
NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis

Ben Mildenhall1� Pratul P. Srinivasan1� Matthew Tancik1�

Jonathan T. Barron2 Ravi Ramamoorthi3 Ren Ng1

1UC Berkeley 2Google Research 3UC San Diego

Abstract. We present a method that achieves state-of-the-art results
for synthesizing novel views of complex scenes by optimizing an under-
lying continuous volumetric scene function using a sparse set of input
views. Our algorithm represents a scene using a fully-connected (non-
convolutional) deep network, whose input is a single continuous 5D coor-
dinate (spatial location (x, y, z) and viewing direction (θ, φ)) and whose
output is the volume density and view-dependent emitted radiance at
that spatial location. We synthesize views by querying 5D coordinates
along camera rays and use classic volume rendering techniques to project
the output colors and densities into an image. Because volume rendering
is naturally differentiable, the only input required to optimize our repre-
sentation is a set of images with known camera poses. We describe how to
effectively optimize neural radiance fields to render photorealistic novel
views of scenes with complicated geometry and appearance, and demon-
strate results that outperform prior work on neural rendering and view
synthesis. View synthesis results are best viewed as videos, so we urge
readers to view our supplementary video for convincing comparisons.

Keywords: scene representation, view synthesis, image-based render-
ing, volume rendering, 3D deep learning

1 Introduction

In this work, we address the long-standing problem of view synthesis in a new
way by directly optimizing parameters of a continuous 5D scene representation
to minimize the error of rendering a set of captured images.

We represent a static scene as a continuous 5D function that outputs the
radiance emitted in each direction (θ, φ) at each point (x, y, z) in space, and a
density at each point which acts like a differential opacity controlling how much
radiance is accumulated by a ray passing through (x, y, z). Our method optimizes
a deep fully-connected neural network without any convolutional layers (often
referred to as a multilayer perceptron or MLP) to represent this function by
regressing from a single 5D coordinate (x, y, z, θ, φ) to a single volume density
and view-dependent RGB color. To render this neural radiance field (NeRF)

� Authors contributed equally to this work.

ar
X

iv
:2

00
3.

08
93

4v
2

 [c
s.C

V
]

3
A

ug
 2

02
0

2 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

Input Images Optimize NeRF Render new views

Fig. 1: We present a method that optimizes a continuous 5D neural radiance
field representation (volume density and view-dependent color at any continuous
location) of a scene from a set of input images. We use techniques from volume
rendering to accumulate samples of this scene representation along rays to render
the scene from any viewpoint. Here, we visualize the set of 100 input views of the
synthetic Drums scene randomly captured on a surrounding hemisphere, and we
show two novel views rendered from our optimized NeRF representation.

from a particular viewpoint we: 1) march camera rays through the scene to
generate a sampled set of 3D points, 2) use those points and their corresponding
2D viewing directions as input to the neural network to produce an output
set of colors and densities, and 3) use classical volume rendering techniques to
accumulate those colors and densities into a 2D image. Because this process is
naturally differentiable, we can use gradient descent to optimize this model by
minimizing the error between each observed image and the corresponding views
rendered from our representation. Minimizing this error across multiple views
encourages the network to predict a coherent model of the scene by assigning
high volume densities and accurate colors to the locations that contain the true
underlying scene content. Figure 2 visualizes this overall pipeline.

We find that the basic implementation of optimizing a neural radiance field
representation for a complex scene does not converge to a sufficiently high-
resolution representation and is inefficient in the required number of samples per
camera ray. We address these issues by transforming input 5D coordinates with
a positional encoding that enables the MLP to represent higher frequency func-
tions, and we propose a hierarchical sampling procedure to reduce the number of
queries required to adequately sample this high-frequency scene representation.

Our approach inherits the benefits of volumetric representations: both can
represent complex real-world geometry and appearance and are well suited for
gradient-based optimization using projected images. Crucially, our method over-
comes the prohibitive storage costs of discretized voxel grids when modeling
complex scenes at high-resolutions. In summary, our technical contributions are:

– An approach for representing continuous scenes with complex geometry and
materials as 5D neural radiance fields, parameterized as basic MLP networks.

– A differentiable rendering procedure based on classical volume rendering tech-
niques, which we use to optimize these representations from standard RGB
images. This includes a hierarchical sampling strategy to allocate the MLP’s
capacity towards space with visible scene content.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 3

– A positional encoding to map each input 5D coordinate into a higher dimen-
sional space, which enables us to successfully optimize neural radiance fields
to represent high-frequency scene content.

We demonstrate that our resulting neural radiance field method quantitatively
and qualitatively outperforms state-of-the-art view synthesis methods, including
works that fit neural 3D representations to scenes as well as works that train deep
convolutional networks to predict sampled volumetric representations. As far as
we know, this paper presents the first continuous neural scene representation
that is able to render high-resolution photorealistic novel views of real objects
and scenes from RGB images captured in natural settings.

2 Related Work

A promising recent direction in computer vision is encoding objects and scenes
in the weights of an MLP that directly maps from a 3D spatial location to
an implicit representation of the shape, such as the signed distance [6] at that
location. However, these methods have so far been unable to reproduce realistic
scenes with complex geometry with the same fidelity as techniques that represent
scenes using discrete representations such as triangle meshes or voxel grids. In
this section, we review these two lines of work and contrast them with our
approach, which enhances the capabilities of neural scene representations to
produce state-of-the-art results for rendering complex realistic scenes.

A similar approach of using MLPs to map from low-dimensional coordinates
to colors has also been used for representing other graphics functions such as im-
ages [44], textured materials [12,31,36,37], and indirect illumination values [38].

Neural 3D shape representations Recent work has investigated the im-
plicit representation of continuous 3D shapes as level sets by optimizing deep
networks that map xyz coordinates to signed distance functions [15,32] or occu-
pancy fields [11,27]. However, these models are limited by their requirement of
access to ground truth 3D geometry, typically obtained from synthetic 3D shape
datasets such as ShapeNet [3]. Subsequent work has relaxed this requirement of
ground truth 3D shapes by formulating differentiable rendering functions that
allow neural implicit shape representations to be optimized using only 2D im-
ages. Niemeyer et al. [29] represent surfaces as 3D occupancy fields and use a
numerical method to find the surface intersection for each ray, then calculate an
exact derivative using implicit differentiation. Each ray intersection location is
provided as the input to a neural 3D texture field that predicts a diffuse color for
that point. Sitzmann et al. [42] use a less direct neural 3D representation that
simply outputs a feature vector and RGB color at each continuous 3D coordinate,
and propose a differentiable rendering function consisting of a recurrent neural
network that marches along each ray to decide where the surface is located.

Though these techniques can potentially represent complicated and high-
resolution geometry, they have so far been limited to simple shapes with low
geometric complexity, resulting in oversmoothed renderings. We show that an al-
ternate strategy of optimizing networks to encode 5D radiance fields (3D volumes

4 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

with 2D view-dependent appearance) can represent higher-resolution geometry
and appearance to render photorealistic novel views of complex scenes.

