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Abstract—Autonomous vehicles often need human driver to
take over in some complicated conditions. Such a sudden takeover
could jeopardize the vehicle’s safety and stability if not han-
dled properly. Hence, if the driver’s takeover intention can be
recognized as early as possible, the vehicle can have sufficient
time to make important takeover preparation. The existing in-
car monitoring systems are mostly based on camera, which have
several key limitations, such as brightness condition and motion
obscurity. On the other hand, WiFi-based wireless sensing has
recently shown a great promise in human activity recognition,
but mainly for large-scale movements performed in the room
environment.

In this paper, we propose WiDrive, a real-time in-car driver
activity recognition system based on Channel State Information
(CSI) changes of WiFi signals. WiDrive consists of three major
components: A novel algorithm to extract small-scale in-car
human activity features, a real-time recognition system based on
Hidden Markov Model (HMM), and an online adaptation algo-
rithm to adapt for different drivers and vehicles. We implement
WiDrive with commercial WiFi devices and evaluate it in real
cars. Our results show that WiDrive has an average recognition
accuracy of 91.3% and improves the takeover safety.

I. INTRODUCTION

Autonomous vehicles have received increasing research

attention in recent years. Despite the ideal objective of being

100% autonomous, many such vehicles often need to switch

between the self-driving and human-driven modes by perform-

ing the “takeover” action. For example, the human driver may

desire to take over the driving wheel in some complicated

conditions (e.g., when another car ignores the red light or

unexpectedly stops ahead due to severe weather or accidents).

Likewise, when the human driver is unable to safely drive the

vehicle (e.g., due to the influence of alcohol, drug, or fatigue),

future autonomous vehicles may force a takeover back to

the self-driving mode. In either case, the human driver could

suddenly make a movement at any time that either is a takeover

attempt itself (former case) or can trigger one if necessary

(latter case). Such a sudden takeover, if not handled properly,

can generate potential risks, because the autonomous vehicle

may lose its stability and result in undesired accidents. From

the mechanical perspective, it is highly desirable to recognize

a takeover intention in real time, such that the vehicle can

have sufficient time to gradually adjust its steering setting for

vehicle control preparation [1][2].

There exist some approaches for driver activity recogni-

tion. One commonly used system is camera [3][4], as it is

cost-efficient and easy to be installed. With advanced image

processing techniques, camera can provide detailed informa-

tion about the driver activities. However, traditional camera

has several key limitations, such as Line-of-Sight (LoS) and

brightness condition. Though the emergence of the infra-red

camera and multi-camera systems has partially overcome the

limitations, the camera system still has problems such as poor

behavior in direct sunlight, obscurity caused by motions, and

edge erosion [5][6]. Moreover, a recent study has shown the

defect of state-of-the-art image processing algorithm known as

“the elephant in the room” (see Section II) [7]. Besides camera,

another possible solution is radar systems. They do not have

these limitations and can recognize activities using radio wave

reflection [8][9]. However, current radar systems on vehicles

are usually used outside to detect large objects (e.g., other

nearby vehicles). Fine-grained, short-range radar systems are

still in the experimental stage and not yet available.

On the other hand, WiFi sensing has recently shown a great

promise in human activity recognition [10][11][12]. Compared

with radar systems, WiFi devices are easier to install and have

a significantly lower cost. In addition, they do not have the

limitations of camera. The WiFi-based solution is also non-

intrusive, i.e., the device does not need to be attached to

the human body. Recent studies show that WiFi-based human

activity recognition system can achieve an accuracy over 90%

for in-room activities [11][12], and its feasibility has been

proven in a wider range of application scenarios, e.g., smoking

detection [13] and people identification [14]. However, most

WiFi activity recognition systems are designed only for large-

scale activities in the room environment only.

With the development of WiFi-based V2V (Vehicle to

Vehicle) network, WiFi is expected to soon replace Bluetooth

for in-car interaction [15]. However, existing WiFi-based in-

room activity recognition techniques cannot be directly applied

to driver activity recognition, mainly due to three challenges.

First of all, the range and duration of these activities can be

much smaller than those of an in-room activity due to space

limitation: The frequency shift caused by driver activities is

much smaller, making it hard to capture in WiFi signals;

Moreover, these activities usually last short (<1s). Thus, the

recognition scheme should be sensitive in both time and

frequency domains. Second, existing studies on activity recog-

nition can recognize one activity only after it is completely

finished. However, it could be too late to do such recognition

for certain emergency driving scenarios. The activity should

be recognized as early as possible, such that the vehicle can

have sufficient time for the takeover preparation. Third, the
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classification model should be adaptive and robust for different

vehicles and drivers. For in-room activities, the classification

model is often trained offline and fixed [11][16]. As a result, an

offline trained model achieves low accuracy when the driver

is not included in the training set or applied to a different

environment (e.g., a new car). Thus, an online adaptation

algorithm is required. Although recent studies [5][17][18] have

started to recognize driver activities with WiFi signals, they

only try to differentiate larger-scale movements (arm vs. head),

focus mainly on non-emergency activities (no need for real-

time recognition), and do not have online model adaptation.

In this paper, we propose WiDrive, a WiFi-based driver

activity recognition system. It analyzes the moving speed of

the driver’s body parts, and extracts the direction information

of small-scale activities with WiFi receivers. WiDrive is a real-

time recognition system that can not only recognize activities

in a short time, but also finish the recognition when the

activity is still being performed. In addition, to be more robust,

the classification parameters of WiDrive are designed to be

updated adaptively for a new environment or a new user.

