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Abstract— Car-following models describe how a driver follows
the leading vehicle in the same lane. They serve as the cor-
nerstone of microscopic traffic-flow simulations and play an
essential role in analyzing human factors in traffic casualty,
congestion, efficiency, and emissions. An extensive and contin-
uously growing number of car-following models in the literature
raises the requirement to evaluate and compare different models
objectively. Generally, a car-following model is evaluated after
model parameter calibration: the optimal residual between the
calibrated model output and the measured counterpart is used as
a metric to assess a car-following model’s performance. However,
model parameter calibration, usually formed as a numerical
optimization problem, suffers from several issues, such as local
optimality and heavy computational burden. More importantly,
different formulations of the cost function can lead to distinct
calibration outcomes and contradictory conclusions of the model
evaluation results. This paper proposes instead a purely algebraic
framework for evaluating a class of car-following models whose
parameters can be linearly identified. Car-following models with
nonlinear relationships among parameters, e.g., the behavioral
car-following models, are out of the scope of analysis in this paper.
Algebraic manipulations performed on a model finally produce
a system error index, which is a uniform metric for evaluating
and comparing different car-following models. During the whole
process, no cost function needs to be designed a priori, and
no computationally expensive numerical optimization is involved.
Three car-following models are evaluated and compared under
the proposed algebraic framework.

Index Terms— Algebraic estimation,
model evaluation.

car-following model,

I. INTRODUCTION

AR-FOLLOWING model describes a driver’s longitu-
dinal control maneuver, which is commonly specified
as vehicle acceleration [1], with respect to the movement
of the preceding vehicle in the same lane. Together with
the lane-changing model, they serve as the cornerstone of
microscopic traffic-flow simulation [2], [3]. Especially, car-
following models play an important role in analyzing human
factors in traffic casualty [4], urban congestion [5], as well as
fuel consumption and emissions [6].
Because of their importance, car-following models have
been intensively studied since the 1950s, and there exist an
extensive and continuously increasing number of car-following
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models in the literature [4], [7]-[21]. Such an abundance
evokes the desire to evaluate and compare different models
objectively. Generally, a car-following model is evaluated after
model parameter calibration, which is the process of finding
the best-fitted parameters to minimize the residual between the
modeled outputs and the real measurements [22], [23]. Mathe-
argmin J (X - X (9)),
O, <0 =<6up,

with the parameter set ¢ as the optimized variable, 6, and

01p as the upper and lower bounds of €, X being the measured
state of interest, X (¢) being the modeled state of interest, and
J being the function of goodness of fit. By substituting 6*
back into the cost function J, we finally obtain the optimal
model residual as: J* = J gX -X (6*)). The smaller the J*,
the more performant a car-following model is.

However, car-following model calibration is a more compli-
cated task than it seems [24], [25]. Firstly, the state of interest
X needs to be selected. There exist several candidates, such as
the longitudinal acceleration [26], speed [15], [23], or position
of the ego-car [27], inter-vehicle distance [28], [29], time
headway between the ego-car and its predecessor [22], and
a mix of several attributes mentioned above [30]. Secondly,
the cost function can be formulated in different ways, includ-
ing the squared error, mean absolute error, root mean squared
error, root mean squared logged error, and Theil’s inequality
coefficient [31]. Thirdly, an efficient numeric solver shall
be chosen to solve the constrained nonlinear optimization
problem. In practice, the mathematical relationship between
the optimized variable # and the cost function J is usu-
ally too complex to formulate explicitly. Therefore, gradient-
free solvers, such as genetic algorithm [1], [23], [32], [33],
downhill simplex method [16], [22] and Box’s complex
algorithm [34] are employed. Note that none of them can
guarantee global optimality. Instead, local optimality, which
strongly depends on the initial optimization point, can fre-
quently occur [31]. Authors in [24] pointed out that sometimes,
a seemingly promising goodness-of-fit value can be indeed
associated with the optimized variables far away from their
actual values.

With the three issues mentioned above, it is not strange
to find conflicting conclusions of car-following model eval-
uation results in the literature. For instance, with the state
of interest X chosen as the ego car’s longitudinal speed and
the goodness of fit J selected as the absolute error, authors
in [33] concluded that the IDM model [11] could better fit
the recorded trajectory data than the Gipps’ model [19], [20].
In contrast, by fixing the cost function as the squared error,

matically, it is required to find 6* =
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authors in [27] instead asserted that the IDM model should
be the least possible car-following model adopted by human
beings. Contradictions can also be found in [35] versus [32],
[36] versus [26], as examples. As the impact of emerging
technologies, e.g., vehicle-to-vehicle (V2V) communication,
on transportation systems is frequently analyzed via traffic-
flow simulation [5], objectively evaluating the performance
of a car-following model serves as a preliminary condition
to gauge the effectiveness of novel intelligent transportation
systems.

