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Abstract—Various collision-avoidance assistance (CAA)
systems, such as automatic emergency braking (AEB) and
lane-keeping assistance (LKA), have been developed in the
last decades to enhance the active safety of ground vehicles.
Meanwhile, more electronic computing units (ECUs) have been
embedded inside a vehicle to support the diversified CAA
systems, which complicate the automotive electrical/electronic
architecture and increase the cost. Instead of adding extra ECUs,
we propose to allocate the existing implementation resources,
i.e., the available processor time and memory space to the
CAA systems, per individual driver’s maneuver capabilities.
As an illustrative example, we first show that two drivers
can exhibit distinct maneuvers in a pre-crash situation on
highway, according to which they can be classified as either
steering-oriented or braking-oriented. Then, we design two
CAA systems: an AEB and an LKA, based on the ultra-local
model predictive control method. Furthermore, we show that
by adjusting the prediction horizons of the two controllers,
the implementation resources can be allocated to the two CAA
systems in different fashions, which yields three control modes:
standard mode, steering-enhanced mode, and braking-enhanced
mode. Finally, by comparing the control performance of each
driver-type/control-mode pair through both CarSim-Simulink
joint simulations and driver-in-the-loop simulator experiments,
we demonstrate that by allocating more resources to compensate
for the weakness of a driver’s maneuver, the CAA systems can
provide enhanced driving safety by consuming the same overall
amount of the implementation resources.

Index Terms—Collision avoidance, model-free control, model
predictive control, resources allocation.

I. INTRODUCTION

VARIOUS collision avoidance assistance (CAA) systems
for ground vehicles have been developed in the last

three decades [1]. Noteworthy examples include forward
collision warning (FCW) [2], automatic emergency braking
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(AEB) [3], [4], and lane-keeping assistance (LKA) system [5].
Model predictive control (MPC) has been extensively applied
for CAA systems to treat the safety constraints and the
nonlinearities of the driver-vehicle system under emergencies.
For instance, authors in [6] propose separately an LKA system
considering the ranges of tire sideslip angles and an adaptive
cruise controller respecting acceleration and inter-vehicle dis-
tance constraints. Authors in [7] design an integrated braking
and steering controller for LKA while satisfying lateral offset
constraints. The work in [8] contributes a shared steering
controller helping a driver to stay on road while following
driver’s inherent intention.
Although the effectiveness of MPC for collision avoidance

and lane-keeping assistance is widely recognized, MPC incurs
heavy online computational load [9] and occupies more mem-
ory space than non-optimization-based control strategies [10].
Embedding more electronic computing units (ECUs) into a
passenger car can meet the excessive hardware requirements
of MPC. However, they complicate the automotive electronic
architecture, degrade system reliability, and increase cost [11].
From an ergonomic perspective, CAA systems should adapt

their assistance to compensate for the weakness of a driver’s
maneuver while limiting its intrusion on tasks that the driver
is inherently competent to fulfill [12]. Instead of introduc-
ing extra ECUs, we propose to allocate the existing imple-
mentation resources, including the available processor time
and memory space, to different CAA systems per driver’s
capabilities.
Capability-based CAA systems design [13] typically

includes three major steps. Firstly, a driver model is
derived from the historical driving data [14], [15]. Secondly,
the driver’s longitudinal and lateral control capabilities are
evaluated based on the fitted driver model parameters. For
instance, authors in [16] quantify drivers’ steering skills
according to the highest speed at which a driver can pass
a lane-change test without colliding any cones. Moreover,
experimental results indicate a strong correlation between the
identified preview time/neuromuscular lag and the steering
skill level. In parallel, authors in [17] define driver’s braking
skill according to the minimum time headway to the front car,
and conclude that the control gains of the inter-vehicle dis-
tance and relative speed can reflect the braking skill. Thirdly,
CAA systems adapt to the evaluated driving capabilities. For
example, authors in [18] propose an FCW system by first
classifying a driver as either reckless, general, or cautious,
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and then adapting the warning threshold accordingly. Authors
in [19] design a model predictive lane change system by
including a driver’s steering ability as an additional constraint.
However, the implementation resource consumption is

rarely considered in the existing capability-based CAA sys-
tems. On the other hand, resource-aware automotive control,
which either maximizes the control performance within the
given implementation resources or minimizes the resource
consumptions with guaranteed control performance, has
recently been proposed [20]–[22]. Nevertheless, a driver’s
capabilities are seldom considered in scheduling the resources.
Filling the gap between capability-based CAA systems and
resource-aware automotive control, we propose to allocate the
existing implementation resources to CAA systems according
to the driver’s capabilities. To the best of the authors’ knowl-
edge, no previous work explicitly showed the feasibility and
safety benefits of this idea.
As an illustrative example, we first show in Section II

