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Abstract—The rapid growth of autonomous driving in recent
years has posed some new research challenges to the traditional
vehicle control system. For example, in order to flexibly change
the yawing rate and moving speed of a vehicle based on the
detected road conditions, autonomous driving control often needs
to dynamically tune its control parameters for better trajectory
tracking and vehicle stability. Consequently, the execution time
of driving control can increase significantly, resulting in missing
the end-to-end (E2E) deadline from detection to computation and
actuation, and thus possible accidents.
In this paper, we propose AutoE2E, a two-tier real-time

middleware system that helps the automotive OS meet the E2E
deadlines of all the tasks despite execution time variations, while
achieving the maximum possible computation precision (and thus
minimum tracking errors) for driving control. The inner loop of
AutoE2E dynamically controls the CPU utilizations of all the
on-board processors to stay below their respective schedulable
utilization bounds, by adjusting the invocation rates of the vehicle
tasks running on those processors. The outer loop is designed to
adapt the computation time and precision of driving control,
when the inner loop loses its control capability due to rate
saturation caused by vehicle speed changes. Our evaluations,
both on a hardware testbed with scaled cars and in larger-scale
simulation, show that AutoE2E can effectively reduce the deadline
miss ratio by 35.4% on average, compared to well-designed
baselines, while having smaller precision loss and tracking errors.

I. INTRODUCTION

Recent years have witnessed a rapid growth of autonomous

driving, as part of the global wave towards the next gen-

eration of artificial intelligence (AI). To date, many car

manufacturers have successfully launched products for full

or partial autonomous driving, such as Tesla’s Autopilot

driver-assistance system [1] and Volvo’s Pilot Assist [2].

While those autonomous driving products have significantly

transformed people’s lives, they have also posed some new

research challenges to the traditional vehicle control system.

One example is their more complex control and computation

applications that are designed to handle new tasks like path

tracking, stability control, and real-time signal processing.

Today’s typical vehicle system is already a complicated real-

time embedded system with more than 50 Electronic Control

Units (ECUs) [3]. For the consideration of cost, autonomous

driving applications are often (for now) scheduled to run on

the same ECUs with traditional vehicle tasks [4], making the

ECU workloads heavier than before. For instance, automated

parking or obstacle avoidance are scheduled to run on the same

This work was supported, in part, by NSF under grant CPS-1645657.

ECU that performs only cruise control before in AUTOSAR,

the OS widely adopted for today’s automotive ECUs [5].

In traditional vehicle systems, such workload increases can

be carefully estimated and scheduled in an offline manner to

ensure runtime guarantees of timeliness [6][7]. However, such

a static and open-loop scheduling solution may not be suitable

for today’s self-driving vehicles, because autonomous driving

requires much more sophisticated vehicle control whose worst-

case execution time (WCET) can be difficult to estimate

precisely. For example, the execution time of path tracking

can vary significantly for different tracking error requirements.

In addition, in order to flexibly change the yawing rate and

moving speed of a vehicle based on the road conditions,

autonomous driving control often needs to dynamically tune

its control parameters for better path tracking and vehicle

stability. Consequently, the execution time of autonomous

driving control can increase significantly at runtime, resulting

in missing the end-to-end (E2E) deadline from detection

to computation and actuation, and thus possible accidents.

Although it is indeed possible to overestimate the WCETs

of autonomous driving applications in a conservative fashion

for runtime schedulability guarantees, doing so can cause a

significant increase of the number of needed ECUs (and the

entire cost) and is usually not desirable to car manufacturers.

In order to address this dilemma, adaptive real-time schedul-

ing [8], [9] is needed to dynamically adjust the workloads

of selected vehicle applications, when the execution time of

autonomous driving increases at runtime. Such scheduling

solutions keep monitoring the vehicle system schedulability

online and make necessary workload adaptation in a closed-

loop manner to quickly react to execution time variations.

To this end, an effective closed-loop scheduling solution is

to dynamically control the CPU utilization of the vehicle

ECUs [10], [11], [12]. The goal of utilization control is to

enforce appropriate utilization bounds (e.g., the Rate Mono-

tonic Scheduling (RMS) bound [13]) on all ECUs, such that

all the real-time deadlines of the system can be guaranteed. In

a distributed real-time embedded (DRE) system where end-to-

end tasks span multiple ECU processors, such as autonomous

driving control, a Multi-Input-Multi-Output (MIMO) con-

troller is designed to dynamically adjust the invocation rates

of the tasks, such that every subtask can meet its subdeadline

so all the tasks can meet their E2E deadlines [11].

Unfortunately, despite their effectiveness in general DRE

systems, existing utilization control solutions cannot be di-
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rectly applied to autonomous driving, because they rely solely

on adapting the task rates within wide ranges. However, in

vehicle systems, the task rate of autonomous driving is mainly

determined by the vehicle speed and can only be slightly

adjusted above the determined rate. This is because a higher

speed usually requires a smaller control cycle (i.e., a higher

task rate), in order to adapt to fast changing vehicle dynamics.

For example, in order to maintain the same tracking error for

the path tracking task when the vehicle speed increases, the

task must run more frequently and its invocation rate has to

stay above the determined rate [14]. Hence, existing utilization

control solutions can cause the task rate of path tracking

to quickly reach and saturate at the determined rate, which

cannot be further reduced to lower the CPU utilization. As a

result, it becomes infeasible for them to control the ECU CPU

utilization [15], which can result in undesired deadline misses.

Section III tests the discussed scenario for our motivation.

In this paper, we propose AutoE2E, a two-tier real-time

middleware system that helps the vehicle OS meet the E2E

deadlines despite unexpected runtime execution time varia-

tions, while achieving the maximum possible computation

precision (and thus minimum tracking errors) for driving

control tasks. The inner loop of AutoE2E performs CPU

utilization control on all the ECUs, by adjusting the invocation

rates of the vehicle tasks running on them. Similar to the

existing utilization control solutions, the inner loop can lose

its control capability due to rate saturation caused by vehicle

speed increases, resulting in undesired deadline misses. When

this occurs, the outer loop is designed to dynamically lower

the execution time within an allowed range to regain effective

CPU utilization control for uninterrupted real-time guarantees.

