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Abstract: Irrigation water is a primary source of fresh produce contamination by bacteria during
the preharvest, particularly in hydroponic systems where the control of pests and pathogens is
a major challenge. In this work, we demonstrate the development of a Listeria biosensor using
platinum interdigitated microelectrodes (Pt-IME). The sensor is incorporated into a particle/sediment
trap for the real-time analysis of irrigation water in a hydroponic lettuce system. We demonstrate
the application of this system using a smartphone-based potentiostat for rapid on-site analysis of
water quality. A detailed characterization of the electrochemical behavior was conducted in the
presence/absence of DNA and Listeria spp., which was followed by calibration in various solutions
with and without flow. In flow conditions (100 mL samples), the aptasensor had a sensitivity of
3.37 + 0.21 kQ log-CFU~! mL, and the LOD was 48 + 12 CFU mL~! with a linear range of 10? to
10* CFU mL~!. In stagnant solution with no flow, the aptasensor performance was significantly
improved in buffer, vegetable broth, and hydroponic media. Sensor hysteresis ranged from 2 to
16% after rinsing in a strong basic solution (direct reuse) and was insignificant after removing the
aptamer via washing in Piranha solution (reuse after adsorption with fresh aptamer). This is the first
demonstration of an aptasensor used to monitor microbial water quality for hydroponic lettuce in
real time using a smartphone-based acquisition system for volumes that conform with the regulatory
standards. The aptasensor demonstrated a recovery of 90% and may be reused a limited number of
times with minor washing steps.

Keywords: food safety; electrochemical sensing; foodborne pathogen; fresh produce; interdigitated
electrodes; sensor analytic point solution; SNAPS

1. Introduction

The Centers for Disease Control and Prevention (CDC) estimates that up to 48 million illnesses,
128,000 hospitalizations, and 3000 deaths in the United States are caused by foodborne pathogens each
year [1]. Despite strict regulations to control the presence of foodborne pathogens in the food supply,
the incidence of illnesses and deaths from food by pathogens results in an estimated cost of $14.6 to
$16.3 billion per year [2]. These estimates do not include the economic burden of food waste that is
linked to microbial contamination, which is a serious problem in the United States [3].
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The contamination of fresh produce (e.g., leafy greens) by bacteria is a major problem [4,5],
and water is one of the main route of infections for human exposure [6,7]. The food safety modernization
act recently enacted the final compliance deadline for the produce safety rule (PSR) designed to address
some issues related to this problem [8-10]. The PSR is focused on generic Escherichia coli as an
indicator organism, but current efforts in many research labs are underway to also consider the direct
measurement of pathogenic microorganism. Among these, Listeria spp. is one major concern related to
food recalls.

Listeria spp. are Gram-positive bacteria that are ubiquitous in soil [11], and they are also found
in hydroponic systems [12], processing environments [13], and animal operations [14]. Listeria are
found across the supply chain (i.e., from “farm to fork”); thus, tracking this foodborne pathogen is
challenging [15]. For instance, Listeria monocytogenes is the bacteria responsible for listeriosis, the third
leading cause of death from food poisoning [11,12]. Given the transient nature of Listeria in the food
chain, a variety of sensors and biosensors have been developed in the last few decades to monitor
pathogens associated with food safety [16-23].

The contamination of lettuce by bacteria such as L. monocytogenes and fecal coliforms is a major
issue, including the contamination of hydroponic systems where this pathogen is known to attach to
leaves at a higher rate than in soil-based culture [24-26]. Lettuce is the most valuable leafy crop in the
U.S. [27]; thus, contamination is a major concern in multiple aspects of the supply chain. Sensors are
one important tool used to assess microbiological safety in the supply chain, and they have applications
in irrigation water quality monitoring as well as direct analysis of food samples.

Among Listeria biosensors, one of the most promising biosensors, also known as aptasensors, utilizes
a DNA aptamer (47-mer) that targets a cell-surface invasion protein found on Listeria spp. (Internalin A,
InlA). Ohketal. [21] tested this InlA 47-mer using a fiber optic sensor and showed comparable performance
to antibodies targeting Listeria spp. Hills et al. [28] also used the 47-mer discovered by Ohk et al. [21] to
detect Listeria with an electrochemical sensor based on nanoplatinum—-graphene electrodes.

In this work, we demonstrate the development of a Listeria biosensor using platinum interdigitated
microelectrodes (Pt-IME) biofunctionalized with Listeria-specific aptamer (47-mer) and incorporate
the sensor into a particle/sediment trap for real-time analysis of irrigation water in hydroponic
media. Furthermore, we demonstrate this sensing device using a smartphone-based signal acquisition
system [29] for rapid on-site analysis of water quality in hydroponics with a response time of only
27 min. Pt-IME with different finger spacing of 25, 50, and 100 um were fabricated and tested
to select the optimum finger spacing for improved performance during electrochemical sensing
(i.e., high signal-to-noise ratios, fast response times, and enhanced reaction—diffusion kinetics).
The Pt-IME were biofunctionalized with a Listeria-specific aptamer through thiol-metal bonding
at optimum loading concentration, followed by calibration in various media in stagnant and high-flow
conditions. In addition, sensor hysteresis was investigated for direct reuse (washing with strong
basic solution) and regeneration (using Piranha solution followed by aptamer biofunctionalization).
The resulting biosensor is capable of sensing Listeria spp. in buffer solution and real food (vegetable
broth) in stagnant media, as well as in a high flow-through system of irrigation water in hydroponic
systems at relevant concentrations to regulatory standards for assessing agricultural water quality.
Additionally, this biosensor has a high level of recovery and can be reused a number of times with
minor washing steps.