View synthesis and image-based rendering Given a dense sampling of
views, photorealistic novel views can be reconstructed by simple light field sam-
ple interpolation techniques [21,5,7]. For novel view synthesis with sparser view
sampling, the computer vision and graphics communities have made significant
progress by predicting traditional geometry and appearance representations from
observed images. One popular class of approaches uses mesh-based representa-
tions of scenes with either diffuse [48] or view-dependent [2,8,49] appearance.
Differentiable rasterizers [4,10,23,25] or pathtracers [22,30] can directly optimize
mesh representations to reproduce a set of input images using gradient descent.
However, gradient-based mesh optimization based on image reprojection is often
difficult, likely because of local minima or poor conditioning of the loss land-
scape. Furthermore, this strategy requires a template mesh with fixed topology
to be provided as an initialization before optimization [22], which is typically
unavailable for unconstrained real-world scenes.

Another class of methods use volumetric representations to address the task
of high-quality photorealistic view synthesis from a set of input RGB images.
Volumetric approaches are able to realistically represent complex shapes and
materials, are well-suited for gradient-based optimization, and tend to produce
less visually distracting artifacts than mesh-based methods. Early volumetric
approaches used observed images to directly color voxel grids [19,40,45]. More
recently, several methods [9,13,17,28,33,43,46,52] have used large datasets of mul-
tiple scenes to train deep networks that predict a sampled volumetric represen-
tation from a set of input images, and then use either alpha-compositing [34] or
learned compositing along rays to render novel views at test time. Other works
have optimized a combination of convolutional networks (CNNs) and sampled
voxel grids for each specific scene, such that the CNN can compensate for dis-
cretization artifacts from low resolution voxel grids [41] or allow the predicted
voxel grids to vary based on input time or animation controls [24]. While these
volumetric techniques have achieved impressive results for novel view synthe-
sis, their ability to scale to higher resolution imagery is fundamentally limited
by poor time and space complexity due to their discrete sampling — rendering
higher resolution images requires a finer sampling of 3D space. We circumvent
this problem by instead encoding a continuous volume within the parameters
of a deep fully-connected neural network, which not only produces significantly
higher quality renderings than prior volumetric approaches, but also requires
just a fraction of the storage cost of those sampled volumetric representations.

3 Neural Radiance Field Scene Representation

We represent a continuous scene as a 5D vector-valued function whose input is
a 3D location x = (x, y, z) and 2D viewing direction (θ, φ), and whose output
is an emitted color c = (r, g, b) and volume density σ. In practice, we express

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 5

(x,y,z, ,)

F
()

5D Input
Position + Direction

Output
Color + Density

Volume
Rendering

Ray 1

Rendering
Loss

g.t.

g.t.

2

2

2

2

Ray 2

Ray 1

Ray Distance

(b)(a) (c) (d)

Ray 2

Fig. 2: An overview of our neural radiance field scene representation and differ-
entiable rendering procedure. We synthesize images by sampling 5D coordinates
(location and viewing direction) along camera rays (a), feeding those locations
into an MLP to produce a color and volume density (b), and using volume ren-
dering techniques to composite these values into an image (c). This rendering
function is differentiable, so we can optimize our scene representation by mini-
mizing the residual between synthesized and ground truth observed images (d).

direction as a 3D Cartesian unit vector d. We approximate this continuous 5D
scene representation with an MLP network FΘ : (x,d) → (c, σ) and optimize its
weights Θ to map from each input 5D coordinate to its corresponding volume
density and directional emitted color.

We encourage the representation to be multiview consistent by restricting
the network to predict the volume density σ as a function of only the location
x, while allowing the RGB color c to be predicted as a function of both location
and viewing direction. To accomplish this, the MLP FΘ first processes the input
3D coordinate x with 8 fully-connected layers (using ReLU activations and 256
channels per layer), and outputs σ and a 256-dimensional feature vector. This
feature vector is then concatenated with the camera ray’s viewing direction and
passed to one additional fully-connected layer (using a ReLU activation and 128
channels) that output the view-dependent RGB color.

See Fig. 3 for an example of how our method uses the input viewing direction
to represent non-Lambertian effects. As shown in Fig. 4, a model trained without
view dependence (only x as input) has difficulty representing specularities.

4 Volume Rendering with Radiance Fields

Our 5D neural radiance field represents a scene as the volume density and di-
rectional emitted radiance at any point in space. We render the color of any ray
passing through the scene using principles from classical volume rendering [16].
The volume density σ(x) can be interpreted as the differential probability of a
ray terminating at an infinitesimal particle at location x. The expected color
C(r) of camera ray r(t) = o+ td with near and far bounds tn and tf is:

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d)dt , where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
. (1)

6 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

(a) View 1 (b) View 2 (c) Radiance Distributions

Fig. 3: A visualization of view-dependent emitted radiance. Our neural radiance
field representation outputs RGB color as a 5D function of both spatial position
x and viewing direction d. Here, we visualize example directional color distri-
butions for two spatial locations in our neural representation of the Ship scene.
In (a) and (b), we show the appearance of two fixed 3D points from two dif-
ferent camera positions: one on the side of the ship (orange insets) and one on
the surface of the water (blue insets). Our method predicts the changing spec-
ular appearance of these two 3D points, and in (c) we show how this behavior
generalizes continuously across the whole hemisphere of viewing directions.

The function T (t) denotes the accumulated transmittance along the ray from
tn to t, i.e., the probability that the ray travels from tn to t without hitting
any other particle. Rendering a view from our continuous neural radiance field
requires estimating this integral C(r) for a camera ray traced through each pixel
of the desired virtual camera.

We numerically estimate this continuous integral using quadrature. Deter-
ministic quadrature, which is typically used for rendering discretized voxel grids,
would effectively limit our representation’s resolution because the MLP would
only be queried at a fixed discrete set of locations. Instead, we use a stratified
sampling approach where we partition [tn, tf] into N evenly-spaced bins and
then draw one sample uniformly at random from within each bin:

ti ∼ U
[
tn +

i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

]
. (2)

Although we use a discrete set of samples to estimate the integral, stratified
sampling enables us to represent a continuous scene representation because it
results in the MLP being evaluated at continuous positions over the course of
optimization. We use these samples to estimate C(r) with the quadrature rule
discussed in the volume rendering review by Max [26]:

Ĉ(r) =

N∑
i=1

Ti(1− exp(−σiδi))ci , where Ti = exp

⎛
⎝−

i−1∑
j=1

σjδj

⎞
⎠ , (3)

where δi = ti+1 − ti is the distance between adjacent samples. This function
for calculating Ĉ(r) from the set of (ci, σi) values is trivially differentiable and
reduces to traditional alpha compositing with alpha values αi = 1− exp(−σiδi).