Specifically, this paper makes three major contributions:

• We identify a new research challenge on real-time

scheduling of vehicle control systems that is introduced

by the recent growth of autonomous driving. After

examining traditional open-loop scheduling methodolo-

gies used in automotive systems and adaptive real-time

scheduling proposed for general DRE systems, we find

that a new real-time scheduling solution must be designed

due to a special feature of autonomous driving control.

• We design AutoE2E, a two-tier real-time middleware

system that overcomes the limitation of existing solutions

by having a second-tier controller to dynamically lower

the execution time (and so computation precision) within

the allowed range to regain effective CPU utilization

control for real-time guarantees.

• We evaluate AutoE2E both on a hardware testbed with

scaled cars and in larger-scale simulation. Our results

demonstrate that AutoE2E outperforms a state-of-the-art

solution that relies solely on rate adaptation by 35.4%,

on average, in terms of deadline miss ratio, and in the

meantime reduces the tracking error of path tracking.

The rest of the paper is organized as follows: Section II

discusses the related work. Section III motivates our work

by analyzing a typical path tracking scenario. Section IV

Fig. 1: A possible scenario to cause execution time changes

for vehicle tasks in the autonomous driving system.

introduces the design of AutoE2E. Section V presents the

evaluation results. Section VI concludes the paper.

II. RELATED WORK

Extensive studies have been done to propose various real-

time scheduling algorithms for DRE systems with end-to-end

tasks [10], [11], [12], [16], [17], [18], [19]. For example,

Davareassign et al. have proposed to assign task and message

periods for end-to-end tasks using geometric programming in

an open-loop manner [16]; Chen et al. use Multi-Parametric

Rate Adaptation (MPRA) for discrete rate adaptation in dis-

tributed real-time systems with end-to-end tasks given the

exact execution time for each task in the system [17]. Greco et

al. divide a whole end-to-end task into several segments, and

choose how many segments to be executed on each processor

[18]. The most closely related work in general DRE systems is

EUCON [10], which adjusts the task rate and adopts a model

prediction controller to determine the task rate of each end-

to-end task based on the current CPU utilization. However,

these aforementioned studies all focus on general DRE system

whose tasks can be tuned within wide rate ranges. Thus,

they assume that there exists at least one feasible solution

to guarantee deadlines for tasks in the system. However, in

autonomous driving control, a feasible solution may not exist

due to the strict execution requirement from high vehicle speed

that often results in a tight task rate range.

With its growing scale (in terms of ECUs and tasks) and

the wide adoption of the AUTOSAR timing model, today’s

vehicular driving control system is a typical DRE system

with some special timing requirements. Currently, most of

the studies on automobile DRE system focus on timing

analysis, which is performed offline with fixed execution

time of each end-to-end task [20], [21], [22], [7], [23]. For

example, Becker et al. estimate the maximum data age under

the job-dependency condition [20]. Feiertag et al. introduce

the notion of end-to-end timing semantics for the automobile

DRE system and provide maximum end-to-end latency with a

time path graph approach [23]; Rajeev et al. propose a model-

checking technique to compute the worst-case response time

and end-to-end latencies [7]. However, these studies focus

only on offline scheduling analysis, which cannot handle the

unexpected runtime execution time variations introduced by

autonomous driving control, despite their effectiveness in tra-

ditional automobile DRE system. In sharp contrast, AutoE2E

is designed to be an adaptive real-time middleware system

that can guarantee the E2E deadlines of all the vehicle tasks

despite unexpected runtime execution time variations.

III. MOTIVATION

In this section, we motivate the design of AutoE2E by

analyzing a typical scenario of the path tracking application.



Fig. 2: The workload setup for car A in the motivation experiment, where T8 represents the path tracking application.

As shown in Figure 1, Car A is on the autonomous driving

mode, and about to make a double lane change maneuver to

pass Car B. The planned driving trajectory and the required

tracking error bound are calculated with the path finding

application, and shown as the red curve and black line in

Figure 1, respectively. The maneuver is done by steering

control with a Model Predictive Control (MPC) controller,

which calculates the desired steering angle for the vehicle,

and sends it to the steering control ECU for actuation. Due

to the weather condition, the road ahead is covered with ice

so the vehicle stability is harder to maintain with a smaller

friction coefficient. In order to let the car track the path and

maintain stability, the parameters of the MPC controller must

be tuned. Specifically, the prediction horizon is increased to

avoid oscillations, and the control horizon remains unchanged

to maintain the tracking error. Thus, the total execution time

for the path tracking application increases from 12.1ms to

23.5ms for an 18 meter increase in the prediction horizon

according to the parameter selection algorithm [24].

To examine this scenario, we also set the most basic vehicle

control functions on Car A, such as Anti-lock Braking System

(ABS, T4), Traction Control (TC, T5) and Electronic Stability

Control (ESC, T6), etc. The descriptions and the precedence

constraints of these applications are shown in Figure 2: We

choose 11 typical tasks in total and distribute them on six

ECUs (numbered ECU1 to ECU6). Each ECU can be consid-

ered as an independent processor in the DRE system, and uses

the RMS algorithm [13] to schedule the tasks allocated on it.

Note that though the typical end-to-end deadline is defined

from the data accumulation to the final actuation, the tasks

in Figure 2 do not include the sensors and actuators because

they are usually firmware whose parameters cannot be tuned

online. As a result, the end-to-end deadline for the task shown

in Figure 2 is the result of deducting the delays of sensor

reading and actuation from the original E2E deadline. The

focus application is T8, whose reference path is calculated

first with detection sensors (T8 1). Then, the MPC controller

is used to calculate the actual steering angle of the vehicle

with a variable prediction horizon and control horizon (T8 2).

After that, the steering command is sent to the steering control

ECU to get the final desired torque for the steering servo

(T8 3). We investigate how the MPC execution time variation

(a) Deadline Miss Ratio (b) Tracking Trajectory

Fig. 3: Given the deadline miss happening continuously, Car

A cannot do the pass maneuver given the poor performance

of the steering control (T8).

of T8 2 affects the deadline miss ratio of T8, and the tracking

performance due to the deadline misses afterwards.

