A Comparative Study of Free Self-Explanations and Socratic
Tutoring Explanations for Source Code Comprehension

Lasang Jimba Tamang
University of Memphis
Memphis, TN, USA
ljtamang@memphis.edu

Priti Oli
University of Memphis
Memphis, TN, USA
poli@memphis.edu

ABSTRACT

We present in this paper the results of a randomized control trial
experiment that compared the effectiveness of two instructional
strategies that scaffold learners’ code comprehension processes:
eliciting Free Self-Explanation and a Socratic Method. Code com-
prehension, i.e., understanding source code, is a critical skill for
both learners and professionals. Improving learners’ code compre-
hension skills should result in improved learning which in turn
should help with retention in intro-to-programming courses which
are notorious for suffering from very high attrition rates due to
the complexity of programming topics. To this end, the reported
experiment is meant to explore the effectiveness of various strate-
gies to elicit self-explanation as a way to improve comprehension
and learning during complex code comprehension and learning ac-
tivities in intro-to-programming courses. The experiment showed
pre-/post-test learning gains of 30% (M = 0.30, SD = 0.47) for the
Free Self-Explanation condition and learning gains of 59% (M = 0.59,
SD = 0.39) for the Socratic method. Furthermore, we investigated
the behavior of the two strategies as a function of students’ prior
knowledge which was measured using learners’ pretest score. For
the Free Self-Explanation condition, there was no significant differ-
ence in mean learning gains for low vs. high knowledge students.
The magnitude of the difference in performance (mean difference
=0.02,95% CI: -0.34 to 0.39) was very small (eta squared = 0.006).
Likewise, the Socratic method showed no significant difference in
mean learning gains between low vs. high performing students.
The magnitude of the performance difference (mean difference =
-0.24,95% CI: -0.534 to 0.03) was large (eta squared = 0.10). These
findings suggest that eliciting self-explanations can be used as an ef-
fective strategy and that guided self-explanations as in the Socratic
method condition is more effective at inducing learning gains.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE °21, March 13-20, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8062-1/21/03...$15.00
https://doi.org/10.1145/3408877.3432423

Zeyad Alshaikh
University of Memphis
Memphis, TN, USA
zlshaikh@memphis.edu

Nisrine Ait Khayi
University of Memphis
Memphis, TN, USA
ntkhynyn@memphis.edu

Vasile Rus
University of Memphis
Memphis, TN, USA
vrus@memphis.edu

CCS CONCEPTS

« Applied computing — Education; Interactive learning environ-
ments; Computer-assisted instruction; Computer-managed instruc-
tion.

KEYWORDS

instructional strategies, free self-explanation, socratic method, learn-
ing gain, program comprehension, learning programming, intro-to-
programming, computer science education

ACM Reference Format:

Lasang Jimba Tamang, Zeyad Alshaikh, Nisrine Ait Khayi, Priti Oli, and Vasile
Rus. 2021. A Comparative Study of Free Self-Explanations and Socratic Tu-
toring Explanations for Source Code Comprehension. In Proceedings of the
52nd ACM Technical Symposium on Computer Science Education (SIGCSE 21),
March 13-20, 2021, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3408877.3432423

1 INTRODUCTION

A key challenge in undergraduate Computer Science (CS) programs
is high attrition rates. At a global level, a recent study [8] indicated
that mean worldwide failure rate in these courses in 2019 was 33%.
In the United States, Introductory CS courses (e.g., CS1 and CS2)
often have attrition rates of 30-40% or even higher [7, 21, 51]. In
contrary, local and global demand for skilled programmers have
increased substantially and is expected to grow even more, e.g.,
the United States Bureau of Labor and Statistics predicts software
developer job grows at the rate of 21% until 2028 [1]. Thus, it is
imperative to develop and explore effective instructional strategies
that will help students better understand the programming concepts
and achieve higher learning gain which in turn will improve their
chances of successful completion of CS1 and CS2 courses.

To this end, CS education researchers have spent considerable
effort exploring effective instructional interventions that facilitate
students for learning programming [22, 23, 36, 42, 45, 54]. A large
number of automated tool papers are frequently published for in-
struction support. For example, tools that perform Automated Pro-
gram Repair [32]. [52] found that while the graders seem to gain
benefits from automatically generated repairs shown as hint, novice
students do not seem to know how to effectively make use of it. [2]
found that advantage of automatic feedback over manual feedback
to resolve errors in code is primarily logistical and not conceptual;

https://doi.org/10.1145/3408877.3432423
https://doi.org/10.1145/3408877.3432423

SIGCSE 21, March 13-20, 2021, Virtual Event, USA

the performance benefit seen during lab assignments disappeared
during exams wherein feedback of any kind was withdrawn. Thus,
tool that help novice programmer has to be developed (as mostly
CS1 and CS2 students are novice programmers) and any strategy
used in such tool should support long term mastery of concept
or better mental model construction (rather than just immediate
support for bug fixing). In order to do so, we need to understand the
nature of programming and why teaching novices how to program
remains a challenging task [26], which are discussed below.