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 7

Ground Truth Complete Model No View Dependence No Positional Encoding

Fig. 4: Here we visualize how our full model benefits from representing view-
dependent emitted radiance and from passing our input coordinates through
a high-frequency positional encoding. Removing view dependence prevents the
model from recreating the specular reflection on the bulldozer tread. Removing
the positional encoding drastically decreases the model’s ability to represent high
frequency geometry and texture, resulting in an oversmoothed appearance.

5 Optimizing a Neural Radiance Field

In the previous section we have described the core components necessary for
modeling a scene as a neural radiance field and rendering novel views from this
representation. However, we observe that these components are not sufficient for
achieving state-of-the-art quality, as demonstrated in Section 6.4). We introduce
two improvements to enable representing high-resolution complex scenes. The
first is a positional encoding of the input coordinates that assists the MLP in
representing high-frequency functions, and the second is a hierarchical sampling
procedure that allows us to efficiently sample this high-frequency representation.

5.1 Positional encoding

Despite the fact that neural networks are universal function approximators [14],
we found that having the network FΘ directly operate on xyzθφ input coordi-
nates results in renderings that perform poorly at representing high-frequency
variation in color and geometry. This is consistent with recent work by Rahaman
et al. [35], which shows that deep networks are biased towards learning lower fre-
quency functions. They additionally show that mapping the inputs to a higher
dimensional space using high frequency functions before passing them to the
network enables better fitting of data that contains high frequency variation.

We leverage these findings in the context of neural scene representations, and
show that reformulating FΘ as a composition of two functions FΘ = F ′

Θ ◦ γ, one
learned and one not, significantly improves performance (see Fig. 4 and Table 2).
Here γ is a mapping from R into a higher dimensional space R2L, and F ′

Θ is still
simply a regular MLP. Formally, the encoding function we use is:

γ(p) =
(
sin

(
20πp

)
, cos

(
20πp

)
, · · · , sin(2L−1πp

)
, cos

(
2L−1πp

))
. (4)

This function γ(·) is applied separately to each of the three coordinate values
in x (which are normalized to lie in [−1, 1]) and to the three components of the

8 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

Cartesian viewing direction unit vector d (which by construction lie in [−1, 1]).
In our experiments, we set L = 10 for γ(x) and L = 4 for γ(d).

A similar mapping is used in the popular Transformer architecture [47], where
it is referred to as a positional encoding. However, Transformers use it for a
different goal of providing the discrete positions of tokens in a sequence as input
to an architecture that does not contain any notion of order. In contrast, we use
these functions to map continuous input coordinates into a higher dimensional
space to enable our MLP to more easily approximate a higher frequency function.
Concurrent work on a related problem of modeling 3D protein structure from
projections [51] also utilizes a similar input coordinate mapping.

5.2 Hierarchical volume sampling

Our rendering strategy of densely evaluating the neural radiance field network
at N query points along each camera ray is inefficient: free space and occluded
regions that do not contribute to the rendered image are still sampled repeat-
edly. We draw inspiration from early work in volume rendering [20] and propose
a hierarchical representation that increases rendering efficiency by allocating
samples proportionally to their expected effect on the final rendering.

Instead of just using a single network to represent the scene, we simultane-
ously optimize two networks: one “coarse” and one “fine”. We first sample a set
of Nc locations using stratified sampling, and evaluate the “coarse” network at
these locations as described in Eqns. 2 and 3. Given the output of this “coarse”
network, we then produce a more informed sampling of points along each ray
where samples are biased towards the relevant parts of the volume. To do this,
we first rewrite the alpha composited color from the coarse network Ĉc(r) in
Eqn. 3 as a weighted sum of all sampled colors ci along the ray:

Ĉc(r) =

Nc∑
i=1

wici , wi = Ti(1− exp(−σiδi)) . (5)

Normalizing these weights as ŵi = wi/
∑Nc

j=1 wj produces a piecewise-constant
PDF along the ray. We sample a second set of Nf locations from this distribution
using inverse transform sampling, evaluate our “fine” network at the union of the
first and second set of samples, and compute the final rendered color of the ray
Ĉf (r) using Eqn. 3 but using all Nc+Nf samples. This procedure allocates more
samples to regions we expect to contain visible content. This addresses a similar
goal as importance sampling, but we use the sampled values as a nonuniform
discretization of the whole integration domain rather than treating each sample
as an independent probabilistic estimate of the entire integral.

5.3 Implementation details

We optimize a separate neural continuous volume representation network for
each scene. This requires only a dataset of captured RGB images of the scene,

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 9

the corresponding camera poses and intrinsic parameters, and scene bounds
(we use ground truth camera poses, intrinsics, and bounds for synthetic data,
and use the COLMAP structure-from-motion package [39] to estimate these
parameters for real data). At each optimization iteration, we randomly sample
a batch of camera rays from the set of all pixels in the dataset, and then follow
the hierarchical sampling described in Sec. 5.2 to query Nc samples from the
coarse network and Nc + Nf samples from the fine network. We then use the
volume rendering procedure described in Sec. 4 to render the color of each ray
from both sets of samples. Our loss is simply the total squared error between
the rendered and true pixel colors for both the coarse and fine renderings:

L =
∑
r∈R

[∥∥∥Ĉc(r)− C(r)
∥∥∥2
2
+
∥∥∥Ĉf (r)− C(r)

∥∥∥2
2

]
(6)

where R is the set of rays in each batch, and C(r), Ĉc(r), and Ĉf (r) are the
ground truth, coarse volume predicted, and fine volume predicted RGB colors
for ray r respectively. Note that even though the final rendering comes from
Ĉf (r), we also minimize the loss of Ĉc(r) so that the weight distribution from
the coarse network can be used to allocate samples in the fine network.

In our experiments, we use a batch size of 4096 rays, each sampled at Nc = 64
coordinates in the coarse volume and Nf = 128 additional coordinates in the
fine volume. We use the Adam optimizer [18] with a learning rate that begins at
5 × 10−4 and decays exponentially to 5 × 10−5 over the course of optimization
(other Adam hyperparameters are left at default values of β1 = 0.9, β2 = 0.999,
and ε = 10−7). The optimization for a single scene typically take around 100–
300k iterations to converge on a single NVIDIA V100 GPU (about 1–2 days).

6 Results

We quantitatively (Tables 1) and qualitatively (Figs. 8 and 6) show that our
method outperforms prior work, and provide extensive ablation studies to vali-
date our design choices (Table 2). We urge the reader to view our supplementary
video to better appreciate our method’s significant improvement over baseline
methods when rendering smooth paths of novel views.