Given the execution time variation for the subtask T8 2

(i.e, steering angle computation), the corresponding deadline

miss ratio for the path tracking application T8 is shown in

Figure 3(a). We can see that given a large execution time

increase of T8 2, the deadline miss ratio increases significantly

from zero to nearly 100%. If the computation cannot finish

before its deadline, the computation result from T8 2 becomes

obsolete and has to be discarded, and the succeeding task

cannot update the torque command for the servo to the final

mechanical actuator. As a result, the vehicle steering remains

unchanged in this control cycle. Given such a high deadline

miss ratio, the steering angle cannot be updated in time on

the icy road. The corresponding actual trajectory of Car A

is shown in Figure 3(b), where we can clearly see the poor

tracking result due to these deadline misses. The difference

between the reference trajectory and the actual one is so large

that Car A might collide with Car B because the steering angle

cannot be controlled properly and has to use an obsolete value

received several seconds ago due to the deadline misses. Thus,

if we rely on the offline scheduling analysis result for the

WCET without online monitoring and control, it is possible

that the path tracking application performs poorly due to the

continuous deadline misses, and these deadline misses can

even cause an accident on the road.

However, even with the existing adaptive scheduling solu-

tions, we may still have deadline misses because the task rate

for the autonomous driving application is often determined

by the vehicle speed. When the vehicle speed increases, the

determined task period for the path tracking applications is

shortened from 40ms to 20ms, in order to update the control



(a) (b)

Fig. 4: An illustration of saturation. (a): Deadline miss ratio

with tight control cycle requirements. (b): The trade off

between tracking error and execution time of T8 2. The

tracking error increases when the task execution time (i.e.,

computation precision) decreases (between 3 and 10ms) or

when the deadline miss ratio increases (between 10 and 16ms).

commands for the vehicle upon a fixed traveling distance. As

shown in Figure 4(a), due to rate saturation, it is infeasible

to find a proper task period to guarantee the deadline for

our path tracking application under this new determined task

period. To solve this problem, a common practice adopted

in automotive applications is to shorten the execution time

of some tasks such that they can be finished sooner with a

lower computation precision and control performance (e.g.,

a larger tracking error), because a less accurate computation

result for a task with reduced execution time is still more

desirable than no update at all and consequently a deadline

miss [14][25]. However, how to choose execution time (related

to the computation precision) for the autonomous application

is non-trivial. Figure 4(b) shows the trade-off between the

deadline miss ratio and the performance of the steering control

application (T8). On one hand, if we do not sufficiently lower

the execution time of task T8 2, deadline misses occur and

the tracking error can become as large as 1.4m. Such an error

is sufficiently large for the vehicle to travel across the lane

and causes an accident. On the other hand, if we decrease the

execution time too much, the tracking error also increases due

to the loss of computation precision. Thus, a novel design is

needed to find the optimal value that guarantees the runtime

schedulability with the maximum performance for autonomous

driving control.

IV. DESIGN OF AUTOE2E
In this section, we first present the end-to-end task model

used in automobile DRE systems. Then, we describe the

overview of AutoE2E and introduce each component in detail.

A. System Model
As mentioned in Section I, each control application on an

automobile can be modeled as an end-to-end task Ti. Figure

2 shows several examples of periodic end-to-end tasks. For

example, task T1 consists of two sub-tasks T1 1 and T1 2.

In each task period, T1 first releases one instance of T1 1,

and waits for its execution based on the scheduling scheme

on ECU1. After T1 1 finishes, an instance of T1 2 is then

released on ECU5. Every end-to-end task can adjust its task

rate ri (reciprocal of the task period) in an allowed range
[rmin, rmax]. rmin is the determined task rate that is set by

the vehicle speed. As shown in Figure 5, we assume that there

are n ECU processors and m E2E tasks in our target system.

Each task Ti has multiple subtasks Til that can run on different

ECU processors, where Til is the lth subtask in task Ti. A

subsequent subtask cannot be released unless its predecessor

is completed. A non-greedy synchronization method, release

guard [26], is used to enforce the precedence constraints

between subsequent subtasks. As a result, all the subtasks

of an E2E task Ti have the same task rate determined by

the first subtask. Each subtask Til has an estimated maximum

execution time cil measured offline that can vary at runtime.
An adjustable subtask Til can adjust its computation precision

by shortening its execution time to make the task set feasible

for task rate control. We denote ail for the execution time ratio
for subtasks Til, which is defined as the quotient of the actual

execution time divided by the maximum estimated execution

time cil. ail also has a tunable range [amin,il, 1], where amin,il

is set based on the specific autonomous driving scenario. For

example in Figure 2, amin,il for the stability control T7 1

should be higher when the vehicle detects a sudden decrease

of the friction coefficient than that on a normal condition

road. For the non-adjustable subtasks whose execution time

is constant, their amin,il is set to be 1. We assume that the

execution time ratio for different subtasks in an end-to-end task

can be tuned individually because each subtask may react to

the environment change differently.

To guarantee the deadline and maximize the precision for

the control applications, A well-known approach is to enforce

the ECU processor utilization bound, such as the RMS bound

[13]. The subdeadlines of all the subtasks on a ECU processor

are guaranteed if the utilization of the ECU processor stays

below its utilization bound. If all the subdeadlines are met,

then the end-to-end deadline can be met1. Thus, the goal for

our system is to control the utilizations of the ECU processors

under their respective utilization bounds by adjusting the task

rates ri and execution time ratio ail. Specifically, the problem
can be expressed as follows: given a fixed ECU processor

utilization bound B = [B1, B1, ..., Bn], the allowable task rate
ranges [rmin,i, rmax,i], and the execution time ratio ranges
[amin,il, 1], to dynamically choose task rates ri(k) and the
execution time ratios ail(k) such that in the k

th control period,

the differences between Bj and the ECU processor utilization

uj(k) for all the processors are minimized:

min
ri(k)

n∑

j=1

(Bj − uj(k))
2

s.t. rmin,i ≤ ri(k) ≤ rmax,i

amin,il ≤ ail(k) ≤ 1

uj(k) ≤ Bj

(1)

where the rate constraints ensure that all the task rates stay

above their determined task rates, and the same requirements

apply to the computation precision constraints for every sub-

task; the utilization bound constraints ensure that all the end-

to-end tasks can meet their deadlines. The utilization uj(k) of
ECU processor Pj can be estimated with ri(k) and ail(k) as:

1We assume network delay is negligible in this model. When network delay
must be considered, we can deduct it from the E2E deadline of the task.



uj(k) =
∑

Til∈Sj

cilail(k)ri(k) (2)

where Sj is the set that includes all the subtasks allocated to

ECU processor Pj . We then define the estimated utilization

change Δbj(k) for ECU processor Pj as:

Δbj(k) =
∑

Til∈Sj

cilail(k)ri(k) −
∑

Til∈Sj

cilail(k − 1)ri(k − 1)

(3)

Since Δbj(k) is derived with the estimated execution time cil,
which can be inaccurate at runtime. We use gj to represent
the uncertainty of the execution time of the subtasks on ECU

processor Pj . In each control period, uj(k) can be updated as:

uj(k + 1) = uj(k) + gjΔbj(k) (4)

For example, gj = 2 means that the actual change to the
utilization of Pj is twice the estimated change. Note that gj
is unknown due to the unpredictability of the execution time
for these autonomous driving applications at runtime. Though

we cannot know gj , the stability analysis still ensures that our
controller can let the uj(k) converge to the utilization bound,
as long as gj stays within a certain range (see Section IV.C).
B. Overview
Since Equation (3) involves the multiplication of ail(k) and

ri(k), the system is nonlinear and thus hard to analyze. In

order to linearize and simplify the system, we use a two-

tier controller design, where two separate controllers are used

and aim at controlling one of the two variables (i.e., ail(k)
and ri(k)) independently, and treat the other variable as a
constant. Thus, Equation (3) can be viewed as a linear model

in the perspective of each controller. The impact of the inner-

loop controller on the outer-loop controller can be modeled

as variations in its system model, and vice versa. Based on

the analysis in [27], the stability can be guaranteed for the

two-tier controller as long as both controllers are stable.

Based on the linearized system model, we present the design

of AutoE2E. As shown in Figure 5, AutoE2E consists of

two major components: an inner rate-based control loop (the

yellow box on the top in Figure 5) and an outer precision-

based control loop (yellow boxes in each ECU processor in

Figure 5). In each inter-loop control period, the inner-loop

controller is invoked to adjust the task rate for every task in

the automobile distributed system based on the current ECU

processor utilization collected by the utilization monitor. With

a period that equals several inter-loop control periods, the

outer-loop controller is invoked to manipulate the execution

time ratio of each adjustable subtask on each ECU processor

while optimizing the overall computation precision when the

task rate requirements become stringent, and restores the

computation precision when the requirements become relaxed.

Inner Rate-based Control Loop: The inner rate-based con-
troller consists of a centralized controller for the whole system,

with utilization monitors and rate modulators on individual

ECU processors. Its control period is set to include several

instances of E2E tasks to ensure that the utilization monitor

can sample the ECU processor utilization correctly. In each

control period, the centralized controller first collects current

Fig. 5: The overview of AutoE2E. The main components

include two control loops: The outer precision-based control

loop and inner rate-based control loop.

ECU processor utilizations with utilization monitors. Based

on the collected utilizations and the utilization bounds, the

controller calculates the task rate for each control application

in the next control period, and sends it to the rate modulator

on each ECU processor. When the rate modulator receives the

updated task rate, it changes the rate of first subtask of each

E2E task. Due to the adoption of release guard [26], the rates

of the subsequent subtasks are changed consequently.

Outer Precision-based Control Loop: The precision-based
controller serves as the outer-loop controller and has a control

period sufficiently long to ensure that the it can estimate the

utilizations of the ECU processors correctly based on the

settled task rates. Each ECU processor has one precision-based

controller that manipulates the execution time ratios ail for
these subtasks on it. When it is infeasible to control utilizations

by the inner-loop controller because the utilization monitor

shows that the settled ECU processor utilization is higher than

the utilization bound by a preset configurable threshold for

several consecutive inter-loop control periods, this controller

is activated and works as follows: 1) calculates the difference

between the current utilization and the utilization bound for

this ECU processor, 2) computes ail for each subtask allocated
on this ECU processor based on a reversed relaxed knapsack

problem, and 3) changes the execution time ratios for the sub-

tasks with the execution time modulator. Reversely, When the

task rate requirement gets relaxed, the computation precision

restorer shall decrease the task rate to make the system under-

utilized. Then the precision-based controller is activated and

increases the computation precision for subtasks on each ECU

processor until the utilization monitor detects saturation or the

computation precision is fully restored.

Our outer precision-based controller has two key features:

First, the controller can prevent saturation of the inner-loop

controller due to the high determined task rates given a

high speed scenario, and guarantee end-to-end deadlines by

decreasing the execution time ratio at a minimum loss of

computation precision; Second, it can also restore the com-

putation precision when the determined task rates decrease,

even if the current ECU processor utilization is not changed.

In the following, we first introduce the outer precision-based

controller because it is a major contribution of our paper.



C. Outer Precision-based Control Loop
The outer precision-based controller helps the inner-loop

controller achieve the desired utilizations on a coarser

timescale by manipulating the execution time ratio ail, while
maintaining the computation precision as high as possible.

Specifically, the outer precision-based controller has two major

goals: 1) decreasing the execution time for the control ap-

plications to prevent rate saturation; 2) restoring computation

precision if the task rate requirements become relaxed. In this

section, we discuss how this controller achieves these two

goals, and analyze its stability with standard control theory.
1) Rate Saturation Prevention: For the inner rate-based

controller, rate saturation is defined as the scenario where

the ECU processor utilizations cannot be controlled to the

utilization bounds, given that some task rates are already at

their minimum value. For a general DRE system, the rates

of end-to-end tasks can be tuned within wide ranges, so the

feasibility for processor utilization control is usually assumed

to be true [10][17]. However, for the automobile DRE systems,

the control cycles of autonomous driving applications are

usually determined by the vehicle speed (e.g., the adaptive

cruise control must use a high task rate in a fast moving vehicle

for speed update, in case of a sudden braking). Given a high

vehicle speed, the utilizations of the ECUs can violate their

schedulability bounds because the task rates of autonomous

driving applications do not have wide ranges and can quickly

saturate at their minimum value (i.e., the determined rates). In

the automobile industry, the widely used solution for saturation

prevention is decreasing the computation precision of some

control applications by reducing their execution time [14][25].

