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Abstract—The rapid growth of autonomous driving in recent
years has posed some new research challenges to the traditional
vehicle control system. For example, in order to flexibly change
the yawing rate and moving speed of a vehicle based on the
detected road conditions, autonomous driving control often needs
to dynamically tune its control parameters for better trajectory
tracking and vehicle stability. Consequently, the execution time
of driving control can increase significantly, resulting in missing
the end-to-end (E2E) deadline from detection to computation and
actuation, and thus possible accidents.

In this paper, we propose AutoE2E, a two-tier real-time
middleware system that helps the automotive OS meet the E2E
deadlines of all the tasks despite execution time variations, while
achieving the maximum possible computation precision (and thus
minimum tracking errors) for driving control. The inner loop of
AutoE2E dynamically controls the CPU utilizations of all the
on-board processors to stay below their respective schedulable
utilization bounds, by adjusting the invocation rates of the vehicle
tasks running on those processors. The outer loop is designed to
adapt the computation time and precision of driving control,
when the inner loop loses its control capability due to rate
saturation caused by vehicle speed changes. Our evaluations,
both on a hardware testbed with scaled cars and in larger-scale
simulation, show that AutoE2E can effectively reduce the deadline
miss ratio by 35.4% on average, compared to well-designed
baselines, while having smaller precision loss and tracking errors.

I. INTRODUCTION

Recent years have witnessed a rapid growth of autonomous
driving, as part of the global wave towards the next gen-
eration of artificial intelligence (AI). To date, many car
manufacturers have successfully launched products for full
or partial autonomous driving, such as Tesla’s Autopilot
driver-assistance system [1] and Volvo’s Pilot Assist [2].
While those autonomous driving products have significantly
transformed people’s lives, they have also posed some new
research challenges to the traditional vehicle control system.
One example is their more complex control and computation
applications that are designed to handle new tasks like path
tracking, stability control, and real-time signal processing.
Today’s typical vehicle system is already a complicated real-
time embedded system with more than 50 Electronic Control
Units (ECUs) [3]. For the consideration of cost, autonomous
driving applications are often (for now) scheduled to run on
the same ECUs with traditional vehicle tasks [4], making the
ECU workloads heavier than before. For instance, automated
parking or obstacle avoidance are scheduled to run on the same
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ECU that performs only cruise control before in AUTOSAR,
the OS widely adopted for today’s automotive ECUs [5].

In traditional vehicle systems, such workload increases can
be carefully estimated and scheduled in an offline manner to
ensure runtime guarantees of timeliness [6][7]. However, such
a static and open-loop scheduling solution may not be suitable
for today’s self-driving vehicles, because autonomous driving
requires much more sophisticated vehicle control whose worst-
case execution time (WCET) can be difficult to estimate
precisely. For example, the execution time of path tracking
can vary significantly for different tracking error requirements.
In addition, in order to flexibly change the yawing rate and
moving speed of a vehicle based on the road conditions,
autonomous driving control often needs to dynamically tune
its control parameters for better path tracking and vehicle
stability. Consequently, the execution time of autonomous
driving control can increase significantly at runtime, resulting
in missing the end-to-end (E2E) deadline from detection
to computation and actuation, and thus possible accidents.
Although it is indeed possible to overestimate the WCETs
of autonomous driving applications in a conservative fashion
for runtime schedulability guarantees, doing so can cause a
significant increase of the number of needed ECUs (and the
entire cost) and is usually not desirable to car manufacturers.

In order to address this dilemma, adaptive real-time schedul-
ing [8], [9] is needed to dynamically adjust the workloads
of selected vehicle applications, when the execution time of
autonomous driving increases at runtime. Such scheduling
solutions keep monitoring the vehicle system schedulability
online and make necessary workload adaptation in a closed-
loop manner to quickly react to execution time variations.
To this end, an effective closed-loop scheduling solution is
to dynamically control the CPU utilization of the vehicle
ECUs [10], [11], [12]. The goal of utilization control is to
enforce appropriate utilization bounds (e.g., the Rate Mono-
tonic Scheduling (RMS) bound [13]) on all ECUs, such that
all the real-time deadlines of the system can be guaranteed. In
a distributed real-time embedded (DRE) system where end-to-
end tasks span multiple ECU processors, such as autonomous
driving control, a Multi-Input-Multi-Output (MIMO) con-
troller is designed to dynamically adjust the invocation rates
of the tasks, such that every subtask can meet its subdeadline
so all the tasks can meet their E2E deadlines [11].

Unfortunately, despite their effectiveness in general DRE
systems, existing utilization control solutions cannot be di-



rectly applied to autonomous driving, because they rely solely
on adapting the task rates within wide ranges. However, in
vehicle systems, the task rate of autonomous driving is mainly
determined by the vehicle speed and can only be slightly
adjusted above the determined rate. This is because a higher
speed usually requires a smaller control cycle (i.e., a higher
task rate), in order to adapt to fast changing vehicle dynamics.
For example, in order to maintain the same tracking error for
the path tracking task when the vehicle speed increases, the
task must run more frequently and its invocation rate has to
stay above the determined rate [14]. Hence, existing utilization
control solutions can cause the task rate of path tracking
to quickly reach and saturate at the determined rate, which
cannot be further reduced to lower the CPU utilization. As a
result, it becomes infeasible for them to control the ECU CPU
utilization [15], which can result in undesired deadline misses.
Section III tests the discussed scenario for our motivation.

In this paper, we propose AutoE2E, a two-tier real-time
middleware system that helps the vehicle OS meet the E2E
deadlines despite unexpected runtime execution time varia-
tions, while achieving the maximum possible computation
precision (and thus minimum tracking errors) for driving
control tasks. The inner loop of AutoE2E performs CPU
utilization control on all the ECUs, by adjusting the invocation
rates of the vehicle tasks running on them. Similar to the
existing utilization control solutions, the inner loop can lose
its control capability due to rate saturation caused by vehicle
speed increases, resulting in undesired deadline misses. When
this occurs, the outer loop is designed to dynamically lower
the execution time within an allowed range to regain effective
CPU utilization control for uninterrupted real-time guarantees.
Specifically, this paper makes three major contributions:

e We identify a new research challenge on real-time
scheduling of vehicle control systems that is introduced
by the recent growth of autonomous driving. After
examining traditional open-loop scheduling methodolo-
gies used in automotive systems and adaptive real-time
scheduling proposed for general DRE systems, we find
that a new real-time scheduling solution must be designed
due to a special feature of autonomous driving control.
We design AutoE2E, a two-tier real-time middleware
system that overcomes the limitation of existing solutions
by having a second-tier controller to dynamically lower
the execution time (and so computation precision) within
the allowed range to regain effective CPU utilization
control for real-time guarantees.