The main contributions of this work are as follows:

• We propose WiDrive, an in-car activity recognition sys-

tem using commodity WiFi devices. WiDrive can rec-

ognize at least seven takeover-related small-scale in-car

activities with an overall accuracy of 91.3%.

• WiDrive can recognize an ongoing activity within 60ms

before it is finished. This leads to as much as 60% safety

performance improvement compared to other solutions.

• WiDrive is designed to be adaptive and can update its

classification model, based on Expectation Maximization

(EM) algorithm, to fit different vehicles or drivers.

The rest of this paper is organized as follows. Section II

discusses the related work. Section III presents the motivation

by analyzing a typical driver takeover scenario. Section IV

presents the design of WiDrive. Section V presents the evalu-

ation results of WiDrive. Section VI concludes the paper.

II. RELATED WORK

Camera is one commonly used sensor for driver activity

recognition. The captured images can be processed to provide

information about the traffic [4] and driving behaviors [3].

Infra-red and thermal cameras have overcome the limitations

of the traditional camera (e.g., darkness and illumination

[19][20]. However, a camera-based solution still relies on the

placement of the devices, and has problems like poor behavior

in direct sunlight, fragile lens subject to physical damage, and

obscurity by motions [6]. Moreover, image processing algo-

rithms commonly have the problem known as “the elephant

in the room”, i.e., the overlap of items in the image can cause

recognition failures [7]. Thus, camera is not the best solution

for the takeover detection scenario.

With the wide-spread WiFi networks, using WiFi receivers

as a sensor has been a growing topic for human-computer

interactions. Some initial studies focus on the Received Sig-

nal Strength Indicator (RSSI) for sensing and localization

[10][21][22]. WiGest records the fluctuations caused by hand

movements to recognize different gestures, but it can only

work when the hand is within several centimeters around

the receiver and the gestures are limited to hand push-pull

combinations. Recent research studies have shown that the

Channel State Information (CSI) can be used to recognize

more fine-grained activities like finger movements than using

RSSI [23][11][24][25][26]. Moreover, CSI can be directly

extracted in many commercial Network Interface Card (NIC)

like Intel 5300 [27]. For example, CARM proposes a CSI

speed model and extracts the movement patterns of human

body [11]. WiHear uses the reflection signals from lip move-

ments to detect spoken words. [23]. Xi et al. propose to

use CSI for counting the number of people in a crowd

[26]. Several studies have leveraged CSI signal to detect

small-scale human gestures. WiDraw is proposed to track

the motion of people hands using Angle-of-Arrival estimation

[25]. QGesture leverages CSI phase to track human hand

movements [24]. However, these studies either have to use

a lot of transmitters (>10) [25], or have to rely on special

devices that are not commercially available [23][26]. Hence,

they are not suitable for cost-efficient in-car recognition of

small-scale driver activities.

Recently, some research has started to address in-car activity

recognition with CSI [5][17][18]. Wibot is proposed to clas-

sify the driver’s activities into head or arm movements [5].

However, the difference between head and arm movements

is too coarse-grained for takeover recognition. WiFind aims

to infer whether the driver is fatigued using Hilbert-Huang

Transform [17], but is also coarse-grained as it can only

recognize whether the activity is fatigue-related or not. ViHOT

is proposed to track the head rotation for the driver with CSI

phase difference [18] However, all the three aforementioned

solutions focus only on the non-emergency activities and do

not consider the vehicle’s dynamics. In contrast, WiDrive aims

to recognize the small-scale takeover activities, in real time,

using CSI and takes the vehicle’s dynamics into consideration

to dynamically optimize the recognition performance.

III. MOTIVATION

In this section, we motivate the designs of 1) real-time

recognition and 2) online model adaptation for WiDrive. For

real-time recognition, we analyze a real-world example as

shown in Figure 1(a). Car A is on the autonomous driving

mode and following another car (Car B). At some time point,

Car B slows down due to some reasons (e.g., a mechanical

failure). Noticing this situation, the driver of Car A decides

to switch off autonomous driving and pass car B by reaching

out for the steering wheel, and starts to manually take the

pass maneuver. However, due to the difference between the

vehicle’s autonomous control law and the driver’s assumption,

there exist some risks in the first few seconds after the

driver gets back the control of the vehicle [1][2]. We use a

widely adopted virtual-reality driving simulation environment

to simulate our motivation scenario [28]. In our simulation, a

sinusoidal pulse is set to simulate the traveling path of Car A

and the driver is told to track this path. In order to reduce the

impact of driving styles on the experiment, we have recruited

Authorized licensed use limited to: University of Texas at Austin. Downloaded on May 08,2020 at 16:44:36 UTC from IEEE Xplore.  Restrictions apply. 