The primary reason that large number of students fail in CS1 and
CS2 courses is the inherent complexity of CS concepts itself [33].
Programming is considered a complex cognitive activity where a
student has to simultaneously build and apply several higher order
cognitive skills for solving a particular problem [42]. First encoun-
ters between a learner and a computer system are nothing short of
a “shock” [18] as programming is a highly complex process involv-
ing a multitude of cognitive activities and mental representations
related to problem understanding, programming methods, program
design, program comprehension, change planning, debugging, and
the programming environment. CS concepts are considered more
complex than those of other fields traditionally considered chal-
lenging, such as mathematics. Thus, it is not surprising that many
students in introductory programming courses feel overwhelmed.

The secondary hindrance in students’ path towards mastery
or learning of programming concept is difficulties with construct-
ing accurate mental models [31]. Indeed, a major challenge in CS
education is the difficulty novice programmers face with construct-
ing accurate mental models during key learning activities, such as
source code comprehension [29, 37, 39, 49]. This challenge is not
surprising given that constructing mental representations is consid-
ered a higher-level skill of comprehension, typically engendering
a high cognitive load[20, 25, 48, 55]. The importance of building
accurate mental models during learning tasks has been well estab-
lished for decades in domains like science [12, 16, 17, 34] as well as
in CS education [29, 37, 39, 49].

In this work, with our goal of finding effective instructional
strategies that help CS1 and CS2 students better learn programming
concepts and build more accurate mental, we experiment with 1)
eliciting free Self-Explanations and 2) a Socratic method that uses a
sequence of questions that follow a guided line of reasoning to elicit
guided self-explanations. We also investigate the effectiveness of
these two strategies for students with two different levels of prior
knowledge (low vs. high prior knowledge) as measured by a pretest.
The following are our main research questions.

e RQ1: Does eliciting free self-explanations help learners bet-
ter comprehend instructional code examples? Is there a dis-
crepancy between low vs high prior-knowledge students
with respect to the impact of this strategy of eliciting self-
explanations on student performance and learning?

e RQ2: Does a Socratic method for eliciting self-explanations
help learners better comprehend instructional code exam-
ples? Is there a discrepancy between low vs high prior-
knowledge student with respect to the impact of this strategy
on student performance and learning?

Lasang Jimba Tamang, Zeyad Alshaikh, Nisrine Ait Khayi, Priti Oli, and Vasile Rus

e RQ3: Which of the two strategies are most effective: eliciting
free Self-Explanations or the Socratic method for eliciting
self-explanations?

e RQ4: How do mental models of low prior knowledge stu-
dents differ from those of the high prior knowledge group?

We hypothesize that both self-explanation elicitation strategies
improve comprehension of code examples (resulting in more accu-
rate mental models) and that both will lead to learning gains. This
is based on self-explanation theories and prior evidence about the
positive effect of self-explanation on learning and problem solving
in science domains such as biology [11], physics [14], math [3], and
programming [9, 50]. It should be noted that there could be many
ways to prompt for self-explanations and understanding which
types of prompting works best for whom is still an open question
for code comprehension and learning. In other domains, several
types of prompts have been studied already such as eliciting free
explanation or justification-based self-explanation prompts [15]
and meta-cognitive self-explanation prompts [11]. In our case, we
study two different strategies for eliciting self-explanations: free
Self-Explanations and guided Self-Explanations using a Socratic
method that relies on a sequence of guiding questions. The free Self-
Explanation strategies simply asks students to self-explain their
reading and understanding of given code and then make predic-
tions about the output of the code. The Socratic method has the
same overall goal of eliciting self-explanations during reading and
understanding of code examples. The Socratic method differs in
that it draws more attention to key aspects of the code using a series
of guiding questions. There is prior evidence that best teachers use
a Socratic method [13].

The results of the randomized controlled trial experiment indi-
cate that the learning gains of the free Self-Explanation strategy was
30% (M = 0.30, SD = 0.47) whereas for the guided Self-Explanation
based on the Socratic method was 59% (M = 0.59, SD = 0.39). The
Socratic method outperformed the free Self-Explanation strategy by
29 % - the difference was statistically significant (p < 0.05 level). For
both the free Self-Explanations and the Socratic method, there was
no significant difference in mean learning gains for low vs. high
prior-knowledge students. Our key findings are: 1) Both eliciting
free Self-Explanations and Socratic method is an effective interven-
tion for learning programming and 2) both strategies help equally
low and high prior-knowledge students.

While investigating the effectiveness of eliciting self-explanations
in the area of CS Education has been explored before under certain
experimental conditions and types of prompting and instructional
activities such as problem solving, the main contributions and novel
aspects of our work is the comparison of free Self-Explanation
and of the Socratic method for code comprehension and learning.
There has been no any prior work in comparing these two forms of
self-explanations in the CS Education literature to the best of our
knowledge.

2 RELATED WORKS

Self-explanation theories indicate that students who engage in self-
explanations, i.e. explaining the target material to themselves, while
learning are better learners, i.e., learn more deeply and show highest

Comparative Study of Free Self-Explanations and Socratic Tutoring Explanations

learning gains. Self-explanation’s effectiveness for learning is attrib-
uted to its constructive nature, e.g., it activates several cognitive pro-
cesses such generating inferences to fill in missing information and
integrating new information with prior knowledge, and its mean-
ingfulness for the learner, i.e. self-explanations are self-directed
and self-generated making the learning and target knowledge more
personally meaningful, in contrast to explaining the target content
to others [44]. The positive effect of self-explanation on learning
has been demonstrated in different science domains such as biology
[11], physics [15], math [3], and programming [9, 50].