2. Experimental

2.1. Materials, Reagents and Equipment

Silicon wafer (4 inches) with a wet thermal oxide thickness of 300 nm and a resistivity of
0.001-0.005 3 cm was purchased from University Wafer (Fremont, CA, USA). Platinum pellets, Pt,
99.99% pure, 1/8” diameter were obtained from Kurt J. Lesker (Jefferson Hills, PA, USA). A non-UV
sensitive polymer (LOR 3A) was purchased from MicroChem (Newton, MA, USA). AZ 5214 E-positive
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photoresist, AZ 726 MIF-standard photoresist developer, and AZ 400T-photoresist stripper were
purchased from EMD Performance Materials (Sommerville, NJ, USA). Mylar masks were purchased
from CAD/Art Services, Inc (Bandon, OR, USA). Silver conductive epoxy was purchased from Allied
Electronics (Austin, TX, USA). Silver/silver chloride (Ag/AgCl) standard reference electrode and
platinum auxiliary electrodes were purchased from BASi (West Lafayette, IN, USA). Details of the
materials may be found in the (Supplemental section Table S1).

Hydrogen peroxide 3% (wt), sulfuric acid (H,SOy), potassium nitrate (KNOs3), potassium chloride
(KCl), potassium ferrocyanide trihydrate (K3Fe(CN)g), and phosphate buffer saline (PBS) were
purchased from Sigma Aldrich (St. Louis, MO, USA). Buffered peptone water (BPW) was purchased
from HiMedia (Mumbeai, India). Listeria innocua (ATCC 33090) was purchased from American Type
Culture Collection (Manassas, VA, USA) and cultured in tryptose phosphate broth (TPB) bought from
HiMedia (Mumbai, India). Oxford Listeria-selective agar and Oxford Listeria-selective supplement were
purchased from EMD Performance Materials (Sommerville, NJ, USA). Petrifilms were purchased from
3M (aerobic plate count, St. Paul, MN, USA). Vegetable broth (Swanson, Campbell Soup Company,
Camden, NJ, USA) was purchased in a local grocery store.

The equipment used for the fabrication of Pt-IME included the following: Verteq photoresist
spinner, Karl Suss MA6 mask aligner, Lesker PVD 75 e-beam evaporator, and Aggiefab dicing saw.
All clean room work was conducted at the Aggiefab facility at Texas A&M University (College Station,
TX, USA). A CHI 600E potentiostat (Austin, TX, USA) with CHI6044e software or handheld potentiostat
(ABE-STAT [29]) with Samsung Galaxy tablet was used for electrochemical analysis as noted. A Bruker
Dektak Profilometer (Tucson, AZ, USA) was used to quantify electrode features.

2.2. Bacteria Strains and Culture

L. innocua ATCC 33090 was used as a non-pathogenic surrogate for L. monocytogenes, since they
are found in analogous environments and present similarities when growing in leafy greens [30].
L. monocytogenes ATCC 15313 was used for the selectivity test in complex media. Listeria spp. cultures
originally stored at —80 °C were revived twice in TPB for 24 h at 37 °C. After activation, bacteria
cultures were kept in the refrigerator (5 °C), and weekly transfers were made in TPB followed by
incubation at 37 °C for 24 h until use. Before sensing experiments, serial dilutions were made in BPW
to achieve 10-10° CFU mL~!, and plate counting on Oxford agar was used to confirm the bacterial
concentration following protocol described by USFDA [31].

2.3. Electrochemical Characterization

Electroactive surface area (ESA), heterogenous electron transfer (HET) constant, current density,
and impedimetric parameters were analyzed before and after aptamer addition. Cyclic voltammetry
(CV) was used to determine ESA and HET constant based on our previous work [32]. CV was
performed in 4 mM KFe(CN)s with 1 M KNOj at a switching potential of 0.75 V versus a Ag/AgCl
reference electrode. DC potential amperometry (DCPA) was used to determine current density toward
H,0O,. Impedimetric parameters (charge transfer resistance, diffusive resistance, solutions resistance,
and capacitance) were determined by electrochemical impedance spectroscopy (EIS). All tests were
performed using 4 mM K Fe(CN)g with 1 M KCl. A DC potential bias of 200 mV was applied across
the frequency range from 1 Hz to 100 kHz and an AC amplitude of 100 mV for EIS. For baseline
characterization, Nyquist, Bode, and Phase diagrams were developed and analyzed using Zman
software based on previously published techniques [28,32-36].

2.4. Pt-IME Fabrication Procedure

The Pt-IME sensor design was based on an array of comb fingers connected to larger contact pads.
Electrode arrays with different geometric between-fingers gaps were designed to produce electrode
spacing (S) dimensions of 25, 50, and 100 pm (Supplementary Figure S1). Pt-IME were fabricated using
a one-mask fabrication process consisting of photolithography, dual layer lift-off, and electrodeposition.
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One wafer consisted of eight devices in total with two replicas. Each Pt-IME array had a width of
25 pm and height of 115 pm with a total active area of 0.81 cm? and bonding pads 200 x 200 pm.
Within the total active area of 0.81 cm?, the number of electrodes changed for each IMEs with different
electrode gaps. The thickness of wet thermal oxide was 90 nm. Pt-electrode thickness was designed to
be 110 nm based on the optimum height for ferrocyanide redox reactions as originally determined by
Min and Baeumner [37].

