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Vehicle-to-Vehicle communication can cogently improve traffic safety because it grants drivers better situational
awareness and strengthens inter-cooperation among them. However, the current policy obliges the safety-critical
messages, i.e., Basic Safety Messages (BSMs) and Event Safety Messages (ESMs), to be transmitted exclusively in
one single channel over the Dedicated Short-Range Communication (DSRC) spectrum, which may incur severe
channel congestions, intolerable communication delays, and higher accident probabilities. To alleviate the
channel congestion, popular measures focus on adaptively adjusting the transmission parameters, e.g., packet
generating rate. However, due to the narrow bandwidth of a single channel, these methods can hardly ensure
timely delivery of critical safety-related messages when the density of DSRC-enabled vehicles becomes high.
Instead of sticking to only one single channel, this paper applies a dynamic channel selection algorithm to
thoroughly exploit the entire DSRC band resource and reduce the transmission delay. To demonstrate the
effectiveness of the utilized algorithm, we conduct experiments under two representative scenarios, i.e., a
cooperative adaptive cruise control scenario and a run-the-red-light scenario at an intersection. Experimental
results show that the transmission delays of both the BSMs and the ESMs could be effectively reduced, yielding an

improved vehicle platoon control accuracy, string stability, and collision avoidance performance.

1. Introduction

Vehicle-to-vehicle (V2V) communication recently attracts attention
from both academia and industry as it has the potential to substantially
reduce traffic-related casualties and improve commuting efficiencies.
Typical applications of V2V communication include city intersection
management [1, 2], vehicle lane-change and collision warnings [3, 4],
and cooperative traffic congestion detection [5]. Particularly, inte-
grating V2V communication into the Adaptive Cruise Control (ACC)
system [6] leads to the Cooperative Adaptive Cruise Control (CACC)
system [7], which can attenuate speed fluctuations along a vehicle
platoon [8] and further reduce collision hazards. Moreover, V2V-based
platoon emergency braking can be found in [9].

To increase the benefits of vehicular communications, the V2V net-
works need to be deployed on a large scale [10]. Nonetheless, as the
penetration rate of the connected vehicles soars, the intrinsic vulnera-
bilities of vehicular networks [11], e.g., fragile fading channels,
hidden-terminal issue, and drastic channel interferences will become
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more pronounced. In parallel, the Federal Communication Commission
(FCC) in the United States obliges that only one unique channel—-
principally the Common Control Channel (CCH)—among the seven in
total available channels within the Dedicated Short-Range Communi-
cation (DSRC) spectrum is allowed for transmitting both the Basic Safety
Messages (BSMs), e.g., vehicle dynamic states, and the Event Safety
Messages (ESMs), e.g., warning flags [12]. The other six channels are
reserved mainly for non-safety-related applications, such as advertise-
ments or infotainments [13]. As revealed in [14], this restriction on
channel utilization can entail severe congestion in the CCH, resulting in
a huge transmission delay. Standard methods to mitigate channel
congestion concentrate on adaptively adjusting transmission parameters
[15], e.g., packet generating rate, transmission power, and carrier sense
threshold. Even though these countermeasures can mitigate packet
collision, the safety-related messages are howbeit constrained in a single
channel whose network capacity will appear deficient if a considerable
amount of messages need to be simultaneously exchanged.

To tackle this issue, multichannel operations [16] for disseminating
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the BSMs and the ESMs have also been proposed [17, 18]. However,
these approaches typically used one or two pre-selected channels for
safety message spreading. Besides, they did not consider the real-time
communication requirements of the served V2V use case. In stark
contrast, this paper employs a dynamic channel selection algorithm. A
group of involved vehicles of a V2V application locally estimates the
transmission delays and Packet Reception Rates (PRRs) of all the seven
channels in the DSRC spectrum and then collaboratively decides the
most appropriate channel for data transmission. The ultimately selected
channel will try to satisfy both the delay and PRR requirements of the
specific V2V application. To verify the algorithm, experiments under
two representative scenarios were conducted with three scaled cars.
Firstly, the capability of the algorithm in reducing the transmission
delay of BSMs was verified in a CACC scenario, where the three scaled
cars formed a platoon. It was demonstrated that both the inter-vehicle
distance tracking performance and the string stability could be
improved with the channel selection algorithm. Secondly, a
run-the-red-light scenario at an intersection was designed to exhibit that
the transmission delay of ESMs could also be effectively reduced with
the help of the channel selection algorithm, which facilitated collision
avoidance.

The rest of the paper is organized as follows. Section 2 explains the
dynamic channel selection algorithm. Section 3 describes the experi-
mental setup. Section 4 introduces the algebraic differentiation tech-
nique [19], which was used for deriving the longitudinal speed of each
scaled car from the noisy longitudinal position data. Section 5 exhibits
the experiment results of both the CACC scenario and the
run-the-red-light scenario. Finally, Section 6 concludes this paper.

2. Dynamic communication channel selection

Embedded in each vehicle involved in a specific V2V application, e.
g., collision avoidance or CACC, the dynamic channel selection algo-
rithm makes all the participants jointly determine the most appropriate
channel for timely dissemination of the safety-critical messages.