(a) Motivation Setup (b) Impact of Recognition Delay
Fig. 1: Motivation scenario setup and results. (a) The
motivation scenario and the typical trajectories of two
recognition delays. (b) The average tracking error (meters)
related to recognition delay for three volunteers.
three volunteers to conduct the experiment independently. At

the beginning of the experiment, the driver is asked to follow

a straight line for a few seconds (autonomous driving with

hands off the steering wheel), then grab the steering wheel and

track the trajectory (manual driving). Note that the steering

ratio is normally different for autonomous driving, so the

takeover results in a steering change [1]. To better illustrate the

importance of early recognition, we define “recognition delay”

as the monitoring time to do the recognition for an ongoing

in-car activity. For instance, if the recognition delay is 0.5s,

it indicates that the driver’s takeover activity is recognized

0.5 seconds after the driver starts to approach the steering

wheel. Once the driver’s takeover intention is recognized, the

simulator adjusts the steering ratio gradually. Generally, an

earlier recognition results in an earlier change of the steering

ratio, so it can achieve a better stability and safety result.

Figure 1(a) shows the typical traveling trajectories for 0.1s

recognition delay (the red curve), 0.9s recognition delay (the

blue curve), and ideal case (the black dash line). We can

clearly see the oscillation made by the vehicle in the blue

curve, which is caused by the steering setting change after the

manual driving begins. This oscillation is dangerous because it

not only causes vehicle instability, but also can interfere with

other nearby vehicles. On the other hand, the trajectory of 0.1s

recognition delay is almost as the same as the ideal trajectory,

indicating that an early recognition and preparation for the

takeover activity could improve the driver’s performance of

controlling the vehicle. Figure 1(b) shows the average tracking

errors with recognition delay for the three volunteers. The

tracking error stays small given a 0.3s recognition delay.

As the recognition delay becomes larger, the tracking error

increases rapidly with a normal speed (40mph), indicating that

the vehicle does not have sufficient time to adapt its steering

setting to the manual driving mode, so the driver cannot track

the path well. Furthermore, the tracking error can be as large

as 3.3m for the 0.9s recognition delay. Given that a typical

lane’s width is only 4m, this can causes a serious accident.

This result shows that the takeover activity must be recognized

in real time in order to leave sufficient time for the vehicle to

do the takeover preparations. Otherwise, the driver may not be

able to keep the vehicle in control, which can cause accidents.

To motivate the necessity of online model adaptation, we

test the robustness of the existing WiFi recognition schemes

using offline training scheme in the vehicle [29]. We test

four different activities: Approach the driving wheel (App),

withdraw from the driving wheel (With), reach for items

(a) Test with a Different Vehicle (b) Test with a Different Driver
Fig. 2: Robustness test for activity recognition system.

(a) Side View (b) Top View
Fig. 3: Multipath reflection of WiFi signals in the vehicle.
(Reach) and grab the door (Door). Two sets of experiments

are conducted: First, we test these activities in a new vehicle

that is different from the one used in model training; Then we

test with a new user whose activities are not included in the

training set. Figure 2 shows that the accuracy drops from over

90% to nearly 70% in a different vehicle, and drops even more

for a new driver. With this accuracy for only four activities, the

off-line trained model cannot be directly used in a different car

or for a different driver. This result shows that an adaptation

algorithm is needed to improve the recognition accuracy when

the system is used in a new vehicle or with a new driver.

IV. DESIGN OF IN-CAR ACTIVITY RECOGNITION SYSTEM

In this section, we first introduce the design overview of

WiDrive, then introduce the details of each component.

A. Channel State Information and Activity Recognition
Modern WiFi devices usually contain multiple transmitting

and receiving (Tx-Rx) antenna pairs. In order to perform

rate adaptation or power optimization, the receiver has to

continuously monitor the situation of the wireless channel and

reports information back to the transmitter. Information about

the wireless channel is called Channel State Information (CSI).

For WiFi devices, CSI consists of channel frequency response

of each subcarrier between each Tx-Rx pair. Taking multipath

issues into consideration, the total channel system response

should be the summation of signals (both amplitude and phase)

coming from LoS paths and all the other reflection paths.

By analyzing CSI, we could know how the reflection paths

change: The changes on a certain reflection path lead to the

change in the phase of the WiFi signal on the corresponding

path [11]. If the changes are caused by human activities, these

changes in CSI can be used to recognize different activities.

As shown in Figure 3, the blue lines and red lines represent

the static propagation paths and dynamic paths, respectively.

For dynamic signals that are reflected by the moving human

body, the speeds of body parts are recorded as Doppler shift

in the corresponding CSI values.

B. Design Overview
We propose WiDrive, a system to recognize in-car activities

based on CSI of WiFi signals. Figure 4 shows the framework

of WiDrive. Generally, there are three major components in

WiDrive: 1) Small-Scale Activity Feature Extraction, 2) Real-

Time Recognition, and 3) Online Model Adaptation. Specif-

ically, when the driver performs an activity (e.g., stretching
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and grabbing the wheel), WiDrive can capture the sudden

change of wireless signals, and record the following CSI

values. Afterward, the energy distribution of recorded CSI

values during the activity is extracted by the time-frequency

analysis as feature vectors. These feature vectors serve as the

input to the real-time recognition component, even if the whole

activity is not finished yet. After the whole activity finishes

and when the activity type can be confirmed by other devices,

such as additional cameras, the model adaptation component

adjusts the parameters of the real-time recognition component

to improve the recognition accuracy.

The feature of an activity can be seen as the combination

of the moving speeds of different human body parts (limbs,

head, and torso) at different time points [11][14]. For example,

activities involving only arms are much faster than those of the

torso but with a less reflection area; Approaching the driving

wheel causes a larger Doppler shift compared with swiping

hands. Thus, the first component aims to extract the features

of those activities using conjugate multiplication proposed in

WiDance [29]. Then the signal is denoised by a low-pass filter

and Principle Component Analysis (PCA) is applied to reduce

the dimension of CSI signals. We use time-frequency analysis

to extract activity features through Fourier transform.