Mylar masks were used to delineate interdigitated microelectrodes array and bonding pads;
details can be found in the supplemental section on mask design and feature size. Silver conductive
ink was used for wire bonding and allowed to dry for at least 24 h prior to analytical testing.
See Supplementary Table S1 for additional details.

2.5. In Silico Model of Pt-IME Capacitance

An in silico model (COMSOL Multiphysics, Burlington, MA) of Pt-IME capacitance was developed
by combining the model developed by Jun et al. [38] with the model by Oberlander et al. [39] using
Equation (1). The model estimated the electric field and used the calculated capacitance (C) to compare
with impedance data for various IME geometries.

K (1 _ k2)0.5

C=L(N-1)» (@)* e

w
’ + (2e0c,) +(2) )
where N = number of electrodes, ¢y = permittivity of vacuum 8.851 x 10712 As Vm™, ¢, is the total
relative permittivity surrounding the electrodes, K(k) = impact of fringing field, k = periodic structure
of electrode geometry as defined by Oberldnder et al. [39], and the geometrical parameters are L, w,
and S (Supplementary Figure S1).

2.6. Biofunctionalization of Pt-IMEs with Aptamers

Prior to aptamer adsorption, IMEs were cleaned with Piranha solution (3:1 sulfuric acid:
hydrogen peroxide) for one minute, washed with deionized (DI) water, and then air dried. Pt-IME
were biofunctionalized with thiol-tagged DNA 47-mer that targets a cell surface protein (InlA)
on L. monocytogenes [21]. A thiol tag and C6 spacer ((CH;)¢OH) were inserted at the 3’ end for
direct adsorption to platinum electrodes vial metal-thiol bonding [28]. GeneLink (Hawthrone, NY)
supplied custom oligonucleotides in desalted, lyophilized, and disulfide protected form. Dithiothreitol
(DTT) was used to reduce the SH group (i.e., deprotect) for adsorption based on the manufacturer’s
recommendation (GeneLink) [40]. Briefly, 100 mM DTT solution in sodium phosphate buffer (pH = 8.5)
for 1 h at room temperature was mixed with the protected aptamers. Trace DTT residue was removed
by the addition of sodium acetate per the protocol, which was followed by ethanol precipitation to
isolate the thiolated aptamer. Briefly, 1.5 mL of absolute ethanol was added; then, the suspension was
vortexed and placed for 20 min in a freezer at —80 °C. Next, the suspension was centrifuged for 10 min
at 10,800x g. After removal of the supernatant, the deprotected aptamer was dried under vacuum
(101.6 kPa) at room temperature for 20 min. Aptamers were re-suspended in 10 mM Tris, 1 mM
ethylenediaminetetraacetic acid (EDTA), pH 7.5 buffer (TE buffer). Aptamer stock solutions (100 uM)
were diluted as needed, and 65 uL was drop cast to biofunctionalize Pt-IMEs (two-hour binding time).

For determining aptamer loading, EIS and CV were conducted in a solution of PBS (pH 7.4) using
a two-electrode setup with an AC potential of 100 mV at a frequency range of 1 Hz to 100 kHz. All CV
studies were performed in 4 mM KFe(CN)s with 1 M KNOj in distilled water. EIS and CV plots were
analyzed based on established protocols [28,41].
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2.7. Protocol for Bacteria Detection

Pt-IME biosensors were immersed in test solution as noted, and three initial EIS sweeps were
conducted to stabilize the dielectric layer and sensor signal. Tests were initiated when the baseline
impedance changed by less than 1%. Once stabilized, an aliquot of BPW with cultured cells solution
was added to achieve bacteria concentration ranging from 10 to 10° CFU mL~!. After adding bacteria,
the sample was stirred for 1 min; impedance measurements were taken after the stirring was turned
off and the suspension was stagnant. The capacitor stabilizer was initiated, and the electrodes were
grounded to minimize charge buildup onto the Pt-IMEs.

Nyquist plots were analyzed using a spreadsheet model coupled to ABE-STAT using Equation (2)
based on a Randles equivalent circuit with Chi? fitting. For validation of the custom equivalent circuit
model, Zman software was used according to Hills et al. [28] and Burrs et al. [33].

1
l(l)Cdl + R +Rl—l' Rw
ct Vo Vo

where Z = impedance, R; = solution resistance, w = angular frequency, C; = capacitive double layer,
Rt = charge transfer resistance, Ry, = Warburg resistance, and i = current.

EIS plots were used to analyze biosensor response based on the methods by Hills et al. [28].
In summary, Bode plots were used to assess change in impedance, and Nyquist plots were used to
assess changes in charge transfer resistance. Other electrical parameters (Rs, w, Cy;, and Ry) were not
significant drivers of the output signal based on linear regression analysis. Sensitivity was calculated as
the linear slope of calibration plots prepared using Bode plots at a cutoff frequency of 1 Hz. Selectivity
was determined by analyzing sensitivity toward L. innocua in the range of 10 to 10° CFU mL™! in the
presence of non-Listeria targets, as noted. After analysis, the biosensor was washed and the impedance
was re-analyzed.