6.1 Datasets

Synthetic renderings of objects We first show experimental results on two
datasets of synthetic renderings of objects (Table 1, “Diffuse Synthetic 360◦” and
“Realistic Synthetic 360◦”). The DeepVoxels [41] dataset contains four Lamber-
tian objects with simple geometry. Each object is rendered at 512 × 512 pixels
from viewpoints sampled on the upper hemisphere (479 as input and 1000 for
testing). We additionally generate our own dataset containing pathtraced images
of eight objects that exhibit complicated geometry and realistic non-Lambertian
materials. Six are rendered from viewpoints sampled on the upper hemisphere,
and two are rendered from viewpoints sampled on a full sphere. We render 100
views of each scene as input and 200 for testing, all at 800× 800 pixels.

10 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

Diffuse Synthetic 360◦ [41] Realistic Synthetic 360◦ Real Forward-Facing [28]
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
SRN [42] 33.20 0.963 0.073 22.26 0.846 0.170 22.84 0.668 0.378
NV [24] 29.62 0.929 0.099 26.05 0.893 0.160 - - -
LLFF [28] 34.38 0.985 0.048 24.88 0.911 0.114 24.13 0.798 0.212
Ours 40.15 0.991 0.023 31.01 0.947 0.081 26.50 0.811 0.250

Table 1: Our method quantitatively outperforms prior work on datasets of
both synthetic and real images. We report PSNR/SSIM (higher is better) and
LPIPS [50] (lower is better). The DeepVoxels [41] dataset consists of 4 diffuse ob-
jects with simple geometry. Our realistic synthetic dataset consists of pathtraced
renderings of 8 geometrically complex objects with complex non-Lambertian ma-
terials. The real dataset consists of handheld forward-facing captures of 8 real-
world scenes (NV cannot be evaluated on this data because it only reconstructs
objects inside a bounded volume). Though LLFF achieves slightly better LPIPS,
we urge readers to view our supplementary video where our method achieves
better multiview consistency and produces fewer artifacts than all baselines.

Real images of complex scenes We show results on complex real-world
scenes captured with roughly forward-facing images (Table 1, “Real Forward-
Facing”). This dataset consists of 8 scenes captured with a handheld cellphone
(5 taken from the LLFF paper and 3 that we capture), captured with 20 to 62
images, and hold out 1/8 of these for the test set. All images are 1008×756 pixels.

6.2 Comparisons

To evaluate our model we compare against current top-performing techniques
for view synthesis, detailed below. All methods use the same set of input views
to train a separate network for each scene except Local Light Field Fusion [28],
which trains a single 3D convolutional network on a large dataset, then uses the
same trained network to process input images of new scenes at test time.

Neural Volumes (NV) [24] synthesizes novel views of objects that lie en-
tirely within a bounded volume in front of a distinct background (which must
be separately captured without the object of interest). It optimizes a deep 3D
convolutional network to predict a discretized RGBα voxel grid with 1283 sam-
ples as well as a 3D warp grid with 323 samples. The algorithm renders novel
views by marching camera rays through the warped voxel grid.

Scene Representation Networks (SRN) [42] represent a continuous scene
as an opaque surface, implicitly defined by a MLP that maps each (x, y, z) co-
ordinate to a feature vector. They train a recurrent neural network to march
along a ray through the scene representation by using the feature vector at any
3D coordinate to predict the next step size along the ray. The feature vector
from the final step is decoded into a single color for that point on the surface.
Note that SRN is a better-performing followup to DeepVoxels [41] by the same
authors, which is why we do not include comparisons to DeepVoxels.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 11

Ship

Lego

Microphone

Materials

Ground Truth NeRF (ours) LLFF [28] SRN [42] NV [24]

Fig. 5: Comparisons on test-set views for scenes from our new synthetic dataset
generated with a physically-based renderer. Our method is able to recover fine
details in both geometry and appearance, such as Ship’s rigging, Lego’s gear
and treads, Microphone’s shiny stand and mesh grille, and Material ’s non-
Lambertian reflectance. LLFF exhibits banding artifacts on the Microphone
stand and Material ’s object edges and ghosting artifacts in Ship’s mast and
inside the Lego object. SRN produces blurry and distorted renderings in every
case. Neural Volumes cannot capture the details on the Microphone’s grille or
Lego’s gears, and it completely fails to recover the geometry of Ship’s rigging.

12 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

Fern

T-Rex

Orchid

Ground Truth NeRF (ours) LLFF [28] SRN [42]

Fig. 6: Comparisons on test-set views of real world scenes. LLFF is specifically
designed for this use case (forward-facing captures of real scenes). Our method
is able to represent fine geometry more consistently across rendered views than
LLFF, as shown in Fern’s leaves and the skeleton ribs and railing in T-rex.
Our method also correctly reconstructs partially occluded regions that LLFF
struggles to render cleanly, such as the yellow shelves behind the leaves in the
bottom Fern crop and green leaves in the background of the bottom Orchid crop.
Blending between multiples renderings can also cause repeated edges in LLFF,
as seen in the top Orchid crop. SRN captures the low-frequency geometry and
color variation in each scene but is unable to reproduce any fine detail.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 13

Local Light Field Fusion (LLFF) [28] LLFF is designed for producing pho-
torealistic novel views for well-sampled forward facing scenes. It uses a trained 3D
convolutional network to directly predict a discretized frustum-sampled RGBα
grid (multiplane image or MPI [52]) for each input view, then renders novel
views by alpha compositing and blending nearby MPIs into the novel viewpoint.

6.3 Discussion

We thoroughly outperform both baselines that also optimize a separate network
per scene (NV and SRN) in all scenarios. Furthermore, we produce qualitatively
and quantitatively superior renderings compared to LLFF (across all except one
metric) while using only their input images as our entire training set.

The SRN method produces heavily smoothed geometry and texture, and its
representational power for view synthesis is limited by selecting only a single
depth and color per camera ray. The NV baseline is able to capture reasonably
detailed volumetric geometry and appearance, but its use of an underlying ex-
plicit 1283 voxel grid prevents it from scaling to represent fine details at high
resolutions. LLFF specifically provides a “sampling guideline” to not exceed 64
pixels of disparity between input views, so it frequently fails to estimate cor-
rect geometry in the synthetic datasets which contain up to 400-500 pixels of
disparity between views. Additionally, LLFF blends between different scene rep-
resentations for rendering different views, resulting in perceptually-distracting
inconsistency as is apparent in our supplementary video.

The biggest practical tradeoffs between these methods are time versus space.
All compared single scene methods take at least 12 hours to train per scene. In
contrast, LLFF can process a small input dataset in under 10 minutes. However,
LLFF produces a large 3D voxel grid for every input image, resulting in enor-
mous storage requirements (over 15GB for one “Realistic Synthetic” scene). Our
method requires only 5 MB for the network weights (a relative compression of
3000× compared to LLFF), which is even less memory than the input images
alone for a single scene from any of our datasets.