A series of studies [9, 38, 40] found that self-explanations help
learning Lisp programming concepts. They found that skill improve-
ment had strong correlation with the amount of self-explanation
generated. Two other studies with undergraduate students [41]
and high school students [4] found that students who used a self-
explanation strategy while studying worked out examples were
more successful at a program construction task (Visual Basic) com-
pared to those who did not apply the strategy. Effectiveness of
the self-explanation in programming was also studied for SQL[53],
JavaScript[27], HTML[28] and assembly language[24]. Study [9]
showed that university students who underwent explicit training
on strategies of self-explanation and self-regulation outperformed
students in a control group (no explicit training) on problem solving
performance.

In our case, we explore the role of two strategies for eliciting self-
explanations for code comprehension and learning. In particular,
our work is part of our larger efforts to explore the role of an ad-
vanced, online education technology to train learners on using self-
explanations as a way to improve code comprehension processes
and outcomes (accurate mental models, learning). More specifically,
we explore two particular strategies for eliciting self-explanations:
free or open-ended self-explanations versus guided explanations
using a Socratic method [5, 6] that elicits self-explanations by using
a series of guiding questions that draw attention to key aspects of
a given code.

Indeed, there are different ways to elicit self-explanations which
result in different types of self-explanations such as spontaneous

self-explanations (no prompting), free or open-ended self-explanations

(simple prompting to self-explain), guided (see the socratic method
description in section 3.1.2), and scaffolded self-explanations (in this
case students are encouraged to self-explain as much as possible by
themselves and offered support in the form of hints when flounder-
ing). Other forms of self-explanations have been tried such as "com-
plete given self-explanations (fill-in the blank self-explanations)"
[28] and "select a self-explanation/menu-based self-explanations"[3,
19] which one may argue are not true self-explanations as the
learner does not generate the explanation, i.e., the ’self” part of the
’self-explanation’ is missing. Furthermore, self-explanation prompts
can emphasize various aspects of self-explanations resulting in
justification-based self-explanation prompts [15] or meta-cognitive
self-explanation prompts [11]. Again, we explore here two types of
self-explanations for code comprehension and programming con-
cept learning: eliciting free or open-ended self-explanations and
guided self-explanations using a Socratic method.

SIGCSE 21, March 13-20, 2021, Virtual Event, USA

The Socratic method has been adopted for instruction in many
domains, however, it has been rarely used for computer program-
ming instruction. A study reported by [43] compared the effective-
ness of a Socratic method versus didactic tutoring in a simulated
problem solving environment for teaching basic electricity and
electronics concepts. They found that participants in the Socratic
condition learned more than students in the didactic condition. In
the area of computer programming, there is one prior effort which
studied the use of Socratic dialogue for teaching recursion and
reported positive results [10]. Our study further investigates the ef-
fectiveness of the Socratic method for the purpose of developing an
adaptive instructional system for code comprehension and learning.
In our case, we targeted 6 concepts: operator precedence, nested
if — else, for loops, while loops, arrays, creating objects and using
their methods. Targeting a broader set of computer programming
concepts helps testing the generality of the Socratic methods across
many concepts.

Importantly, to the best of our knowledge, there is no prior com-
parative study of free self-explanations versus the Socratic method
and definitely not in the context of source code comprehension
and learning programming concepts. The closest such study is
[35] which examined the effectiveness of two learning strategies,
self-explanation, and elaborative interrogation for the retention
of scientific facts. The elaborate interrogation strategy is related
to the Socratic method in the sense that both are based on using
a line of questioning of the students eliciting elaborative answers
from the students. They indicated that self-explanation participants
significantly outperformed elaborate interrogation and repetition
control participants on measures of cued recall and recognition.

3 COMPARATIVE STUDY

We conducted a randomized control trial experiment in which par-
ticipants were assigned to three approximately equal experimental
groups: a free Self-Explanation group, the Socratic method group,
and a Prediction Only group. Then, participants were shown code
examples and asked to either self-explain what the code does (free
Self-Explanation) or answer a series of guiding questions related to
key aspects of the code examples (Socratic method) or just predict
the output of the code examples (Prediction Only). All participants
took a pretest before being assigned to an experimental condition
and posttest afterwards. The pre-/post-test scores were used to
calculate learning gains as a measure for the effectiveness of the
interventions. We used a web-based software system to run the
experiment.

We conducted a one-way between group analysis of variance
(ANOVA) to compare the mean learning gains of the experimental
groups. Furthermore, we categorized participants into low and
high-prior knowledge groups based on their mean pretest score
for both the free Self-Explanation and the Socratic method groups
separately. Then, we conducted an independent sample t-test to
compare learning gains between the low and high prior knowledge
groups. More details about group design, participants, materials
used, experiment protocol and measures are given in the following
sections.

SIGCSE 21, March 13-20, 2021, Virtual Event, USA

3.1 Group Design

3.1.1 Free Self-Explanation. Participants in this condition were
given one JAVA code example at a time. They were then asked to
first self-explain in as much detail as they can their understanding of
the code. An input box where they could type their self-explanation
was available on the interface right below the given code example.
The code examples were shown to the learners as a whole as op-
posed to one line at a time. Each code example focused primarily on
a major programming concept such as loops. After they submitted
their self-explanation, learners were asked to predict the output of
the code. Once they submitted their prediction, they are shown the
next code example, and the process repeats.