2.8. Hysteresis Testing

Pt-IMEs were cleaned with Piranha solution (3:1 sulfuric acid:hydrogen peroxide) under a chemical
hood. The biosensor was carefully immersed in the solution for one minute, taking care not to expose
the bonding pads to the Piranha solution. Next, the biosensor was thoroughly washed with DI
water for one minute to ensure the proper removal of Piranha solution residues from the surface and
then air dried. Cleaned Pt-IME were coated with aptamers and tested for potential reuse and for
hysteresis analysis.

2.9. Analysis of Hydroponic Water

A RainForest modular 318 aeroponic system with Vortex sprayer was used to grow lettuce
based on Marhaenanto et al. [42]. The main reservoir of the hydroponic system was 65 L, and the
conical vortex sprayer was operated at 1200 rpm. Hydroponic lettuce (Lactuca saliva) was cultivated
using 7.6 cm diameter plastic seed cups with CocoTek liners and expanded clay pellets (Mr. Stacky
Hydroponic Center, Lake City, FL, USA). A photoperiod of 8 h was adopted, where lighting was
based on full spectrum light-emitting diode (LED) grow lights (75 W equivalent). Nutrient solution
(Liquid Plant Food Big Bloom, Fox Farm Organic Gardening, Arcata, CA, USA) was replaced every
7 days based on manufacturer’s recommendations. Growth media was sterilized according to our
previous methods [43].

A particle trap was spliced into a 3/4” OD Tygon tube and attached to a submersible pump
for Pt-IME measurements in the hydroponic system. The particle trap had a stainless-steel mesh
(#50; 300 pm mesh) within the inner chamber, and the Pt-IME was fixed within this mesh strain for
direct contact with the water prior to filtration in the particle trap. The trap was customized for
Pt-IME analysis by drilling two small holes on the top of the plastic housing and threading male-male
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Dupont Wire (Arduino) through the hole. The holes in the plastic body were sealed with rubber sealant
(FlexSeal, Weston, FL, USA), and the inner pins were soldered to the Pt-IME bonding pads. The lead
wires were insulated with nail polish and dried overnight, and then the trap was fixed to the housing
and sealed via the threaded fitting (Supplementary Figure S2).

For simulating contamination, 10 mL of L. innocua suspension was injected into a Tjunction
placed upstream of the particle trap/Pt-IME apparatus. The sump pump in the reservoir pumped
continuously for 5 min after the injection of L. innocua. After 5 min of continuous flow, the pump was
turned off for EIS analysis with a custom handheld potentiostat [29,44] and data were collected from
the Pt-IME biosensor in the particle trap.

After each analysis, the Pt-IME was washed by flushing the particle trap with sterile growth media
at a flowrate of 5 mL min~! for 10 min. After washing, a subsequent aliquot of L. innocua was injected,
and the analysis was repeated. All measurements were recorded at room temperature (24.5 + 0.6 °C).

2.10. Statistical Analysis and Portfolio Analysis

JMP Software v. 11 (SAS Institute, Cary, NC, USA) was used for all statistical analyses. Means,
error bars, and standard deviations were calculated based on triplicate tests. Differences between
variables were tested for significance using one-way analysis of variance (ANOVA) and significantly
different means (p < 0.05) were separated using a Tukey honest significant difference (HSD) test.
Impedance measurements were used to determine the limit of detection (LOD), sensitivity, and sensing
range. Limit of detection was calculated using the 30 method based on the signal to noise (5/N)
ratio [32,45]. Sensitivity was determined by the slope of the calibration plots as described previously.
Sensing range was determined based on the linear increase of signal over a range of bacteria
concentration [46]. Change in impedance was calculated from the biosensor’s baseline (no bacteria).
Finally, detection time was determined as the time of bacteria incubation on the biosensor (15 min) and
the EIS measurement time (2 min).

To compare the performance of various sensor geometries, a multicriteria decision analysis
(MCDA) was conducted using the open source analytical hierarchy process by Goepel [47] modified
by swing weights as reviewed by Lai et al. [48] The pairwise comparison was based on a threshold for
acceptance of inconsistency (cc) of 0.1.

3. Results and Discussion

The microfabrication process of the Pt-IME with different gap sizes on silicon is presented in
Figure 1. Profilometer measurements indicated that the gap spacing was slightly smaller than design
dimensions, and the error increased for smaller electrode gap sizes (Supplementary Figure S3 and
Table S2). Moreover, previous studies [37,49,50] showed that the number of fingers in IME has no
significant effect on the S/N ratio, and the signal value is proportional to the total IME surface area (As),
thus the choice to base the comparative study on equivalent As.