6.4 Ablation studies

We validate our algorithm’s design choices and parameters with an extensive
ablation study in Table 2. We present results on our “Realistic Synthetic 360◦”
scenes. Row 9 shows our complete model as a point of reference. Row 1 shows
a minimalist version of our model without positional encoding (PE), view-
dependence (VD), or hierarchical sampling (H). In rows 2–4 we remove these
three components one at a time from the full model, observing that positional
encoding (row 2) and view-dependence (row 3) provide the largest quantitative
benefit followed by hierarchical sampling (row 4). Rows 5–6 show how our per-
formance decreases as the number of input images is reduced. Note that our
method’s performance using only 25 input images still exceeds NV, SRN, and
LLFF across all metrics when they are provided with 100 images (see supple-
mentary material). In rows 7–8 we validate our choice of the maximum frequency

14 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

Input #Im. L (Nc , Nf) PSNR↑ SSIM↑ LPIPS↓
1) No PE, VD, H xyz 100 - (256, -) 26.67 0.906 0.136
2) No Pos. Encoding xyzθφ 100 - (64, 128) 28.77 0.924 0.108
3) No View Dependence xyz 100 10 (64, 128) 27.66 0.925 0.117
4) No Hierarchical xyzθφ 100 10 (256, -) 30.06 0.938 0.109

5) Far Fewer Images xyzθφ 25 10 (64, 128) 27.78 0.925 0.107
6) Fewer Images xyzθφ 50 10 (64, 128) 29.79 0.940 0.096

7) Fewer Frequencies xyzθφ 100 5 (64, 128) 30.59 0.944 0.088
8) More Frequencies xyzθφ 100 15 (64, 128) 30.81 0.946 0.096

9) Complete Model xyzθφ 100 10 (64, 128) 31.01 0.947 0.081

Table 2: An ablation study of our model. Metrics are averaged over the 8 scenes
from our realistic synthetic dataset. See Sec. 6.4 for detailed descriptions.

L used in our positional encoding for x (the maximum frequency used for d is
scaled proportionally). Only using 5 frequencies reduces performance, but in-
creasing the number of frequencies from 10 to 15 does not improve performance.
We believe the benefit of increasing L is limited once 2L exceeds the maximum
frequency present in the sampled input images (roughly 1024 in our data).

7 Conclusion

Our work directly addresses deficiencies of prior work that uses MLPs to repre-
sent objects and scenes as continuous functions. We demonstrate that represent-
ing scenes as 5D neural radiance fields (an MLP that outputs volume density and
view-dependent emitted radiance as a function of 3D location and 2D viewing
direction) produces better renderings than the previously-dominant approach of
training deep convolutional networks to output discretized voxel representations.

Although we have proposed a hierarchical sampling strategy to make render-
ing more sample-efficient (for both training and testing), there is still much more
progress to be made in investigating techniques to efficiently optimize and ren-
der neural radiance fields. Another direction for future work is interpretability:
sampled representations such as voxel grids and meshes admit reasoning about
the expected quality of rendered views and failure modes, but it is unclear how
to analyze these issues when we encode scenes in the weights of a deep neural
network. We believe that this work makes progress towards a graphics pipeline
based on real world imagery, where complex scenes could be composed of neural
radiance fields optimized from images of actual objects and scenes.

Acknowledgements We thank Kevin Cao, Guowei Frank Yang, and Nithin
Raghavan for comments and discussions. RR acknowledges funding from ONR
grants N000141712687 and N000142012529 and the Ronald L. Graham Chair.
BM is funded by a Hertz Foundation Fellowship, and MT is funded by an
NSF Graduate Fellowship. Google provided a generous donation of cloud com-
pute credits through the BAIR Commons program. We thank the following

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 15

Blend Swap users for the models used in our realistic synthetic dataset: gregzaal
(ship), 1DInc (chair), bryanajones (drums), Herberhold (ficus), erickfree (hot-
dog), Heinzelnisse (lego), elbrujodelatribu (materials), and up3d.de (mic).

References

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J.,
Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V.,
Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng,
X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015)

2. Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured lumi-
graph rendering. In: SIGGRAPH (2001)

3. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv:1512.03012 (2015)

4. Chen, W., Gao, J., Ling, H., Smith, E.J., Lehtinen, J., Jacobson, A., Fidler, S.:
Learning to predict 3D objects with an interpolation-based differentiable renderer.
In: NeurIPS (2019)

5. Cohen, M., Gortler, S.J., Szeliski, R., Grzeszczuk, R., Szeliski, R.: The lumigraph.
In: SIGGRAPH (1996)

6. Curless, B., Levoy, M.: A volumetric method for building complex models from
range images. In: SIGGRAPH (1996)

7. Davis, A., Levoy, M., Durand, F.: Unstructured light fields. In: Eurographics (2012)
8. Debevec, P., Taylor, C.J., Malik, J.: Modeling and rendering architecture from pho-

tographs: A hybrid geometry-and image-based approach. In: SIGGRAPH (1996)
9. Flynn, J., Broxton, M., Debevec, P., DuVall, M., Fyffe, G., Overbeck, R., Snavely,

N., Tucker, R.: DeepView: view synthesis with learned gradient descent. In: CVPR
(2019)

10. Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., , Freeman, W.T.: Un-
supervised training for 3D morphable model regression. In: CVPR (2018)

11. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit
functions for 3d shape. In: CVPR (2020)

12. Henzler, P., Mitra, N.J., Ritschel, T.: Learning a neural 3d texture space from 2d
exemplars. In: CVPR (2020)

13. Henzler, P., Rasche, V., Ropinski, T., Ritschel, T.: Single-image tomography: 3d
volumes from 2d cranial x-rays. In: Eurographics (2018)

14. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Networks (1989)

15. Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T.: Local
implicit grid representations for 3d scenes. In: CVPR (2020)

16. Kajiya, J.T., Herzen, B.P.V.: Ray tracing volume densities. Computer Graphics
(SIGGRAPH) (1984)

17. Kar, A., Häne, C., Malik, J.: Learning a multi-view stereo machine. In: NeurIPS
(2017)

18. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015)

16 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

19. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. International
Journal of Computer Vision (2000)

20. Levoy, M.: Efficient ray tracing of volume data. ACM Transactions on Graphics
(1990)

21. Levoy, M., Hanrahan, P.: Light field rendering. In: SIGGRAPH (1996)
22. Li, T.M., Aittala, M., Durand, F., Lehtinen, J.: Differentiable monte carlo ray

tracing through edge sampling. ACM Transactions on Graphics (SIGGRAPH Asia)
(2018)

23. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: A differentiable renderer for image-
based 3D reasoning. In: ICCV (2019)

24. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.:
Neural volumes: Learning dynamic renderable volumes from images. ACM Trans-
actions on Graphics (SIGGRAPH) (2019)

25. Loper, M.M., Black, M.J.: OpenDR: An approximate differentiable renderer. In:
ECCV (2014)

26. Max, N.: Optical models for direct volume rendering. IEEE Transactions on Visu-
alization and Computer Graphics (1995)

27. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3D reconstruction in function space. In: CVPR (2019)

28. Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi,
R., Ng, R., Kar, A.: Local light field fusion: Practical view synthesis with prescrip-
tive sampling guidelines. ACM Transactions on Graphics (SIGGRAPH) (2019)

29. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric
rendering: Learning implicit 3D representations without 3D supervision. In: CVPR
(2019)

30. Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: A retargetable
forward and inverse renderer. ACM Transactions on Graphics (SIGGRAPH Asia)
(2019)

31. Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture fields:
Learning texture representations in function space. In: ICCV (2019)

32. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: Learn-
ing continuous signed distance functions for shape representation. In: CVPR (2019)

33. Penner, E., Zhang, L.: Soft 3D reconstruction for view synthesis. ACM Transactions
on Graphics (SIGGRAPH Asia) (2017)

34. Porter, T., Duff, T.: Compositing digital images. Computer Graphics (SIG-
GRAPH) (1984)

35. Rahaman, N., Baratin, A., Arpit, D., Dräxler, F., Lin, M., Hamprecht, F.A., Ben-
gio, Y., Courville, A.C.: On the spectral bias of neural networks. In: ICML (2018)

36. Rainer, G., Ghosh, A., Jakob, W., Weyrich, T.: Unified neural encoding of BTFs.
Computer Graphics Forum (Eurographics) (2020)

37. Rainer, G., Jakob, W., Ghosh, A., Weyrich, T.: Neural BTF compression and
interpolation. Computer Graphics Forum (Eurographics) (2019)

38. Ren, P., Wang, J., Gong, M., Lin, S., Tong, X., Guo, B.: Global illumination with
radiance regression functions. ACM Transactions on Graphics (2013)

39. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
40. Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. In-

ternational Journal of Computer Vision (1999)
41. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhöfer, M.: Deep-

voxels: Learning persistent 3D feature embeddings. In: CVPR (2019)
42. Sitzmann, V., Zollhoefer, M., Wetzstein, G.: Scene representation networks: Con-

tinuous 3D-structure-aware neural scene representations. In: NeurIPS (2019)

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 17

43. Srinivasan, P.P., Tucker, R., Barron, J.T., Ramamoorthi, R., Ng, R., Snavely, N.:
Pushing the boundaries of view extrapolation with multiplane images. In: CVPR
(2019)

44. Stanley, K.O.: Compositional pattern producing networks: A novel abstraction of
development. Genetic programming and evolvable machines (2007)

45. Szeliski, R., Golland, P.: Stereo matching with transparency and matting. In: ICCV
(1998)

46. Tulsiani, S., Zhou, T., Efros, A.A., Malik, J.: Multi-view supervision for single-view
reconstruction via differentiable ray consistency. In: CVPR (2017)

47. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
�L., Polosukhin, I.: Attention is all you need. In: NeurIPS (2017)

48. Waechter, M., Moehrle, N., Goesele, M.: Let there be color! Large-scale texturing
of 3D reconstructions. In: ECCV (2014)

49. Wood, D.N., Azuma, D.I., Aldinger, K., Curless, B., Duchamp, T., Salesin, D.H.,
Stuetzle, W.: Surface light fields for 3D photography. In: SIGGRAPH (2000)

50. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: CVPR (2018)

51. Zhong, E.D., Bepler, T., Davis, J.H., Berger, B.: Reconstructing continuous distri-
butions of 3D protein structure from cryo-EM images. In: ICLR (2020)

52. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: Learn-
ing view synthesis using multiplane images. ACM Transactions on Graphics (SIG-
GRAPH) (2018)

A Additional Implementation Details

Network Architecture Fig. 7 details our simple fully-connected architecture.

Volume Bounds Our method renders views by querying the neural radiance
field representation at continuous 5D coordinates along camera rays. For exper-
iments with synthetic images, we scale the scene so that it lies within a cube of
side length 2 centered at the origin, and only query the representation within
this bounding volume. Our dataset of real images contains content that can ex-
ist anywhere between the closest point and infinity, so we use normalized device
coordinates to map the depth range of these points into [−1, 1]. This shifts all
the ray origins to the near plane of the scene, maps the perspective rays of the
camera to parallel rays in the transformed volume, and uses disparity (inverse
depth) instead of metric depth, so all coordinates are now bounded.

Training Details For real scene data, we regularize our network by adding
random Gaussian noise with zero mean and unit variance to the output σ values
(before passing them through the ReLU) during optimization, finding that this
slightly improves visual performance for rendering novel views. We implement
our model in Tensorflow [1].

Rendering Details To render new views at test time, we sample 64 points per
ray through the coarse network and 64 + 128 = 192 points per ray through the
fine network, for a total of 256 network queries per ray. Our realistic synthetic

18 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

RGB
γ(x)

γ(x)

γ(d)

σ+

+

60
256 256 256 256 256 256 256 256

60

24

256 128

Fig. 7: A visualization of our fully-connected network architecture. Input vectors
are shown in green, intermediate hidden layers are shown in blue, output vectors
are shown in red, and the number inside each block signifies the vector’s dimen-
sion. All layers are standard fully-connected layers, black arrows indicate layers
with ReLU activations, orange arrows indicate layers with no activation, dashed
black arrows indicate layers with sigmoid activation, and “+” denotes vector
concatenation. The positional encoding of the input location (γ(x)) is passed
through 8 fully-connected ReLU layers, each with 256 channels. We follow the
DeepSDF [32] architecture and include a skip connection that concatenates this
input to the fifth layer’s activation. An additional layer outputs the volume den-
sity σ (which is rectified using a ReLU to ensure that the output volume density
is nonnegative) and a 256-dimensional feature vector. This feature vector is con-
catenated with the positional encoding of the input viewing direction (γ(d)),
and is processed by an additional fully-connected ReLU layer with 128 channels.
A final layer (with a sigmoid activation) outputs the emitted RGB radiance at
position x, as viewed by a ray with direction d.

dataset requires 640k rays per image, and our real scenes require 762k rays per
image, resulting in between 150 and 200 million network queries per rendered
image. On an NVIDIA V100, this takes approximately 30 seconds per frame.

B Additional Baseline Method Details

Neural Volumes (NV) [24] We use the NV code open-sourced by the authors
at https://github.com/facebookresearch/neuralvolumes and follow their
procedure for training on a single scene without time dependence.

Scene Representation Networks (SRN) [42] We use the SRN code open-
sourced by the authors at https://github.com/vsitzmann/scene-representation-ne
and follow their procedure for training on a single scene.

Local Light Field Fusion (LLFF) [28] We use the pretrained LLFF model
open-sourced by the authors at https://github.com/Fyusion/LLFF.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 19

Quantitative Comparisons The SRN implementation published by the au-
thors requires a significant amount of GPU memory, and is limited to an image
resolution of 512 × 512 pixels even when parallelized across 4 NVIDIA V100
GPUs. We compute quantitative metrics for SRN at 512 × 512 pixels for our
synthetic datasets and 504 × 376 pixels for the real datasets, in comparison to
800× 800 and 1008× 752 respectively for the other methods that can be run at
higher resolutions.