Because the standard framework for numerically evaluat-
ing different car-following models is lacking, we propose
an algebraic approach to evaluate and compare a class of
car-following models whose parameters can be linearly iden-
tified. With algebraic manipulations performed on a given
model, model parameters are first expressed in a linearly
identifiable form. Then, a least-squares (LS) problem is for-
mulated to solve the underdetermined equation analytically.
The LS problem’s residual error is subsequently converted
into parameter error index (PEI) and system error index
(SEI). PEI is utilized to gauge the accuracy of the estimated
model parameters. More importantly, SEI serves as a uniform
metric to evaluate and compare different car-following models.
During the whole process, no cost function J needs to be
determined a priori, and the calculations are purely alge-
braic without computationally intensive numerical optimiza-
tion. CHM model [7], GHR model [8], and Edie model [9]
are selected as benchmarks to illustrate the proposed algebraic
model evaluation framework. Note that because of the nonlin-
ear relationships among parameters, behavioral car-following
models, e.g., IDM model [11] and Gipps’ model [19], [20],
cellular automation based model [12], and psychophysical
model [18] cannot be analyzed under the proposed algebraic
framework.

This paper principally adopts the longitudinal speed as the
state of interest for evaluating and comparing the three models.
However, as stated in [28], [29], if one state of interest is
selected, the cumulative measurement variable, such as vehicle
position or inter-vehicle spacing, is preferable to speed or
acceleration. Analysis based on cumulative variables will be
covered in our future work.

The rest of this paper is organized as follows: Section II
describes the three car-following models under investigation.
Section III explains how to reformulate the car-following mod-
els to express the model parameters in a linearly identifiable
form, which yields an underdetermined equation. To solve the
underdetermined equation in Section III, Section IV formu-
lates an LS problem and introduces the concept of residual
error, PEI, and SEI. Subsequently, Section V applies synthetic
simulation data to illustrate the usage of PEI and SEI. After
that, Section VI uses the NGSIM vehicle trajectory dataset to
evaluate and compare the three car-following models. Finally,
Section VII concludes this paper.

II. CAR-FOLLOWING MODELS UNDER INVESTIGATION

This section illustrates the three car-following models that
we will analyze under the proposed algebraic framework.
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CHM model [7]:
Oy (1) = cAoy (t — T}), )

GHR model [8]:

(1) = 2 2 T
b = 6)
and Edie model [9]:
e (1) = ooy () S U= T 3)

Ax2(t—T,)

In (1), (2), and (3), v, indicates the longitudinal velocity of
the ego-car. Av, is the speed difference between the ego-car
and the preceding vehicle, as Avy = vy_1 — vy, Where vy_1
is the longitudinal velocity of the preceding car. Similarly,
Ax = x_1 — x is the inter-vehicle distance gap, with x_; and
x being the positions of the preceding car and the ego-car,
respectively. Two constant parameters include the sensitivity
gain ¢ and the driver reaction delay 7. Inter-driver difference
explains that each driver has a personalized sensitivity gain
and reaction delay [30], [37].

Remark 1: Even though the car-following models (1), (2),
(3) prescribe constant parameters ¢ and 7, realistic car-
following behavior of a specific driver may also vary [38], [39]
because of the different traffic situations. This phenomenon is
termed as intra-driver difference. In the following, we howbeit
obey the assumption of constant parameters, as we want to
evaluate the three models per se, instead of proposing new
car-following models with time-varying parameters.

Models (1), (2), and (3) are selected for three reasons.
Firstly, albeit simple, they serve as the basis for many modern
car-following models [17]. Secondly, their performances have
been evaluated and compared, and contradictory conclusions
exist in the literature. For instance, in [15] and [40], by assign-
ing the goodness of fit J as the averaged root mean square
and the state of interest X as speed, acceleration, and inter-
vehicle distance, the authors stated that the simplest CHM
model (1) could outperform the other two models. Conversely,
by optimizing the squared errors, authors in [26] concluded
that none of the three models could be regarded as more
capable of fitting the trajectory data than the others. Thirdly,
the three models have the same number of parameters, which
implies the same level of structural complexity and flexibility.
This desirable feature yields a fair comparison and avoids the
situation that models with more parameters are favored thanks
to the adaptability brought from extra parameters. Note that
at the end of Section IIl, we explain that several other car-
following models can also be analyzed under the proposed
algebraic framework.

III. CAR-FOLLOWING MODEL REFORMULATION

As a preliminary to derive the system error index (SEI)
in Section IV, we first reformulate a car-following model,
such that the model parameters are expressed in a linearly
identifiable form. The workflow is illustrated in Fig. 1, where
the first and last blocks are executed in the time domain,
whereas the others are conducted in the frequency domain.
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Remove unknown
initial conditions

Change the car-following model from
the time domain to frequency domain

7

Add sentinel parameter iiil

iv]

I:: Remove derivative operators

Add integral operators V|—>| Return back to time domain VJ

Fig. 1. Car-following model reformulation.
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Fig. 2. Padé approximation.