2.1. Overall framework

Each vehicle periodically estimates the communication delays and
the packet reception rates (PRRs) of all the seven channels in the DSRC
spectrum. Based on the estimation results, each car individually clas-
sifies the seven channels into three classes and constructs a continuously
updated local Channel Preference List (CPL). Once being triggered by an
event flag, these vehicles form a communication group, and the vehicle
with the smallest media access control (MAC) address would serve as the
coordinator and collect all the CPLs from other vehicles in the same
group. According to the received CPLs, the coordinator determines the
optimal channel and sends back this decision in an ACK frame to all the
other group members. Once the other vehicles receive this ACK frame,
they also change the channel to the optimal one and start to send/
receive packets. The scheme of the channel selection algorithm can be
found in [14]. There are two major components in this channel selection
algorithm: 1) Periodical estimation of transmission delays and PRRs,
and 2) Channel selection (upon an event flag).

2.2. Estimation of transmission delay and prr

The channel employed to relay either the BSMs or the ESMs should
satisfy two constraints specified by the V2V application [20]: 1) a packet
transmitted on this channel cannot experience a delay beyond the
Maximal Allowable Delay (MAD); and 2) the probability of successfully
transmitting a single packet within the Maximal Allowable Transfer
Interval (MATI) must reach a minimum threshold. The mathematical
expression of these two constraints can be summarized as:
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where d is the actual communication delay, A represents the maximal
allowable delay threshold, p is the packet error rate, L, exhibits the
utmost retransmission times allowed within the MATI, and § is the
minimum requirement on the overall packet reception rate within
MATL In (1), A,L,, and § are all determined by the specific V2V appli-
cation. In contrast, the communication delay d and the packet error rate
p must be estimated in real-time. According to the packet collision model
in [21], packet collision will not occur if 1) there is no interfering node
sending packet at the same time slot, and 2) there is no hidden terminal
transmitting messages during the vulnerable period on the same chan-
nel. Therefore, the packet error rate p can be calculated as:

p= 1— e—N(re—Nher/a7 (2)

where N, represents the number of interfering nodes in the considered
channel, N implies the number of hidden terminals, T, 7, and ¢ express
individually the hidden terminal’s vulnerability period, the total trans-
mission probability of one node in a single time slot, and the duration of
atime slot. In (2), T,,7, and o can be calculated by following the standard
procedures. Moreover, N, and N, can be inferred from the beacon
messages in the considered channel.

Subsequently, the actual transmission delay d in (1) can be decom-
posed into two parts, ie., the queuing delay d; and the service
delayd;.The queuing delay d, can be directly deduced from the M/G/1
queue model in [21] and the service delay ds;can be approximated as the
mathematical expectation of the overall retransmission delay. By
modeling the back-off procedure of the current DSRC protocol (IEEE
802.11p) as a Markov process and applying the standard binary expo-
nential back-off algorithm, d;is evaluated as:

L, .min (2 CWy, CWia ) E[X]

d,=> (1-p)p 5 : 3
i=0

In (3), L, represents the default threshold on the maximal retransmission
count in the IEEE 802.11p protocol, p indicates the packet error rate
calculated in (2), CWy and CW,,,, demonstrate respectively the initial
and the upper-bounded contention window size, and E[X] exhibits the
mathematical expectation of the time elapse until the back-off counter’s
first decrement occurs. E[X]| can be deduced according to the Markov
model of the back-off mechanism.

According to (2), (3), together with the M/G/1 queue model, each
vehicle can locally estimate both the transmission delay d, and the global
packet reception rate within the MATI 1 — p', of all the seven channels
in the DSRC spectrum. From the estimation results, each car can indi-
vidually categorize the seven channels in the DSRC band into three
classes by verifying the transmission constraints in (1):

Class 1: the channel naturally satisfies both the transmission delay
and the PRR constraints.

Class 2: the channel cannot simultaneously satisfy both the trans-
mission delay and the PRR constraints until the non-safety-related
messages from the interfering vehicles within the one-hop distance are
temporarily suspended.

Class 3: the channel can only simultaneously satisfy both the trans-
mission delay and the PRR constraints until the non-safety-related
messages transmitted by 1) the interfering nodes within the one-hop
distance and 2) the hidden terminals within the two-hop distance are
temporarily suspended.