C NDC ray space derivation

We reconstruct real scenes with “forward facing” captures in the normalized
device coordinate (NDC) space that is commonly used as part of the triangle
rasterization pipeline. This space is convenient because it preserves parallel lines
while converting the z axis (camera axis) to be linear in disparity.

Here we derive the transformation which is applied to rays to map them from
camera space to NDC space. The standard 3D perspective projection matrix for
homogeneous coordinates is:

M =

⎛
⎜⎜⎝

n
r 0 0 0
0 n

t 0 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0

⎞
⎟⎟⎠ (7)

where n, f are the near and far clipping planes and r and t are the right and top
bounds of the scene at the near clipping plane. (Note that this is in the convention
where the camera is looking in the−z direction.) To project a homogeneous point
(x, y, z, 1)�, we left-multiply by M and then divide by the fourth coordinate:

⎛
⎜⎜⎝

n
r 0 0 0
0 n

t 0 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0

⎞
⎟⎟⎠
⎛
⎜⎜⎝
x
y
z
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

n
r x
n
t y−(f+n)

f−n z − −2fn
f−n

−z

⎞
⎟⎟⎠ (8)

project →

⎛
⎜⎝

n
r

x
−z

n
t

y
−z

(f+n)
f−n − 2fn

f−n
1
−z

⎞
⎟⎠ (9)

The projected point is now in normalized device coordinate (NDC) space, where
the original viewing frustum has been mapped to the cube [−1, 1]3.

Our goal is to take a ray o+ td and calculate a ray origin o′ and direction d′

in NDC space such that for every t, there exists a new t′ for which π(o+ td) =
o′ + t′d′ (where π is projection using the above matrix). In other words, the
projection of the original ray and the NDC space ray trace out the same points
(but not necessarily at the same rate).

20 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

Let us rewrite the projected point from Eqn. 9 as (axx/z, ayy/z, az+bz/z)
�.

The components of the new origin o′ and direction d′ must satisfy:

⎛
⎜⎜⎝

ax
ox+tdx

oz+tdz

ay
oy+tdy

oz+tdz

az +
bz

oz+tdz

⎞
⎟⎟⎠ =

⎛
⎝o′x + t′d′x
o′y + t′d′y
o′z + t′d′z

⎞
⎠ . (10)

To eliminate a degree of freedom, we decide that t′ = 0 and t = 0 should map
to the same point. Substituting t = 0 and t′ = 0 Eqn. 10 directly gives our NDC
space origin o′:

o′ =

⎛
⎝o′x
o′y
o′z

⎞
⎠ =

⎛
⎜⎜⎝

ax
ox
oz

ay
oy
oz

az +
bz
oz

⎞
⎟⎟⎠ = π(o) . (11)

This is exactly the projection π(o) of the original ray’s origin. By substituting
this back into Eqn. 10 for arbitrary t, we can determine the values of t′ and d′:

⎛
⎝t′d′x
t′d′y
t′d′z

⎞
⎠ =

⎛
⎜⎜⎝

ax
ox+tdx

oz+tdz
− ax

ox
oz

ay
oy+tdy

oz+tdz
− ay

oy
oz

az +
bz

oz+tdz
− az − bz

oz

⎞
⎟⎟⎠ (12)

=

⎛
⎜⎜⎜⎝
ax

oz(ox+tdx)−ox(oz+tdz)
(oz+tdz)oz

ay
oz(oy+tdy)−oy(oz+tdz)

(oz+tdz)oz

bz
oz−(oz+tdz)
(oz+tdz)oz

⎞
⎟⎟⎟⎠ (13)

=

⎛
⎜⎜⎜⎝
ax

tdz

oz+tdz

(
dx

dz
− ox

oz

)

ay
tdz

oz+tdz

(
dy

dz
− oy

oz

)
−bz

tdz

oz+tdz

1
oz

⎞
⎟⎟⎟⎠ (14)

Factoring out a common expression that depends only on t gives us:

t′ =
tdz

oz + tdz
= 1− oz

oz + tdz
(15)

d′ =

⎛
⎜⎜⎜⎝
ax

(
dx

dz
− ox

oz

)

ay

(
dy

dz
− oy

oz

)
−bz

1
oz

⎞
⎟⎟⎟⎠ . (16)

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 21

Note that, as desired, t′ = 0 when t = 0. Additionally, we see that t′ → 1 as
t → ∞. Going back to the original projection matrix, our constants are:

ax = −n

r
(17)

ay = −n

t
(18)

az =
f + n

f − n
(19)

bz =
2fn

f − n
(20)

Using the standard pinhole camera model, we can reparameterize as:

ax = −fcam
W/2

(21)

ay = −fcam
H/2

(22)

where W and H are the width and height of the image in pixels and fcam is the
focal length of the camera.

In our real forward facing captures, we assume that the far scene bound is
infinity (this costs us very little since NDC uses the z dimension to represent
inverse depth, i.e., disparity). In this limit the z constants simplify to:

az = 1 (23)

bz = 2n . (24)

Combining everything together:

o′ =

⎛
⎜⎜⎝
− fcam

W/2
ox
oz

− fcam

H/2
oy
oz

1 + 2n
oz

⎞
⎟⎟⎠ (25)

d′ =

⎛
⎜⎜⎜⎝
− fcam

W/2

(
dx

dz
− ox

oz

)

− fcam

H/2

(
dy

dz
− oy

oz

)
−2n 1

oz

⎞
⎟⎟⎟⎠ . (26)

One final detail in our implementation: we shift o to the ray’s intersection with
the near plane at z = −n (before this NDC conversion) by taking on = o+ tnd
for tn = −(n+oz)/dz. Once we convert to the NDC ray, this allows us to simply
sample t′ linearly from 0 to 1 in order to get a linear sampling in disparity from
n to ∞ in the original space.

22 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

Pedestal

Cube

Ground Truth NeRF (ours) LLFF [28] SRN [42] NV [24]

Fig. 8: Comparisons on test-set views for scenes from the DeepVoxels [41] syn-
thetic dataset. The objects in this dataset have simple geometry and perfectly
diffuse reflectance. Because of the large number of input images (479 views)
and simplicity of the rendered objects, both our method and LLFF [28] perform
nearly perfectly on this data. LLFF still occasionally presents artifacts when in-
terpolating between its 3D volumes, as in the top inset for each object. SRN [42]
and NV [24] do not have the representational power to render fine details.