that two drivers can behave differently in a highway pre-
crash scenario. Then, we illustrate in Section III that the
discrepancies in driver maneuver can be exploited to clas-
sify a driver as either steering-oriented or braking-oriented.
Section IV formulates an AEB system and an LKA system
based on the ultra-local model predictive control (ULMPC)
method, and illustrates how to create three control modes: stan-
dard mode, steering-enhanced mode, and braking-enhanced
mode by adjusting the prediction horizons of the two
predictive controllers. Section V compares each driver-
type/control-mode pair (steering-oriented driver plus standard
control mode, steering-oriented driver plus steering-enhanced
control mode, etc.) via CarSim-Simulink joint simulation and
driver-in-the-loop driving simulator experiments. Simulation
and experimental results demonstrate the feasibility and bene-
fits of the proposed resources allocation philosophy based on
driver capabilities. Finally, Section VI concludes this paper.
The contribution of this paper is threefold. Firstly,

we demonstrate that a driver can be classified as either braking-
oriented or steering-oriented via a support vector machine
model. Secondly, we formulate two ULMPC-based CAA
systems for preventing rear-end and run-off-road collisions.
Thirdly, through simulations and driving simulator experi-
ments, we demonstrate the feasibility and safety benefits of
allocating the implementation resources to CAA systems per
driver’s capabilities.

II. BEHAVIORS OF DRIVERS IN A PRE-CRASH SCENARIO

In this section, we first describe a representative pre-crash
scenario. Then, we use driver model simulations and driver-
in-the-loop experiments to demonstrate that two drivers can
manifest different maneuvers in this critical setting.

A. Representative Pre-Crash Scenario

Fig. 1 shows the pre-crash scenario under investigation.
The subject vehicle (SV) follows a front vehicle (FV) in the
left lane. Meanwhile, another target vehicle (TV) proceeds
relatively slower in the right lane. When the distance between
FV and SV decreases below a threshold, FV yields a brake

Fig. 1. Representative pre-crash scenario.

in front of an obstacle. To escape FV, the SV driver initi-
ates a right turn and a brake at the same time. SV must
always remain on the road and avoid rear-ending TV after the
lane-change.
We study this specific scenario for three reasons. Firstly, the

given scenario requires both steering and braking maneuvers
from the SV driver, so that CAA’s assistance in both longi-
tudinal and lateral control is required. Secondly, the authors’
previous work [14], [15] utilized such a scenario to validate
driver models. Lastly, the designed scenario covers two of the
most frequent types of traffic accidents in the U.S., namely,
the rear-end collision and the run-off-road collision [23]. This
critical scenario has been extensively studied for collision
analysis and prevention [24], [25].

B. Maneuver Discrepancies Demonstrated in Simulation

We first use the longitudinal and lateral driver models vali-
dated in [14] and [15] to simulate the SV driver’s steering and
braking maneuvers in the critical scenario in Fig. 1. Special
attention will be paid to revealing maneuver discrepancies
between two human drivers.
The longitudinal driver model in [14] describes the desired

acceleration during car-following, as:
axr (t) = C1 [�X (t − Td ) − Xr (t)]− C2 [�vx (t − Td)] ,

(1)

with �X = X f − X,�vx = vx −vx f . In (1), X and vx are the
longitudinal position and speed of SV. X f , vx f represent the
counterparts of the vehicle in front of SV. Xr (t) shows the
preferred inter-vehicle distance of the SV driver. Positive
parameters: C1,C2, and Td are the distance-error gain, speed-
error gain, and human response delay.
As shown in Fig. 1, the car immediately in front of SV

would gradually shift from FV to TV during the lane change.
Hence, we introduce the attention weights validated in [24]:⎧⎨

⎩ αT V (t) = tan
(
yn (t)

/
Y

)
tan (1)

,

αFV (t) = 1− αT V (t) .

(2)

In (2), 0 ≤ αT V (t) , αFV (t) ≤ 1, are the attention weights
that the SV driver assigns to TV and FV, respectively. yn (t) is
the lateral offset of SV w.r.t the original path before changing
lane, and Y = 3.66 is the U.S. standard highway lane width
in meter.
Inspired by [24], we formulate the SV driver’s

desired longitudinal acceleration under the influence of
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TABLE I

DRIVER MODEL PARAMETER SETS

Fig. 2. Open-loop vehicle trajectories comparison.

both FV and TV as:
a∗
xr (t) = αFV (t) aFVxr (t) + αT V (t) aTVxr (t) , (3)

where aFVxr (t) and aTVxr (t) are the SV driver’s desired longi-
tudinal accelerations induced by FV and TV, respectively.
In parallel, the lateral driver model reads as [15]:

δsw (t) = Gh

1+ Ths

[
Ydes (t) − (

Y (t) + vx (t) sinψ (t) Tp
)]

+ K f f γdes (t) . (4)

In (4), δsw (t) is the simulated steering wheel angle, Gh indi-
cates the feedback gain, Th is the neuromuscular lag, Ydes (t)
is the targeted lateral position, Y (t) + vx (t) sinψ (t) Tp rep-
resents the predicted lateral position in Tp seconds along the
current vehicle heading angle ψ (t) , K f f is the feedforward
gain, and γdes (t) is the feedforward vehicle yaw rate.
The longitudinal and lateral driver models were validated

in [14], [15] with human subject experiments. Fitting the
recorded maneuver data with the model outputs yielded the
drivers’ parameter sets. For instance, the model parameters of
Driver1 and Driver15 are replicated in Table I. Per [16], [17],
the more significant error-feedback gains C1,2, and the shorter
reaction delay Td imply that Driver1 is more skilled in longi-
tudinal control than Driver15. Meanwhile, the longer preview
time Tp and the smaller neuromuscular lag Th suggest that
Driver15 is more adept in lateral control than Driver1.
To confirm the maneuver differences between Driver1 and