After the channel categorization, each car constructs its local
Channel Preference List (CPL) by accrediting the highest preference to
the channels within the Class 1 and the lowest preference to the channels
within the Class 3. As the estimations are effectuated periodically, each
vehicle maintains the most freshly updated local CPL.
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2.3. Channel selection

Once triggered by an event flag, the vehicle with the smallest MAC
address is selected as the coordinator and the other vehicles dispatch
their CPLs to the coordinator through the CCH. To reduce the additional
delay caused by the channel selection procedure, the CPL is assigned
with the highest priority by placing it at the head of the MAC queue.
Once the coordinator receives all the CPLs, it will then compare the
received CPLs with its own CPL and determine the target channel for
safety-related messages dissemination via the following guidelines:

a If there exist at least one common Class 1 channels in all the CPLs, the
Class 1 channel in the coordinator’s CPL enduring the least inter-
fering nodes (with the smallest N.) will be selected;

b Or, if there merely exist shared Class 2 channels in the coordinator’s
CPL and the received CPLs, the suboptimal Class 2 channel in the
coordinator’s CPL that requires the least effort to temporarily sus-
pend the non-safety-related messages from the interfering vehicles
within the one-hop distance will be used;

¢ Very rarely, there does not exist either a common Class 1 or a com-
mon Class 2 channel in the coordinator’s CPL and the received CPLs.
Under this circumstance, the suboptimal Class 3 channel in the co-
ordinator’s CPL that requires the least effort to momentarily suppress
the non-safety-related messages from 1) the interfering nodes within
the one-hop distance and 2) the hidden terminals within the two-hop
distance will be finally chosen.

The decision of the coordinator would be sent back to other group
members in an ACK frame, and others veer to this selected channel.

Note that this finally selected channel may not always be a Class 1
channel for a specific vehicle in the group. If the selected channel is in
Class 2 with respect to a certain vehicle, the vehicle would then broad-
cast the transmission probability packets to all the interfering nodes
within its one-hop distance. These transmission probability packets
trigger the P-persistence mechanism of the interfering nodes: when a non-
safety-related packet is going to be sent by one interfering node through
the MAC layer, it only has a probability of P to be delivered to the PHY
layer. Otherwise, such a non-safety-related packet will go through
another round of back-off delay. In this way, the interference of this
Class 2 channel can be reduced to enforce the MATI/MAD requirements.
Likewise, if the selected channel is in Class 3 with respect to a certain
group member, the non-safety-related messages from hidden terminals
within its two-hop distance need to be temporarily suspended, as well.

2.4. Discussion

The dynamic channel selection algorithm is event-triggered and the
activating condition is specified by the served V2V application. For a
CACC use case, the algorithm is activated when the vehicle platoon is
formed. For a V2V based collision-avoidance system, the algorithm will
be triggered when the inter-vehicle distance goes below a predefined
threshold.

The extra time-lag owing to the dynamic channel selection algorithm
itself consists of four parts: the time for collecting CPLs, the generation
overhead and the transmission delay of the coordinator’s ACK, plus the
channel switching overhead. Interfering severity plays a major role in
the transmission delay [14] and the calculation overhead is
hardware-related. The extra time lag of the dynamic channel selection
algorithm was less than 0.02 s during our experiments.

3. Experiment hardware setup

To verify the effectiveness of the dynamic channel selection algo-
rithm, experiments were conducted with three scaled cars, numbered as
carl, car2, and car3. Please note that due to the space constraint of the
test field, involving more scaled cars in the experiments would be
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difficult. Simulation results of the dynamic channel selection algorithm
in large-scale traffic scenarios can be found in [22].

The 1:18 scaled car was front-steered and four-wheel-drive (4WD)
via respectively a DC-servo and a brushed DC-motor. A Raspberry Pi
(RPi) control board in the middle of the chassis served as the electronic
control unit. The control board sent the throttle and the steering com-
mands, in the form of Pulse Width Modulation (PWM) signals, to the
motor and the servo. Moreover, the wireless chip of RPi acted as a virtual
comprehensive sensor: to be cost-efficient, no expensive sensor, e.g.,
high-precision Inertial Measurement Unit (IMU) or laser scanner was
mounted on the scaled cars. Instead, all the raw kinematics data, i.e.,
longitudinal position X;(t), lateral position Y;(t), and yaw angle
y;(t),i =1,2,3, collected by the OptiTrack camera-based indoor GPS,
were wirelessly fed back to each corresponding scaled car. Finally, the
crucial V2V functionality was implemented via TMOTE modules.
TMOTE is a wireless sensor module commonly used for reliable and fast
data dissemination in developing Wireless Sensor Networks (WSN) [23].
Onboard each scaled car, a TMOTE module communicated with the
control board via the serial port for data exchange. Extra TMOTE
modules were placed around, acting as the interfering nodes. The overall
hardware setup is shown in Fig. 1.

The control framework of each scaled car is depicted in Fig. 2. The
indoor GPS captured and wirelessly fed back the global coordinates
X;i(t),Yi(t), w;(t) to each scaled car in real-time. Based on the lateral
coordinate Y;(t) and the yaw angle y;(t), a steering controller com-
manded the DC servo to guide the scaled car follow a referential path. At
the same time, a speed planner determined the desired forwarding ve-
locity, which was calculated based on the specific V2V application.
According to the discrepancy between the actual forwarding speed and
its desired value, a sliding-mode speed controller commanded the DC
motor to eliminate the speed tracking error. To this end, the actual

forwarding velocity X;(t) must be first estimated from the noisy longi-
tudinal position data X;(t).This task was realized via the algebraic dif-
ferentiation estimation, which will be illustrated in Section 4.