N — [T ]
A) == 9] s E)
Sio, Sio, 5i0,
Photoresist Develop Lift-off
) | O gl
10R3A I LOR3A
Sio, Sio,
UV exposure Metal depaosition

Figure 1. Microfabrication process for platinum interdigitated microelectrodes (Pt-IME) on SiO, wafers.
(A) Photoresist deposition, (B) UV exposure with IME mask, (C) Development of resist, (D) Ti/Pt
deposition by chemical vapor deposition (CVD), and (E) Pattern lift off. (F) Photographs of Pt-IME
array with eight electrodes.
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3.1. In Silico Pt-IME Model

A basic dielectric model was developed for estimating the Pt-IME capacitance for various electrode
configurations using a simplified approach based on Jun et al. [38] and Oberldnder et al. [39]. The in
silico model predicted that the electric field decreases with increasing gap size for the geometries tested
here, and the minimum number of fingers was approximately 20 for all geometries (Supplementary
Figure 54). According to the simple model, the optimum gap spacing is 25 um, which also produces the
maximum cell constant without constricting the dielectric field (Supplementary Figure S5), although the
model did not consider electrode height or the complexity of the solution to keep the computational
requirements reasonable. A simulation of the electrical field at the surface of the Pt-IME conformed
to expected behavior (the power law exponent was 0.39), which is close to the 1/3 power law
predicted by more advanced in silico models that show the intensity of an electric dipole field falls
off with the cube of distance. Potential sources of error are the electrode height and the electrolyte
complexity. Backer et al. [51] compared planar and 3D IME for sensing and expanded on this basic
model by considering a dielectric barrier between the electrode fingers. This approach offers potential
improvement of the dielectric field if the geometry can support controlled immobilization of aptamer
for promoting cell capture. In this study, only planar electrodes were used to provide the baseline
evidence for the detection of bacteria in complex samples such as hydroponic media under flowing
conditions. Detailed electrochemical characterization was conducted to confirm the results of the in
silico model regarding optimum gap spacing.

3.2. Electrochemical Characterization

The electrochemical behavior of Pt-IME with various gap geometry was analyzed by determining
ESA, HET constant, current density, amperometric response, and impedimetric response. Figure 2
shows representative CV plots (Figure 2A), Randles-Sevcik plots (Figure 2B), and Nicholson plots
(Figure 2C) for Pt-IME with 50 um gap spacing (see Supplementary Figure S6 for all data including
other gap spacing). The ESA for IME with a 50 pm gap spacing (0.14 + 0.02 cm?) was four times higher
than IME with a gap spacing of 25 um (0.04 + 0.01 cm?) and significantly higher than IME with a gap
spacing of 100 pum (0.11 + 0.02 cm?). The HET constants (k%) for Pt-IME with 50 um (34.6 + 9.1 cm s7})
and 100 pm (44.2 + 10.2 cm s7!) were significantly higher than 25 um gap spacing (7.9 + 6.4 cm s™!)
but not significantly different compared to one another (p > 0.05). In this baseline characterization,
a relatively high concentration of supporting electrolyte (1 M KNO3) was used to reduce interfacial
electron transfer barrier and improve redox kinetics. Preliminary studies show that low electrolyte
concentration led to relatively low Faradaic current, shifting the redox peaks toward the cathodic
region and reducing the differential potential (AE), and thus HET constant, to values that were not
significantly different among electrodes of varying gap size (p > 0.05).

DCPA plots for determining current density are shown in Supplementary Figure S7. For a
gap spacing of 25 um, charge overflow occurred in DCPA preliminary experiments when a DC
polarization potential of +500 mV was applied. Thus, data were acquired at a DC potential of
+280 mV to avoid cross-talk. Reducing gap spacing is desirable for bacteria detection, as large gap
spacing can leave dead zones where bacteria do not interact with the recognition agent. However,
reducing gap size must be a careful consideration as there is a well-established relationship between
gap spacing and cross-talk in IME [52-55]. The average current density for Pt-IME with a gap
spacing of 50 um (149 + 20 uA mM~! cm~2) was significantly higher than the gap spacing of 25 pm
(58 + 19 pA mM ™! em™2) and 100 um (75 + 12 pA mM~! em™2), which corroborates with ESA results.
The response time for all Pt-IME was 5 s for all experiments. The average ESA, HET, and current
density (toward HyO;) are shown in Supplementary Table S3.

EIS was used to determine the baseline electrochemical characteristics for each Pt-IME gap spacing
using low amplitude sinusoidal modulation with a sweeping frequency of 1 Hz to 100 kHz. Based on
the peak potential observed in CV (400 mV), a bias potential equal to E,/2 (200 mV) was applied for all
impedance tests. Nyquist plots and Bode plots confirmed that charge overflow for 25 um gap spacing
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was significant, leading to significant cross-talk. Pt-IME with a 50 um gap spacing had a solution
resistance of 95 + 12 (), charge transfer resistance of 39 + 7 k(), Warburg resistance of 5 + 1 () 05
and capacitive double layer of 8 + 2 pF (all parameters were estimated using a Randles equivalent
circuit). Pt-IME with 50 um gap spacing had an impedance of 0.5 k) at 1 Hz cutoff frequency,
whichwas 23 rdR pigikthantie impedance for 100 um gap spacing. Charge transfer resistangg, fog
50 pm gap spacing was 20% lower than 100 um gap spacing, and the capacitive double layer was
hyesignaificentigdififenetly differempelihaimpatiasitodadfaeshamettrenanas thend Wsathed DV RBAdBX@Péy
datanfiem&01 pinuanga pRpaam ggaprdpaning, thehfhmdihgnthgapthpasingris thepoptacahgoisfigieratpeintat
rifigie ratider five RoAE omsltasthd.conditions tested.

