 10
repeats to finally obtain a single CCA dimensionality for each
recording.

Statistics. We examined the statistical significance of the difference
between two groups using p-value of t-test for continuous variables
and Wilcoxon rank sum test for discrete variables. The p-value
represents the probability of accepting the null hypothesis that
the means of two groups are not different. Spearman’s correlation
coefficient and its corresponding p-value were used to test the
correlations between two quantities in Fig. 1h. Pearson’s correlation
coefficient and its corresponding p-value were used in Fig. S3. For
both types of correlation, the p-value represents the null hypothesis
that the two quantities are uncorrelated. We obtained n = 234
recordings with at least 5 good units in total (n = 57 for WT;
n = 17 for WT + systemic mus; n = 23 for WT + local mus;
n = 86 for RTT; n = 37 for RTT + low mus; n = 14 for RTT
+ high mus). All these recordings were included in our analysis
of spike rate, synchrony, and intracortical stereotypy. Recordings
with less than 8 good units (n = 10) were excluded for the PCA-
based analysis of spikes and CCA dimensionality. For analysis of
distance traveled, complexity of movements (N95), B-SOiD entropy,
motor code stereotypy, and CCA dimensionality, n = 6 recordings
were excluded due to absence of motion tracking data. Recordings
with no active period in behavior (n = 4) were excluded for the
analysis of complexity of movements (N95), B-SOiD entropy, and
CCA dimensionality.
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