4. Algebraic differentiation estimation

Deducing the longitudinal velocity from the noisy longitudinal po-
sition data in real-time can be challenging. It is well known that directly
computing derivatives of a noisy signal is ill-posed [24]. In this paper,

the algebraic differentiation estimator was adopted to derive X;(t) in
real-time.

4.1. Algebraic differentiation approach

Rooted in the operational calculus and the differential algebra, the
Algebraic Differentiation Estimation (ADE) can explicitly express an

OptiTrack
Cameras

Interfering
nodes XLy,

TMOTE

Raspberry Pi

Fig. 1. CACC hardware setup.
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arbitrary-order derivative of a smooth signal as its weighted integral [19,
24]. To determine the v— thorder derivative, the original signal will
firstly be approximated as its truncated Taylor series with order N > v
and then be transformed into the operational domain via the Laplace
transform. Therein, the approximated signal goes through pure alge-
braic manipulations to isolate the coefficient of the v —th order term of
the truncated Taylor series. Finally, the v — th order derivative of the
primitive signal can be obtained by transforming the corresponding
coefficient of the Taylor series back into the time domain.

When N =v =1, the estimation of the first-order derivative of a
noisy signal y(t) under a sliding window framework can be expressed as
[25]:

6

50 = g1 [ (=200~ s @

with Tas the sliding window width.
Specifically for our experiments, the noisy signal y(t) represented the
longitudinal position X(t).

4.2. Implementation and representative experiment result

To implement (4), we first initiated a data buffer with m +1 zero
elements. At each sampling step k, the most recent raw data y(k) was
retrieved from the indoor GPS and inserted at the head of the data buffer
(with index 0). This action then shifted all the other raw data one-step to
the right and the stalest one at the end of the data buffer (with index m)
would be popped out. This insert-pop action created a First-In-First-Out
(FIFO) sliding queue. Assigning the sampling frequency as f;, the sliding
window width in (4) becomes T = m /f;. To reduce both the numerical
integral error and the estimation delay, a high sampling frequency is
preferred [19].

The ADE was validated through a preliminary experiment on a single
scaled car. The car was controlled to follow a curved path and its lon-
gitudinal position X(t), lateral position Y(t), and yaw angle y(t) were
collected by the indoor GPS. Sampling frequency was fixed as f; = 500Hz
and the sliding window size T was respectively tuned as 0.04 s, 0.02 s,

0.02 s for X(t),Y(t),w(t).The first-order derivative estimations Xi(t), Y(t),
and yj(t) are depicted in Fig. 3.

Therefore, the algebraically estimated derivatives (red solid lines)
fitted well with the ground truths (blue dashed lines), which were ob-
tained by directly differentiating the raw data. Since the overall control
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loop of the scaled car could not run as fast as 500 Hz, the ADE was

effectuated inside a PC, and the estimated longitudinal speed )A'(i(t) was
wirelessly sent to the scaled car’s control board.

5. Experimental verification with scaled cars

The dynamic channel selection algorithm was verified under both a
CACC scenario and a run-the-red-light-scenario. The CACC scenario was
designed to show that the transmission timeliness of BSMs as well as the
control performance and the string stability of a vehicle platoon can be
improved with the dynamic channel selection algorithm. Later, the run-
the-red-light scenario demonstrated that the ESMs can be addressed to
the target vehicle within a shorter period through the dynamically
selected channel, which can enhance the chance of collision avoidance
at an intersection.

5.1. Cooperative adaptive cruise control

5.1.1. Scenario description

In this scenario, the three-car platoon went along a straight line. The
speed planner of the leading car generated the desired speed v}, for carl
as depicted in Fig. 4 to produce a series of speed fluctuations.

In the meantime, both the middle car (car2) and the last car (car3)
adjusted their longitudinal velocities trying to maintain the referential
inter-vehicle distances. As illustrated in Fig. 1, the leading car’s BSMs
were sent to the middle car, and the middle car’s BSMs were sent to the
last car. CACC under this communication topology is commonly referred
to as ‘semi-autonomous’ ACC. In contrast to communicating with mul-
tiple cars in front, semi-autonomous ACC is easier to be implemented
[26]. Besides, the middle car and the last car also had access to the
longitudinal position and velocity of their immediate leader from
OptiTrack. They utilized this supplementary information to decide the
inter-vehicle distance as well as the velocity discrepancy in real-time.

The BSMs from carl to car2 and from car2 to car3 went through one
of the three usable channels: CH22, CH24, and CH26 inside TMOTE.
Fifteen extra TMOTE modules were unevenly distributed in the three
channels as the interfering nodes. An interfering node periodically sent
out garbage packets, which occupied one of the three available chan-
nels. The number of interferences in each channel was time-varying.

Two groups of experiments were effectuated, with either the
dynamically selected channel or the fixed CH26 (mimicking the CCH in
the DSRC spectrum) utilized for BSMs transmissions. For simplicity, the
channel selection algorithm remained active if enabled.

5.1.2. Distance tracking error dynamics

Even though three cars formed the platoon, the distance tracking
error dynamics can be sufficiently expressed with a leader-follower
system, as depicted in Fig. 5.