D Additional Results

Per-scene breakdown Tables 3, 4, 5, and 6 include a breakdown of the quanti-
tative results presented in the main paper into per-scene metrics. The per-scene
breakdown is consistent with the aggregate quantitative metrics presented in
the paper, where our method quantitatively outperforms all baselines. Although
LLFF achieves slightly better LPIPS metrics, we urge readers to view our sup-
plementary video where our method achieves better multiview consistency and
produces fewer artifacts than all baselines.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 23

PSNR↑ SSIM↑ LPIPS↓
Chair Pedestal Cube Vase Chair Pedestal Cube Vase Chair Pedestal Cube Vase

DeepVoxels [41] 33.45 32.35 28.42 27.99 0.99 0.97 0.97 0.96 − − − −
SRN [42] 36.67 35.91 28.74 31.46 0.982 0.957 0.944 0.969 0.093 0.081 0.074 0.044
NV [24] 35.15 36.47 26.48 20.39 0.980 0.963 0.916 0.857 0.096 0.069 0.113 0.117
LLFF [28] 36.11 35.87 32.58 32.97 0.992 0.983 0.983 0.983 0.051 0.039 0.064 0.039
Ours 42.65 41.44 39.19 37.32 0.991 0.986 0.996 0.992 0.047 0.024 0.006 0.017

Table 3: Per-scene quantitative results from the DeepVoxels [41] dataset. The
“scenes” in this dataset are all diffuse objects with simple geometry, rendered
from texture-mapped meshes captured by a 3D scanner. The metrics for the
DeepVoxels method are taken directly from their paper, which does not report
LPIPS and only reports two significant figures for SSIM.

PSNR↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

SRN [42] 26.96 17.18 20.73 26.81 20.85 18.09 26.85 20.60
NV [24] 28.33 22.58 24.79 30.71 26.08 24.22 27.78 23.93
LLFF [28] 28.72 21.13 21.79 31.41 24.54 20.72 27.48 23.22
Ours 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65

SSIM↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

SRN [42] 0.910 0.766 0.849 0.923 0.809 0.808 0.947 0.757
NV [24] 0.916 0.873 0.910 0.944 0.880 0.888 0.946 0.784
LLFF [28] 0.948 0.890 0.896 0.965 0.911 0.890 0.964 0.823
Ours 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856

LPIPS↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship

SRN [42] 0.106 0.267 0.149 0.100 0.200 0.174 0.063 0.299
NV [24] 0.109 0.214 0.162 0.109 0.175 0.130 0.107 0.276
LLFF [28] 0.064 0.126 0.130 0.061 0.110 0.117 0.084 0.218
Ours 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206

Table 4: Per-scene quantitative results from our realistic synthetic dataset. The
“scenes” in this dataset are all objects with more complex gometry and non-
Lambertian materials, rendered using Blender’s Cycles pathtracer.

24 B. Mildenhall, P. P. Srinivasan, M. Tancik et al.

PSNR↑
Room Fern Leaves Fortress Orchids Flower T-Rex Horns

SRN [42] 27.29 21.37 18.24 26.63 17.37 24.63 22.87 24.33
LLFF [28] 28.42 22.85 19.52 29.40 18.52 25.46 24.15 24.70
Ours 32.70 25.17 20.92 31.16 20.36 27.40 26.80 27.45

SSIM↑
Room Fern Leaves Fortress Orchids Flower T-Rex Horns

SRN [42] 0.883 0.611 0.520 0.641 0.449 0.738 0.761 0.742
LLFF [28] 0.932 0.753 0.697 0.872 0.588 0.844 0.857 0.840
Ours 0.948 0.792 0.690 0.881 0.641 0.827 0.880 0.828

LPIPS↓
Room Fern Leaves Fortress Orchids Flower T-Rex Horns

SRN [42] 0.240 0.459 0.440 0.453 0.467 0.288 0.298 0.376
LLFF [28] 0.155 0.247 0.216 0.173 0.313 0.174 0.222 0.193
Ours 0.178 0.280 0.316 0.171 0.321 0.219 0.249 0.268

Table 5: Per-scene quantitative results from our real image dataset. The scenes
in this dataset are all captured with a forward-facing handheld cellphone.

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis 25

PSNR↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

1) No PE, VD, H 28.44 23.11 25.17 32.24 26.38 24.69 28.16 25.12
2) No Pos. Encoding 30.33 24.54 29.32 33.16 27.75 27.79 30.76 26.55
3) No View Dependence 30.06 23.41 25.91 32.65 29.93 24.96 28.62 25.72
4) No Hierarchical 31.32 24.55 29.25 35.24 31.42 29.22 31.74 27.73

5) Far Fewer Images 30.92 22.62 24.39 32.77 27.97 26.55 30.47 26.57
6) Fewer Images 32.19 23.70 27.45 34.91 31.53 28.54 32.33 27.67

7) Fewer Frequencies 32.19 25.29 30.73 36.06 30.77 29.77 31.66 28.26
8) More Frequencies 32.87 24.65 29.92 35.78 32.50 29.54 32.86 28.34

9) Complete Model 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65

SSIM↑
Chair Drums Ficus Hotdog Lego Materials Mic Ship

1) No PE, VD, H 0.919 0.896 0.926 0.955 0.882 0.905 0.955 0.810
2) No Pos. Encoding 0.938 0.918 0.953 0.956 0.903 0.933 0.968 0.824
3) No View Dependence 0.948 0.906 0.938 0.961 0.947 0.912 0.962 0.828
4) No Hierarchical 0.951 0.914 0.956 0.969 0.951 0.944 0.973 0.844

5) Far Fewer Images 0.956 0.895 0.922 0.966 0.930 0.925 0.972 0.832
6) Fewer Images 0.963 0.911 0.948 0.971 0.957 0.941 0.979 0.847

7) Fewer Frequencies 0.959 0.928 0.965 0.972 0.947 0.952 0.973 0.853
8) More Frequencies 0.967 0.921 0.962 0.973 0.961 0.948 0.980 0.853

9) Complete Model 0.967 0.925 0.964 0.974 0.961 0.949 0.980 0.856

LPIPS↓
Chair Drums Ficus Hotdog Lego Materials Mic Ship

1) No PE, VD, H 0.095 0.168 0.084 0.104 0.178 0.111 0.084 0.261
2) No Pos. Encoding 0.076 0.104 0.050 0.124 0.128 0.079 0.041 0.261
3) No View Dependence 0.075 0.148 0.113 0.112 0.088 0.102 0.073 0.220
4) No Hierarchical 0.065 0.177 0.056 0.130 0.072 0.080 0.039 0.249

5) Far Fewer Images 0.058 0.173 0.082 0.123 0.081 0.079 0.035 0.229
6) Fewer Images 0.051 0.166 0.057 0.121 0.055 0.068 0.029 0.223

7) Fewer Frequencies 0.055 0.143 0.038 0.087 0.071 0.060 0.029 0.219
8) More Frequencies 0.047 0.158 0.045 0.116 0.050 0.064 0.027 0.261

9) Complete Model 0.046 0.091 0.044 0.121 0.050 0.063 0.028 0.206

Table 6: Per-scene quantitative results from our ablation study. The scenes used
here are the same as in Table 4.