3.1.2 Socratic Method. Participants in this group experienced a
Socratic method for reading and comprehending the code examples.
They were shown one code example at a time and asked a series
of questions that guided them in their process of examining the
code and pay attention to key aspects such as the target topic or
concept. These guiding questions for all 6 code examples used were
developed by extensive discussions by our team of researchers. The
ideal interaction with Socratic tutor looks like in figure 1.

Current Task Code

ain(string[] args){

t i = 0;i<5; i++){
result = result + i;

System.out.println(result);

Dialogue History

Tutor The code above your screen contains a JAVA program.
Please take your time to read each line to understand the code and
answer the following questions.

Tutor How many times the loop will be executed?

Me 6 times

Tutor Let me help you out. What is the initial value of the counter i?
Me o

Tutor Good! When does the loop stop?
Me Wheniis 5

Tutor Great job! How does the value of the counter i changes each time
the loop executes?

Me The value of i increases by one each time the loop executed
Tutor Good! So, what are the values of i during the execution?
Me 0,1,2,3,4

Tutor Great job! So, how many times the loop will be executed?

Me 5 times
Tutor Great job! Let's move to the next question.

Tutor What is the output of line 77

Type your response here..

|

Figure 1: Interface for Socratic Method

Lasang Jimba Tamang, Zeyad Alshaikh, Nisrine Ait Khayi, Priti Oli, and Vasile Rus

3.1.3 Prediction Only. This is the control group. The participants
in this group were shown code examples and asked to predict the
output of the program. All participants in all condition were shown
the correct prediction for each code example.

3.2 Participants

All 105 students of the third semester in an undergraduate program
in computer science, 35 in each group, from an urban university in
South East Asia took part in this experiment. All participants had
undertaken courses on programming in prior semesters including
structured programming C and they just had taken introductory
Java course for two weeks at the time of this experiment. The
participants were recruited with the help of the instructor and
were paid for their participation. The instructor briefed student
about the goal of the experiment including the fact that it is a good
opportunity to solidify their programming skills. They were also
told that the participation in the experiment is purely voluntary.

3.3 Materials

Participants in each of the experimental groups were shown same
set of 6 source code examples. We call these 6 code examples the
main task. Before this main task, participants were given a pretest
that consisted of 6 code examples matching in terms of content, i.e.,
target concepts, the code examples in the main task. Furthermore,
participants took a post-test consisting of 6 code examples matching
in content that examples in the main task and pre-test. For the
pre-test and post-test, learners were supposed to just provide the
predicted output. As already noted, the pre-test and post-test were
not identical, but they were equivalent in term of concepts tested
and difficulty level. The main programming concepts covered by
the experiment were: operator precedence, nested if — else, for
loops, while loops, arrays, creating objects and using their methods.
Each of these concepts were present in the code examples used in
the pre-test, post-test, and the main task.

3.4 Protocol

The experiment was conducted in a computer lab in the presence
of the instructor but not researchers of this study. Participants
were told to ask questions, if required, only about the experimental
procedure and system usage issues. The participants were first
debriefed about the purpose and nature of the experiment and
given a consent form. Upon their agreement, they were given a
background survey followed by the pre-test. Then, they worked on
the main task. Finally, they took the post-test. Participants could
see all pretest and post-test questions at once on a single screen.
They were shown the main tasks one at a time and they could
proceed to the next task only after they submitted the answer for
the current task. All participants’ responses and interactions were
automatically logged for post-hoc analysis.

3.5 Measures

To score the student performance on the main task, we used the
predicted output for each code example. Each question was scored
1 if the final predicted output was correct and 0 for incorrect an-
swers. This means the maximum score was 6 for pre-test, the main
task, and the post-test, respectively. For each participant, we also

Comparative Study of Free Self-Explanations and Socratic Tutoring Explanations

calculated the learning gains score using the following procedure
[30].

o If posttest score > pretest score, learning gain = (posttest-
pretest)/(6-pretest).

o If posttest score < pretest score, learning gain = (posttest-
pretest)/pretest.

o If posttest score = pretest score = 6, discard the data.

o If posttest score= pretest score # 6, learning gain = 0.

When posttest = pretest = 6, the learning gain = 0 - such scores
are discarded, i.e., participant data with perfect scores of 6 in both
pre-test and post-test is discarded. In our study, we ended with
valid learning gains for 88 participants (28, 29 and 31 students
in the Prediction only, Self-Explanation, and Socratic condition
respectively). A total of 17 participants data points was discarded
because they either achieved perfect scores in both pre-test and
post-test (i.e. pretest = 6 and post-test=6) or they did not complete
all parts of the experiment.

3.6 Results

The three randomly sampled experimental groups are equivalent in
terms of pretest score (i.e. prior knowledge): they have same mean
(M) pretest score of 3.4 with standard deviation (SD) of 1.95, 2.04 and
1.76 for prediction only, self-explanation and socratic method, re-
spectively. Likewise, in the same order, the mean of posttest score is
3.57 (SD=1.53), 4.17 (SD=1.73) and 4.77 (SD=1.33) whereas the mean
of task score is 3.29 (SD=2.26), 4.07 (SD=1.96) and 4.84 (SD=1.19).
It is to be noted that any parametric techniques mentioned in this
section 3.6 and section 4.1 met all the underlying assumptions,
such as, normal distribution, random sampling, independence of
observations, and homogeneity.