In Fig. 5, x; and x;_; represent individually the longitudinal positions
of the rear bumps of the follower and the leader. v; and v;_; indicate their
corresponding longitudinal velocities. Besides, L; shows the length of the
follower and D; is the actual inter-vehicle distance.

There exist various spacing policies e.g., [27, 28] to determine the

— . __ 05
o« @
> 0 ~
£ £ o
> .05 . >~ 05
- - Real value " - - Real value - - Real value i
-1 —Estimated value] Ei — Estimated value | 60 — Estimated value
0 10 20 0 10 20 0 10 20
Time (s) Time (s) Time (s)

Fig. 3. First-order derivative estimations from ADE.
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Fig. 5. Leader-follower vehicle platoon.

referential inter-vehicle distance D;. Here, the constant-time spacing
policy was adopted to fix D; as:

D:F =r+ hiV,'7 (5)
with r; as the standstill distance and h; the constant time headway.
Therefore, the distance tracking error e; can be expressed as:

e =xi1 — X — Li—ri— hvi. (6)
Then, a first-order system was utilized to approximate the longitudinal

dynamics of the follower and the leader, as:

vi = u;/ (14 1:5),
{V[—l =uiy /(1 +75). )
In (7), 7;, 7,1 are respectively the time constants of the follower and the
leader, u;,u;1 express their desired longitudinal velocities, and s is the
Laplace variable. For the three-car platoon, u; (the desired speed of the
leading car) was specified in Fig. 4 whereas uy, us were determined by a
CACC speed control law.
Based on (6) and (7) and assuming zero initial conditions, the dis-
tance tracking error dynamics can be summarized as:

€ =Xy — X — L —ri — i,
€ =Vi1—Vi— h[(ui - Vi) /Tn ®)
é=—¢é [t — (Mi Jrhi'/ii) JTi 4 (o — viey) [T+ viey [T

5.1.3. Speed control law design
According to (8), the desired longitudinal velocity of the follower u;

could be designed as:
u; + hit; = 7, ((imy —vier) / Timy +vie1 /7)) + Kiéi + Ky, ©

with Ky and K, representing the control gains. Note that u; corresponds
exactly to the output of the speed planner in Fig. 2. Substituting (9) into
(8), we can cast the tracking error dynamics into a matrix form as:

€;
él ’

Hence, by selecting the control gains as:

. 0 1
€;
Ei :| = Kp _1 + Kd (10)

T Ti

Kp = ﬂzfn

{Kd:2m,71, (11)
with Vi > 0, the repeated eigenvalues of (10) become:

A :}.2:711<0, (12)

which indicates that the distance tracking error e; will ultimately
converge into zero. There exist various robust and highly efficient con-
trol algorithms in the literature to regulate vehicle platoon [29, 30, 31,
32, 33]. However, it should be noted that controller design is not the
focus of this paper. Instead, we demonstrate the relative control per-
formance enhancement brought from the channel selection algorithm.

As implied in (9), the proposed speed planner can readily handle a
heterogeneous vehicle platoon since the time constant of the follower
can be different from the one of the leader. This preferred characteristic
was realized by sending the leader’s time constant 7;_; and desired speed
u;_1, as the safety-related BSMs, to the follower.

Similar to the approach in [34], the time constants of the three scaled
cars were determined offline via the MATLAB System Identification
Toolbox. As revealed in [35], rather than being permanently static, the
time constant was indeed influenced by the longitudinal velocity. For
the sake of simplicity, only the time constants for a particular acceler-
ating phase and a decelerating phase were identified. During the ac-
celeration phase, a scaled car speeded up from standstill to 0.4m /s. And
during the braking phase, a scaled car decelerated from 0.4m /s to a full
stop. Representative identification results are demonstrated in Fig. 6.

Hence, a first-order model was sufficient to approximate the actual
dynamics of a scaled car, and the identified time-constants of all the
three scaled cars are summarized in Table 1.

Please note that online time-constant identification for a linear sys-
tem, as the case in (8), is also possible [36]. However, it would further
aggravate the computational burden of the control board.

5.1.4. String stability

Aside from regulating the inter-vehicle distance tracking error, the
tracking error propagated along a vehicle platoon cannot be amplified
[37]. This requirement is commonly referred to as ‘string stability’. As
indicated in [38], there exist various definitions of ‘string stability’ and
the most popular definition is:

Acceleration phase Braking phase

T
04 oy Tt = aa 04f
> -

Y .
203 =03l
e E
ESN ¥ z it — .
'3 02 f =-=-Real longitudinal velocity 02} --=-Real longitudinal velocity
% ".,' =-=-Velocity reference % 1 |===-Velocity reference
> 0l :l - = Identified model = ol “ - = Identified model

y 4
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6 8 10 12 14 16 6 8 10 12 14
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Fig. 6. Time constant identification.
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Table 1
Time-constant Identification Results.