We evaluate AutoE2E both on a hardware testbed with
scaled cars and in larger-scale simulation. Our results
demonstrate that AutoE2E outperforms a state-of-the-art
solution that relies solely on rate adaptation by 35.4%,
on average, in terms of deadline miss ratio, and in the
meantime reduces the tracking error of path tracking.

The rest of the paper is organized as follows: Section II
discusses the related work. Section III motivates our work
by analyzing a typical path tracking scenario. Section IV
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Fig. 1: A possible scenario to cause execution time changes
for vehicle tasks in the autonomous driving system.

introduces the design of AutoE2E. Section V presents the
evaluation results. Section VI concludes the paper.
II. RELATED WORK

Extensive studies have been done to propose various real-
time scheduling algorithms for DRE systems with end-to-end
tasks [10], [11], [12], [16], [17], [18], [19]. For example,
Davareassign et al. have proposed to assign task and message
periods for end-to-end tasks using geometric programming in
an open-loop manner [16]; Chen et al. use Multi-Parametric
Rate Adaptation (MPRA) for discrete rate adaptation in dis-
tributed real-time systems with end-to-end tasks given the
exact execution time for each task in the system [17]. Greco et
al. divide a whole end-to-end task into several segments, and
choose how many segments to be executed on each processor
[18]. The most closely related work in general DRE systems is
EUCON [10], which adjusts the task rate and adopts a model
prediction controller to determine the task rate of each end-
to-end task based on the current CPU utilization. However,
these aforementioned studies all focus on general DRE system
whose tasks can be tuned within wide rate ranges. Thus,
they assume that there exists at least one feasible solution
to guarantee deadlines for tasks in the system. However, in
autonomous driving control, a feasible solution may not exist
due to the strict execution requirement from high vehicle speed
that often results in a tight task rate range.

With its growing scale (in terms of ECUs and tasks) and
the wide adoption of the AUTOSAR timing model, today’s
vehicular driving control system is a typical DRE system
with some special timing requirements. Currently, most of
the studies on automobile DRE system focus on timing
analysis, which is performed offline with fixed execution
time of each end-to-end task [20], [21], [22], [7], [23]. For
example, Becker et al. estimate the maximum data age under
the job-dependency condition [20]. Feiertag et al. introduce
the notion of end-to-end timing semantics for the automobile
DRE system and provide maximum end-to-end latency with a
time path graph approach [23]; Rajeev et al. propose a model-
checking technique to compute the worst-case response time
and end-to-end latencies [7]. However, these studies focus
only on offline scheduling analysis, which cannot handle the
unexpected runtime execution time variations introduced by
autonomous driving control, despite their effectiveness in tra-
ditional automobile DRE system. In sharp contrast, AutoE2E
is designed to be an adaptive real-time middleware system
that can guarantee the E2E deadlines of all the vehicle tasks
despite unexpected runtime execution time variations.

ITII. MOTIVATION

In this section, we motivate the design of AutoE2E by

analyzing a typical scenario of the path tracking application.



Task Function Exec. Time (ms)) Task Function Exec. Time (ms) Task Function Exec. Time (ms)]
T7 2 Steer arbiter 75 TI I| Speed computation 4.8 T1_2 [ speed translation 1.5
T3 Torque franslation 15 Error detection 6.5 T2 2 [Limp home mode 2.0
T 1 Steer-by-wire 3.5 Path finding 6 TS5 2 | Speed arbiter 2.0
Steer computati 12 T6 1 | Tgnition control 4.5
TI0_1[ RPM monitor 2.0
T7_2
T8 3 T9 1 Surrounding T8 1 11 T10.1
@/ = Detection Sensors < =1 ™2 ‘ [ Adjustable Task
N T8 2 = ise C e
- Cruise Control . .
(SI‘EECSEE m(l::ECUOln) o T5.2 Engine Non-adjustable Task
(ECUS)
gg‘b‘; ™ Transmission
(f ) = [151 TII2 (ECUG)
‘o T4 1 T10 2
‘ Stability Ié.
171 (ECU2)
Function [ Exec. Time (ms) | Task Function Exec. Time (ms)
%3‘ % Brake distributing| 7.5 | T3_T| Brake force computation 6.0 Excc. Time (ms))
Brake force adjusi 10 T4 1 Friction estimation__ 5.0 T10 2| Gear change 3.0
T7_1 [ Steer stability computation 55 |

| TT1_2] Grade control]|

T5 1

Speed stability computation|

4.5
S

Fig. 2: The workload setup for car A in the motivation experiment, where T8 represents the path tracking application.

As shown in Figure 1, Car A is on the autonomous driving
mode, and about to make a double lane change maneuver to
pass Car B. The planned driving trajectory and the required
tracking error bound are calculated with the path finding
application, and shown as the red curve and black line in
Figure 1, respectively. The maneuver is done by steering
control with a Model Predictive Control (MPC) controller,
which calculates the desired steering angle for the vehicle,
and sends it to the steering control ECU for actuation. Due
to the weather condition, the road ahead is covered with ice
so the vehicle stability is harder to maintain with a smaller
friction coefficient. In order to let the car track the path and
maintain stability, the parameters of the MPC controller must
be tuned. Specifically, the prediction horizon is increased to
avoid oscillations, and the control horizon remains unchanged
to maintain the tracking error. Thus, the total execution time
for the path tracking application increases from 12.1ms to
23.5ms for an 18 meter increase in the prediction horizon
according to the parameter selection algorithm [24].