While existing work focuses mainly on in-room large-

scale human movement recognition (e.g., running, walking),

a particular challenge for in-car activity recognition is that a

driver can move only the upper body in a much smaller scale

(than in-room activities) due to the limited space in a car cabin.

Small-scale activities involve only limb motions and usually

last short. Though several designs have been proposed to track

small-scale activities like gestures and finger motions, either

they can only work within a limited distance (<30cm) [30][25]

(while the driver’s hand can be anywhere near the driver’s seat

when the vehicle operates autonomously), or the recognition

delay cannot meet the stringent time requirement of takeover

(>0.7s) [24]. We propose to recognize small-scale activity

through time-frequency analysis by finding the optimal time

window and overlap ratio to fulfill the conflicting minimum

frequency resolution requirement and visibility requirement of

the time-varying signal. Then the activity is formulated as

a sequence of feature vectors that are sent to the real-time

recognition component for the activity recognition.

Another key novelty of WiDrive is its real-time recognition,

which aims to recognize the activity quickly, even before the

driver finishes it. However, there is a trade-off between the

recognition accuracy (a longer trace results in a higher accu-

racy) and the vehicle control performance (earlier recognition

allows better control preparation). We model this trade-off as

a multi-objective optimization problem and find the best time

point to finish the activity monitoring and start the recognition.

Then, we fuse the feature vectors from two WiFi receivers and

use Hidden Markov Models with Gaussian Mixture emissions

Model (HMM-GMM) based classifier to recognize the activity.

The third component is online model adaptation. After

an activity is recognized, we may be able to evaluate our

recognition accuracy by comparing our result with the ground

Fig. 4: Framework of WiDrive.
truth, which sometimes can be provided by other sensors, e.g.,

a camera. Note that the ground truth cannot be always obtained

due to the limitations (e.g., direct sunlight), and WiDrive

uses this component only when it can get the correct result

from other sensors. If the accuracy is not sufficient, WiDrive

adjusts the model using our adaptation algorithm based on the

EM algorithm. The online model adaptation ensures a high

accuracy, even when WiDrive is applied to different vehicles

or different drivers.
C. Small-scale Activity Recognition

A key challenge for in-car activity recognition is its small

scale due to the space constraint in a car cabin. To explain the

challenge in detail, we first introduce the existing WiFi-based

recognition approaches and their major limitations.

CARM [11] and WiDance [29] propose to use CSI for

in-room activity recognition with a good accuracy. However,

these approaches cannot be used directly for in-car activities,

because in-car activities do not have large torso motion due to

the space limitation. The typical activities like approaching the

driving wheel and shifting the gear only involve arm motions

and their duration is usually small (less than 1s). As a result,

the amplitude of wireless signals reflected from human body

becomes smaller and so the WiFi signal change is harder to

capture. On the other hand, WiDraw [25] can track the small

motion of human hands and claims that its error is within 10%,

but requires a large number of stationary WiFi transmitters

(usually > 10). This assumption can be hard to meet due to

limited space in the car cabin. QGesture [24] proposes to use

the CSI phase to track the hand’s traveling distance, but the

phase change is sensitive to other turbulence like random body

motions and surrounding changes.

We leverage time-frequency analysis to recognize small-

scale activities with Short Time Fourier Transform (STFT),

because STFT can preserve negative Doppler shifts while

wavelet transform cannot. This is crucial in recognizing mov-

ing direction. However, small-scale activities have one issue

using STFT: Under a certain sampling rate, a short time

window used by STFT leads to few data points accumulated

in each window length, so the frequency resolution is low. On

the other hand, a large time window cannot capture the quick

changing signal in the time domain, because it cannot reflect

how exactly the signal changes in one single time window.

Small-scale activities require a high frequency resolution,

because the Doppler shift caused by the motion is limited,
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f f

(a) No Overlap

f f

(b) 50% Overlap
Fig. 5: An example of utilizing overlapping. We only
know both frequency components f1 and f2 occur in time
window 1 in (a). We can find f1 is in the early half of
window 1 while f2 is in the overlapped part in (b).

i.e., it needs a long time window to distinguish how speed is

distributed in the spectrum, while the short duration of in-car

activities requires a short time window that can capture quick

body speed changes during the activity.

To resolve the conflict, we utilize overlapping of two

consecutive time windows to increase the visibility for time-

varying signals while preserving frequency resolution. The

redundant data introduced by overlapping allow us to have

the visibility to see when the body speed changes in a very

short time (less than a time window size). Figure 5 shows an

example of how overlapping works. Frequency components f1
and f2 are in the same window shown in Figure 5(a). Thus,

we cannot know when f1 and f2 appear within time window

1, because the whole time window will be transformed into

frequency domain and we only know f1 and f2 are in time

window 1. If we use an overlap ratio of 50% (shown in Figure

5(b)), we can know f1 is only in time window 1, but f2
appears in both windows. Thus, we can find out that f1 is

in the first half of time window 1 and f2 is in the second

half of time window 1 by comparing the frequencies in time

windows 1 and 2, which doubles the visibility for time-varying

signals while preserving frequency resolution. The more data

points overlapped, the better visibility can be provided for

time-varying signals.