Driver15, we conduct CarSim-Simulink joint simulation.
We first use a lookup table to convert a∗

xr (t) in (3) into the
driver-induced master cylinder pressure Pd

MC . Then, we inject
the simulated Pd

MC and δsw in (4) into the CarSim model,
where the vehicle configurations can be found in [9]. The sim-
ulated vehicle trajectories and driver maneuvers are compared
in Fig. 2 and Fig. 3. In Fig. 2, the red, blue, and black blocks
represent the SV, FV, and TV. A solid line connects the centers
of SV and TV. The dashed line indicates the road edge.
Therefore, the simulated Driver1 yields adequate brake

control and avoids rear-ending FV and TV. However, it also

Fig. 3. Open-loop driver maneuvers comparison.

Fig. 4. Representative vehicle trajectories from driving simulator exper-
iments. The blue, red, and black blocks indicate the FV, TV, and SV,
respectively. A solid line connects the centers of FV and SV, while a dashed
line connects the centers of SV and TV. A dash-dotted line indicates the road
edge.

Fig. 5. Four representative maneuver records from driving simulator
experiments. The upper subplot exhibits the master-cylinder pressure and the
front wheel steering from a steering-oriented driver. The lower subplot shows
the counterparts of a braking-oriented driver.

produces oscillating steering wheel angles, forcing SV to run
off-road. In contrast, the simulated Driver15 is more capable
of steering control but has a deficient braking control, resulting
in rear-end collision with TV. Note that in Fig. 2 and Fig. 3,
solely the simulated driver models provide the braking and
steering commands while the CAA systems are not activated.
Hereafter, we denote Driver1 and Driver15 as the braking-
oriented and the steering-oriented driver, respectively.

C. Maneuver Discrepancies Shown in Simulator Experiments

In addition to CarSim simulations, driving simulator exper-
iments were also performed to demonstrate maneuver differ-
ences between two drivers. Two drivers repeatedly operated
a driving simulator several times. Representative vehicle tra-
jectories and maneuvers, without CAA system involvement,
are compared in Fig. 4 and Fig. 5, respectively. The simulator
setup is explained in Section V.
As shown in Fig. 4, one of the two drivers could keep the

inter-vehicle distance between the SV and the TV but went
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across the road boundary. In contrast, another driver could
maintain the SV on the road, but rear-ended the slowly moving
TV. Fig. 5 further illustrated the underlying reasons: one driver
yielded fast-rising and adequate master cylinder pressure to
decelerate the SV. Meanwhile, he also produced a large and
oscillatory steering wheel angle, which pushed SV out of the
lane. On the contrary, another driver issued a steady steering
command but an insufficient braking command. In summary,
Fig. 4 and Fig. 5 reveal again that two drivers can manifest
different maneuvers in this critical scenario, because of their
unbalanced steering and braking control capabilities.

III. DRIVER-TYPE CLASSIFICATION

This section shows that the driver maneuver discrepancies
revealed in Section II can be exploited to classify a driver
as either steering-oriented or braking-oriented in the pre-
crash scenario in Fig. 1. Driver-type classification is generally
conducted via machine-learning (ML) approaches, such as
decision tree, neural network, support vector machine (SVM),
and fuzzy logic [26]–[29]. Among all the methods, SVM
maintains two particular advantages: it finds a global solution
and escapes local minima [28], and it is more robust to sample
outliers [26]. Interestingly, SVM was typically used to classify
driving characteristics in only one dimension: either longitudi-
nal or lateral. For instance, authors in [26] identified a driver
as normal or skilled by observing the steering maneuvers.
Authors in [27] classified a driver as aggressive or normal
based on the longitudinal speed and throttle input. As an
exception, ten attributes, including the steering maneuver for
lateral control and the throttle input for longitudinal control,
were considered in [29]. However, the purpose was to evaluate
the overall driving skill without differentiating the lateral and
the longitudinal control capabilities.
Here, we employ SVM to categorize a driver as either

steering-oriented or braking-oriented. Representative attributes
for classification are selected as: a) the rate of change of the
master-cylinder pressure when a driver initiated a brake action
and b) the most negative front (road) wheel steering angle
during the lane-change process. As shown in Fig. 5, a braking-
oriented driver shall produce attributes with large magnitudes,
whereas a steering-oriented driver shall yield substantially
smaller ones.
Six participants were recruited, with each operating a

driving simulator several times. In total, 484 pairs of feature
samples were recorded. We labeled the six drivers as either
steering-oriented or braking-oriented according to their overall
performance during the driving simulator studies. Drivers who
frequently collided with TV but could remain SV on the road
were labeled as steering-oriented. In contrast, drivers often
went across the road boundary but did not rear-end TV were
labeled as braking-oriented. Because of driver behavior varia-
tions, one steering-oriented driver could sometimes act like a
braking-oriented driver and vice versa. However, we ignored
the variations and consistently labeled each driver according to
their typical behaviors. Similar simplification was also adopted
in [26], [29] to reduce the labeling efforts.
SVM classification was performed via MATLAB Classifica-

tion Learner. The tunable hyperparameters include the kernel

Fig. 6. Driver type classification via SVM.