The result of ANOVA shows that there is a statistically significant
difference (p < 0.05 level) in learning gains for the three groups
(Self-explanation, Socratic method, and Prediction only): F(2,85) =
13.5, p=0.001. The difference in mean learning gain score is large, as
suggested by [46]. The effect size, calculated using eta squared, was
0.24. Post-hoc comparison using Tukey’s test indicated that mean
score of the Prediction only (M = 0.047, SD = 0.31) was significantly
different from the score of the Self-Explanation (M = 0.30, SD = 0.47).
We also found that the Self-Explanation (M = 0.30, SD = 0.47) and
the Socratic group (M = 0.59, SD = 0.39) were significantly different.
There was also a significant difference between the Prediction only
(M = 0.047, SD = 0.31) and the Socratic group (M = 0.59, SD =
0.39). These results clearly indicate that both self-explanation (with
average learning gain of 30%) and the Socratic method (with average
learning gain of 59%) are effective at helping students learn computer
programming concepts in JAVA. The Socratic method outperforms the
free Self-Explanation by 29%.

The results of the independent-sample t-test to compare the
mean learning gain score for low and high prior-knowledge groups
for Self-Explanation and Socratic Method are shown in Table 1
and Table 2, respectively. Note that any participants with pretest
score <= mean pretest score for the groups falls into low prior-
knowledge and the rest are in the high prior-knowledge group.
The mean pretest score is 3.38 and 3.39 for Self-Explanation and
Socratic method groups, respectively. Table 1 shows that there
is no significant difference in mean learning gain score for the

SIGCSE 21, March 13-20, 2021, Virtual Event, USA

Table 1: Independent Sample t-test result for learning gain
between Low and High prior knowledge group in Self-
Explanations

Group N Mean SD t-val Sig.

Low Prior Knowledge 13 031 0.44
High Prior Knowledge 16 0.28 0.52

0.67 0.88

Table 2: Independent Sample t-test result for learning gain
between High and Low prior knowledge group in Socratic
Method

Group N Mean SD t-val Sig.

Low Prior Knowledge 14 045 0.31
High Prior Knowledge 17 0.70 0.43

0.67 0.87

participants in the Self-Explanations group and the magnitude of
the difference in mean learning gains (mean difference = .02,95%
CI:-.34 to .39) is very small (eta squared = .006). Similarly, from Table
2, we can see that there is also no significance difference in mean
learning gains for the participants in the Socratic method group
and that the magnitude of the difference in mean learning gains
(mean difference = -.24,95% CI:-.534 to .03) is large (eta squared =
.10). Thus, we found no significant evidence of discrepancy between
low versus high prior knowledge participants for the two strategies
(free Self-Explanation and Socratic method), respectively. That is, the
two methods work equally well for students of all prior knowledge
levels.

4 MENTAL MODEL ANALYSIS

To understand the mental model that students constructed during
comprehending the code examples, we performed an in-depth anal-
ysis based on a qualitative inspection of the self-explanations which
helps to reveal learner’s comprehension at a finer grain level. This
analysis was conducted only for the free Self-Explanations students
as the Socratic method intervention led to shorter, less revealing
responses due to the guiding questions which asked for specific
responses of key aspect of the code. We randomly selected 5 low
and 5 high prior-knowledge students from Self-Explanation group.
Then, one of the authors of this experiment analyzed student’s
self-explanations along a number of factors that accounted for the
quality of the self-explanations and mental models. The following
factors were used for this qualitative analysis. These factors were
based on self-explanation and code comprehension theories, e.g.,
the distinction between the program model, the domain model, and
the situation model [37, 47].

Prior reference: Do they make any references to prior knowl-
edge? Quality self-explanations entail integration of new informa-
tion and prior knowledge.

Inferences: Do they make any inferences such as bridging in-
ferences? For instance, when students explain one part of line of
code, do they refer to prior lines or code or prior elements the code
(bridging inferences)?

SIGCSE 21, March 13-20, 2021, Virtual Event, USA

Monitor: Do they monitor and reflect on their understanding?
Self-monitoring of one’s comprehension is also a key aspect of
quality self-explanations.

Control flow: Can students correctly identify the control flow
of the program? Do they identify the order that function calls,
instructions and statement execute or evaluates when program
runs?

Data flow: Can students correctly identify the data flow and
the state of all data at each moment of the code execution, i.e., how
data structures are created, updated, or transformed?

Program model: Do students show an understanding of the
major structural components of the code, i.e., the program model?

Domain model: Do students show an understanding of the
domain model?

Integrated model: Do students show an understanding of the
integrated model of the code by referring to links between the
domain model and program model?

Mental model: This factor combines all the above into a holistic
score: prior reference + inferences + monitor + control flow + data
flow + program model + domain model + integrated model

The first three factors above are measured in terms of average
(across all 6 main tasks) number of times learners make references
to prior knowledge, number of inferences, and how many times
they self-monitor their understanding, respectively. The rest of the
factors (except mental model) were measured using 0-4 likert scale
(0 - Very Poor, 1 - Below Average, 2 - Average, 3 - Above Average,
4 - Excellent) for each task and the final score used is the average
score across all 6 main tasks.