However, overlapping introduces redundant data to be pro-

cessed and increases recognition time overhead, which is

an issue for a real-time system like WiDrive. To resolve

the conflict between time-frequency resolution and the time

overhead, we formulate an optimization problem with regard

to time window length ΔT and overlap ratio ro(0 ≤ ro ≤ 1) to

minimize the time overhead of the system. The time overhead

can be expressed as NL2, where N is the number of feature

vectors of an activity and L is the length of the feature vector.

Specifically, N = Ttotal/[ΔT (1− ro)] given that Ttotal is the

duration of the activity; L = Fmax

ΔF +log2(Fcut−Fmax), Fcut

is the cutoff frequency for the low-pass filter, and Fmax is the

threshold frequency. Below Fmax we equally divide the band

of [0, Fmax] into several sub-bands whose bandwidth is exact-

ly frequency resolution ΔF , while the bandwidth decreases

exponentially for frequency band [Fmax, Fcut]; Though N
and L should be integers, we relax these constraints as a

way to approximate the optimal solution to the problem.

Mathematically, the problem is formulated as:

min NL2

s.t.
1

Fth
≤ ΔT ≤ Tth

1− ro
1 = ΔFΔT

(1)

where Fth and Tth are the lowest requirements for frequency

resolution and maximum allowed time interval to distinguish

speed change, respectively. Both of them are given according

to the range and duration of the activity. In our implementa-

tion, Fth is chosen to be 4Hz because otherwise the Doppler

shift will be overwhelmed for a small time window, and

Tth is chosen to be 0.08s to capture the changes in one

activity. The objective function is to minimize the computation

overhead. This is a convex optimization problem and we can

solve it using the Lagrange multiplier method by transforming

the original problem into an unconstrained one by assigning

auxiliary variable λi to each constraint shown in Equation (1)

[31].
D. Real-Time Recognition

Within the allowed time length for driver takeover, three

operations must be finished: 1) driver monitoring to collect a

data trace for activity recognition, 2) recognition computation,

and 3) vehicle control if the driver is recognized as intending to

take over. Hence, a key challenge of real-time driver activity

recognition is to decide how much time each operation can

take while ensuring the total time is shorter than the allowed

time length. As discussed before, for data collection, the longer

it takes, the more accurate the recognition result will be, but

leaves less time for computation and control.
1) Modeling accuracy-timeliness trade-off: In order to im-

prove the real-time recognition performance, we hope to rec-

ognize an activity before it is finished. However, the decision

of how long we should monitor an ongoing activity for the

recognition is not trivial: For one activity, longer monitoring

time of the activity yields better accuracy but leaves less

preparation time for the vehicle to react. As shown in Section

III, if the vehicle does not have sufficient time to prepare

for the takeover action, it may lose its stability or increase

the accident risk. Conversely, if the activity is recognized

with insufficient data, the vehicle could receive false alarms

and lower the user experience. Therefore, there is a trade-

off between the recognition accuracy and the takeover control

performance. We formulate it as a multi-objective optimization

problem. Our objective vector F is defined as follows:

MAX{F(td, tc) = [acc(td), safety(v, tc)]}, (2)

where tc is the duration for the vehicle to do the takeover

preparation; td is the duration for WiDrive to collect data and

perform real-time recognition; v is the velocity of the vehicle.
The first term acc(td) is the recognition accuracy. We

infer their relationship by collecting data on real vehicles and

establish a statistical model offline based on the measured

recognition result with logarithmic curve fitting, because it

provides the minimum square error among all fitting options.

The relation between accuracy and td is defined as:

acc(td) = In(α(td + b)) + c0, (3)

where α, b and c0 are the parameters to be estimated in

the curve fitting process. The second term safety(v, tc) is

the safety index that reflects the effectiveness of the takeover

control performance, and is related to the dynamics of the

vehicle. The dynamics of the vehicle can be viewed as a
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(a) (b)
Fig. 6: An illustration of how to solve the multi-objective
optimization problem. (a) The feasible zone. (b) The Pareto
front (blue curve) and the knee point (green dot).
combination of lateral tracking error ls and stability β in most

cases on the road. Specifically, with a fixed fraction coefficient

(μ = 0.6) and a turning scenario, we can approximate ls and

β with tc and v based on the general steering model [32]:

ls(v, tc) =
3.732

1 + e−(0.4385tc+0.1234tcv−3.95))

β(v, tc) = 0.651t2c − 0.10vtc + 0.83tc + 0.38v
(4)

Note that different scenario may have different ls and β esti-

mations. In a real implementation, ls and β can be estimated

online by leveraging the path finding and tracking system

[33][34]. After that, we compute safety(v, tc) related to ls
and β as follows in order to combine these two factors:

safety(v, tc) = (λec1ls(v,tc) + (1− λ)ec2β(v,tc)) (5)

where λ is the weight for the lateral tracking error term; c1
and c2 are chosen according to the road condition, vehicle

dynamics and preference of vehicle manufacturers.