function, the box constraint level, and the option for data
standardization. A prescreening of applicable kernel functions
reveals that the easiest-to-interpret linear kernel overperforms
the more complicated quadratic, cubic, or RBF kernels. Then,
as the two attributes have different scales, we enabled data
standardization to improve the fit. Finally, the box constraint
level, which corresponds to the soft margin penalty c in SVM’s
primal equation, was tuned by MATLAB SVM hyperparame-
ter optimizer.
We randomly selected 50% of the data samples for SVM

training, and the rest was used for SVM testing. The classifica-
tion results of both the training dataset and the testing dataset
are demonstrated in Fig. 6. In the training dataset, four samples
from the braking-oriented drivers were mistakenly recognized
as the steering-oriented data points, while in the testing dataset,
seven samples from the braking-oriented drivers were wrongly
acknowledged as the steering-oriented data points, and one
sample from the steering-oriented drivers was erroneously
identified as the braking-oriented data point. The recognition
accuracy reached 98.3% and 96.7% for the training and testing
datasets, respectively.

IV. ULMPC DRIVING-ASSISTING SYSTEM

To assist the SV driver in the critical scenario in Fig. 1,
we develop two CAA systems: a master-cylinder pressure
controller for braking assistance and an LKA system for
steering assistance. Moreover, we demonstrate how to allocate
the implementation resources to the two CAA systems via
parameter tunings, which yield three control modes: standard
mode, steering-enhanced mode, and braking-enhance mode.
We utilize ultra-local model predictive control (ULMPC)

for CAA systems design. ULMPC was recently proposed
in [30]. We adopt this novel algorithm for three reasons:
Firstly, it explicitly decouples the driver-vehicle dynamics into
a longitudinal and a lateral ultra-local model, which facilitates
demonstrating the dilemma between the control assistance
and the implementation resources consumption. Secondly, its
model-free nature [31] provides inherent robustness against
modeling errors and external disturbances. Thirdly, its control
performance has been compared with a model-based predictive
controller [30], and the results were promising.

A. Braking-Assistance System Design

The braking-assistance system provides extra master-
cylinder pressure to maintain the time-to-collision (TTC) of
the SV to the TV above a given threshold. We hereafter denote
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the TTC as κ . The longitudinal ultra-local model reads:
κ̇ (t) = fκ (t) + ακ P

c
MC (t) . (5)

In (5), Pc
MC is the assisted master-cylinder pressure in

MPa. Constant ακ is tuned to make the magnitudes of κ̇ (t)
and ακ Pc

MC (t) close [31]. The offset term fκ (t) is assumed
piecewise constant and updated at each sampling step. With
κ̇ (t) estimated by the algebraic differentiator in [32], the offset
term fκ (t) in (5) can be approximated as:

fκ (t) ≈ f̂κ (t) = ˆ̇κ (t) − ακ P
c
MC

(
t − T κ

s

)
, (6)

where Pc
MC

(
t − T κ

s

)
is the assisted master-cylinder pressure

at the previous sampling step.
Combining (6) with (5) leads to:

κ̇ (t) ≈ ˆ̇κ (t) − ακ P
c
MC

(
t − T κ

s

)
+ ακ

[
Pc
MC

(
t − T κ

s

) + �Pc
MC (t)

]
= ˆ̇κ (t) + ακ�Pc

MC (t) . (7)

Equation (7) is then discretized with the sampling period
T κ
s :

κ (k + 1) = κ (k) + ακT
κ
s �Pc

MC (k) + Ts ˆ̇κ (k) . (8)

With xmc := κ, umc := �Pc
MC , Eq. (8) is restated as:

xmck+1|k = xmck|k + Bumck|k + dmc (k) . (9)

where xmck|k indicates the TTC at the current step, xmck+1|k is
the one-step predicted TTC, and umck|k represents the assisted
pressure increment at the current step.
Then, the cost function to minimize is formulated as:

Jmc =
Hc−1∑
i=0

∥∥∥umck+i |k∥∥∥2R�p
+

∥∥∥Pc
MC (k − 1) + umck|k

∥∥∥2
Rp

+ · · ·

+
∥∥∥Pc

MC (k − 1) + umck|k + umck+1|k + · · · umck+Hc−1|k
∥∥∥2
Rp

+ ρκξκ . (10)

In (10), the first term restricts the control fluctuation within
the control horizon Hc. The middle terms penalize the control
intervention, with Pc

MC (k − 1) as the assisted command at the
last step. The last term is the violation penalty w.r.t. the TTC
threshold, with ρκ as the weight and ξκ as the slack variable.
Finally, the constrained optimization problem formulates as:
umc∗k|k = min Jmc

s.t . xmck+i+1|k = xmck+i |k + Bumck+i |k + dmc (k) ,

i = 0 . . . Hp, (11.a)

− umcmax ≤ umck+i |k ≤ umcmax,

i = 0 . . . Hc − 1, (11.b)

umck+i |k = 0, i = Hc . . . Hp, (11.c)