We use the CHM model (1) as an example. We first
convert (1) from the time domain to the frequency domain,
which corresponds to block i in Fig. 1. To do so, we perform
Laplace transform on (1), which yields:

sy () — vy (0) = cAvy (s) e 5. @)

Then, following block ii in Fig. 1, we remove the unknown
initial speed vy (0) in (4) by differentiating both sides of (4)
with respect to the Laplace variable s and obtain:
doy (s) CdAvX (5) o Trs

ds ds

—cT, Aoy (5) e s,
(5)

To continue our analysis, we replace the reaction delay
e~ Trs with its approximated polynomial form. As indicated
in [10], human reaction delay during a car-following process
can reach over 2 seconds. Hence, the second-order Padé
approximation is employed to reduce the approximation error.
The enhancement of adopting the second-order Padé approx-
imation over the first-order Padé approximation is shown
in Fig. 2.

Second-order Padé approximation reads:

vy () +s

1y 12— 6Ts + T2s?

~ . 6
12+ 6T,s + T2s2 ©)

Substituting (6) back into (5), we can express (5) as:

d dA
vy (8)+s ox (5) =\c 0x (5) —cTy Avy ()
ds ds

12 — 6T;s + T7s?

P o)

X b
12 + 6T,s + T72s2

which can be equivalently formulated as:

doy ()
. (v" )+ )
= 6, (302 ) #2920 o (100000
ds ds
. 3doy (s)
Tr (s Ux (S)+s —ds )

dA
—cT, (6327):(5) + 12Av, (s))
s

teT? (szidm”‘ ()
ds

r

+ 65 Aoy (s))
- cT,3 (szAvx (s)) . (8)

Afterward, per block iii in Fig. 1, we extend (8) with a
sentinel parameter by [41] by multiplying the left side of (8)
with s + b, and the right side of (8) with s + 1, as:

12 (va (s) + szdvx—(s)) + by (121)x (s) + 12sdvx (S))
ds B

—-7, (6svx () +65> (d”—s(s) +0x (S))+6s3 (_d”x (S)))

d ds
77 (szvx (s)+s° (dvx ) + 0y (s)) +s4 (dvx (S)))
ds ds
dAvy (s) dAvy (s)
+c (12 15 + 125 15 )
— cTr3 (szAvx (s) + 53 Av, (s))
—cT; (IZADX (s)+s (6% + 12 Aoy, (s))

2 dAvy (s)
T (67[“ ))
dAvy (s) )

+cTr2 (6sAvx (s) + 52 ( p + 6Avy (s)
s

3 [(dAvy (s)
s (T)) ©

Note that b, can be regarded as an extended state of the car-
following model, and it is estimated along with the rest of the
original parameters inside the car-following model. However,
unlike the other unknown parameters, its true value is known
a priori, as by = 1. Therefore, by observing the closeness
between the estimated sentinel parameter b  and its true value,
we can infer the status of the other estimated parameters [41].
The usage of the sentinel parameter will be demonstrated in
Section IV.

Next, following block iv in Fig. 1, we multiply s~ on both
sides of (9) and move all the parameters to the right side, as:

12 (s4vx (s) +s73 —dl)x (s))
ds

d
=—b, (12s51)x (s)+ 12s4l):;—(s))
s

dvy (s)
ds

- T, (6s4vx (s)—+—6s73 (

) doy (S)
16 (—ds ))
_ Tr2 (S_Bl)x (S) 4 S_2 (M + Uy (S))
ds
_1 [dvx (s)
= (%5)

Lo (12s_5 dAvy (5) n 12S_4dAvx (s))

+ Uy (s))

ds ds
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4
-5 —4 vy (5)
—cT [ 12572 Aoy (s) + 5 6 15 + 12Av, (s)
3 (6dAvx (s)))
dA
—+—cTr2 (6s 4 Aoy (s) + 573 (Zix(s) + 6A0v, (s))
) (dAvx (s)))
—eT? (s 3 A0y (5) + 52 Aoy (s)). (10)
Comparing (10) and (9), we notice that the derivate oper-
ators s*, o0 € N7, in (9) are all eliminated. Eliminating

derivative operators is crucial because derivative operators can
amplify the measurement noises in the time domain. Moreover,
we multiply 579, instead of s™*, on both sides of (9) such that
all the measured variables, i.e., v, and Av,, are integrated
at least once (see block v in Fig. 1) after we return (10)
from the frequency domain back to the time domain. The
(iterated) integrations serve as low-pass filters to wipe out
high-frequency measurement noises [42], [43].
Recall that the inverse Laplace transform reads:

L~} (d);—s(s)) =—1x (1),

L! (XT(S)) :/Otx (r)dr.

Following block vi in Fig. 1 and applying (11) on (10),
we can obtain a linear equation in the time domain, in terms
of the model parameters, as:

(1)

Peum (1) © =qcum (1), (12)

T
where Pcym (1) = [pé'HM (), p%‘HM @),... ’pZ‘HM (t)] s

and the parameter vector is ® = [—bx, T, —Trz, c,—cT, ,
cTrz, —cTr3]T.