Generally, a greater execution time decrease yields a higher

possibility to be feasible for the inner rate-based controller,

but at the cost of lower computation precision, and vice versa.

Thus, for the precision-based controller, we try to optimize

the overall computation precision for all the subtasks on each

ECU processor while keeping the tasks feasible for the inner

rate-based controller given the new determined rates rmin,i.

Mathematically, the problem can be formulated as:

max
ail

n∑

j=1

∑

Til∈Sj

wilail

s.t. rmin,i ≤ ri ≤ rmax,i

amin,il ≤ ail ≤ 1

Fr ≤ B

(5)

where matrix F is the execution time matrix and Fil = cilail;
wil is the weighting term for subtask Til and is determined by

priorities of the autonomous driving applications in the system,

e.g., the speed controller has greater weight than the steering

controller in the adaptive cruise control scenario. wilail is
the computation precision for subtask Til. Here we assume

the computation precision is linearly related to the execution

time ratio ail based on the observation in [19]. However, this
optimization problem cannot be directly solved because the

real execution time for subtask Tij is unknown at runtime. If

solving it using the offline estimated execution time cil, we
could end up with a wrong result at runtime due to unknown

fluctuations as shown in Section III.

Instead of solving the optimization problem directly, the

outer precision-based controller uses a feedback mechanism

to get ail in the (k + 1)
th
control period. The reason for

using the feedback controller is its stability: Though the real

execution time of Til is different from the estimated value cil,
the feedback mechanism can still guarantee the convergence to

the utilization bound as long as the variation of cil is within
a certain range. Since ail only impacts the execution time
for a subtask on one ECU processor, changing ail in one
specific ECU processor does not affect the utilizations of other

ECU processors in the same DRE system. Thus, the utilization

of each ECU processor can be modeled independently from

others in terms of ail. If we define the decrement of the
execution time ratio as Δail(k) = ail(k + 1) − ail(k) for
subtask Til, according to Equations (3), (4), and the linearized

system assumption (i.e., task rate ri(k) is a constant ri for the
outer-loop precision-based controller), the utilization for Pj in

the next control period uj(k + 1) with Δail(k) is:

uj(k + 1) = uj(k) + gj
∑

Til∈Sj

Δail(k)cilri (6)

To minimize the difference to the utilization bound Bj and

derive Δail(k) from Equation (6), uj(k + 1) is chosen as the
utilization bound Bj . The utilization difference ej(k) between
Bj and uj(k) for Pj can be expressed as:

ej(k) = gj
∑

Til∈Sj

Δail(k)cilri (7)

where gj is the uncertainty for the execution time at runtime.
Unfortunately, we still cannot use this model to design the

controller because gj is unknown at design time. However, if
we assume gj = 1, we can still design the controller based on
the approximate execution time cil. As a result, for the real
system where gj �= 1, the controller can behave differently.
For this situation, we can show that the controller can still

remain stable as long as gj is within a certain range, and this
range can be derived using stability analysis of the closed-loop

system by considering the model variations. In each control

period, in order to maximize the computation precision for the

subtasks on ECU processor Pj (i.e., to minimize the decrement

for the computation precision), we need to solve the following

optimization problem for Δail(k):

min
Δail(k)

∑

Til∈Sj

wilΔail(k)

s.t. ej(k) =
∑

Til∈Sj

Δail(k)cilri

0 ≤ Δail(k) ≤ ail(k) − amin,il

(8)

This is a reversed relaxed knapsack problem [28], where our

goal is to minimize the total profit with Δail(k). The terms
wil and cilri can be seen as the profit and cost for each item
(Δail(k)), respectively. To solve this problem, we first sort
Δail(k) by the profit-cost ratio wil/(cilri) in the ascending
order, and try to decrease Δail(k) from the first item to the

last until the container (i.e., ej(k)) is fully filled. After solving
the problem with Δail(k), we can get the new execution time



ratio ail(k + 1) = ail(k) − Δail(k). With our assumption
gj = 1, the setting point for inner rate-based controller shall
be on the determined task rate rmin,i for some tasks, and this

is still on the edge of saturation due to the lack of margins.

Thus, in the real implementation, we leave some margin for

variance tolerance of ail(k + 1) by slightly increasing ej(k),
to let the inner rate-based controller converge to the task rates

slightly higher than rmin. Thus, we can ensure that AutoE2E

does not suffer from saturation with the new ail(k + 1).

2) Stability Analysis: Here we analyze the stability of our
precision-based control loop when the estimated execution

time is different from the real execution time at runtime, i.e.,

gj �= 1. According to Equation (3) and (4), given the current
ECU processor utilization uj(k), the utilization bound Bj ,

uj(k + 1) can be expressed as:

uj(k + 1) = uj(k) + gj(Bj − uj(k)) (9)

With Z-transform, the transfer function of our closed-loop

system at runtime can be depicted as:

Gz(k + 1) =
gj

z − (1 − gj)
(10)

Based on control theory, the controller is stable if all the poles

are within the unit circle. Hence, the system remains stable if

0 ≤ gj ≤ 2. This analysis shows that the our outer precision-
based control loop can effectively handle the execution time

variations and minimize the utilization error, as long as the

summation of actual execution time for all subtasks on one

ECU processor is less than twice the summation of their

estimation value cil. The detailed analysis and its implication
can be found in our technical report [29].

3) Computation Precision Restorer: If the current ECU
processor utilizations are at the utilization bounds, both the

inner-loop and the outer-loop controllers shall not change their

manipulated variables. However, the current stable state may

be achieved by reducing execution time ratios of some control

applications. When the determined task rates become lower,

the execution time of these subtasks should be restored to

their original values to allow a better control performance.

Unfortunately, the computation precision of the system can

only be reduced for saturation prevention, but never restored

for the reversed scenarios because the decrease of rmin does

not cause under-utilization of the system. Thus, when the

requirements of control performance for autonomous driving

applications become stringent with larger amin,il (e.g., a small

required tracking error) in the future, the whole system may

become infeasible to find ail in the range [amin,il, 1].