0 ≤ PMC (k − 1) + �Pd
MC (k)

+
j+∑
j=0

umck+ j |k ≤ PmaxMC ,

j+ = 0 . . . Hc − 1, (11.d)

κmin − ξκ ≤ xmck+i |k,

i = 1 . . .1+ Hp. (11.e)

(11)

Eq. (11.a) indicates the longitudinal ultra-local model.
Eqs. (11.b) and (11.c) limit the increments of the assisted
master-cylinder pressure within the prediction horizon Hp,
where umcmax is the maximum increment value. Eq. (11.d)
constrains the overall master cylinder pressure (from both
driver and control assistance), with PmaxMC as the overall pres-
sure threshold. In (11.d), PMC (k − 1) = Pd

MC (k − 1) +
Pc
MC (k − 1) is the total master cylinder pressure at the last

step. �Pd
MC (k) ≈ ˆ̇Pd

MC (k) T κ
s is the pressure increment from

a driver at the current step, where ˆ̇Pd
MC (k) can be algebraically

estimated from [32]. Finally, (11.e) restricts the predicted TTC
within the prediction horizon, with κmin as the minimum TTC
that SV should maintain. We implement soft constraints to
guarantee iterative feasibility.
Solving (11) yields the optimal control increment umc∗k|k , and

the optimally assisted master cylinder pressure becomes:
Pc∗
MC (k) = Pc

MC (k − 1) + umc∗k|k . (12)

Problem formulation in (11) is similar to [7], where the
predicted TTC triggers the control intervention.

B. Steering-Assistance System Design

The LKA system corrects the driver’s front steering
angle to maintain the SV on the road. Seeing SV as a
rectangle, we define

(
Y (t) := min(Y f l ,Y f r ,Yrl ,Yrr )

)
, with

Y f l,Y f r ,Yrl ,Yrr as the lateral coordinates of SV’s four ver-
tices. The lateral ultra-local model [33] reads:

Ÿ (t) = fY (t) + αY δcf (t) . (13)

In (13), δcf (t) is the assisted steering angle. The constant
αY is tuned to make the magnitudes of Ÿ (t) and αY δcf (t)
close. The piecewise constant fY (t), similar to fκ (t) in (5),
is periodically updated. The nonlinear coupling between the
longitudinal and lateral dynamics of the vehicle is implicitly
maintained in the offset terms fκ (t) and fY (t).
With Ÿ (t) being algebraically estimated online [30], the off-

set term fY (t) in (13) is approximated as:
fY (t) ≈ f̂Y (t) = ˆ̈Y (t) − αY δcf

(
t − T Y

s

)
, (14)

where δcf
(
t − T Y

s

)
is the steering correction at the last step,

TY
s is the steering-system sampling period. TY

s is in general
different from T κ

s in (7). Substituting (14) back into (13)
yields:

Ÿ (t) ≈ ˆ̈Y (t) − αY δcf

(
t − T Y

s

)
+ αY δcf (t)

= ˆ̈Y (t) + αY�δcf (t) . (15)

Discretizing (15) with TY
s leads to:[

Y (k + 1)
Ẏ (k + 1)

]
=

[
1 Ts
0 1

] [
Y (k)
Ẏ (k)

]

+
[

0
αY T Y

s

]
�δcf (k) +

[
0

ˆ̈Y (k) TY
s

]
. (16)
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With xst := [
Y (t), Ẏ (t)

]T
, ust := �δcf (t), Eq. (16) is

reformulated as:
xstk+1|k = Axstk|k + Bustk|k + dst (k) . (17)

In (17), xstk|k indicates the lateral states at the current
step, xstk+1|k is the one-step predicted lateral states, and ustk|k
represents the steering control increment at the current step.
The cost function for steering assistance is formulated as:

Jst =
Hc−1∑
i=0

∥∥∥ustk+i |k∥∥∥2R�δ

+
∥∥∥δcf (k − 1) + ustk|k

∥∥∥2
Rδ

+ · · ·

+
∥∥∥δcf (k − 1) + ustk|k + ustk+1|k + · · · ustk+Hc−1|k

∥∥∥2
Rδ

+ ρY ξY . (18)

Similar to (10), the first term limits the control fluctuation.
The middle terms penalize the control intervention, with
δcf (k − 1) as the assisted command at the previous step. The
last term is the violation penalty w.r.t. the threshold on Y (t),
with ρY as the penalty weight and ξY as the slack variable.
Finally, the steering assistance problem is formulated

as (19), shown at the bottom of the page.
Equation (19.a) indicates the lateral ultra-local model

dynamics. Equations (19.b) and (19.c) limit the assisted steer-
ing increments within the prediction horizon Hp, where ustmax
is the maximum steering increment. Equation (19.d) limits
the overall front steering angle (from driver and control inter-
vention). δmaxf (k) is the maximum steering angle within the
stability envelope [34]. δ f (k − 1) = δdf (k − 1) + δcf (k − 1)
is the overall front steering angle at the last step. �δdf (k) ≈
ˆ̇δdf (k) TY

s indicates the steering increment from the driver

at the current step, where ˆ̇δdf (k) is algebraically estimated
from [32]. Finally, Eq. (19.e) restricts the predicted Y (t)
within the prediction horizon, with Ymin as the minimum
lateral coordinate. We implement soft constraints to guarantee
iterative feasibility. Solving (19) yields the optimal steering
angle increment ust∗k|k , and the final steering intervention at the
step k becomes:

δc∗f (k) = δcf (k − 1) + ust∗k|k . (20)

Note that the proposed CAA systems are different from
the controllers in [30]. In [30], ULMPC was employed for

automated vehicle path-tracking without human intervention,
whereas the CAA systems work in parallel with driver manip-
ulations. Besides, the cost functions in [30] focused on min-
imizing the path-tracking errors, but the cost functions (10)
and (18) penalize the potential collision hazards. To the best
of our knowledge, this is the first paper to employ ULMPC
for CAA system design.

C. Resources Allocation via Parameter Tuning

The two CAA systems consume implementation resources,
e.g., the available processor time and memory space. By tuning
the prediction horizons Hp in (11) and (19), we can allocate
the resources to the two CAA systems in different ways,
ultimately creating three control modes. For instance, we have:
a) Standard mode: Hsteer

p = 45, Hbrake
p = 45; b) Braking-

enhanced mode: Hsteer
p = 40, Hbrake

p = 50; and c) Steering-
enhanced mode: Hsteer

p = 50, Hbrake
p = 40. The names of

the three control modes come from the fact that an extended
preview horizon can enhance the assistance level while also
consuming more implementation resources. For simplicity,
the control horizons Hc in the two CAA systems are uniformly
fixed as one, and the sampling periods T κ

s , T Y
s are tuned as

0.008s and 0.016s, respectively.
We first show the resource consumptions of the three control

modes in Matlab. Define the computational load [35] as:
Lcpu = TWCET

/
Ts , (21)

with TWCET as the worst-case execution time and Ts as the
control sampling period. Then, we summarize in Table II the
computational loads of the two CAA systems in different
control modes. STE and BRK stand for the steering- and the
braking-assistance system, respectively. 40, 45, and 50 reflect
the prediction steps.
From Table II, we can conclude that the three control

modes entail almost the same overall processor load, but
different modes alter the relative ratios. The standard control
mode allots nearly equal computational resources to the two
CAA systems. However, the steering-enhanced mode would
grant more computational resources to the LKA system, and
vice versa. Then, the occupied memory spaces of the three
control modes, gauged by the MEX file sizes, are compared
in Table III. Again, the overall memory consumptions of
the three control modes remain practically the same, but

ust∗k|k = min Jst

s.t .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xstk+i+1|k = Axstk+i |k + Bustk+i |k + dst (k) , i = 0 . . . Hp, (19.a)

−ustmax ≤ ustk+i |k ≤ ustmax, i = 0 . . . Hc − 1, (19.b)

ustk+i |k = 0, i = Hc . . . Hp, (19.c)

−δmaxf (k) ≤ δ f (k − 1) + �δdf (k)

+
j+∑
j=0

ustk+ j |k ≤ δmaxf (k) , j+ = 0 . . . Hc − 1, (19.d)

Ymin − ξY ≤ Yk+i |k, i = 1 . . . 1+ Hp. (19.e)
(19)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: IMPLEMENTATION RESOURCE ALLOCATION FOR CAA SYSTEMS CONSIDERING DRIVER CAPABILITIES 7

TABLE II

ULMPC COMPUTATIONAL LOAD ON MATLAB

TABLE III

ULMPC ALGORITHM MEX-FILE SIZE ON MATLAB

Fig. 7. Representative task turnaround times on Scalexio.

TABLE IV

ULMPC COMPUTATIONAL LOAD ON SCALEXIO

the relative ratio of the memory allocation changes per the
different control modes.
Afterward, we show the resource consumptions of the three

control modes in the driving simulator system. The two CAA
systems were implemented in a dSPACE Scalexio real-time
computing unit, and the task turnaround times (TATs) of
the two CAA systems under the three control modes were
recorded. Representative TATs are shown in Fig. 7.
Fig. 7 reflects that the braking-assistance system’s maximum

TAT increased as we shifted from the steering-enhanced mode
to the braking-enhanced mode and vice versa. From Fig. 7,
we can summarize the computational loads of the two CAA
systems in the three control modes in Table IV, which yielded
similar conclusions from Table II again.
Then, the occupied memory spaces of the three control

modes on the Scalexio platform, quantified by the. rta file

TABLE V

ULMPC ALGORITHM RTA-FILE SIZES ON SCALEXIO

Fig. 8. Vehicle trajectory of Driver1 with the standard-mode CAA systems.

sizes, are compared in Table V. Similar conclusions from
Table III can be drawn again from Table V. Tables II-V show
the feasibility of resource allocation via parameter tuning.
Remark: Note that the purpose of this paper is to demon-

strate the feasibility and safety benefits of allocating the
implementation resources to CAA systems per driver capa-
bilities. To this end, three groups of hard-coded prediction
horizons were tuned as examples. However, designing driver-
capabilities-based CAA systems must consider the driver
behavior variations and adaptively regulate the parameters of
CAA systems. For instance, based on the online monitored
driver braking and steering outputs, a trained logistic regres-
sion model can periodically update the probability that a driver
belongs to a specific class (e.g., the probability that the driver
is steering-oriented is 60%). Note that the regression output is
a number between zero and one, whereas the classification
results in Section III are only binary. The online updated
logistic regression output can then be exploited to propor-
tionally allocate the available implementation resources to the
CAA systems to compensate for a driver’s (relatively) deficient
maneuver. Finally, the available resources can be translated
into the online calibrated MPC parameters, e.g., the prediction
horizon, the control horizon, and the sampling period, via
lookup tables [9]. Designing resource-aware capabilities-based
CAA systems will be studied in the next step.