Descriptive statistics and the results of an independent sample
t-test were obtained to compare mean score for each of these fac-
tors between low and high prior-knowledge groups to understand
any qualitative differences for the mental models those groups
constructed.

4.1 Results

The results show that no student made references to prior knowl-
edge or self-monitored their understanding. Only 5 students out
of the 10 made altogether 19 inferences for all 6 tasks. Out of this,
18 inferences were made by 4 students in the high prior knowl-
edge group and only 1 other student made 1 inference in low prior
knowledge group. This suggests that high prior-knowledge students
make more inferences whereas low prior knowledge students do not.
Thus, training students to make more inferences could be possibly
applied to make them more competitive.

Albeit using a small sample, we found a significant difference in
mental model score for low prior knowledge group (M=4.99, SD
= 1.05) and high prior knowledge group (M=8.67, SD = 3.57; t(8)
=-2.233, p = 0.05, two tailed). The magnitude of the difference in
the mean (mean difference =-3.88, 95 % CI: -7.7 to -0.03) was very
large (eta squared = 0.38). Similarly, there is significant difference in
control flow score between the low prior knowledge group (M=1.30,
SD = 0.38) and the high prior knowledge group (M=2.37, SD = 0.99;
t(8) =-2.237, p = 0.05, two tailed). The magnitude of the difference in
the mean score (mean difference =-1.07, 95 % CI: -2.16 to -0.03) was
very large (eta squared = 0.38). There was no significant difference in
mean score for inferences, data flow, program model, domain model,

Lasang Jimba Tamang, Zeyad Alshaikh, Nisrine Ait Khayi, Priti Oli, and Vasile Rus

or integrated model. These results indicate high prior knowledge
students are better than low prior knowledge group in using control
flow to build better mental model. Hence, low prior knowledge group
could be trained more on control flow aspects of code reading and
understanding to help them build better mental model which in
turn help them to be more accurate.

5 CONCLUSION

We presented in this paper the results of a randomized control trial
experiment that compared the effectiveness of two instructional
strategies that scaffold learners’ code comprehension processes:
eliciting free Self-Explanation and a Socratic Method. The results
showed pre-/post-test learning gains of 30% (M = 0.30, SD = 0.47) for
the free Self-Explanation condition and learning gains of 59%(M =
0.59, SD = 0.39) for the Socratic method. For both self-explanations
and Socratic method, there was no significant difference in mean
learning gains for low vs. high prior-knowledge students i.e. no
evidence of discrepancy by these interventions to students based
on their prior knowledge.

We also analyzed students’ comprehension using an in-depth
analysis of their self-explanations and comprehension by assessing
the quality of the self-explanations and the resulting mental models.
These findings of this analysis suggest that students who make
inferences and emphasize control flow are better comprehenders
and learn more.

The Socratic method uses a sequence of guided questions empha-
sizing key aspects of target code which could be the reason for its
better performance compared to the free Self-Explanation method
which does not provide any specific hints. While the latter seem to
be more revealing in terms of learners’ comprehension processes
and the resulting mental models, offering more support in the form
of hints or guiding questions as in the Socratic method proves to
be more beneficial to learning.

One of the limitations of our study is the coverage of CS top-
ics in CS1 and CS2 courses. While this experiment focusing on 6
programming concepts was a good start to investigate and com-
pare the effectiveness of free Self-Explanations and of the Socratic
method, running a semester long experiment covering all intro-
to-programming topics would be more conclusive. Furthermore,
our in-depth analysis of the mental model students constructed
needs to be extended to all students in the free Self-Explanation
group as opposed to just a 5+5 sub-sample. It is our plan for future
work to run a semester long study covering all topics in an intro-to-
programming course and to extend our analysis of mental models
to all students in the free Self-Explanations condition.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation un-
der grant number 1822816. All findings and opinions expressed or
implied are solely the authors’.

REFERENCES

[1] [n.d.]. Software Developers : Occupational Outlook Handbook: : U.S. Bu-
reau of Labor Statistics. https://www.bls.gov/ooh/computer-and-information-
technology/software-developers.htm. (Accessed on 08/19/2020).

[2] Umair Z Ahmed, Nisheeth Srivastava, Renuka Sindhgatta, and Amey Karkare.
2020. Characterizing the pedagogical benefits of adaptive feedback for com-
pilation errors by novice programmers. In Proceedings of the ACM/IEEE 42nd

https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm

Comparative Study of Free Self-Explanations and Socratic Tutoring Explanations

3

=

[4

=

(8]

[9

=

[10

(11

[12]

[13

[14]

[17]

[18

[19

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28

International Conference on Software Engineering: Software Engineering Education
and Training. 139-150.

Vincent AWMM Aleven and Kenneth R Koedinger. 2002. An effective metacogni-
tive strategy: Learning by doing and explaining with a computer-based cognitive
tutor. Cognitive science 26, 2 (2002), 147-179.

Riyadh Alhassan. 2017. The Effect of Employing Self-Explanation Strategy
with Worked Examples on Acquiring Computer Programing Skills. Journal of
Education and Practice 8, 6 (2017), 186—196.

Zeyad Alshaikh, Lasagn Tamang, and Vasile Rus. 2020. A Socratic Tutor for
Source Code Comprehension. In International Conference on Artificial Intelligence
in Education. Springer, 15-19.