The computation precision restorer is designed to resume

the computation precision while keeping the inner rate-based

controller unsaturated when the vehicle decelerates. Generally,

when the rate monitor detects that the determined task rates

have been lowered due to deceleration, the restorer is activated

and starts to decrease the task rates while keeping the execu-

tion time ratios unchanged. As a result, some processors be-

come under-utilized, and the outer precision-based controller

shall be activated to handle the under-utilization scenario: For

Equation (8), ej(k) becomes negative for an under-utilized

ECU processor, and the outer precision-based controller shall

yield a negative Δail(k), i.e., to increase the execution time
ratio for some subtasks. Afterward, the inner-loop controller

adjusts the task rate with the new execution time ailcil for
each subtask Til, and tries to control the utilizations of ECU

processors to their utilization bounds. In the next outer-loop

control period, the restorer shall decide whether to further

lower task rates based on the saturation status: If the system

is not saturated, the restorer shall lower the task rates to make

the system under-utilized again. Otherwise, the restorer shall

stop decreasing the task rates and wait for the precision-based

controller to lower ail due to saturation.
The pseudo code for the computation precision restorer is

shown in Algorithm 1. First, when the rate monitor detects that

the task rate requirements become relaxed, the computation

precision restorer shall decrease all the task rates (Line 1) to

the middle point from the current task rates r′ and rmin for

the end-to-end tasks. The reason to use the middle point is

that if the task rate r is farther from rmin, the inner rate-

based controller has a higher probability to converge to a

feasible solution [15]. Compared with using a fixed stepsize

to decrease r, the stepsize of our algorithm becomes smaller

when the task rates r approaching rmin, which yields a smaller

gap to the optimal computation precision for the subtasks

and also a smaller number of iterations to get the final ail.
Once the task rates are changed, the system becomes under-

utilized and ail shall be increased by the outer precision-based
control loop (Line 2). After that, the inner-loop controller tries

to control the ECU processor utilizations by adjusting task

rates under the new execution time for each subtask. In the

next outer-loop control period, the restorer checks whether

the system is saturated: If so (i.e., the rates for some tasks

are at rmin,i), this indicates that current ail is too large. Thus,
the restorer stops decreasing the task rates, and waits for the

outer-loop controller to resolve the saturation by decreasing ail
(Line 6). After the ECU processor utilizations have converged

to the utilization bound Bj , the restoration process finishes.

Otherwise, the restorer further checks whether the execution

time ratios have been fully restored: If so, the algorithm

finishes as all the subtasks can run at their full computation

precision. If not, the restorer shall go back to Line 1 and

continue to decrease the task rates (Line 11) until saturation

happens or all ail = 1.
With the above scheme, the computation precision can be

restored in a short time: In our experiment, two rounds of rate

decrease are usually sufficient to restore ail. Though there is
still gap between the optimal value and ours, this gap is small

according to our experiment (see Section V.B). In the real

implementation, we can allow some leeway for the restorer to

ensure that it is activated only when there is a large drop of

the determined rates. Thus, our restorer can avoid chasing the

variable rmin and work correctly to restore the computation

precision with a fixed rmin during the restoration process.

D. Inner Rate-based Control Loop
In this paper, we adopt EUCON [10] as the inner rate-

based control loop. Based on its Model Predictive Controller



Algorithm 1 The Computation Precision Restorer
Input: Current task rate r′, minimum task rate rmin

Output: Subtask execution time proportion ail

1: Update task rate r as r = r′+rmin
2

2: Activate outer precision-based control loop to increase ail

3: Activate inner rate-based control loop with new ail

4: In the next control period of the outer-loop controller:
5: if task rate saturated at rmin then
6: wait for the outer-loop controller to decrease ail

7: exit
8: else if all ail = 1 then
9: exit
10: else
11: goto Line 1
12: end if

(MPC), EUCON optimizes a cost function representing the

tracking error between the current ECU processor utilization

and utilization bound. The cost function represents the tracking

error within the prediction horizon P and the control penalty

within the control horizon M . The cost function V (k) is:

V (k) =
P∑

i=1

‖u(k + i|k) − ref(k + i|k)‖2

+
M∑

i=1

‖Δr(k + i|k) −Δr(k + i− 1|k)‖2
(11)

where ref(k) is the reference trajectory for the ECU processor
utilization, which converges to the utilization bound with an

exponential curve; Δr is the change in the task invocation
rate. With the feedback mechanism, the close loop system shall

converge to the utilization bound if the system is stable. The

detailed design and analysis of EUCON are available in [10].
E. Discussions
1) Network Delay: The ECUs in the vehicle are usually

connected with different type of buses like as CAN and MOST.

Those buses can incur a delay comparable with execution time

and task period for the control applications. We can deduct the

expected network delay from the original upper bound of the

task period to ensure meeting the E2E deadlines. Modeling

the network delay is out of the scope of this paper, and we

direct interested readers to several studies such as [16][30].

2) Discrete Execution Time Ratio: AutoE2E assumes that
the execution time ratios ail can be adjusted continuously.
However, some control applications can only allow discrete

executive time ratio options. To handle the discrete execution

time ratio, we first assume that the variables are continuous,

and use a floor operation to get the discrete execution time

ratios for those control applications. Though there are known

methods to handle discrete parameters in DRE systems [17],

they often require priori knowledge of accurate execution time

for the tasks at design time, which can have large variations

at runtime. Moreover, the complexity to solve a Mixed Integer

Linear Programming (MILP) problem is often exponential,

which is not acceptable for a real-time system.
V. EVALUATION

In the evaluation section, we first introduce the experiment

setup. We then test AutoE2E on a hardware testbed with scaled

(a) The Scaled Cars (b) ECU Processors in Use
Fig. 6: Hardware testbed of AutoE2E using scaled cars.

cars (Sections V.B to V.C). Then we test AutoE2E in larger-

scale simulation with a realistic vehicle task set (Section V.D).

We also measure the overhead of AutoE2E on our testbed,

which is less than 10ms. The complete experimental results

can be found in our technical report [29].