V. SIMULATION AND EXPERIMENTAL RESULTS

This section is devoted to verifying this paper’s key idea: By
allocating more implementation resources to compensate for
a driver’s relatively deficient maneuver, the CAA systems can
provide enhanced safety by consuming practically the same
total amount of implementation resources. Control results
of each driver-type/control-mode pair are compared through
both CarSim-Simulink joint simulations and driver-in-the-loop
experiments.

A. CarSim-Simulink Joint Simulations

We first show that the simulated driver models in Fig. 2 can
avoid the rear-end and the run-off-road collisions with the
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Fig. 9. Vehicle trajectory of Driver15 with the standard-mode CAA systems.

Fig. 10. Master-cylinder pressure assistance to Driver1 and Driver15.

Fig. 11. Front steering assistance to Driver1 and Driver15.

standard mode CAA systems. The thresholds in (11), (19)
are set as: Ymin = −5.49m, κmin = 0.5s. With the stan-
dard mode CAA systems being enabled, SV trajectories
of the simulated Driver1 model (braking-oriented) and the
Driver15 model (steering-oriented) are depicted in Fig. 8 and
Fig. 9, respectively. Therefore, the simulated Driver1 can now
stay on the road, while the simulated Driver15 can avoid rear-
ending the slowly moving TV.
For both driver models, the standard mode control assis-

tances, i.e., Pc∗
MC in (12) and δc∗f in (20), are shown

in Fig. 10 and Fig. 11, respectively.
In Fig. 10 and Fig. 11, the solid lines indicate the original

commands from the simulated driver models, while the dashed
lines show the overall commands with control interventions,
which consistently satisfy the actuator constraints. Moreover,
the control intervention demonstrates its adaptive nature. The
steering-oriented driver model receives a marginal steering
correction and a sufficiently high master-cylinder pressure
support. Instead, a noticeable steering correction and moderate
braking support are given to the braking-oriented driver model.
Further, we show that the CAA systems provide enhanced

safety benefits if more resources are allocated to compensate
for the weakness of driver maneuvers. We compare the SV’s
TTC and Y (t) in Fig. 12.
As shown in Fig. 12, for the steering-oriented driver model,

the three control modes yield only marginal discrepancies
in Y (t). However, the braking-enhanced mode noticeably
outperforms the others in enlarging the minimum TTC. Mean-
while, for the braking-oriented driver model, no substantial

Fig. 12. Safety enhancement via resources allocation.

Fig. 13. Minimum Y and TTC with three control modes. On each box,
the center mark represents the median, while the bottom and top edges of
the box represent the 25th and 75th percentiles, respectively. The whiskers
extend to the most extreme data points that are not considered outliers, and
the outliers are drawn separately using the “+” sign.

differences in the minimum TTC can be observed from the
three control modes, but the steering-enhanced mode produces
the highest Y (t).
Constant parameters in Table I cannot reflect the driver

behavior variations in reality. To compensate, we ran 250 sim-
ulations for each driver-type/control-mode pair, with the driver
model parameters being randomly generated from a Gaussian
distribution. Parameter means were set equal to the nominal
values in Table I, and the standard deviations were 10% of
the mean values. Simulation results with smaller standard
deviations can be found in [36]. Fig. 13 shows the boxplots of
SV’s minimum TTC and Y (t) from the two simulated driver
models.
For the braking-oriented driver models, Y (t) blocks’

notches under the three control modes do not overlap with
each other. Therefore, we can conclude with 95% confidence
that allocating more resources to the steering assistance CAA
system would substantially improve the lateral control per-
formance. On the contrary, the distributions of the minimum
TTC are barely influenced by control mode shifting. This is
expected because braking-oriented drivers can properly apply
sufficient brake control, trivializing the intervention from the
braking-assistance CAA system. Likewise, as the steering cor-
rection remains slight for the steering-oriented driver models,
the distributions of Y (t) remain almost identical regardless
of the control mode. However, when more resources are allo-
cated to compensate for the driver models’ deficient braking,
the CAA systems effectively uplift the minimum TTC.
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TABLE VI

MULTI-SIMULATION COSTS FROM THREE CONTROL MODES

To quantify the safety enhancement via resources allocation,
we introduce two hyperbolic cosecant barrier functions [37]:

JT TC (κ)= 2eκ−κmin

e2(κ−κmin) − 1
, JYmin (Y )= 2eY−Ymin

e2(Y−Ymin) − 1
.