Accelerating phase Braking phase

Leading carl 0.50 s 0.30s
Middle-car2 0.60 s 0.35s
Last-car3 0.50 s 0.35s
Ei(jo
‘ (/) ‘gl,Vw,ViZl, (13)
E,',l (]w)

where E;(jw) represents the Laplace transform of the tracking error e; in
(8). However, as illustrated in [26], for a linear, heterogeneous vehicle
platoon with a predecessor-follower communication topology like ours,
we should indeed define the string stability condition as:

Xi(jo) |A . )
'm‘gmw) < 1,Vo,Vi > 1, 14)

where X;(jw), Xi_1 (jw) are the Laplace transforms of the vehicle positions
Xi, Xi-1-

We here explain the difference between (13) and (14). By combining
(5)-(11), the transfer function from X;_; (jw)to X;(jw) can be expressed as
a block diagram in Fig. 7, with p indicating the data transmission delay.

From Fig. 7, the left side of (14) can be calculated as:

‘ X;(jw) K, + (Ka + Djo — niw*e™ |

= . 15
Xi—l(jw)‘ ‘(1+J'hfw)(Kp+(Kd+1)ja’*7fa’2)| 4>

Instead, omitting the constant term —(L; +r;) in (8) and assuming zero
initial condition, we can express the Laplace transform of the position
tracking error e; as:

E(jo) = X;_1 (jo) — Xi(jo) — hjoX;(jo). (16)

By substituting (15) into (16), we can formulate (13) as:

’ E;(jw) _ ’ Xioi(jw) = (1 4 hjo)X(jo) |
Ei(jo) X, o(jo) — (1 + hi_jw)X;, (jo)|
_ | X (o) — (1 + hjo)y,(jw)Xii (jo) | a7
Xi2(jo) — (1 + hi1jo)y;_, (jo)Xi 2 (jo)|
_ [1 — (1 + hjo)y,(jo)lyi, (1w)|
(1= (1+hjo)y, (o)) |
Therefore, we have:
E,(]CU) _ l’li
0—0 E,-,l(ja))‘ n ]’l,',]7 (18)

where h;, h;_; are respectively the constant time headway of the follower
and the leader. In other words, if we have h; > h; 1, the criterion (13)
will never hold, no matter how advanced the V2V communication
technique is. On the contrary, based on (15), we have:

. T o Ui
S+e” —(5+T18%)— e —s5
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Xi(jo)

3 = 17

-0 X,v,l (/w)

which satisfies the string stability condition (14).
Actually, for a homogenous platoon where p; = p; 1,7 = 7i.1,h =

h;_1with the control gains fixed by (11), we have:

Ejo) | _ | Xi(jo) )
’E;,l(ja))’ = 'X;,l(ja))"vm"w > 1. (20)

In regards to our case, the desired time headways of both the middle car
and the last car were uniformly set as h; = h;_; = 0.15s. However, as
demonstrated in Table I, the vehicle string was heterogeneous due to the
different time constants. Therefore, we adopted (14) to verify the string
stability.

Eq. (14) indeed requires that the amplitude of the oscillation of the
velocity cannot be amplified upstream the vehicle platoon [26] (from
the head carl to the tail car3). From (15), the minimum time headway
hmin(p, Kp, K4, 7i) < h, which guarantees (14) can be numerically calcu-
lated. Moreover, with fixed control gains K, K4 and vehicle time con-
stant 7;, the minimum time headway h,;, can be expressed as a
univariate function of the communication delay p. For instance, the
hpin — p relationship is demonstrated in Fig. 8 with 7; = 0.5, = 2 set in
(11). Hence, with hy,;, = 0.15s, the maximally tolerable communication
delay would be around 0.04 s.

As a final point, if there is no communication delay, p in (15) be-
comes zero, and (15) can be simplified as:

’ X, (jo) _ ' 1
X1 (jo) 1+ hs

) (21)

which suggests that the string stability condition (14) is inherently
maintained for Vh; > 0.

5.1.5. Front steering control law design

Since the CACC scenario focused on the vehicle longitudinal speed
control, all three scaled cars should run along a straight lane in face of
the external disturbances. A simple proportional controller was designed
to command the front steering servo of each scaled car, as:

8(1) = 8y + Ky (Lyesin(y (1)) + K,AY (1)), (22)

with & as the neutral PWM command to zero the front steering, Ly as
the preview distance, y(t) as the yaw angle, AY(t) as the lateral offset
with respect to the reference straight line, and K, Ky being the control
gains. Preliminary experimental results validated this simple steering
control law as the lateral offsets were less than 40 mm along a 3000 mm
straight path.

5.1.6. Experiment result
In this Section, we demonstrate the CACC control performance

1; + M 1 1 . X
1+hs s(1+ 1) r
T< 1+
Li+n

Fig. 7. Transfer function diagram.
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Fig. 8. Minimum time headway with respect to the communication delay.
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TABLE 2
The number of interfering nodes in the three channels.
CH22 CH24 CH26
0-5s 2 5 8
5-8s 4 1 10
8-18s 1 5 9

enhancement brought by the channel selection algorithm.

We first show the time-varying quantities of the interfering nodes in
the three available channels in Table 2.