To examine this scenario, we also set the most basic vehicle
control functions on Car A, such as Anti-lock Braking System
(ABS, T4), Traction Control (TC, T5) and Electronic Stability
Control (ESC, T6), etc. The descriptions and the precedence
constraints of these applications are shown in Figure 2: We
choose 11 typical tasks in total and distribute them on six
ECUs (numbered ECU1 to ECU6). Each ECU can be consid-
ered as an independent processor in the DRE system, and uses
the RMS algorithm [13] to schedule the tasks allocated on it.
Note that though the typical end-to-end deadline is defined
from the data accumulation to the final actuation, the tasks
in Figure 2 do not include the sensors and actuators because
they are usually firmware whose parameters cannot be tuned
online. As a result, the end-to-end deadline for the task shown
in Figure 2 is the result of deducting the delays of sensor
reading and actuation from the original E2E deadline. The
focus application is T8, whose reference path is calculated
first with detection sensors (T8_1). Then, the MPC controller
is used to calculate the actual steering angle of the vehicle
with a variable prediction horizon and control horizon (T8_2).
After that, the steering command is sent to the steering control
ECU to get the final desired torque for the steering servo
(T8_3). We investigate how the MPC execution time variation
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Fig. 3: Given the deadline miss happening continuously, Car
A cannot do the pass maneuver given the poor performance
of the steering control (T8).

of T8_2 affects the deadline miss ratio of T8, and the tracking
performance due to the deadline misses afterwards.

Given the execution time variation for the subtask T8 2
(i.e, steering angle computation), the corresponding deadline
miss ratio for the path tracking application T8 is shown in
Figure 3(a). We can see that given a large execution time
increase of T8_2, the deadline miss ratio increases significantly
from zero to nearly 100%. If the computation cannot finish
before its deadline, the computation result from T8_2 becomes
obsolete and has to be discarded, and the succeeding task
cannot update the torque command for the servo to the final
mechanical actuator. As a result, the vehicle steering remains
unchanged in this control cycle. Given such a high deadline
miss ratio, the steering angle cannot be updated in time on
the icy road. The corresponding actual trajectory of Car A
is shown in Figure 3(b), where we can clearly see the poor
tracking result due to these deadline misses. The difference
between the reference trajectory and the actual one is so large
that Car A might collide with Car B because the steering angle
cannot be controlled properly and has to use an obsolete value
received several seconds ago due to the deadline misses. Thus,
if we rely on the offline scheduling analysis result for the
WCET without online monitoring and control, it is possible
that the path tracking application performs poorly due to the
continuous deadline misses, and these deadline misses can
even cause an accident on the road.

However, even with the existing adaptive scheduling solu-
tions, we may still have deadline misses because the task rate
for the autonomous driving application is often determined
by the vehicle speed. When the vehicle speed increases, the
determined task period for the path tracking applications is
shortened from 40ms to 20ms, in order to update the control
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Fig. 4: An illustration of saturation. (a): Deadline miss ratio
with tight control cycle requirements. (b): The trade off
between tracking error and execution time of T8_2. The
tracking error increases when the task execution time (i.e.,
computation precision) decreases (between 3 and 10ms) or
when the deadline miss ratio increases (between 10 and 16ms).

commands for the vehicle upon a fixed traveling distance. As
shown in Figure 4(a), due to rate saturation, it is infeasible
to find a proper task period to guarantee the deadline for
our path tracking application under this new determined task
period. To solve this problem, a common practice adopted
in automotive applications is to shorten the execution time
of some tasks such that they can be finished sooner with a
lower computation precision and control performance (e.g.,
a larger tracking error), because a less accurate computation
result for a task with reduced execution time is still more
desirable than no update at all and consequently a deadline
miss [14][25]. However, how to choose execution time (related
to the computation precision) for the autonomous application
is non-trivial. Figure 4(b) shows the trade-off between the
deadline miss ratio and the performance of the steering control
application (T8). On one hand, if we do not sufficiently lower
the execution time of task T8_ 2, deadline misses occur and
the tracking error can become as large as 1.4m. Such an error
is sufficiently large for the vehicle to travel across the lane
and causes an accident. On the other hand, if we decrease the
execution time too much, the tracking error also increases due
to the loss of computation precision. Thus, a novel design is
needed to find the optimal value that guarantees the runtime
schedulability with the maximum performance for autonomous
driving control.

IV. DESIGN OF AUTOE2E
In this section, we first present the end-to-end task model
used in automobile DRE systems. Then, we describe the
overview of AutoE2E and introduce each component in detail.

A. System Model

As mentioned in Section I, each control application on an
automobile can be modeled as an end-to-end task 7;. Figure
2 shows several examples of periodic end-to-end tasks. For
example, task T1 consists of two sub-tasks T1_1 and T1_2.
In each task period, T1 first releases one instance of T1_1,
and waits for its execution based on the scheduling scheme
on ECUI. After T1_1 finishes, an instance of T1_2 is then
released on ECUS. Every end-to-end task can adjust its task
rate r; (reciprocal of the task period) in an allowed range
[Pmins Tmaz)- Tmin 18 the determined task rate that is set by
the vehicle speed. As shown in Figure 5, we assume that there
are n ECU processors and m E2E tasks in our target system.

Each task 7; has multiple subtasks 7}; that can run on different
ECU processors, where Tj; is the I*® subtask in task 7;. A
subsequent subtask cannot be released unless its predecessor
is completed. A non-greedy synchronization method, release
guard [26], is used to enforce the precedence constraints
between subsequent subtasks. As a result, all the subtasks
of an E2E task 7; have the same task rate determined by
the first subtask. Each subtask 7;; has an estimated maximum
execution time c;; measured offline that can vary at runtime.
An adjustable subtask 7;; can adjust its computation precision
by shortening its execution time to make the task set feasible
for task rate control. We denote a;; for the execution time ratio
for subtasks 77;;, which is defined as the quotient of the actual
execution time divided by the maximum estimated execution
time ¢;;. a;; also has a tunable range [@,,in, i1, 1], where apin. i
is set based on the specific autonomous driving scenario. For
example in Figure 2, @.,4,,5 for the stability control T7_1
should be higher when the vehicle detects a sudden decrease
of the friction coefficient than that on a normal condition
road. For the non-adjustable subtasks whose execution time
is constant, their @, 4 is set to be 1. We assume that the
execution time ratio for different subtasks in an end-to-end task
can be tuned individually because each subtask may react to
the environment change differently.