The electrochemiicall charactienizztiomn of PHIMIE resullis were in disagreement with the in silico
model, which did not consider cross-talk for decreased gap spacing. While decreased gap spacing
theoretically enhances tramspontt amdl S/N ratio, cross-tallk is a major problem that has been well
characterized im IDE and IME.> IIn thits sttutly, the gap spacing of 50 pm produced the most stable
response based on the portfolio analysis shown in Supplementany Table 54.
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(Supplementary Figure S8). Regardless of the orientation of adjacent aptamers, base pair repulsion likely
occurs between the 5 end (location of the C6 spacer and thiol tag), which may lead to ordered
deposition at low aptamer concentrations and Freundlich behavior (cooperative adsorption is based on
the base pair repulsion near the attachment site). Adjacent to the larger stem loop structure at the 3’
end, hydrogen bonding between at least two of the base pairs may cause an adsorption overshoot, as
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The crifical transition observed for the Pt-IME in this study was also shown by other studies using

?QUB%&%[@QLEH@ aptamers [61]. These results indicate that the dielectric and insulative properties of
the aptamer, as well as the orientation of tethered aptamers, are important factors for electrochemical

behaVidMEs wRrStcrlipraseckiemerta d wos RS AgBil RSB LT AiDS, ARROrAIATTRALSBHORR! Br
PBS (pH = 7.1) and also using a handheld smartphone potentiostat in hydroponic media. Both

calibrations were carried out in stagnant solution with no flow. Bode plots from the laboratory
potentiostat (Figure 4A) indicate that impedance at low cutoff frequency followed a linear trend with
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Calibration with the handheld potentiostat developed by Jenkins et al. [29] is shown in (Figure 4E,F).
The device connects to a smartphone or tablet via Bluetooth, and the data are formatted as a csv file that
can be analyzed off line [29] or autonomously using support vector machine learning [34], as shown in
our previous work. The sensitivity (29.3 + 0.6 log—CFU_1 mL) and LOD (23 + 4 CFU mL™!) were
significantly different than the calibration with laboratory equipment based on ANOVA analysis,
which was expected given the considerable difference in circuitry and also ad hoc signal smoothing
used by the commercial instrument (the handheld potentiostat reports raw signal with no signal
ﬁltering) The linear range (Figure 4F) was identical to calibration with the commercial instrument

(sle 0o %4 2(O’FI]I CH%{"EE%( RFE]Q?EWtal analysis time for both tests was 17 min, including bmchng1 Pntlfd
mixing, and 1mped1metr1c analysis (15 min for binding bacteria while stirring at 450 rpm).
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3.6. Analysis of Hydroponic Water in Particle Trap Filter

Figure 6A,B shows a representative Nyquist plot and calibration curve for the Pt-IME aptasensor
targeting L. innocua in the particle/sediment trap under flow conditions. To our knowledge, this is
the first demonstration of in line flow-through analysis of hydroponic media for bacteria testing with
relatively large volumes (100 mL). A sampling system pumped solution from the tank of the
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characteristics were significantly different than the analysis in PBS buffer or in hydroponic solutions
with no flow. Most importantly, there was a clear zero order region from 0 to 10 CFU mL-!, which
sendorasoshanpstesized by the logistic function shown in Figure 6B. If a linear calibration curveyiss wged
according to common convention, the data below 2-log CFU mL-! cannot be quantified (LOD using
a S/N ratio of 3 was 48 CFU mL" and the limit of quantitation was 100 CFU mL-"). On the other hand,
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to @gg}mpf&pﬂ{c&&,&b@igéﬁ ﬁ?}%‘é’rﬁ%&flj mL~! cannot be quantified (LOD using a S/N ratio
of 3 was 48 CFU mL ! and the limit of quantitation was 100 CFU mL™!). On the other hand, a logistic
function was developed as the calibration curve and confidence intervals were used to quantify
concentrations as low as 1 CFU mL~!. Recent advancements in data science have demonstrated the
ability to use advanced techniques on smartphones, including machine learning approaches based
on impedance data from biosensors [34]. Consequently, it is highly conceivable that the non-linear
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approach shown in Figure 6 can be further developed to analyze sensor data in flow-through systems
and achieve lower limits of detection in real samples using volumes of 100 mL or greater. For such an
approach, additional time for data analysis is required for the model to process the raw impedance
data and calculate the R by fitting with the parameters derived from calibration.

Table 1 shows the measured values and recovery (%) for data collected after spiking the hydroponic
system with L. innocua concentrations of approximately 200 CFU mL~! (above the limit of detection and
the limit of quantitation). In repeated trials, the average recovery was 90 + 4%, and all spiked samples
were significantly different than control samples (p < 0.05). The flow-through system is capable of
monitoring Listeria spp. in hydroponic media using the grab sample approach here, and it can be
improved by developing simple management tools such as an artificial reasoning tool (ART) for rapid
decision support [44,66].

Table 1. Summary of Pt-IME flow-through analysis of hydroponic lettuce system. Listeria innocua was
spiked into the system at known concentrations and pumped through a particle trap with an embedded
Pt-IME biosensor. After 5 min of continuous flow, the pump was turned off for electrochemical
impedance spectroscopy (EIS) analysis with a handheld potentiostat. Data were analyzed using an
equivalent circuit model for calculating Re;.

Added [CFUmL-1]2  R; Spiked Sample [kQQ]®  R; Control [kQ]®  Measured [CFU mL-1]  Rec. € [%]

219 83.1 78.0 210 96
230 83.1 78.1 215 94
232 83.0 78.4 198 86
351 83.9 77.9 390 89
217 83.0 77.9 195 90
221 83.3 78.2 246 89

2 Spiked concentration determined by OD600; ® Charge transfer resistance calculated with model shown in
Equation (2); € Rec. = Recovery.