The channel selection result is demonstrated in Fig. 9, where the
selected channel information was derived from TMOTE. Note that due to
the relatively small number of the interfering TMOTE modules, the three
available channels were all categorized as Class 1 in Section 2. The main
difference among them laid in the number of the interfering nodes in
each channel. For the large-scale simulation results with Class 2 and
Class 3 channel selection, reader can refer to [22].

Therefore, the channel selection algorithm successfully found the
optimal channel with the least interfering nodes.

The longitudinal velocities of the three scaled cars with channel se-
lection being active are shown in Fig. 10, and the results without

channel selection (when the BSMs went through the default CH26) are
shown in Fig. 11.

Comparing Fig. 10 with Fig. 11, we can observe that if the channel
selection algorithm was enabled, the velocities of the two following cars:
car2, car3, became much smoother and they could follow the speed
trend of the leading carl with more accuracy. Moreover, the speed
fluctuations of the leading carl (blue dashed line) were attenuated by
car2 and car3. In contrast, in Fig. 11, if BSMs went through the crowded
CH26, the relatively small speed oscillation of the leading carl could
trigger a much-pronounced speed fluctuation of the middle car2. Hence,
the channel selection algorithm helped improve the string stability (14),
as well.

Another point to note is the oscillatory speeds of car2 and car3 below
0.1 m/s. As we mentioned in Section 3, the longitudinal velocities of
both car2 and car3 were controlled by a sliding mode controller, which
produced vehicle chattering (moving back and forth) at near-zero speed.
Contrasting Fig. 10 with Fig. 11, we can first witness that the magnitudes
of such speed oscillations were much larger if the BSMs went through the
default CH26. Moreover, the speed oscillation of car2 can be distin-
guishably reduced in car3 only if the channel selection algorithm was
enabled.

Lastly, the following two cars could respond to the movement of the

]
(o))

25

24

23

Channel number

N
[\

5

S

Time (s) 10 15

Fig. 9. CACC channel selection result.
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Fig. 10. Longitudinal velocities with channel selection enabled.
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Fig. 13. Longitudinal coordinates of scaled cars without channel selection.

leading carl much faster in Fig. 10 than in Fig. 11. This fact is further
validated in Fig. 12 and Fig. 13, which exhibit the longitudinal co-
ordinates X; , 3 of the three scaled cars with/without channel selection,
respectively.

The enlarged graphs in Fig. 12 indicate the actual starting moments
(after the transitional chattering) of each car. The counterparts of each
car without channel selection are marked in Fig. 13.

The averaged time elapse between the start-to-forward moments of
carl/car2 and carl/car3 are summarized in Table 3.

Hence, the following cars can react prompter to the movement of the
leading carl with channel selection.

Subsequently, the absolute distance tracking errors between carl/
car2 and car2/car3 are demonstrated in Fig. 14, where the left subplot
corresponds to the case with channel selection enabled and the right
subplot shows the tracking errors when the BSMs passed through the
default CH26.

Therefore, with channel selection enabled, the magnitude of the
distance tracking error between car2/car3 was always beneath the one
between carl/car2. Moreover, both the distance tracking errors between
carl/car2 and car2/car3 were substantially reduced with respect to the
cases when the channel selection was disabled. The Root Mean Square
(RMS) values and the maximum of the absolute distance tracking errors
are summarized in Table 4, where e;, e3 indicate respectively the dis-
tance tracking error of the middle car2 and the last car3. With the aid of
channel selection, the distance tracking accuracy can be cogently
improved.

Table 3
Vehicle Start Delays.
carl/car2 carl/car3
With channel selection 0.064s 0.262s
No channel selection 0.557s 1.081s

With channel selection Channel selection disabled

o
I3
o
b3

—car 12 —car 12
~-car2-3 0.3 Homear 23

° )
S o B e
oL oo o
tracking
S e
oo

°

Distance tracking error (m)

0.05

4

6 8
Time (s)

Fig. 14. Absolute distance tracking errors.

All in all, Figs. 10-14 show that with the dynamic channel selection
algorithm, the following cars can respond more swiftly to their imme-
diate predecessor, the distance tracking errors of a CACC platoon can be
substantially reduced, and the string stability could be guaranteed.

5.2. Run-the-Red-Light at an intersection

5.2.1. Scenario description

In this scenario, there existed an autonomous-driving CACC platoon
with two cars: CACC leader (car2) and CACC follower (car3), passing
through an intersection from the south to the north. In the meantime,
there was an ambulance (carl) coming from the west, and the ambu-
lance ran the red light. Thus, to avoid the collision and ask the platoon to
yield the road, the ambulance would send a “Stop” packet (i.e., an ESM)
every 0.02 s to the CACC leader. Upon receiving such a ‘Stop’ flag, the
CACC leader changed its referential speed from a positive value to zero.
During the whole process, the CACC leader continuously sent its time
constant and referential speed (i.e., BSMs) to the follower, similar to the
case in Section 5.1.

Likewise, there were fifteen interfering nodes around the intersec-
tion. Each of them occupied one of the two available channels: CH26 or
CH24. Unlike the CACC scenario, such a run-the-red-light situation
should only last in a short period in practice. Therefore, the numbers of
interfering nodes in CH26 and CH24 were set constant. Fig. 15 illustrates
this scenario and the numbers of interfering nodes in the two available
channels are listed in Table 5.