To guarantee the deadline and maximize the precision for
the control applications, A well-known approach is to enforce
the ECU processor utilization bound, such as the RMS bound
[13]. The subdeadlines of all the subtasks on a ECU processor
are guaranteed if the utilization of the ECU processor stays
below its utilization bound. If all the subdeadlines are met,
then the end-to-end deadline can be met'. Thus, the goal for
our system is to control the utilizations of the ECU processors
under their respective utilization bounds by adjusting the task
rates ; and execution time ratio a;;. Specifically, the problem
can be expressed as follows: given a fixed ECU processor
utilization bound B = [By, By, ..., B,], the allowable task rate
ranges [T'min.is Tmax,i), and the execution time ratio ranges
[@min,it, 1], to dynamically choose task rates r;(k) and the
execution time ratios a;; (k) such that in the k™ control period,
the differences between B; and the ECU processor utilization
u; (k) for all the processors are minimized:

n

min » " (B; — u;(k))*

ri(k) i
i=
s.t. Tmin,i S Tb(k) S Tmaz,i (1)
Amin,a < ay(k) <1
u;(k) < B,

where the rate constraints ensure that all the task rates stay
above their determined task rates, and the same requirements
apply to the computation precision constraints for every sub-
task; the utilization bound constraints ensure that all the end-
to-end tasks can meet their deadlines. The utilization u; (k) of
ECU processor P; can be estimated with r;(k) and a;; (k) as:

"We assume network delay is negligible in this model. When network delay
must be considered, we can deduct it from the E2E deadline of the task.
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u; (k) = Z caai(k)ri(k)
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where S; is the set that includes all the subtasks allocated to
ECU processor P;. We then define the estimated utilization
change Ab;(k) for ECU processor P; as:

Abj(k) = Z caaiy(k)ri(k) — Z ciai(k — Dri(k —1)

T; €55 Ty €S;
3)

Since Abj(k) is derived with the estimated execution time ¢;;,
which can be inaccurate at runtime. We use g; to represent
the uncertainty of the execution time of the subtasks on ECU
processor P;. In each control period, u;(k) can be updated as:

uj(k + 1) = u; (k) + g;Ab; (k) “)

For example, g; = 2 means that the actual change to the
utilization of P; is twice the estimated change. Note that g;
is unknown due to the unpredictability of the execution time
for these autonomous driving applications at runtime. Though
we cannot know g;, the stability analysis still ensures that our
controller can let the u;(k) converge to the utilization bound,
as long as g; stays within a certain range (see Section IV.C).

B. Overview
Since Equation (3) involves the multiplication of a;; (k) and

ri(k), the system is nonlinear and thus hard to analyze. In
order to linearize and simplify the system, we use a two-
tier controller design, where two separate controllers are used
and aim at controlling one of the two variables (i.e., a;; (k)
and 7;(k)) independently, and treat the other variable as a
constant. Thus, Equation (3) can be viewed as a linear model
in the perspective of each controller. The impact of the inner-
loop controller on the outer-loop controller can be modeled
as variations in its system model, and vice versa. Based on
the analysis in [27], the stability can be guaranteed for the
two-tier controller as long as both controllers are stable.
Based on the linearized system model, we present the design
of AutoE2E. As shown in Figure 5, AutoE2E consists of
two major components: an inner rate-based control loop (the
yellow box on the top in Figure 5) and an outer precision-
based control loop (yellow boxes in each ECU processor in
Figure 5). In each inter-loop control period, the inner-loop
controller is invoked to adjust the task rate for every task in
the automobile distributed system based on the current ECU
processor utilization collected by the utilization monitor. With
a period that equals several inter-loop control periods, the
outer-loop controller is invoked to manipulate the execution
time ratio of each adjustable subtask on each ECU processor
while optimizing the overall computation precision when the
task rate requirements become stringent, and restores the
computation precision when the requirements become relaxed.
Inner Rate-based Control Loop: The inner rate-based con-
troller consists of a centralized controller for the whole system,
with utilization monitors and rate modulators on individual
ECU processors. Its control period is set to include several
instances of E2E tasks to ensure that the utilization monitor
can sample the ECU processor utilization correctly. In each
control period, the centralized controller first collects current
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ECU processor utilizations with utilization monitors. Based
on the collected utilizations and the utilization bounds, the
controller calculates the task rate for each control application
in the next control period, and sends it to the rate modulator
on each ECU processor. When the rate modulator receives the
updated task rate, it changes the rate of first subtask of each
E2E task. Due to the adoption of release guard [26], the rates
of the subsequent subtasks are changed consequently.

Outer Precision-based Control Loop: The precision-based
controller serves as the outer-loop controller and has a control
period sufficiently long to ensure that the it can estimate the
utilizations of the ECU processors correctly based on the
settled task rates. Each ECU processor has one precision-based
controller that manipulates the execution time ratios a;; for
these subtasks on it. When it is infeasible to control utilizations
by the inner-loop controller because the utilization monitor
shows that the settled ECU processor utilization is higher than
the utilization bound by a preset configurable threshold for
several consecutive inter-loop control periods, this controller
is activated and works as follows: 1) calculates the difference
between the current utilization and the utilization bound for
this ECU processor, 2) computes a;; for each subtask allocated
on this ECU processor based on a reversed relaxed knapsack
problem, and 3) changes the execution time ratios for the sub-
tasks with the execution time modulator. Reversely, When the
task rate requirement gets relaxed, the computation precision
restorer shall decrease the task rate to make the system under-
utilized. Then the precision-based controller is activated and
increases the computation precision for subtasks on each ECU
processor until the utilization monitor detects saturation or the
computation precision is fully restored.

Our outer precision-based controller has two key features:
First, the controller can prevent saturation of the inner-loop
controller due to the high determined task rates given a
high speed scenario, and guarantee end-to-end deadlines by
decreasing the execution time ratio at a minimum loss of
computation precision; Second, it can also restore the com-
putation precision when the determined task rates decrease,
even if the current ECU processor utilization is not changed.
In the following, we first introduce the outer precision-based
controller because it is a major contribution of our paper.



C. Outer Precision-based Control Loop

The outer precision-based controller helps the inner-loop
controller achieve the desired utilizations on a coarser
timescale by manipulating the execution time ratio a;;, while
maintaining the computation precision as high as possible.
Specifically, the outer precision-based controller has two major
goals: 1) decreasing the execution time for the control ap-
plications to prevent rate saturation; 2) restoring computation
precision if the task rate requirements become relaxed. In this
section, we discuss how this controller achieves these two
goals, and analyze its stability with standard control theory.