The elements in the vector Pcyyy (¢) are:

' 5 4
pban® =12( [0+ [ -rcm). (13)

5 4 3
Pl (1) = 6 ( [ @+ [ oo 0

2
+/ —1t0y (t)) , (14)

3 2
pé‘HM () :/ Ux (t)+/ —tvy (1) + v (t)_/“)x ),

(15)
5
Penm (O = 12(/ —tAvy (1)

+ /4—tAvx (t)),

5 4
PSCHM ) = 12/ Avy (1) +/ —61Avy (1) + 12A0vy (¢)

(16)

3
+ / —6t Aoy (1), (17)
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4 3
Pe iy () = 6/ Av, (t)+/ 6Av, (1) — t Aoy (1)

2
+/ —t Aoy (1), (18)
3 2
Pl @® :/ Av, (1) +/ Avy (1), (19)
along with
4 3
qcum (t) =12 (/ vy (1) +/ —toy (f)) . (20)

Note that we use [ @ ¢ () to represent the iterated integrals
fto ftg” "¢ (op)doy - --doy, with tg = 0. If n = 1,

we 51mp11fy f( ) $ (1) as ¢ @).

Remark 2: To adopt cumulative measurement variables,
such as vehicle positions or inter-vehicle gap for comparing
and evaluating different models [28], [29], we can reformu-
late (1) as X () = cAx(t — T,). Note that in this case,
two unknown initial conditions: x (0), x (0) would need to
be removed when the model is converted to the frequency
domain.

Equation (12) expresses the CHM model parameters in a
linearly identifiable form. Indeed, both the GHR model and the
Edie model, albeit nonlinear, can also yield a similar equation.

For the GHR model (2), we assign 7 () = Aoy (t)/Ax ®),
obtaining:

oy () =cn(t—T,).
Following (4)-(11), we shall be able to reach (12) again, as:
(22)

21

Pour )" © = qcur (1),

where ggrr (t) = qcum (t) in (20), and Pgyr (t) can be
generated from Pcpys (t) by replacing the term Ao, () in
(13)-(19) by # (¢), if applicable.

Similarly, for the Edie model in (3), we first shift the
velocity vy (f) to the left side of the equation, yielding:

Ox (1) /vx () =cy 1 = T7), (23)
with y (f) = Aoy (t)/Ax2 (t). Defining w (t) = In (vy (¢)),
we have naturally:

@ (1) = bx (1) [vx (0). (24)
Therefore, (23) can be equivalently written as:
o(t)y=cy (t—T). (25)

Contrasting (25) with (1), it becomes clear that the parame-
ters inside the Edie model are also linearly identifiable, as:

Peaic ()" ® = qEaie (1), (26)

where Pggi. (t) and gggie (t) can be generated from Pc gy (¢)
and gc gy (t) by replacing Aoy (¢) and v, (¢) in (13)-(20) with
y (t) and w (), respectively.

It should be noted that a class of car-following mod-
els, whose parameters are linearly identifiable, can be ana-
lyzed under the following algebraic framework. Noteworthy
examples include the optimal velocity with relative velocity
model [13], Newell model [14], adaptive time-gap model [16],
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spring-mass-damper model [21], to name a few. However, it is
recommended to first check if the generated vectors ® contain
practically an equal number of elements inside to evaluate dif-
ferent car-following models fairly. This requirement eliminates
the situation that one (more complicated) model is favored not
because of its capability to reflect the traffic flow’s authentic
dynamics, but due to the adaptability brought from the extra
parameters.

IV. LEAST-SQUARES PROBLEM, RESIDUAL
ERROR, AND ERROR INDEX

Once a car-following model has been reformulated such that
the parameters are expressed in a linearly identifiable form
like (12), we can then construct a least-squares (L.S) problem
to solve it analytically. The residual error of the LS problem
serves as the basis for deriving the system error index, which
is the uniform metric to evaluate and compare different car-
following models.

A. Least-Squares Problem Formulation

In what follows, we unify the linearly identified forms (12),
(22), and (26) as:

PO ©=q(, (27)

where P (t) and ® are two column vectors, and ¢ (f) is a
scalar.

To solve the underdetermined Eq. (27), we can formulate
an LS problem, as:

®* =argminJ (0, 1), (28)
[C]
where
4 2
CR) :/ (PT (r)@—q(r)) d. (29)
0
Defining
t
Mp, = / P (2)q (r)dr, (30)
0
t
Myp = Mp, =/ q(z) PT (1)dr, 31)
0
t
Mpp = / P () P' (r)dr, (32)
0
and
t
M= [(a a1z, 33)
we can express (29) as:
J(©,1) = Myg — Myp® — @' Mp, + 0" Mpp®
T
= (9 — (Mpp)™! MPq) Mpp
X (@) — (Mpp)™! MPq)
+Mgq = Mgp (Mpp)™' Mpy. (34)

Therefore, the optimal solution to minimize (29) can be
analytically calculated as:

0" = (Mpp)~' Mp,, (35)

with Mpp in (36), as shown at the bottom of the next page,
and

Mpy =/0 P(7)g(r)dr

t t
- [/ P (r)q(r)dr,/ 2 ()q (D)dr, ...
0 0

t T
/0 Pn (1) q (r)df}

Specifically for the models (1), (2), and (3), we have er =
[—bx, —T, —Trz, c,—cT, cTrz, —ch](see (12)). Therefore,
with ©*, we can finally obtain —b, = 0* (1), -1, = O* (2),
and ¢ = ©®* (4). Note that the estimated parameter set @*
in (35) is derived from algebraic manipulations performed
on the model equation itself. In contrast to the Luenberger
observer [44] or Kalman Filter [45], algebraic parameter iden-
tification does not rely on the Lyapunov stability theory [46].
As a result, there does not exist an asymptotical convergence
phase for identification. Instead, ®* can be directly determined
when the matrix Mpp in (35) becomes invertible [47]. In other
words, we can obtain the estimated parameter vector ©*
in (35) if and only if the matrix M pp is non-singular and well-
conditioned. However, the matrix Mpp is singular at t = 0,
as all its elements are zero at that moment. Therefore, imme-
diately after + = 0, the identification results will demonstrate
strong oscillations. However, as M p p is positive semi-definite,
we can reasonably conjecture that its numerical conditioning
can substantially improve as time goes by. Once the minimum
absolute eigenvalue of Mpp becomes far away from zero,
®* can be obtained. The required period for Mpp becoming
non-singular is hard to estimate, as it can be influenced by var-
ious factors, such as the excitation level of the system inputs,
system sampling rate, and signal-to-noise ratio (SNR) [48].

Remark 3: If the matrix Mpp in (35) remains singular
during a long period, we will not be able to accurately estimate
®*. Based on (13)-(19), we can straightforwardly identify two
trivial cases yielding consistently singular Mpp for the CHM
model: i). vy (t) = 0, and ii). Av, (t) = 0. The first case
implies that the ego-car stands still, which is irrelevant in
reality. The second case suggests the relative speed between
the ego-car and the leading car always remains zero, e.g., both
cars run at an identical speed, which implies no interaction
between the ego-car and its predecessor. It is recommended to
check if the recorded data would yield a singular Mpp during
a long period before applying the proposed algebraic method.

The sentinel parameter b, introduced in Section III serves
as an indicator to inform when we can assume that the rest of
the identified parameters are close enough to their true values.
If the estimated sentinel parameter by remains close to its
true value b, = 1, we shall conjecture that T, = —O* (2) and
¢ = ©* (4) are also accurately estimated [41].

Mathematically speaking, we output —®* (2) and O* (4)
as the estimated reaction time and sensitivity gain when the
following criteria are satisfied:

7 (be) /2 ()

l;x - 1’ 5 Aerr-

(37

E AVHI"
(38)
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Residual error

J(& +6)=27(6
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Parameter error index.

6 +56 Estimated parameter

Fig. 3.

In (38), E(Bx> _ ( I b (r)dr) / Tow, With Ty as
the sliding window length, is the moving-averaged identified

N N . AN\ 2
sentinel parameter by. o (bx) = \/E (b)%) —E (bx) is the
standard deviation of l;x, and ‘a (l;x) / E (13x)

parameter’s fluctuation metric. Finally, Ayy and A, are
thresholds. The first requirement in (38) indicates that the esti-
mated sentinel parameter by has entered into its steady state.
The second requirement guarantees the estimation accuracy
of I;x. Selecting the thresholds Ay, and A, is a trade-off
between estimation precision and speed. Smaller thresholds
could yield more accurate estimation, but at the cost of a
longer estimation period, and vice versa [48]. In Section V,
we fixed Ayyr = le — 5, and A,y = le — 2.

is the sentinel

B. Residual Error and Error Indices
Substituting ®* in (35) back to (34), we obtain:

J (%, 1) = Mgq — Myp (Mpp)~' Mpy. (39)

We term (39) hereafter as the residual error. As illustrated
below, the residual error serves as a basis for deriving the
parameter error index (PEI) and the system error index (SEI).

The theoretical estimation error of a parameter ¢/ in ©*
cannot be directly measured, because the true parameter value
is unknown. Instead, the parameter error index (PEI) provides
an indirect assessment of the estimation error. The idea of PEI
is exhibited in Fig. 3.

PEI of a specific parameter is defined as [49]:

00; = max 66}, (40)
such that
(O +007,1) =2 (Myg = Myp (Mpp) ™ Mpy) . (41)

Alternatively speaking, PEI is the maximum variation of
(91.*, such that the residual error J (®*,¢) is doubled. Note that
in (41), the term ®*+00;" is expressed in shorthand and should
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be understood as the sum ofT two vectors, where the second
vector is [0, ... 60F, ... 0]

Substituting (34) and (35) into (41), we can simplify (41)
as:

5(9;(TMPP5(9;‘< = qu — qu (Mpp)_l Mpq. 42)

The optimization problem (40) under the constraint (42)
can be analytically solved with a Lagrange multiplier, and the
solution, termed as PEI of the estimated parameter (9?, is:

00; = \/(qu — Myp (Mpp)~! MPq)/(MjDP)’ 43)

where M }', p is the ith diagonal element of the matrix Mpp.