Zeyad Alshaikh, Lasang Jimba Tamang, and Vasile Rus. 2020. Experiments with
a Socratic Intelligent Tutoring System for Source Code Understanding. In The
Thirty-Third International Florida Artificial Intelligence Research Society Conference
(FLAIRS-32).

Theresa Beaubouef and John Mason. 2005. Why the high attrition rate for
computer science students: some thoughts and observations. ACM SIGCSE
Bulletin 37, 2 (2005), 103-106.

Jens Bennedsen and Michael E Caspersen. 2019. Failure rates in introductory
programming: 12 years later. ACM Inroads 10, 2 (2019), 30-36.

Katerine Bielaczyc, Peter L Pirolli, and Ann L Brown. 1995. Training in self-
explanation and self-regulation strategies: Investigating the effects of knowledge
acquisition activities on problem solving. Cognition and instruction 13, 2 (1995),
221-252.

Kuo-En Chang, Pin-Chieh Lin, Yao-Ting Sung, and Sei-Wang Chen. 2000. Socratic-
dialectic learning system of recursion programming. Journal of educational
computing research 23, 2 (2000), 133-150.

Michelene TH Chi, Nicholas De Leeuw, Mei-Hung Chiu, and Christian LaVancher.
1994. Eliciting self-explanations improves understanding. Cognitive science 18, 3
(1994), 439-477.

Michelene TH Chi, Paul J Feltovich, and Robert Glaser. 1981. Categorization and
representation of physics problems by experts and novices. Cognitive science 5, 2
(1981), 121-152.

A Collins and A Stevens. 1982. Goals and methods for inquiry teachers. Advances
in instructional psychology 2 (1982), 65-119.

Cristina Conati and Kurt VanLehn. 2000. Further results from the evaluation of an
intelligent computer tutor to coach self-explanation. In International Conference
on Intelligent Tutoring Systems. Springer, 304-313.

Cristina Conati and Kurt Vanlehn. 2000. Toward computer-based support of
meta-cognitive skills: A computational framework to coach self-explanation.
(2000).

Ton de Jong and Monica GM Ferguson-Hessler. 1991. Knowledge of problem
situations in physics: A comparison of good and poor novice problem solvers.
Learning and Instruction 1, 4 (1991), 289-302.

Andrea A DiSessa. 1993. Toward an epistemology of physics. Cognition and
instruction 10, 2-3 (1993), 105-225.

BENEDICT du Boulay. 2013. Some difficulties of learning to program. Studying
the Novice Programmer (2013), 283.

Geela Venise Firmalo Fabic, Antonija Mitrovic, and Kourosh Neshatian. 2019.
Evaluation of Parsons Problems with Menu-Based Self-Explanation Prompts in a
Mobile Python Tutor. International Journal of Artificial Intelligence in Education
29, 4 (2019), 507-535.

AC Graesser and DS McNamara. 2011. Computational analyses of multilevel
discourse comprehension. Topics in Cognitive Science, 3 (2), 371-398.

Mark Guzdial and Elliot Soloway. 2002. Teaching the Nintendo generation to
program. Commun. ACM 45, 4 (2002), 17-21.

Roya Hosseini, Kamil Akhuseyinoglu, Peter Brusilovsky, Lauri Malmi, Kerttu
Pollari-Malmi, Christian Schunn, and Teemu Sirkia. 2020. Improving engagement
in program construction examples for learning Python programming. Interna-
tional Journal of Artificial Intelligence in Education 30, 2 (2020), 299-336.

Roya Hosseini, Kamil Akhuseyinoglu, Andrew Petersen, Christian D Schunn,
and Peter Brusilovsky. 2018. PCEX: interactive program construction examples
for learning programming. In Proceedings of the 18th Koli Calling International
Conference on Computing Education Research. 1-9.

Yen-Chu Hung. 2012. Combining Self-Explaining With Computer Architecture
Diagrams to Enhance the Learning of Assembly Language Programming. IEEE
Transactions on Education 55, 4 (2012), 546-551.

Walter Kintsch and CBEMAFRS Walter Kintsch. 1998. Comprehension: A paradigm
for cognition. Cambridge university press.

Yana Kortsarts, Kamil Akhuseyinoglu, Jordan Barria-Pineda, and Peter
Brusilovsky. 2020. Integrating personalized online practice into an introduc-
tory programming course. Journal of Computing Sciences in Colleges 35, 8 (2020),
264-266.

Kyungbin Kwon and David H Jonassen. 2011. The influence of reflective self-
explanations on problem-solving performance. Journal of Educational Computing
Research 44, 3 (2011), 247-263.

Kyungbin Kwon, Christiana D Kumalasari, and Jane L Howland. 2011. Self-
Explanation Prompts on Problem-Solving Performance in an Interactive Learning

[29

'S
=

[35

[36

[38

[39

[40

[41

[42

=
&

[44

[45

[46

N
)

(48

[49

[50

[51

o
&,

[53

[54

[55]

SIGCSE 21, March 13-20, 2021, Virtual Event, USA

Environment. Journal of Interactive Online Learning 10, 2 (2011).

Lauren E Margulieux, Mark Guzdial, and Richard Catrambone. 2012. Subgoal-
labeled instructional material improves performance and transfer in learning
to develop mobile applications. In Proceedings of the ninth annual international
conference on International computing education research. 71-78.