1) Rate Saturation Prevention: For the inner rate-based
controller, rate saturation is defined as the scenario where
the ECU processor utilizations cannot be controlled to the
utilization bounds, given that some task rates are already at
their minimum value. For a general DRE system, the rates
of end-to-end tasks can be tuned within wide ranges, so the
feasibility for processor utilization control is usually assumed
to be true [10][17]. However, for the automobile DRE systems,
the control cycles of autonomous driving applications are
usually determined by the vehicle speed (e.g., the adaptive
cruise control must use a high task rate in a fast moving vehicle
for speed update, in case of a sudden braking). Given a high
vehicle speed, the utilizations of the ECUs can violate their
schedulability bounds because the task rates of autonomous
driving applications do not have wide ranges and can quickly
saturate at their minimum value (i.e., the determined rates). In
the automobile industry, the widely used solution for saturation
prevention is decreasing the computation precision of some
control applications by reducing their execution time [14][25].
Generally, a greater execution time decrease yields a higher
possibility to be feasible for the inner rate-based controller,
but at the cost of lower computation precision, and vice versa.
Thus, for the precision-based controller, we try to optimize
the overall computation precision for all the subtasks on each
ECU processor while keeping the tasks feasible for the inner
rate-based controller given the new determined rates 7,,in ;.
Mathematically, the problem can be formulated as:

n
max E E Wi Q4]
@y

j=1T;€S;

s.t. T'min,i S T S Tmazx,i (5)
Amin,il S Al S 1

Fr <B

where matrix F' is the execution time matrix and F;; = ¢;;a4;
wy; 1s the weighting term for subtask 7;; and is determined by
priorities of the autonomous driving applications in the system,
e.g., the speed controller has greater weight than the steering
controller in the adaptive cruise control scenario. w;a; is
the computation precision for subtask 7;;. Here we assume
the computation precision is linearly related to the execution
time ratio a;; based on the observation in [19]. However, this
optimization problem cannot be directly solved because the
real execution time for subtask 7;; is unknown at runtime. If
solving it using the offline estimated execution time c;;, we
could end up with a wrong result at runtime due to unknown
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fluctuations as shown in Section III.

Instead of solving the optimization problem directly, the
outer precision-based controller uses a feedback mechanism
to get a; in the (k+ 1)th control period. The reason for
using the feedback controller is its stability: Though the real
execution time of T}; is different from the estimated value c¢;;,
the feedback mechanism can still guarantee the convergence to
the utilization bound as long as the variation of ¢;; is within
a certain range. Since a; only impacts the execution time
for a subtask on one ECU processor, changing a;; in one
specific ECU processor does not affect the utilizations of other
ECU processors in the same DRE system. Thus, the utilization
of each ECU processor can be modeled independently from
others in terms of a;;. If we define the decrement of the
execution time ratio as Aa;(k) = au(k + 1) — a;(k) for
subtask 7;;, according to Equations (3), (4), and the linearized
system assumption (i.e., task rate r;(k) is a constant r; for the
outer-loop precision-based controller), the utilization for P; in
the next control period u;(k + 1) with Aa; (k) is:

Uj (k/‘ + 1) = u; (k‘) + g Z Aail(k)cun

T, €S;

6)

To minimize the difference to the utilization bound B; and
derive Aa; (k) from Equation (6), u;(k + 1) is chosen as the
utilization bound B;. The utilization difference e; (k) between
Bj and u;(k) for P; can be expressed as:
6]'(k) = 3j Z Aail(k)cilri

T;1€S;

N

where g; is the uncertainty for the execution time at runtime.
Unfortunately, we still cannot use this model to design the
controller because g; is unknown at design time. However, if
we assume g; = 1, we can still design the controller based on
the approximate execution time c¢;;. As a result, for the real
system where g; # 1, the controller can behave differently.
For this situation, we can show that the controller can still
remain stable as long as g; is within a certain range, and this
range can be derived using stability analysis of the closed-loop
system by considering the model variations. In each control
period, in order to maximize the computation precision for the
subtasks on ECU processor P; (i.e., to minimize the decrement
for the computation precision), we need to solve the following
optimization problem for Aa;;(k):

min wiAai (k
i, 3 wadeu®
i J
sit. ej(k) = E Aaq(k)car ®)

T €55
0 < Aaq(k) < au(k) — amin,a

This is a reversed relaxed knapsack problem [28], where our
goal is to minimize the total profit with Aa;; (k). The terms
w;; and ¢;r; can be seen as the profit and cost for each item
(Aa;(k)), respectively. To solve this problem, we first sort
Aaj (k) by the profit-cost ratio w;;/(c;r;) in the ascending
order, and try to decrease Aa; (k) from the first item to the
last until the container (i.e., e;(k)) is fully filled. After solving
the problem with Aa;;(k), we can get the new execution time



ratio a;(k + 1) = ay(k) — Aay(k). With our assumption
g; = 1, the setting point for inner rate-based controller shall
be on the determined task rate 7, ; for some tasks, and this
is still on the edge of saturation due to the lack of margins.
Thus, in the real implementation, we leave some margin for
variance tolerance of a;;(k + 1) by slightly increasing e;(k),
to let the inner rate-based controller converge to the task rates
slightly higher than r,,;,. Thus, we can ensure that AutoE2E
does not suffer from saturation with the new a;;(k + 1).

2) Stability Analysis: Here we analyze the stability of our
precision-based control loop when the estimated execution
time is different from the real execution time at runtime, i.e.,
g; # 1. According to Equation (3) and (4), given the current
ECU processor utilization uj(k), the utilization bound Bj,
uj(k + 1) can be expressed as:

u;(k+1) = u;(k) + g;(Bj — u;(k)) )

With Z-transform, the transfer function of our closed-loop
system at runtime can be depicted ag:'
J

G:(k+1)= P —
Based on control theory, the controller is stable if all the poles
are within the unit circle. Hence, the system remains stable if
0 < g; < 2. This analysis shows that the our outer precision-
based control loop can effectively handle the execution time
variations and minimize the utilization error, as long as the
summation of actual execution time for all subtasks on one
ECU processor is less than twice the summation of their
estimation value c¢;;. The detailed analysis and its implication
can be found in our technical report [29].

10)

3) Computation Precision Restorer: If the current ECU
processor utilizations are at the utilization bounds, both the
inner-loop and the outer-loop controllers shall not change their
manipulated variables. However, the current stable state may
be achieved by reducing execution time ratios of some control
applications. When the determined task rates become lower,
the execution time of these subtasks should be restored to
their original values to allow a better control performance.
Unfortunately, the computation precision of the system can
only be reduced for saturation prevention, but never restored
for the reversed scenarios because the decrease of r,,;, does
not cause under-utilization of the system. Thus, when the
requirements of control performance for autonomous driving
applications become stringent with larger a4 (€.g., a small
required tracking error) in the future, the whole system may
become infeasible to find a;; in the range [Gmin, i, 1].