The constraint of our model comes from the fact that the

total takeover time is limited. Thus, the summation of td and tc
should be smaller than the total takeover time Ttotal. Because

Ttotal is usually small, we take the computation overhead

tcomp into consideration and model tcomp = ktd + b as the

complexity of our classification algorithm. Mathematically,

the constraint of our multi-objective optimization function is

formulated as follows:
tc + td + tcomp ≤ Ttotal (6)

2) Optimal trade-off point calculation: To solve this multi-

objective optimization problem, we propose to find the set of

optimal solutions using the Pareto front theory. The Pareto

front is a widely used tool to solve multi-objective optimiza-

tion problem, and it is defined as the set of points where

no objective can be improved without sacrificing at least

one other objectives. Here we first find the Pareto front of

our problem, then solve the problem by converting it to a

single objective optimization problem. As shown in Figure

6(a), the feasible zone is shown as the shadow area below

the red line. To find the Pareto front, we need to map every

[td, tc] pair in the feasible zone to the objective function zone

[acc(td), safety(v, tc)]. Then the Pareto front can be found

when the inequality constraint becomes an equality constraint

(i.e., tc+td+tcomp = ttotal). On the Pareto front, all the points

are equally optimal, because we can not improve acc(td)
without degrading safety(v, tc), or vice versa.

On the Pareto front, we choose the best trade-off point as the

point whose distance between the ideal point (red dot in Figure

6(b)) and itself is minimum. This point is called the knee point

and is widely used as the best trade-off point [35][36]. Figure

6(b) shows how to find the knee point: We draw a normal line

to the Pareto front starting at the ideal point. Then the knee

point can be found as the intersection of the normal line and

the Pareto front (green dot in Figure 6(b)).

E. Online Adaptation of HMM Parameters
The widely-used training algorithm for Hidden Markov

Models with Gaussian Mixture emissions Model (HMM-

GMM) based classifier is the Baum-Welch algorithm, which

can only work offline in a batch mode [37]. However, this

offline model is not sufficient for different vehicles and drivers,

or when a driver changes his posture pattern for an activity.

Moreover, the HMM classifier cannot be re-trained when a

new activity trace is collected due to computation overhead

and storage limitations. Thus, we propose to have an adaptive

design for the in-car activity recognition system: It should

learn and update its classifier’s model if the driver activity

is not recognized correctly. When such activity sample is

collected, the classifier changes its set of parameters to fit the

new environment or a new driver. For an HMM classifier, the

parameter set θ can be defined as θ = (π,A,w, μ,Σ). π is the

prior probability vector for the HMM model; A is the transition

probabilities for the HMM model; w is the weight matrix for

GMM; μ is the mean matrix for GMM; Σ is the covariance

matrix for GMM. Generally, the HMM parameters (π and A)

reflect the typical posture changing during an activity, and

GMM parameters (w,μ,Σ) represent how exactly the activity is

performed and how velocities are distributed for each posture.

Specifically, we leverage the EM algorithm [38], a well-

known algorithm for hidden state parameter estimation, to

derive our online adaptation process. In our case, whenever

a new sample OT is obtained from our wireless receiver and

the recognition result is not correct given the ground truth, we

start a round of adaptation by assigning a weight W to OT

and calculating the lower bound of the likelihood function for

activity estimation in the training set, namely Q(θ, θi) as:

Q(θ, θi) =

T−1∑

t=1

∑

S

p(S|Ot, θi) log p(Ot, S|θ)

+W
∑

S

p(S|OT , θi) log p(OT , S|θ))
(7)

where θi is the parameter set estimator for HMM model before

current round of adaptation. Ot is the tth old sample; S is the

hidden state set; T is the number of old samples. Let Xt
d be

the random variable for the hidden state, where the dth feature

vector in the tth sample belongs to (e.g., X2
1 is the hidden state

that the 1st feature vector in the 2nd activity sample in the

training set belongs to), the update equation for the element

in π using Lagrange multiplier can be derived as [31]:

πi =

∑T−1
t=1 p(Xt

1 = i|θi)
N − 1 +W

+
Wp(XT

1 = i|θi)
N − 1 +W

(8)

where πi in set θ = (π,A,w, μ,Σ) represents the prior

probability in hidden state Si. In Equation (8), the first term

only uses the old samples, so it can be calculated in the

previous round of adaptation and be retrieved in this round

of adaptation; The second term includes the new sample, and
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(a) (b)
Fig. 7: An illustration of WiDrive’s adaptation algorithm.
(a) Accumulated probability of current training set. (b)
Prior probability πi for the classifier with five states.
is calculated using the first feature vector and the old estimator.

In other words, with Equation (8), the probability πi is updated

with a weight averaging approach.

Figure 7(a) shows the target likelihood function Q(θ, θi) of

each round of adaptation when applying with a new driver.

The gap between the red curve and blue curve is caused by

the change of HMM-GMM parameters after each round of

adaptation, which indicates the improvement on Q(θ, θi). We

can see that Q(θ, θi) increases quickly for the first few sam-

ples, indicating that the mismatch between the original HMM-

GMM model and the current activity sample is decreasing.

After several rounds of adaptation, Q(θ, θi) becomes almost

static, indicating that the parameters have already been adapted

to the new scenario. Figure 7(b) shows the change of state

probability πi, which gradually becomes stable after about five

rounds of adaptation. Similarly, the formulas for the element

aij in transition matrix A and GMM parameters (w, μ) are

updated adaptively in the same way with πi.

For every observed new sample which is misclassified, a

round of adaptation is conducted by WiDrive. This process is

preformed continuously and the calculation results are stored

for possible next rounds. To avoid storing a large old sample

set, we forget the sample when it is too old. The speed of

forgetting old samples depends on the weight W : A larger

weight indicates that WiDrive counts less on old samples, so

it should store fewer old samples.