Akin in Section 5.1, two experiments were conducted with either the
dynamically selected channel or the default CH26 utilized for ESMs and
BSMs transmissions. When the distance between the ambulance and the
CACC leader went below 1 m, the CACC platoon and the ambulance
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Table 4
Distance Tracking Errors.
RMS(e2) RMS(e3) max(|ez|) max(|es|)
With channel selection 0.1015m 0.0365m 0.1534m 0.1128m
No channel selection 0.1973m 0.1480m 0.3451m 0.2416m

Interfering nodes

Fig. 15. Run the red light at an intersection.

formed a communication group, and the channel selection algorithm
would be triggered if it had been enabled. Then, if the distance further
decreased to less than 0.98 m, the ambulance would start sending ‘Stop’
flags to the CACC leader.

5.2.2. Experimental result

The channel selection result is demonstrated in Fig. 16. Therefore,
the better channel with much less interfering nodes was successfully
identified and selected.

Fig. 17 displays the longitudinal velocities of both the CACC leader
(car2) and the follower (car3).

The upper and the lower subplots of Fig. 17 demonstrate the longi-
tudinal speed profile of the CACC leader and the follower, respectively.
Besides, the red dashed lines reflect the results by use of the default
CH26, whereas the blue solid lines correspond to the case with the
channel selection algorithm being active. Therefore, with the help of the
channel selection algorithm, the CACC leader started braking (adopted
the zero referential speed) almost immediately (0.022 s) after the
ambulance sent out the first ‘Stop’ packet. Instead, if the ‘Stop’ packets
needed to pass through the crowded CH26, the CACC leader could not
brake until 0.269 s after the first ‘Stop’ was issued. Moreover, as
demonstrated in the lower subplot of Fig. 17, if the CACC leader (car2)
could swiftly switch to the zero referential speed, then the CACC fol-
lower (car3) could decelerate—when its own reference speed calculated
from (9) went below its actual longitudinal velocity—0.241 s after the
first ‘Stop’ packet from the ambulance was fired. On the contrary, if the
channel selection algorithm was not enabled, then the CACC follower
could not produce a braking behavior until 0.61 s after the ambulance
sent the first ‘Stop’ message.

The tardive response of the CACC platoon due to the delayed alert
caused a serious consequence, which is demonstrated in Fig. 18.

Fig. 18 shows the distance between the center of gravities (CGs) of
the CACC leader and the ambulance, deduced from OptiTrack. As both
the ambulance and the CACC platoon run towards the intersection, this
distance decreased at the beginning. If the channel selection algorithm
was enabled, the CACC platoon could timely stop in front of the
ambulance, which ran the red light. As a consequence, the minimum CG
distance between the CACC leader and the ambulance was above 0.365
m. As the ambulance continued moving straight, this distance increased
afterward. In contrast, if the ‘Stop’ flags came through the default CH26,
the braking response of the CACC leader was largely delayed, which
indeed caused a side collision between itself and the ambulance at
around 2.35 s. Once the collision occurred, both the CACC leader and the

Table 5
Number of interfering nodes in the two channels.
CH26 CH24
0-4s 13 2

~——CACC leader brakes

— With channel selection
""" ‘Without channel selection|
T

speed Car 2 (m/s)

| ] —— CACC leader brakes |

0 0.5 1 15 2 25 3
Time (s)

Ex 'STOP' send—= SN
BO
e - ~— CACC follower brakes
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[ Without channel selection ~—CACC follower brakes
05 ; ‘ i ‘ ;
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Fig. 17. Speed profiles of CACC leader and follower.
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Fig. 16. Run-the-red-light channel selection result.

ambulance stopped at the collision point, which explained the flat red
dashed line after 2.35 s.

In conclusion, Fig. 17 and Fig. 18 imply that if the critical ESMs
passed through the dynamically selected channel, its transmission delay
could be cogently reduced. Consequently, the collision between the
CACC leader and the ambulance can be avoided.

6. Conclusions

Current DSRC policy obliges safety-related messages to be exchanged
principally via a unique channel. This restriction can induce a huge
transmission delay and endanger drivers. Hence, a dynamic multi-
channel selection algorithm is validated in this paper, which makes all
the involved vehicles of a specific V2V application work collaboratively
to identify the most appropriate channel for transmitting the safety-
critical messages. Experiments demonstrated the effectiveness of the
algorithm in reducing the transmission delay of both the BSMs in a CACC
scenario and the ESMs in a run-the-red-light scenario. The algebraic
differentiation technique and a newly designed CACC speed planner
were formulated to accomplish the experiments.

Future work will focus on validating the channel selection algorithm
in more complex traffic scenarios under various communication
topologies.

—With channel selection
-=Without channel selection

and ambulance (m)

Distance between
CACC leader
e e e e

= )

0 0.5 1 15! 2 2:5, 3 35 4
Time (s)

Fig. 18. Distance between CACC leader and the ambulance.
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