The computation precision restorer is designed to resume
the computation precision while keeping the inner rate-based
controller unsaturated when the vehicle decelerates. Generally,
when the rate monitor detects that the determined task rates
have been lowered due to deceleration, the restorer is activated
and starts to decrease the task rates while keeping the execu-
tion time ratios unchanged. As a result, some processors be-
come under-utilized, and the outer precision-based controller
shall be activated to handle the under-utilization scenario: For
Equation (8), e;(k) becomes negative for an under-utilized
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ECU processor, and the outer precision-based controller shall
yield a negative Aa;(k), i.e., to increase the execution time
ratio for some subtasks. Afterward, the inner-loop controller
adjusts the task rate with the new execution time a;;c;; for
each subtask Tj;, and tries to control the utilizations of ECU
processors to their utilization bounds. In the next outer-loop
control period, the restorer shall decide whether to further
lower task rates based on the saturation status: If the system
is not saturated, the restorer shall lower the task rates to make
the system under-utilized again. Otherwise, the restorer shall
stop decreasing the task rates and wait for the precision-based
controller to lower a;; due to saturation.

The pseudo code for the computation precision restorer is
shown in Algorithm 1. First, when the rate monitor detects that
the task rate requirements become relaxed, the computation
precision restorer shall decrease all the task rates (Line 1) to
the middle point from the current task rates v’ and r,,;, for
the end-to-end tasks. The reason to use the middle point is
that if the task rate r is farther from r,,;,, the inner rate-
based controller has a higher probability to converge to a
feasible solution [15]. Compared with using a fixed stepsize
to decrease r, the stepsize of our algorithm becomes smaller
when the task rates 7 approaching r,,,,, which yields a smaller
gap to the optimal computation precision for the subtasks
and also a smaller number of iterations to get the final a;;.
Once the task rates are changed, the system becomes under-
utilized and a;; shall be increased by the outer precision-based
control loop (Line 2). After that, the inner-loop controller tries
to control the ECU processor utilizations by adjusting task
rates under the new execution time for each subtask. In the
next outer-loop control period, the restorer checks whether
the system is saturated: If so (i.e., the rates for some tasks
are at 7,4, ;), this indicates that current a;; is too large. Thus,
the restorer stops decreasing the task rates, and waits for the
outer-loop controller to resolve the saturation by decreasing a;;
(Line 6). After the ECU processor utilizations have converged
to the utilization bound Bj, the restoration process finishes.
Otherwise, the restorer further checks whether the execution
time ratios have been fully restored: If so, the algorithm
finishes as all the subtasks can run at their full computation
precision. If not, the restorer shall go back to Line 1 and
continue to decrease the task rates (Line 11) until saturation
happens or all a; = 1.

With the above scheme, the computation precision can be
restored in a short time: In our experiment, two rounds of rate
decrease are usually sufficient to restore a;;. Though there is
still gap between the optimal value and ours, this gap is small
according to our experiment (see Section V.B). In the real
implementation, we can allow some leeway for the restorer to
ensure that it is activated only when there is a large drop of
the determined rates. Thus, our restorer can avoid chasing the
variable 7.,,;, and work correctly to restore the computation
precision with a fixed r;,;, during the restoration process.
D. Inner Rate-based Control Loop

In this paper, we adopt EUCON [10] as the inner rate-
based control loop. Based on its Model Predictive Controller



Algorithm 1 The Computation Precision Restorer

Input: Current task rate ', minimum task rate 7,in
Output: Subtask execution time proportion a;;

1: Update task rate r as r = ot rmin

2: Activate outer precision-based control loop to increase a;;
3: Activate inner rate-based control loop with new a;;

4: In the next control period of the outer-loop controller:
5: if task rate saturated at 7,,;, then

6: wait for the outer-loop controller to decrease a;;

7: exit

8: else if all a;; = 1 then

9: exit
10: else
11:  goto Line 1
12: end if

(MPC), EUCON optimizes a cost function representing the
tracking error between the current ECU processor utilization
and utilization bound. The cost function represents the tracking
error within the prediction horizon P and the control penalty
within the control horizon M. The cost function V (k) is:

P

V(k) = llu(k +ilk) — ref(k +ilk)|*
i=1
M
+Y Ak +ilk) — Ar(k +i — 1]k)|®

i=1

an

where ref (k) is the reference trajectory for the ECU processor
utilization, which converges to the utilization bound with an
exponential curve; Ar is the change in the task invocation
rate. With the feedback mechanism, the close loop system shall
converge to the utilization bound if the system is stable. The
detailed design and analysis of EUCON are available in [10].
E. Discussions

1) Network Delay: The ECUs in the vehicle are usually
connected with different type of buses like as CAN and MOST.
Those buses can incur a delay comparable with execution time
and task period for the control applications. We can deduct the
expected network delay from the original upper bound of the
task period to ensure meeting the E2E deadlines. Modeling
the network delay is out of the scope of this paper, and we
direct interested readers to several studies such as [16][30].

2) Discrete Execution Time Ratio: AutoE2E assumes that
the execution time ratios a; can be adjusted continuously.
However, some control applications can only allow discrete
executive time ratio options. To handle the discrete execution
time ratio, we first assume that the variables are continuous,
and use a floor operation to get the discrete execution time
ratios for those control applications. Though there are known
methods to handle discrete parameters in DRE systems [17],
they often require priori knowledge of accurate execution time
for the tasks at design time, which can have large variations
at runtime. Moreover, the complexity to solve a Mixed Integer
Linear Programming (MILP) problem is often exponential,
which is not acceptable for a real-time system.

V. EVALUATION
In the evaluation section, we first introduce the experiment

setup. We then test AutoE2E on a hardware testbed with scaled

k|

Steering Computation |
ECU Motor

TN

(a) The Scaled Cars (b) ECU Processors in Use
Fig. 6: Hardware testbed of AutoE2E using scaled cars.

cars (Sections V.B to V.C). Then we test AutoE2E in larger-
scale simulation with a realistic vehicle task set (Section V.D).
We also measure the overhead of AutoE2E on our testbed,
which is less than 10ms. The complete experimental results
can be found in our technical report [29].