3.7. Comparison of Listeria Sensors in the Literature

A wide range of electrochemical, optical, and mass-based nanobiosensor devices have been
reported in the literature for the detection of Listeria spp., all with varying levels of performance.
Sensors based on optical transduction (fluorescence, colorimetry, surface plasmon resonance) [20,21]
or piezoelectric transduction [67] have been tested in various food samples. While the LOD of
fluorescent and colorimetric sensors has improved in the last few decades, the response time tends to be
significantly slower than electrochemical sensors. For example, the aptamer sandwich assay developed
by Lee et al. [68] presented an LOD of 20 CFU mL~! but a response time of 2 h in buffer. The lowest
LOD for colorimetric sensors was 2.4 CFU mL™!, but it required 6.5 h in buffer [19]. Few SPR-based
devices for Listeria detection are found in the literature, but Boulade et al. [69] recently reported a
SPR-based device with a LOD of 2 x 102 CFU mL! after 7 h.

The biorecognition materials for targeting extracellular target(s) on Listeria spp. include
antibodies [46,70-72], aptamers [21,68], and peptides [73]. Other approaches utilized endolysin [46]
or soluble proteins for the indirect monitoring of metabolic biomarkers [74]. Endolysin devices
require pre-conditioning prior to measurement (can take up to 16 h) and have issues with selectivity.
The measurement of biomarker metabolites is valuable for detecting cell growth in specific media
(e.g., Tris-Gly-Dext). However, the devices such as the design by Gémez et al. [74] have limited
selectivity toward Listeria spp., the analysis time is long, and the range is narrow at high bacteria
concentrations (1.9 x 107 to 3.8 X 107 CFU mL™!). Among the material used as recognition structure
in biosensors for Listeria, aptamers have well-documented advantages, including longer shelf life,
enhanced durability, and lower cost [75-77].

Among electrochemical biosensors, impedimetric devices, such as the Pt-IME developed here,
are the most common (a select number of devices is shown in Table 2). Wang et al. [70] demonstrated
a device with a linear range (102 to 107 CFU mL_l) similar to the Pt-IME in this study; however,
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the analysis time and LOD were significantly higher than other devices in the literature. This is a
major problem, as the analysis time is critical to rapid diagnostics under the USDA “zero tolerance”
and “hold and test” policy on food contact surfaces and ready-to-eat products [78]. The lowest LOD
for impedimetric biosensors in food samples without using a microfluidic device was 5 CFU mL™!
in tomato extract [79]. This device was based on the immobilization of antibodies on gold-coated
glass slides. Hills et al. [28] also reported an LOD below 10 CFU mL™! using stimulus-responsive
nanobrushes and a DNA aptamer in vegetable broth. Although these devices did not use microfluidics,
both sensors depend on direct exposure to spiked pathogen samples in small volumes (under 20 mL).

The PtIME device reported here has similar performance in controlled conditions.
When comparing impedimetric devices in PBS buffer, the Pt-IME aptasensor had a lower detection
limit (6 + 1 CFU mL™!), higher sensitivity (628.9 + 148.9 Q) log-CFU~! mL), shorter analysis time
(17 min), and wider operating range (10! to 10° CFU mL™!) compared to other similar biosensors in
the literature. Moreover, this biosensor presented similar sensitivity (474.2 + 6.1 Q) log-CFU~! mL)
toward L. monocytogenes in complex media (vegetable broth), with an LOD of 7.9 + 2 CFU mL~! and
sensing range from 10! to 10® CFU mL~!. When washed with Piranha solution, the sensor had 0%
hysteresis, and when treated with NaOH and washed with DI water, the hysteresis ranged from 2 to
16%. The characterization of signal hysteresis is the foundation for determining sensor reusability,
which is critical for the development of future tools such as the artificial reasoning tool (ART) [44,66].
Furthermore, the sensor reported here is able to monitor Listeria spp. in a high flow-through system
for on-site analysis of water quality in hydroponics. The resulting system showed a response time of
27 min at relevant concentration ranges (10> to 10* CFU mL~!). Limitations of this sensor system are
related to the significant increase in the LOD from 6 + 1 CFU mL"! to 48 + 12 CFU mL"! for stagnant
and high flow-through media, respectively, and the limited number of direct reuses (i.e., treating with
NaOH solution and rising with DI water).

There are many devices targeting Listeria spp. in microfluidic systems [22,71,74,80-82],
and these laboratory assays are excellent for validation purposes after rapid screening. For example,
Etayash et al. [73,83] demonstrated the detection of one cell in volumes as small as 0.01 mL. However,
in the context of real-time decision support, these devices are currently expensive, require user
expertise training, and contain multiple disposable components. For example, Chiriaco et al. [82]
recently reported an LOD of 5.5 CFU mL~! with a microfluidic impedimetric system on a gold-IME
immunosensor, utilizing a portable potentiostat. However, this device has low throughput (20 pL
sample per hour).