F. Discussion
1) False Alarm and Rollback: As an activity recognition

system, despite a high accuracy, WiDrive still has false posi-

tives, e.g., the driver reaches his arms out but not aims for the

driving wheel, which might raise the concern that WiDrive

could lead to car instability with false alarms, as it may

mistakenly disable the autonomous driving system. To that

end, once WiDrive recognizes a takeover activity, it can still

work with the vehicle control system to keep the vehicle stable

while changing the steering setting gradually by using haptic

feedback control [2][39]. WiDrive can also set a timer for the

takeover activity: If there is no change of the vehicle dynamic

for a certain time period upon a recognized takeover activity,

WiDrive will consider this recognition as a false alarm and

rollback the vehicle settings.

2) Impact of Surrounding Objects: One concern of in-car

recognition system is that the environment is mobile: Objects

outside the vehicle may impact on the robustness of the activity

recognition. In order to test the impact of surrounding objects,

we have collected activity traces on the road and calculated

(a) Devices inside the Car (b) Top View Illustration
Fig. 8: Device placement inside the car.

their spectrum. Results show that the impact of the outside

objects is negligible compared to the driver’s activity. WiDrive

can still recognize the activity in a moving vehicle with an

accuracy above 90%. The reason is that the major changes

are caused by the driver’s activity as the driver is much closer

to the WiFi devices. The Doppler shift caused by surroundings

is much weaker than that by the driver’s activity.

3) Multiple People in the Vehicle: One major concern of

WiFi-based activity recognition systems is that it can work for

single person only, since the reflection path change would be

mixed if there are two or more subjects acting together in the

same environment. For in-car scenario, the problem is simpler

than that of the indoor scenario, because the position for each

person in the vehicle is fixed. Thus, we could minimize other

passengers’ impact by placing the receiver close to the driver

and far to the others. We have also conducted experiments with

one passenger on the front seat, and let him perform activities

together with the driver. The result shows that WiDrive can

still recognize the driver’s activity with an accuracy of 88.2%,

regardless of what activity the passenger performs. It is our

future work to further improve the accuracy of WiDrive in the

scenarios with one or more passengers.

V. EVALUATION

In this section, we conduct the evaluation of WiDrive. We

first introduce the experiment setup. We then test WiDrive

with other baselines, component by component (Sections V-B

to V-E). At last, we test the overhead of WiDrive (Section

V-F).

A. Experiment Setup
1) Testbed Setup: The testbed consists of one TP-Link

Archer A7 as the transmitter and two ThinkPad T400 laptops

with Intel 5300 wireless NICs (chosen to fit the modified driver

[27]) as receivers to establish two Tx-Rx pairs in different di-

rections. For each Tx-Rx pair, the transmitter has one antenna,

and the receiver has three antennas. We generate packets using

ping command at the transmission rate of 800pkt/s. CSI values

are collected with modified network driver on a packet basis

[27]. In order to align the start point of the transmission period,

we write a script to synchronize the two laptops to begin CSI

collection at nearly the same time. In a real implementation,

the synchronization can be done by the central Electronic

Control Unit (ECU) in the vehicle, and CSI could be collected

using embedded systems instead of laptops. The placement of

our devices is shown in Figure 8. The transmitter is placed in

the middle of the dash broad. One receiver lays on the driving

wheel, and the other is on the passenger seat so that the two

receivers are orthogonal to each other.
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(a) (b)
Fig. 9: Recognition accuracy for WiDrive with different
time window sizes. (a) Comparison of different activity
ranges for WiDrive and two baselines. (b) Detailed recog-
nition accuracy with different time window size.

2) Candidate Activities Collection and Segmentation: For

candidate activities, we categorize them as three types:

• Driver’s Intentional Takeover. This type of activities

indicate that the driver is trying to take the control

back from autonomous driving mode and the vehicle

should do the preparation for the takeover. Specifically,

this type of activities include those that will change the

vehicle’s dynamic settings, e.g., approaching the steering

wheel (app), switching off the autonomous driving mode

(switch) and shifting the gear (gear).

• Vehicle’s Passive Takeover for Safety. This type of

activities indicate that the driver is not paying sufficient

attention to the driving tasks and the vehicle should be

noticed, so that the vehicle can enter the autonomous

driving mode without any driver’s input if necessary. This

type of activities include distracted behaviors like eating/

drinking (eat), fetching items (fetch), and withdrawing

from the driving wheel (with).

• Other activities relevant to safety. This type of activities

do not trigger the takeover action. However, they are still

among the driver’s most performed tasks [40]. Thus, we

still list them as candidate activities for future usage such

as operating door buttons (door). Note that some activities

(e.g., turning the driving wheel during manual driving)

are excluded from the candidate activities because they

can be detected using internal sensors of the vehicle [5].

For each of these activities, we collect more than 80 traces

per driver from eight volunteers (7 males and 1 female) in

the real car. In order to automatically detect the start point of

in-car activities, we propose to use the percentage of the near-

zero frequency energy as an indicator to do the segmentation.

For each time window, we calculate the percentage of the

near-zero frequency (-5Hz∼5Hz) after Fourier transform and

smooth it using median filter. Afterwards, we compare it with

a pre-defined threshold. When the percentage is lower than

the threshold, a possible activity begins and CSI value will be

recorded until the percentage rises again.