A. Hardware Testbed Setup

Our testbed consists of two 1:16 scaled cars as shown in
Figure 6(a). Each scaled car is equipped with a Pulse Width
Modulation (PWM) based steering system and an electric
motor. We set the speed for the two scaled cars as 70cm/s
(25mph for the real vehicle). The ECU processors used for
each scaled car are shown in Figure 6(b): We use three
Arduino boards to emulate ECUs in a real car. Another ECU
processor with Linux operating system runs AutoE2E and
connects to these Arduino boards with USB cables. AutoE2E
is implemented in C++.

1) ECU Configuration: We use three Arduino boards to
emulate the ECU processors. Based on the task configurations
in [31] that an independent micro-processor is deployed for
each actuator, we use two Arduino boards to control the yaw
angle and the speed for the steering and motor systems, re-
spectively. Another Arduino board is used as the computation
unit for control-based calculations. To enable communications
between the Arduino boards, we use jumpers to connect these
devices through serial communication ports. FreeRTOS is
installed as the real-time operation system to schedule the tasks
on the scaled car, which is a lightweight real-time kernel which
can provide features like priority assignment and preemptive
scheduling, and is sufficient for our testbed implementation.

2) End-to-End Task Configuration: We set four end-to-end
tasks in the testbed as shown in Figure 7: 7T7; emulates the
steering-by-wire application and runs on the steering ECU;
2) T, emulates the drive-by-wire application and runs on
the motor ECU; 2) T35, and 732 emulate the steering control
application, which spans across the computation and steering
ECUs; 4) Ty; and T2 emulate the speed and stability control
application, which spans across the computation and motor
ECUs. We choose these tasks because they are the minimum
requirements for a fully-functional, autonomous-driving scaled
car. To schedule these tasks, we have implemented RMS al-
gorithm for every ECU processor based on the default highest
priority first scheduler in FreeRTOS. Note that we use RMS
as an example. In a real implementation, AutoE2E can work
with other scheduling schemes as long as the corresponding
utilization bound can be provided.

3) Deadline and Period Assignment: Ts and T should have
longer deadline requirements than 7 and 75 to allow the
heavy computation load of subtasks 73; and T; on ECU3.

1108



Task Function Exec. Time (ms)
T3 1] Torque calculation 80
T4_1] Speed calculation 80

[_JAdjustable Task
[INon-adjustable Task

Computation

(ECU3)

Steering Motor

(ECUI) (ECU2)
Task Function  [Exec. Time (ms)][ Task [ Function [Exec. Time (ms)
T1_1| Steer arbiter 20 T2 1| Speed arbiter 20
T3 2] Steer-by-wire 20 T4 2 [Drive-by-wire 20

Fig. 7: The workload setup for the AutoE2E testbed.

Thus, because the total execution time of 73 and T} is four
times those of 7} and 7%, we assign the initial deadline of 73
and Ty as 200ms, and 77 and 7% as 50ms. Note that these
deadline requirements can change during the experiment due
to speed changes. The end-to-end deadline of each task is
evenly divided into subdeadlines for each subtask based on
the number of subtasks that the task has, i.e., each subtask’s
period is p; = d;/n;, where n; is the number of subtasks in
task T; and d; is the deadline of T;.

We select the periods of the control loops of AutoE2E
as follows: based on the task period, in order to include
a sufficient number of subtask instances and minimize the
impact of system noise when measuring the ECU processor
utilization, we set the control period as 1s for the inner
rate-based controller due to the hardware constraints of the
Ardunio boards. The control period of the outer precision-
based controller is set as 10 times the inner-loop control period
to guarantee the convergence of the inner-loop controller based
on the analysis in [27]. Note that a much smaller control period
can be adopted in the real vehicle because the timeslot of the
real ECU processor can be more fine-grained than that of the
Ardunio board.

B. Performance of the Outer Precision-based Controller

Here we evaluate the performance of the outer precision-
based controller in AutoE2E for different vehicle speed sce-
narios. We first test how AutoE2E solves the saturation caused
by an acceleration process, and then test the performance of
the computation precision restorer in the deceleration scenario.

First, we conduct an experiment for the acceleration sce-
nario common to the real automobiles, in which the deter-
mined task rate for each control application (i.e., 77 to 7T})
increases several times in this experiment. We compare Au-
toE2E with EUCON [10], which is designed for general DRE
systems. Though EUCON can handle unexpected variations
of execution time at runtime, it is still impossible to let the
ECU processor utilization converge to the utilization bound for
some stringent task rate requirements, especially in the high
speed case. One advantage of AutoE2E over EUCON is that
AutoE2E uses an outer precision-base controller to solve the
saturation issue without suffering deadline misses, and tries to
maintain the computation precision as high as possible.

Figure 8 shows the ECU processor utilizations, computation
precision and deadline miss ratio for AutoE2E and EUCON.
Figure 8(a) shows that EUCON cannot find a suitable task rate
above the determined task rates to control the ECU processor
utilizations: the utilizations of ECU1 and ECU2 stay above
the utilization bounds after 100s, and the utilizations of all
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B 0.8 paivinr iR U TRy s
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Fig. 8: The comparison between EUCON and AutoE2E with
an acceleration process, where the determined task rates be-
come higher at 100s, 200s, and 320s.

ECUs become nearly one after 200s, indicating more deadline
misses. In contrast, Figure 8(b) shows that AutoE2E can
solve rate saturation effectively. Though there are some short
intervals for the ECU processor utilizations staying above the
bound near the changing time point, AutoE2E can quickly
decrease the computation precision for some subtasks to
maintain the feasibility of the inner rate-based controller. The
computation precision of AutoE2E is shown in Figure 8(c),
where the tasks experience three large drops of computation
precision (at 100s, 200s, and 320s) when the determined
task rates become higher, and some small variations due to
the uncertainty of the execution time at runtime. Though
execution time for some subtasks varies, AutoE2E can still
prevent saturation in a close-loop manner. Figure 8(d) shows
the deadline miss ratio for the steering control algorithm
(Ty). The deadline miss ratio for EUCON is 0.1 at 200s,
and increases to 0.45 at 320s. Though there is no continuous
deadline miss, these deadline misses can still lead to a large
tracking error in the vehicle control application. To conclude,
AutoE2E outperforms EUCON by 35.4% in terms of overall
deadline miss ratio with an overall task execution time ratio
decrease of 24.3%.