The Pt-IME developed here is the first demonstration of a sensor for direct, label-free analysis
in a flow-through system at high flow-through volume (100 mL). The most practical path forward
may be to blend various sensors to meet industry needs using a distributed platform system such as
the framework for sensor-analytic point solutions by McLamore et al. [44]. While sensor data alone
do not provide a preventative measure, they do provide crucial information; when combined with
good agricultural practices, hygienic practices, and storage practices, this tool is a vital step forward to
controlling Listeria contamination in fresh lettuce.
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Table 2. Comparison of impedimetric biosensors for the detection of Listeria spp.

Microelectrode . . LOD Linear Range . ro
(Rec. Element ) Sample Time [min] [CFU mL-1] [CFU mL-1] Hysteresis [%] Ref.
1o, na“("x;e bundle buffer 50 470 102 to 107 NR Wang et al. [70]
Screen printed electrode 3 6 . )
(Ab-NPs® + AuNPs ) blueberry 60 231 10° to 10 NR Davis et al. [84]
Au-IME with portable
potentiostat milk 60 5 102 to 103 NR Chiriaco et al. [82]
(Ab)
Gold screen printed
electrode milk 30 1.1 x 103 10° to 10° NR Tolba et al. [46]
(endolysin)
Screen printed IDE lettuce 180 1.0 x 10° 10° to 10° NR Wang et al. [85]
nPt 4-rGO € electrode vegetable 1 Ve .
(InlA aptamer) broth 17 9.1 10" to 10 NR Hills et al. [28]
Pt-IME with
laboratory potentiostat buffer 17 6+1 10! to 10° 15.6% This study
(InlA aptamer)
laboratory potentiostat vegetable 1 6 .
(In1A aptamer) broth 17 79+2 10" to 10 NR This study
Pt-IME with smartphone hvdroponic
potentiostat ymegia 27 23+4 10 to 10° 15.6% This study
(InlA aptamer)
Flow through Pt-IME with hvdroponic
smartphone potentiostat ymegia 27 48 £12 102 to 10* 24.9% This study

(InlA aptamer)

2 Rec. element = biorecognition element; b Ab-NPs = immunomagnetic nanoparticles; © AuNPs-urease = gold
nanoparticles functionalized with urease; ¢ nPt = nanoplatinum; ¢ rGO = reduced graphene oxide; NR = not reported.

4. Conclusions

The rapid, label-free aptasensor developed here represents an important step forward in the
development of tools for assessing agricultural water quality. The real-time (27 min) Listeria sensor was
applied to hydroponic media for sample volumes up to 100 mL. The use of a commercially available
handheld, smartphone-based acquisition system and off-the-shelf components to develop the particle
trap/sensor system ensure that the sensor system can be recreated by other sensor labs around the
world. Potential management strategies may involve a rapid, high volume flow-through sensor for
screening such as the Pt-IME shown here, followed by the secondary validation of high-risk samples
to ensure water meets regulatory standards. A “portfolio approach” using multiple sensors is often
necessary for simultaneously meeting economic and monitoring needs of the food/human health
industries and regulatory agencies to ensure food safety and public health.

Future work includes expanding the list of relevant microorganisms to hydroponic leafy vegetables
production that can be monitored using the sensing platform shown here. These include generic
Escherichia coli as an indicator organism and pathogenic bacteria such as Salmonella enterica serovars,
and Shiga toxin-producing E. coli (STEC), which are among the most common cause of gastroenteritis
associated with fresh produce [86]. Each of these pathogens has characteristics that enable their survival
in the built environment of hydroponic systems for extended time periods [87,88]. Furthermore,
validation of the sensing platform shown here using large-scale hydroponic systems would be beneficial
to translate to a real-life scenario. Additionally, strategies to further improve the limit of detection
reported herein should be explored. One strategy is to enhance bacteria capture using polymer brushes
that actuate under environmental stimuli, as demonstrated previously by Hills et al. [28]. In order
to implement this approach in hydroponic systems, the development of a cyber—physical system is
required to allow actuation at multiple scales (macro/nano).

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/20/5773/s1,
Figure S1: general design schematic for platinum interdigitated microelectrodes (Pt-IME), Figure S2: IME
incorporated into particle flow trap for continuous analysis, Figure S3: the gap size of 50 pm electrode array
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with Dektak profilometer measurement, Figure S4: (A) IME model output for various gap spacing (COMSOL).
(B) comparison of measured and predicted capacitance for various gap spacing in buffer, Figure S5: (A) estimation
of cell constant and electrode spacing for IME (B) Olthius plot (C) simulation of electrical field at the surface of
IME, Figure S6: representative plots of electrochemical characterization of Ti/Pt IME with different gap spacing,
Figure S7: representative DCPA for Pt-IME with 50 (A, B) and 100 (C, D) um gap spacing, Figure S8: cartoon
representation of secondary structure predicted using mfold, Figure S9: cartoon representation of ferricyanide
redox probe near the surface of Pt-IME with no aptamers, Figure S10: cartoon representation of redox probe
used to measure electrochemical behavior, and Figure S11: (A) photograph of hydroponic system with Pt-IME.
(B) Pt-IME incorporated into particle flow trap for continuous analysis. Table S1: materials and design dimensions
for Pt-IME fabrication, Table S2: design characteristics of IME with various spacing and measured physical
features using Dektak profilometer, Table S3: summary of electrochemical characterization using ferrocyanide as
the redox probe, Table S4: portfolio analysis for IME with various gap spacing, and Table S5: cleaning electrodes
with Piranha solution.
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