Jeffrey D Marx and Karen Cummings. 2007. Normalized change. American
Journal of Physics 75, 1 (2007), 87-91.

Tain Milne and Glenn Rowe. 2002. Difficulties in learning and teaching program-
ming—views of students and tutors. Education and Information technologies 7, 1
(2002), 55-66.

Martin Monperrus. 2020. The living review on automated program repair. (2020).
Briana B Morrison, Lauren E Margulieux, and Mark Guzdial. 2015. Subgoals,
context, and worked examples in learning computing problem solving. In Pro-
ceedings of the eleventh annual international conference on international computing
education research. 21-29.

Mitchell] Nathan, Walter Kintsch, and Emilie Young. 1992. A theory of algebra-
word-problem comprehension and its implications for the design of learning
environments. Cognition and instruction 9, 4 (1992), 329-389.

Tenaha O’Reilly, Sonya Symons, and Heather MacLatchy-Gaudet. 1998. A compar-
ison of self-explanation and elaborative interrogation. Contemporary Educational
Psychology 23, 4 (1998), 434-445.

Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth Adams,
Jens Bennedsen, Marie Devlin, and James Paterson. 2007. A survey of literature
on the teaching of introductory programming. In Working group reports on ITiCSE
on Innovation and technology in computer science education. 204-223.

Nancy Pennington. 1987. Comprehension strategies in programming. In Empirical
studies of programmers: second workshop. Ablex Publishing Corp., 100-113.
Peter Pirolli and Margaret Recker. 1994. Learning strategies and transfer in the
domain of programming. Cognition and instruction 12, 3 (1994), 235-275.
Vennila Ramalingam, Deborah LaBelle, and Susan Wiedenbeck. 2004. Self-efficacy
and mental models in learning to program. In Proceedings of the 9th annual SIGCSE
conference on Innovation and technology in computer science education. 171-175.
Margaret M Recker and Peter Pirolli. 1990. A Model of Self-Explanation Strategies
of Instructional Text and Examples in the Acquisition of Programming Skills.
(1990).

Elizabeth Susan Rezel. 2003. The effect of training subjects in self-explanation
strategies on problem solving success in computer programming. (2003).
Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer science education 13,
2 (2003), 137-172.

Carolyn Penstein Rosé, Johanna D Moore, Kurt VanLehn, and David Allbritton.
2001. A comparative evaluation of socratic versus didactic tutoring. In Proceedings
of the Annual Meeting of the Cognitive Science Society, Vol. 23.

Marguerite Roy and Michelene TH Chi. 2005. The self-explanation principle in
multimedia learning. The Cambridge handbook of multimedia learning (2005),
271-286.

Vasile Rus, Peter Brusilovsky, Scott Fleming, Lasang Tamang, Kamil
Akhuseyinoglu, Jordan Barria-Pineda, Nisrine Ait-Khayi, and Zeyad Alshaikh.
2019. An Intelligent Tutoring System for Source Code Comprehension. In The
20th International Conference on Artificial Intelligence in Education, June 25-29,
Chicago, IL, USA.

Shlomo S Sawilowsky. 2009. New effect size rules of thumb. Journal of Modern
Applied Statistical Methods 8, 2 (2009), 26.

Carsten Schulte, Tony Clear, Ahmad Taherkhani, Teresa Busjahn, and James H
Paterson. 2010. An introduction to program comprehension for computer science
educators. In Proceedings of the 2010 ITiCSE working group reports. 65-86.
Catherine Snow. 2002. Reading for understanding: Toward an R&D program in
reading comprehension. Rand Corporation.

Elliot Soloway and Kate Ehrlich. 1984. Empirical studies of programming knowl-
edge. IEEE Transactions on software engineering 5 (1984), 595-609.

Lasang Jimba Tamang, Zeyad Alshaikh, Nisrine Ait-Khayi, and Vasile Rus. 2020.
The Effects of Open Self-Explanation Prompting During Source Code Compre-
hension. In The Thirty-Third International Florida Artificial Intelligence Research
Society Conference (FLAIRS-32).

Cameron Wilson, Leigh Ann Sudol, Chris Stephenson, and Mark Stehlik. 2010.
Running on empty: The failure to teach K-12 computer science in the digital age.
Association for Computing Machinery 26 (2010).

Jooyong Yi, Umair Z Ahmed, Amey Karkare, Shin Hwei Tan, and Abhik Roy-
choudhury. 2017. A feasibility study of using automated program repair for
introductory programming assignments. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. 740-751.

Mashiho Yuasa. 1994. The effects of active learning exercises on the acquisition
of SQL query writing procedures. (1994).

Xihui Zhang, Chi Zhang, Thomas F Stafford, and Ping Zhang. 2019. Teaching
introductory programming to IS students: The impact of teaching approaches on
learning performance. Journal of Information Systems Education 24, 2 (2019), 6.
Rolf A Zwaan and Gabriel A Radvansky. 1998. Situation models in language
comprehension and memory. Psychological bulletin 123, 2 (1998), 162.

	Abstract
	1 Introduction
	2 Related Works
	3 Comparative Study
	3.1 Group Design
	3.2 Participants
	3.3 Materials
	3.4 Protocol
	3.5 Measures
	3.6 Results

	4 Mental Model Analysis
	4.1 Results

	5 Conclusion
	Acknowledgments
	References