If 66; is large, which implies that the estimated 6 can
vary significantly without influencing the residual error (39)
too much (less than doubled), then we shall suspect the
estimated 0. Because any estimation between 6 and 0+ 60;
would practically yield similar residual errors in this case.
Instead, if 06; is small, which means that the residual error (39)
is quite sensitive to the change of 6, then we could reasonably
deduce that 6 is estimated with more accuracy. Remember
that PEI is not the real estimation error. On the contrary,
it can reflect the minimum expected orders of magnitude of
the estimation error [50]. For instance, if d0; of the estimated
parameter 0} is much larger than 60, of the estimated parame-
ter 9;, then we may conclude with confidence that 9; is more
accurately estimated than ;. Indeed, if d0; is only slightly
larger than 065, then no conclusion with respect to the relative
accuracy of the estimated parameters ¢ and 05 can be drawn.

In addition to the PEI, which reflects the estimation accuracy
of a specific parameter, the residual error in (39) can also indi-
cate the structural correctness, and therefore, the performance
of a car-following model in fitting the measurement data. Note
that the residual error is attributable to two parts: model inac-
curacy and measurement noises. As mentioned in Section III
(see Eq. (10)), iterated integrations serve as low-pass filters
to wipe out high-frequency measurement noises. Therefore,
the residual error is principally contributed by the model
inaccuracy.

The algebraic estimation provides a static and exact for-
mulation of the model parameters via algebraic manipula-
tions performed on the model equation [47]. Therefore, if a
car-following model can sufficiently reflect a driver’s actual
maneuver, the filtered measurement data would accurately fit
the linearly identifiable form in (27). In this case, the estimated
parameter set ®* in (35) shall be very close to the true
parameters of this model, and the residual error in (39) would

Mpp

/t P (7) pT (r)drt
0
Jo p1 (@) p1 (2)dr
Jo p2 () p1 (2)dx

Jo pn (2) p1 (v)dz

Jo p1 (@) p2 (v)d

Jo p1(¥) pu (t)d7

, (36)

f()t pn () pn (T)dT
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be close to zero. However, a car-following model is only an
approximation of the complicated human behavior in reality.
Assuming the modeling error is condensed as an additional
term ¢’ (1), we can modify (27) as P (1)T ® = g (t) + ¢’ (1).
With ¢’ (r), Eq. (35) still yields the best-fitted estimated
parameters, in the sense of the least squares. However, this
estimation will diverge from the true value, which then sub-
stantially augments the residual error (39) as a consequence.
The system error index (SEI) is defined as [49], [51]:

My, — M,p (Mpp)~' M
SEI (l)\/ qq qP( PP) Pq
Mgyq

J(O,)|g=0*
= (2 Dle=0" 10 1] (44
V7@, )lgm <M G

In (44), the optimal residual error J (@, 1)|g_e+ in (39)
is generated by substituting the best-fitted parameters (35)
into the cost function (29). Meanwhile, My, = J (O, t)‘®=0
corresponds to the cost function (29) as well, but with all
the parameters assigned as zero. If (44) is close to zero,
we can infer that the model is quite accurate. Instead, if (44) is
close to one, which means the residual error has a magnitude
comparable to My,, then we can conjecture the model itself
is pretty inaccurate.

V. ANALYSIS WITH SYNTHETIC SIMULATION DATA

This section utilizes synthetic simulation data to illustrate
the effectiveness of the parameter error index and the system
error index. Synthetic data is used because it is the only way
to know the estimated parameters’ true values [24].

Real measurements of a preceding car, i.e., its longitudinal
speed and position, were directly injected into a car-following
model of the ego-car (following car), and the simulated states
from the ego-car model, i.e., 0, and X, were named as the
synthetic data. The initial conditions of the ego-car model
were set equal to the actual measurements, as 0, (0) =
vy (0), X (0) = x (0). In the following analysis, three pairs of
leader/follower were randomly selected from the reconstructed
NGSIM dataset [52], which corresponds to a 15-minute video
record (4:00 PM - 4:15 PM) on the I-80 highway near San
Francesco. Note that the raw NGSIM dataset contains various
errors, such as sudden stop of a vehicle, discontinuity in tra-
jectories, and unrealistically frequent rear-end collisions [37].
Those errors have been cleaned up in the reconstructed dataset.
The reconstructed NGSIM datasets in [52] only cover the
highway driving scenario. Urban driving data processing and
analysis will be reserved for future studies.

To acquire trajectory information, e.g., position and speed,
of each vehicle from the original NGSIM video, the authors
in [52] conducted the following procedures: Firstly, they
manually re-extracted vehicle trajectories from the video. This
step is crucial as video processing software cannot adequately
handle the projection errors, shadows, and occlusions. During
this process, a Gaussian kernel filter was employed to smooth
the position data of each vehicle. Then, the corresponding
velocity profile was derived by differentiating the smoothed
position data. A median filter was applied to yield the final
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TABLE I

PARAMETER ESTIMATION RESULTS OF THE CHM MODEL

Estimated True value Absolute Parameter

value Error Error Index
-T -0.941 -0.900 0.041 4.926¢-5
c 0.706 0.700 0.006 6.317¢-6

velocity profile to mitigate sporadic positioning measurement
errors. Similar speed smoothing approaches can also be found
in [53].