A. Hardware Testbed Setup
Our testbed consists of two 1:16 scaled cars as shown in

Figure 6(a). Each scaled car is equipped with a Pulse Width

Modulation (PWM) based steering system and an electric

motor. We set the speed for the two scaled cars as 70cm/s

(25mph for the real vehicle). The ECU processors used for

each scaled car are shown in Figure 6(b): We use three

Arduino boards to emulate ECUs in a real car. Another ECU

processor with Linux operating system runs AutoE2E and

connects to these Arduino boards with USB cables. AutoE2E

is implemented in C++.

1) ECU Configuration: We use three Arduino boards to
emulate the ECU processors. Based on the task configurations

in [31] that an independent micro-processor is deployed for

each actuator, we use two Arduino boards to control the yaw

angle and the speed for the steering and motor systems, re-

spectively. Another Arduino board is used as the computation

unit for control-based calculations. To enable communications

between the Arduino boards, we use jumpers to connect these

devices through serial communication ports. FreeRTOS is

installed as the real-time operation system to schedule the tasks

on the scaled car, which is a lightweight real-time kernel which

can provide features like priority assignment and preemptive

scheduling, and is sufficient for our testbed implementation.

2) End-to-End Task Configuration: We set four end-to-end
tasks in the testbed as shown in Figure 7: T11 emulates the

steering-by-wire application and runs on the steering ECU;

2) T21 emulates the drive-by-wire application and runs on

the motor ECU; 2) T31 and T32 emulate the steering control

application, which spans across the computation and steering

ECUs; 4) T41 and T42 emulate the speed and stability control

application, which spans across the computation and motor

ECUs. We choose these tasks because they are the minimum

requirements for a fully-functional, autonomous-driving scaled

car. To schedule these tasks, we have implemented RMS al-

gorithm for every ECU processor based on the default highest

priority first scheduler in FreeRTOS. Note that we use RMS

as an example. In a real implementation, AutoE2E can work

with other scheduling schemes as long as the corresponding

utilization bound can be provided.

3) Deadline and Period Assignment: T3 and T4 should have

longer deadline requirements than T1 and T2 to allow the

heavy computation load of subtasks T31 and T41 on ECU3.



Fig. 7: The workload setup for the AutoE2E testbed.

Thus, because the total execution time of T3 and T4 is four

times those of T1 and T2, we assign the initial deadline of T3

and T4 as 200ms, and T1 and T2 as 50ms. Note that these

deadline requirements can change during the experiment due

to speed changes. The end-to-end deadline of each task is

evenly divided into subdeadlines for each subtask based on

the number of subtasks that the task has, i.e., each subtask’s

period is pi = di/ni, where ni is the number of subtasks in

task Ti and di is the deadline of Ti.

We select the periods of the control loops of AutoE2E

as follows: based on the task period, in order to include

a sufficient number of subtask instances and minimize the

impact of system noise when measuring the ECU processor

utilization, we set the control period as 1s for the inner

rate-based controller due to the hardware constraints of the

Ardunio boards. The control period of the outer precision-

based controller is set as 10 times the inner-loop control period

to guarantee the convergence of the inner-loop controller based

on the analysis in [27]. Note that a much smaller control period

can be adopted in the real vehicle because the timeslot of the

real ECU processor can be more fine-grained than that of the

Ardunio board.
B. Performance of the Outer Precision-based Controller
Here we evaluate the performance of the outer precision-

based controller in AutoE2E for different vehicle speed sce-

narios. We first test how AutoE2E solves the saturation caused

by an acceleration process, and then test the performance of

the computation precision restorer in the deceleration scenario.

First, we conduct an experiment for the acceleration sce-

nario common to the real automobiles, in which the deter-

mined task rate for each control application (i.e., T1 to T4)

increases several times in this experiment. We compare Au-

toE2E with EUCON [10], which is designed for general DRE

systems. Though EUCON can handle unexpected variations

of execution time at runtime, it is still impossible to let the

ECU processor utilization converge to the utilization bound for

some stringent task rate requirements, especially in the high

speed case. One advantage of AutoE2E over EUCON is that

AutoE2E uses an outer precision-base controller to solve the

saturation issue without suffering deadline misses, and tries to

maintain the computation precision as high as possible.

Figure 8 shows the ECU processor utilizations, computation

precision and deadline miss ratio for AutoE2E and EUCON.

Figure 8(a) shows that EUCON cannot find a suitable task rate

above the determined task rates to control the ECU processor

utilizations: the utilizations of ECU1 and ECU2 stay above

the utilization bounds after 100s, and the utilizations of all

(a) EUCON (b) AutoE2E

(c) Computation Precision (d) Deadline Miss Ratio

Fig. 8: The comparison between EUCON and AutoE2E with

an acceleration process, where the determined task rates be-

come higher at 100s, 200s, and 320s.

ECUs become nearly one after 200s, indicating more deadline

misses. In contrast, Figure 8(b) shows that AutoE2E can

solve rate saturation effectively. Though there are some short

intervals for the ECU processor utilizations staying above the

bound near the changing time point, AutoE2E can quickly

decrease the computation precision for some subtasks to

maintain the feasibility of the inner rate-based controller. The

computation precision of AutoE2E is shown in Figure 8(c),

where the tasks experience three large drops of computation

precision (at 100s, 200s, and 320s) when the determined

task rates become higher, and some small variations due to

the uncertainty of the execution time at runtime. Though

execution time for some subtasks varies, AutoE2E can still

prevent saturation in a close-loop manner. Figure 8(d) shows

the deadline miss ratio for the steering control algorithm

(T4). The deadline miss ratio for EUCON is 0.1 at 200s,

and increases to 0.45 at 320s. Though there is no continuous

deadline miss, these deadline misses can still lead to a large

tracking error in the vehicle control application. To conclude,

AutoE2E outperforms EUCON by 35.4% in terms of overall

deadline miss ratio with an overall task execution time ratio

decrease of 24.3%.

Then we analyze the performance of the computation preci-

sion restorer. In this experiment, we continue the acceleration

scenario shown above as follows: After running at the highest

vehicle speed, the vehicle decelerates to the speed where the

system experiences the first acceleration (100s in Figure 8(a)).

We compare the restorer with two baselines: 1) Optimal, which

is the optimal computation precision based on Equation (5).