(22)

Substituting the medians in Fig. 13 to (22), we summarize
the cost functions in Table VI. The abbreviations ‘Br/St-Enh’
indicate ‘braking/steering-enhanced’, respectively.
Therefore, switching from the Standard control mode to

the St-Enh mode can effectively improve the lateral control
performance (+39%) with a negligibly sacrificed (−3.1%)
TTC control lost for the braking-oriented driver models.
Instead, if more resources are wrongly allotted to the braking-
assistance CAA system, a marginal TTC control enhancement
(+1.1%) along with a significantly degraded road-keeping per-
formance (−173%) will be yielded. Comparable conclusions
can be drawn for the steering-oriented driver models. The sum
of the two costs, defined as the safety metric, validates the
safety benefits of allocating more implementation resources to
compensate for a driver’s (relatively) deficient maneuver.

B. Driver-in-the-Loop Experiments

1) Experimental Setup: The driving simulator consists of
a six-degree-of-freedom motion base, a visual/audio system,
and a dSPACE Scalexio real-time computing unit. Driver
inputs, i.e., steering wheel angle, brake pedal position, and
throttle pedal position, are transferred to Scalexio as the
inputs to ASM, which is an industrial-proven vehicle dynamics
and traffic simulation software. Meanwhile, simulated vehicle
states and surrounding traffic from ASM are sent back to the
motion base and the visual/audio system to synchronize the
motion base movement, the projected scenario animation, and
the background sounds. The CAA systems in (11) and (19)
were implemented via CVXGEN [38].
Two drivers participated in the driving tests. They held valid

driver licenses and had self-reported annual mileages above
4000 miles. They stayed in good mental status during the tests.
When the experiment kicked off, the ASM cruise control was
automatically triggered to maintain SV’s longitudinal speed
at 108km/h. The driver only focused on lane-keeping via
steering control. Once the distance between SV and FV went
below 25m, FV initiated a full brake, forcing the driver to
simultaneously brake and change to the right lane.
Each driver operated the simulator sixty times, with the

three control modes executed twenty times each, in a random
order. During the experiments, drivers were not informed of

Fig. 14. Driving simulator platform.

Fig. 15. Trajectory of the steering-oriented driver with standard-mode control.

Fig. 16. Trajectory of the braking-oriented driver with standard-mode control.

Fig. 17. Front steering from the CAA systems.

the existence of the CAA systems nor the control mode. For
memory washing and workload reduction, experiments were
executed on three separate days. Before the actual tests, several
‘familiarization’ sessions were given to each driver. The pro-
tocol of this study was approved by the Institutional Review
Board (IRB).
2) Experimental Results: Echoing Fig. 4, representative SV

trajectories from the two drivers with the standard-mode CAA
systems enabled are depicted in Fig. 15 and Fig. 16. The black,
blue, and red blocks represent SV, FV, and TV. Note that due
to map transfer, the lateral position threshold in (19) was reset
as: Ymin = −40.9m, and the minimum TTC in (11) was set
as κmin = 1.0s.
We can conclude from Fig. 15 and Fig. 16 that the standard

mode CAA systems help both drivers to avoid the rear-end
and the run-off-road collisions.
Then, the representative standard-mode control interven-

tions for the two drivers are drawn in Fig. 17 and Fig. 18.
Like Fig. 10 and Fig. 11, the CAA systems adapt the control
intervention per the driver characteristics, with the actuator
constraints always respected.
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Fig. 18. Master-cylinder pressure from the CAA systems.

Fig. 19. Minimum Y and TTC of SV under three control modes.

TABLE VII

EXPERIMENTAL COSTS FROM THREE CONTROL MODES

Finally, the box plots of the minimum TTC and the mini-
mum lateral position of SV under the different control modes
are compared in Fig. 19.
Like Fig. 13, the different control modes only marginally

influence the distribution of SV’s minimum lateral position
for the steering-oriented driver. Instead, the steering-enhanced
control mode effectively improves the lateral control perfor-
mance for the braking-oriented driver. Interestingly, for both
drivers, the three control modes consistently yield distinct
distributions of the minimum TTC. Fig. 18 reveals that the
master-cylinder pressure control was triggered before human
intervention, even for the braking-oriented driver. There-
fore, the minimum TTC becomes somehow control-dominated
instead of driver-dominated.
The safety metrics from the driving simulator experiments

are summarized in Table VII. As the size of the dataset is rel-
atively small, we utilize each boxplot’s minimum data point to
calculate the worst-case results. As demonstrated in Table VII,
the Br (St)-Enh mode yields the highest safety metric to the
steering (braking)-oriented driver. Instead, if more implemen-
tation resources were wrongly allocated to support the driver’s
inherent strength, it would negatively affect the driving safety
of the overall driver-vehicle system.

VI. CONCLUSION

We propose that the limited implementation resources
should be allocated to CAA systems per the driver’s maneu-
ver skills. By allocating more implementation resources to

compensate for a driver’s (relatively) deficient maneuver, the
CAA systems can provide enhanced protection by consum-
ing practically the same overall amount of implementation
resources. CarSim-Simulink joint simulations and driving
simulator experiments demonstrate the feasibility and the
effectiveness of the approach. Capability-based resource-aware
CAA systems design and verification under more complex
driving scenarios will be studied in the next step.
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