We first show the synthetic data of the CHM model (1)
in Fig. 4.

In Fig. 4, the blue and grey solid lines correspond to the
recorded longitudinal velocity and position of the leading car
and the following car (ego-car), respectively. The black dashed
lines show the synthetic data of the ego-car.

Using the real data of the leading car and the synthetic data
of the ego-car, we draw the estimated minus sentinel parameter
—b, of the CHM model in the top subplot of Fig. 5. Besides,
the bottom-left subplot shows the discrepancy between —b,
and its truth value —1. The bottom-right subplot demonstrates
the fluctuation metric of —I;x. (See Eq. (38)).

In the beginning, because of the singularity of the matrix
Mpp in (35), —13x demonstrates a strong oscillation. As the
numerical conditioning of Mpp gradually improved, —b,
veered towards and remained close to its true value as —5x —
—1. At around t ~ 9.51s, the criteria in (38) become valid,
and we output 7, = —©*(2) and é = O* (4). — T, and ¢
from the CHM model are depicted in Fig. 6.

Similar to —by, 7, and ¢ gradually, but not asymptotically,
converged towards their true values. At ¢ & 9.51s, the para-
meter estimation results and the parameter error indices (43)
are compiled in Table I.

Therefore, both the reaction delay and the sensitivity gain
of the CHM model are correctly estimated. Moreover, the
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TABLE 11
PARAMETER ESTIMATION RESULTS OF THE GHR MODEL

Estimated True value Absolute Parameter

value Error Error Index
-T -0.815 -0.800 0.015 4.336e-6
c 10.061 10.000 0.061 1.339¢-5
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Fig. 10. Synthetic data from the Edie model.

parameter error indices reflect the fact that ¢ is estimated
with relatively higher accuracy than —7;., as reflected in their
absolute estimation errors.

Similar to the CHM model, the synthetic data, sentinel para-
meter, and parameter identification results of the GHR model
are demonstrated in Fig. 7, Fig. 8, and Fig. 9, respectively.

The final estimation results are summarized in Table II.

Similar to Table I, the reaction delay and the sensitivity gain
of the GHR model are correctly estimated as well. Moreover,
the magnitudes of PEI also reflect the relative estimation
accuracy of —1T, and &.

Finally, the synthetic data, sentinel parameter, and identified
parameters of the Edie model are demonstrated in Fig. 10,
Fig. 11, and Fig. 12, respectively.

The estimation results are summarized in Table III.

Hence, parameters of the Edie model are correctly estimated
as well, and the PEI values of —f} and ¢ are compatible with
their absolute estimation errors.
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TABLE III
PARAMETER ESTIMATION RESULTS OF THE EDIE MODEL

Estimated True value Absolute Parameter
value Error Error Index
-T -0.597 -0.600 0.003 2.046¢-5
c 27.925 28.000 0.075 3.599¢-4
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Fig. 13. System error indices comparison based on synthetic data.

The last plot based on the synthetic data is to show the
effectiveness of the system error index (44). From (12),
(22), (26), and (44), we can formulate three SElIs,
as SElcuym (t),SEIgHR (t), and SEIEg;. (t). Synthetic data
from the CHM model, the GHR model, and the Edie model
in Fig. 4, Fig. 7, and Fig. 10 are individually injected into
the three SEI generators, one by one. Fig. 13 depicts the SEI
comparison results.

We can witness that one specific SEI generator will yield
the lowest value if it receives the synthetic data from the cor-
responding car-following model. For instance, when the syn-
thetic data from the CHM model is utilized, it is SEIc gy (¢),
which is constructed according to (1), that yields the globally
lowest SEI value. Note that at the beginning of the simulation,
all the three SEI values are pretty high because of the singular
matrix Mpp. Therefore, it is recommended to bypass the
initial fluctuation phase when SEI is utilized to evaluate and
compare different car-following models with real measurement
data.

VI. MODEL EVALUATION WITH SYSTEM ERROR INDEX

In contrast to Section V where synthetic data were applied,
we utilize the reconstructed NGSIM datasets [52] in this
section for evaluating and comparing the three car-following
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RMS of system error indices of the three car-following models.

models (1), (2), and (3). Candidate leader-follower pairs were
selected according to the following four criteria [26], [54]:

a) Neither the leader nor the follower changed its lane.

b) The maximum inter-vehicle gap was less than 70 meters.

¢) The time headway of the follower (ego-car) to the prece-
dent car was less than 2.5s.

d) The overall recorded period was at least 15s.

Requirement a) falls to the basic definition of car-following.
Requirements b) and c) guarantee the interaction between the
two cars such that the ego-car itself was not in a free-driving
status. Requirement d) eliminates short-term, occasionally
formed leader-follower pairs. Finally, 772 leader-follower pairs
were identified. None of them yields v, (f) =0 or v, (f) =0
during a long period. The maximum average speed of the
follower reached 24m/s, while its minimum average speed was
less than 4m/s. The cumulative percentage of the ego-car’s
average speed is depicted in Fig. 14.