However, the actual execution time is unknown at runtime so

it only serves as a theoretical upper bound. 2) Direct Increase,

which increases the execution time ratio towards one directly

with a fixed step size, and stops once the system is saturated.

Figure 9 shows the performance of the computation pre-

cision restorer during the deceleration. Figure 9(a) shows

two valleys at 40s and 70s, indicating that the task rate is

decreased and the outer-loop controller increases the execution



(a) AutoE2E (b) Direct Increase

(c) Computation Precision (d) Restored Precision
Fig. 9: The performance of the computation precision restorer.

The restorer outperforms Direct Increase and is closer to the

optimal in terms of computation precision restoration.

(a) (b)
Fig. 10: The performance of AutoE2E compared with EUCON

and OPEN: (a) Traveling trajectory for the steering control for

a double lane change example. (b) The tracking error for the

speed control task in the adaptive cruise control.

time ratio for subtasks. After 80s, the utilizations of ECU3

and ECU2 become higher than the bound, indicating that the

current execution time is so large that the inner-loop controller

is already saturated. The restorer then stops decreasing the

task rates and waits for the outer-loop controller to solve the

saturation issue. After the outer outer-loop controller decreases

the execution time ratio, the restoration procedure finishes.

Direct Increase shown in Figure 9(b) incurs several peaks,

indicating that potential deadline misses could happen during

the restoration process. In contrast, our restorer leverages

under-utilization and does not have such peaks when adjusting

the task rate. Figure 9(c) shows how the computation precision

is restored during this process. The small variations of the

precision can also be found for the steering control caused by

the uncertainty of execution time. Figure 9(d) shows that the

restored computation precision for our scheme is only 7.7%

less than the optimal value (3.35 for the restorer and 3.63 for

optimal), and outperform Direct Increase by 8.2%.

C. Comparison of Control Performance
Here we show the performance of AutoE2E with metrics

used in the autonomous driving applications. Specifically, we

analyze how deadline miss ratios can affect the performance of

the real control applications such as lane change path tracking

and adaptive cruise control in the scaled car. Figure 10 shows

the performance of AutoE2E for the selected autonomous

driving applications compared with two baselines: OPEN and

EUCON. OPEN is similar to the state-of-the-practice solution

used in today’s automobile industry, where task rates r are

(a) EUCON (b) AutoE2E

(c) Computation Precision (d) Deadline Miss Ratio

Fig. 11: The comparison between EUCON and AutoE2E with

the acceleration process in simulation.

calculated with Fr = B based on the offline estimated

execution time F. Figure 10(a) shows the tracking performance
of lane change using steering control (T4). After 40s, the curve

of OPEN shows clear deviation from the reference, which is

caused by the continuous deadline misses. EUCON cannot

track the trajectory well either, because rate saturation can

happen during the experiment, and cause deadline misses for

the control applications. AutoE2E, on the contrary, can track

the reference with a maximum tracking error of 5cm with a

24.3% decrease of computation precision for the application.

AutoE2E outperforms EUCON by 12cm and 5cm in terms

of maximum and average tracking error for an 1:16 scaled

car, respectively. Note that the corresponding tracking error
difference of a real vehicle is 1.92m and 0.8m, which is
sufficiently large for the vehicle to travel across its lane and
cause an accident. Figure 10(b) shows the tracking error for
the adaptive cruise control of a high speed vehicle. We can see

the spikes in EUCON, which are caused by the abrupt changes

in the vehicle dynamics to correct the accumulated error due

to the previous deadline misses. Though the tracking error

of EUCON is small, these spikes can be harmful to vehicle

mechanical parts and decrease the life of the vehicle [32].

D. Larger-Scale Vehicle Simulation Result
In this part, we have implemented AutoE2E in an extended

version of the EUCON simulator [10] to show how AutoE2E

can handle larger-scale and more realistic autonomous driving

control applications with 6 ECUs and 11 tasks. The ECU and

task setup is shown in Figure 2.

Figure 11 shows the effectiveness of AutoE2E in terms of

saturation prevention. At 25s and 37s, the determined task

rates become higher due to the speed increase, which causes

the ECU processor utilizations of EUCON to stay above the

utilization bounds in Figure 11(a). The corresponding deadline

miss ratio increases to 1 after 37s as shown in Figure 11(d).

On the contrary, AutoE2E can control the ECU processor

utilization to the utilization bound by adjusting both the

execution time ratios and the task rates, and only has two short

intervals of staying above the utilization bounds at 25s and

37s as shown in Figure 11(b). After that, AutoE2E decreases

the execution time ratio for some control applications and



(a) AutoE2E (b) Direct Increase

(c) Computation Precision (d) Restored Precision
Fig. 12: The comparison of the computation precision restorer

and the baselines for an emulated deceleration scenario.

guarantees the feasibility for the inner-loop controller as shown

in Figure 11(c). To conclude, AutoE2E can still guarantee the

deadlines for these applications for the heavy workload.

We then test the performance of the computation precision

restorer. Figure 12 shows the utilization valleys when we

apply the computation precision restorer. After two rounds of

task rate decrease, almost all the computation precision can

be restored to the original value. On the other side, Direct

Increase shows spikes around 8s, which could lead to possible

deadline miss. Figure 12(d) shows that our scheme can achieve

a computation precision of 9.62, which is 3.9% lower than

optimal, and outperforms Direct Increase by 12.9%.

VI. CONCLUSION
The recent growth of autonomous driving has introduced a

new research challenge on real-time scheduling of vehicle con-

trol systems. After examining traditional open-loop scheduling

methodologies used in automotive systems and adaptive real-

time scheduling proposed for general DRE systems, we find

that a new real-time scheduling solution must be designed

due to a special feature of driving control. In this paper,

we have proposed AutoE2E, a two-tier middleware system

for automotive OS that overcomes the limitation of existing

solutions by having a second-tier controller, to dynamically

lower the execution time (and so computation precision) within

the allowed range to regain effective CPU utilization control

for E2E real-time guarantees. AutoE2E has been evaluated

both on a hardware testbed with scaled cars and in larger-scale

simulation. Our results demonstrate that AutoE2E outperforms

a state-of-the-art solution that relies solely on rate adaptation

by 35.4%, on average, in terms of deadline miss ratio, and in

the meantime reduces the tracking error of path tracking.
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