Then we analyze the performance of the computation preci-
sion restorer. In this experiment, we continue the acceleration
scenario shown above as follows: After running at the highest
vehicle speed, the vehicle decelerates to the speed where the
system experiences the first acceleration (100s in Figure 8(a)).
We compare the restorer with two baselines: 1) Optimal, which
is the optimal computation precision based on Equation (5).
However, the actual execution time is unknown at runtime so
it only serves as a theoretical upper bound. 2) Direct Increase,
which increases the execution time ratio towards one directly
with a fixed step size, and stops once the system is saturated.

Figure 9 shows the performance of the computation pre-
cision restorer during the deceleration. Figure 9(a) shows
two valleys at 40s and 70s, indicating that the task rate is
decreased and the outer-loop controller increases the execution
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Fig. 9: The performance of the computation precision restorer.

The restorer outperforms Direct Increase and is closer to the
optimal in terms of computation precision restoration.
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Fig. 10: The performance of AutoE2E compared with EUCON
and OPEN: (a) Traveling trajectory for the steering control for
a double lane change example. (b) The tracking error for the
speed control task in the adaptive cruise control.

time ratio for subtasks. After 80s, the utilizations of ECU3
and ECU2 become higher than the bound, indicating that the
current execution time is so large that the inner-loop controller
is already saturated. The restorer then stops decreasing the
task rates and waits for the outer-loop controller to solve the
saturation issue. After the outer outer-loop controller decreases
the execution time ratio, the restoration procedure finishes.
Direct Increase shown in Figure 9(b) incurs several peaks,
indicating that potential deadline misses could happen during
the restoration process. In contrast, our restorer leverages
under-utilization and does not have such peaks when adjusting
the task rate. Figure 9(c) shows how the computation precision
is restored during this process. The small variations of the
precision can also be found for the steering control caused by
the uncertainty of execution time. Figure 9(d) shows that the
restored computation precision for our scheme is only 7.7%
less than the optimal value (3.35 for the restorer and 3.63 for
optimal), and outperform Direct Increase by 8.2%.
C. Comparison of Control Performance

Here we show the performance of AutoE2E with metrics
used in the autonomous driving applications. Specifically, we
analyze how deadline miss ratios can affect the performance of
the real control applications such as lane change path tracking
and adaptive cruise control in the scaled car. Figure 10 shows
the performance of AutoE2E for the selected autonomous
driving applications compared with two baselines: OPEN and
EUCON. OPEN is similar to the state-of-the-practice solution
used in today’s automobile industry, where task rates r are
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Fig. 11: The comparison between EUCON and AutoE2E with
the acceleration process in simulation.

calculated with Fr = B based on the offline estimated
execution time F. Figure 10(a) shows the tracking performance
of lane change using steering control (T}). After 40s, the curve
of OPEN shows clear deviation from the reference, which is
caused by the continuous deadline misses. EUCON cannot
track the trajectory well either, because rate saturation can
happen during the experiment, and cause deadline misses for
the control applications. AutoE2E, on the contrary, can track
the reference with a maximum tracking error of Scm with a
24.3% decrease of computation precision for the application.
AutoE2E outperforms EUCON by 12cm and Scm in terms
of maximum and average tracking error for an 1:16 scaled
car, respectively. Note that the corresponding tracking error
difference of a real vehicle is 1.92m and 0.8m, which is
sufficiently large for the vehicle to travel across its lane and
cause an accident. Figure 10(b) shows the tracking error for
the adaptive cruise control of a high speed vehicle. We can see
the spikes in EUCON, which are caused by the abrupt changes
in the vehicle dynamics to correct the accumulated error due
to the previous deadline misses. Though the tracking error
of EUCON is small, these spikes can be harmful to vehicle
mechanical parts and decrease the life of the vehicle [32].

D. Larger-Scale Vehicle Simulation Result

In this part, we have implemented AutoE2E in an extended
version of the EUCON simulator [10] to show how AutoE2E
can handle larger-scale and more realistic autonomous driving
control applications with 6 ECUs and 11 tasks. The ECU and
task setup is shown in Figure 2.

Figure 11 shows the effectiveness of AutoE2E in terms of
saturation prevention. At 25s and 37s, the determined task
rates become higher due to the speed increase, which causes
the ECU processor utilizations of EUCON to stay above the
utilization bounds in Figure 11(a). The corresponding deadline
miss ratio increases to 1 after 37s as shown in Figure 11(d).
On the contrary, AutoE2E can control the ECU processor
utilization to the utilization bound by adjusting both the
execution time ratios and the task rates, and only has two short
intervals of staying above the utilization bounds at 25s and
37s as shown in Figure 11(b). After that, AutoE2E decreases
the execution time ratio for some control applications and
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Fig. 12: The comparison of the computation precision restorer
and the baselines for an emulated deceleration scenario.

guarantees the feasibility for the inner-loop controller as shown
in Figure 11(c). To conclude, AutoE2E can still guarantee the
deadlines for these applications for the heavy workload.

We then test the performance of the computation precision
restorer. Figure 12 shows the utilization valleys when we
apply the computation precision restorer. After two rounds of
task rate decrease, almost all the computation precision can
be restored to the original value. On the other side, Direct
Increase shows spikes around 8s, which could lead to possible
deadline miss. Figure 12(d) shows that our scheme can achieve
a computation precision of 9.62, which is 3.9% lower than
optimal, and outperforms Direct Increase by 12.9%.

VI. CONCLUSION
The recent growth of autonomous driving has introduced a
new research challenge on real-time scheduling of vehicle con-
trol systems. After examining traditional open-loop scheduling
methodologies used in automotive systems and adaptive real-
time scheduling proposed for general DRE systems, we find
that a new real-time scheduling solution must be designed
due to a special feature of driving control. In this paper,
we have proposed AutoE2E, a two-tier middleware system
for automotive OS that overcomes the limitation of existing
solutions by having a second-tier controller, to dynamically
lower the execution time (and so computation precision) within
the allowed range to regain effective CPU utilization control
for E2E real-time guarantees. AutoE2E has been evaluated
both on a hardware testbed with scaled cars and in larger-scale
simulation. Our results demonstrate that AutoE2E outperforms
a state-of-the-art solution that relies solely on rate adaptation
by 35.4%, on average, in terms of deadline miss ratio, and in
the meantime reduces the tracking error of path tracking.
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