Based on Fig. 14, we roughly divide the 772 leader-follower
pairs into two categories. The high-speed group contains all
the trajectories with the follower’s average speed larger than
10m/s, and the rest is classified as the low-speed group. There
are in total 529 and 243 low-speed and high-speed pairs,
respectively.

The root mean squares of the three SEIs for each trajectory:
RMS (SEI;Z (1]t > t*)) .j € (CHM,GHR, Edie},i €
{1,2...,722}, are calculated. In Fig. 15, we separate the
results of the low-speed cases from the high-speed cases. Note
that we removed the initial fluctuation phases of the three SEIs
(see Fig. 13) by calculating the RMS after r > t*, where t*
is the moment after which the three SEIs do not demonstrate
drastic variations. To determine 7*, we exploit (38) again, as:

(\a (SEI; (1)) /E (SEIL; ()| < Asm,) ‘

t* = argmax { ', )
je€{CHM,GHR, Edie}

t

(45)

In other words, after ¢*, the fluctuation metrics of the
three SEIs are all below the threshold Agg;. We fixed Asg;
as le-3.

As indicated in the box plots in Fig. 15, the three car-
following models yield quite similar distributions of the root
mean squares of the system error indices. To statistically

TABLE IV
Low-SPEED CASE ANOVA TEST TABLE
Source SS df MS F Prob>F
Between 0.00001 2 5.68¢-6 0.7 0.494
Within 0.01277 1584 8.06e-6
Total 0.01278 1586
TABLE V
HI1GH-SPEED CASE ANOVA TEST TABLE
Source SS df MS F Prob>F
Between 0.00001 2 3.34¢-6 0.45 0.639
Within 0.00541 726 7.45¢-6
Total 0.00542 728 7.45¢-6
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Fig. 16. Times regarded as the best model.

compare the means of RMS (SEI (t|t > t*)) of the three
models and determine whether any one of those means is
statistically significantly different from the others, we execute
the one-way analysis of variance (ANOVA). The one-way
ANOVA tests the null hypothesis:

Ho' o (RMS (SEL (115 2 1))
= 1t (RMS (SEI g (111 = 1))
=pu (RMS (SElédie (1= t*))> ’

by comparing the variation of RM S (SEI (t|t > t*)) between
groups to the variation within groups. If the ratio of
between-group variation to within-group variation is signif-
icantly high, then we can conclude that the group means
are significantly different from each other. The test results
of both the low-speed (i =1,...,529) and the high-speed
(i=1,...,243) trajectories are summarized in Table IV and
Table V, respectively.

Table 1V yields F (2,1584) = 0.7, p = 0.494 > 0.05 and
Table V produces F (2,726) = 0.45,p = 0.639 > 0.05.
As the p-values of both tables are larger than the significant
level of 0.05, we cannot reject the null hypothesis (46). In other
words, there does not exist a statistically significant difference
among the three models. This finding echoes well with the
conclusion in [26] that the three car-following models (1), (2),
(3) have practically the same performance, and no one can be
regarded better than the others.

In addition, we show the counts of each car-following model
evaluated as the best model. The best model corresponds to the
one producing the lowest RM S (SEI (t|t > t*)). The results
are shown in Fig. 16.

Therefore, the CHM model is recognized as the best model
with the most counts, followed by the Edie model and finally,
the GHR model. However, this result should not be interpreted
as the GHR model is the worst among the three, because the
performance of a model is reflected in both the counts that
it is considered the best and also the counts that it is not

(46)
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considered the best. Interestingly, the relative percentage that
the Edie model was evaluated as the best one augmented as
the ego-car’s average speed increased. This result is expected
because the Edie model was particularly designed for describ-
ing relatively high-speed, non-congested traffic flows [9].

VII. CONCLUSION

This paper proposes an algebraic framework for evaluat-
ing and comparing a class of car-following models whose
parameters are linearly identifiable. In opposite to the model
evaluation strategies based on numerical optimization, no cost
function needs to be designed a priori. Moreover, no numeri-
cal solver is involved. These two beneficial features guarantee
that the evaluation result is robust to local optimality and inde-
pendent of the formulation of the goodness of fit. The key idea
of the proposed strategy is to carry algebraic manipulations on
the car-following model and derive the so-called system error
index (SEI), which serves as a uniform metric for evaluating
and comparing different car-following models. This method
sheds some light on quickly prescreening a newly proposed
car-following model and investigating potential modeling
performance enhancement via model structure modification.
A performant car-following model facilitates assessing the
impact of emerging technologies, e.g., V2V communication,
on transportation systems. Applying the proposed algebraic
evaluation framework on the CHM model, the GHR model,
and the Edie model reveals that none of them is statistically
significantly better than the other two models in terms of the
averaged RMS of the SEIs. Because of the nonlinear rela-
tionships among parameters, behavioral car-following models,
e.g., IDM model or Gipps’ model, cellular automation based
model, and psychophysical model, cannot be analyzed under
the proposed algebraic framework. Instead, authors in [55]
recently proposed another uniform framework based on the
Pareto-efficiency to evaluate linear/linearizable and nonlinear
car-following models. Evaluating the models (1), (2), (3) with
the methods in [55] will be studied in the next step.
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