B. In-car Activity Recognition Accuracy with Complete Traces
In this section, we disable WiDrive’s real-time recognition

and online adaptation to focus on evaluating its recognition

accuracy of small-scale in-car activities with complete traces

collected after the entire activity is finished. We first perform

activities with different scale of activities (how far the hu-

man body moves) and compare the recognition accuracy of

WiDrive (ΔT = 0.33s, 75% overlap ratio) with two baselines:

WiDance [29] (ΔT = 0.12s, 0% overlap ratio) and Halflap

(ΔT = 0.33s, 50% overlap ratio), which is widely used in

spectrum analysis and recognition applications [41].

WiDrive outperforms WiDance by 15% on average and

Halflap by 10% for small-scale activities (<20cm). Generally,

a larger-scale motion results in a higher accuracy because:

1) the frequency shift is higher because human body moves

faster; 2) The reflection area becomes larger when the range of

activities is larger. Figure 9(a) shows that WiDance performs

the worse, because the Doppler shift caused by the activity

will be overwhelmed in the low frequency band and cannot be

captured; Halflap is better than WiDance because it considers

using a larger window with overlap to increase frequency

resolution, but the accuracy is still lower than WiDrive for

small-scale activities. As the scale of the activities becomes

larger, the difference between the baselines and WiDrive

becomes smaller because the Doppler shift caused by the

activities is stronger than that of small-scale activities and is

easy to capture. Figure 9(b) shows the relation between the

time window length and the recognition accuracy for activity

scale 30cm and 5cm: The accuracy reaches its maximum when

the time window is chosen between 200ms to 400ms, and it

drops sharply when the time window is not in this range.

Then we test the recognition accuracy of WiDrive by doing

a ten-fold cross validation and compare it with two baselines:

CARM [11] and HMM-based WiDance [29]. CARM is a

well-known recognition scheme but it cannot distinguish the

moving direction of an activity; HMM-based WiDance uses

WiDance’s signal processing algorithm and uses HMM to

recognize activities. Wibot is also an in-car activity recog-

nition scheme that uses peak analysis to do recognition [5].

Compared with time-frequency analysis, the features (e.g. peak

width, peak height) used in the peak analysis cannot reflect

the time-varying characteristics for the CSI signal during the

activity. Peak analysis also is well known to be prone to noises

and interference, because there could be false peaks or valleys

in the signal [42]. Thus, it is not selected for comparison.

Figure 10 shows confusion matrices for WiDrive and base-

lines, whose elements on the diagonal show the accuracy for

each activity type. WiDrive provides an overall accuracy with

91.3%, which is 14% higher than HMM-based WiDance and

30% higher than CARM. CARM and HMM-based WiDance

only achieve an overall accuracy of 62.3% and 78.7%, re-

spectively. CARM cannot identify app and with well because

their difference lies mainly in the different activity direction.

Moreover, CARM only leverages one Rx-Tx pair to recognize

the activity so it performs the worst among the schemes.

HMM-based WiDance can distinguish app and with with an

accuracy over 89%, but the accuracy for other activities are

below 80%, because reflection signals for an in-car activity are

not as strong as that of an indoor activity. WiDrive manages to

overcome this problem by choosing the optimal window length

and overlap ratio, and finding the best way to formulate the

feature vector and fuse the CSI data.

Besides recognition accuracy, Figure 11(a) shows the True
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(a) WiDrive (b) HMM-based WiDance (c) CARM
Fig. 10: The confusion matrices of WiDrive and two baselines.

(a) (b)
Fig. 11: True Positive Rate (TPR) and True Negative Rate
(TNR) Comparison. (a) Each activity using WiDrive. (b)
Average of all activities using different approaches.

Positive Rate (TPR) and True Negative Rate (TNR) of WiDrive

for each activity. The overall TPR and TNR of WiDrive is

91.2% and 93.7%, respectively, which indicates that WiDrive

can achieve a good trade-off between the missed detection and

the false alarm. WiDrive outperforms HMM-based WiDance

by 15.4% and 14.9% in terms of TPR and TNR, and outper-

forms CARM by 30.4% and 27.5% in terms of TPR and TNR

as shown in Figure 11(b).
C. Different Placements of WiFi Devices

WiDrive uses Doppler shift to recognize different human

activities. Thus, the recognition accuracy could be affected

by different placements of the devices, because different

placements of the devices could result in different traveling

paths of wireless signal reflected from human body. We test

four different placement settings shown in Figure 12. Figure

12(a) is the default placement setting of WiDrive. In order to

see how the angle for the two receivers affects the recognition

accuracy, we change the angle to 135◦ and 180◦ between

the two receivers and the router shown in Figure 12(b) and

Figure 12(c), respectively. In Figure 12(d), we keep the two

receivers to be orthogonal, but each of them has a larger

distance to the router on the dashboard. Though there could

be an infinite number of device placement setups, we choose

these placements as they can minimize the impact of the other

passengers. In the real system, WiDrive could be embedded

into the car body so that the most possible positions are all

included in Figure 12.

(a) (b) (c) (d)
Fig. 12: Top view of different device placement locations.

Figure 13 shows the accuracy of each activity for the four

placements. The overall accuracy does not change much for

different device placements, indicating that WiDrive is robust

and can be set in different locations on the car body. However,

if we examine the accuracy for each activity, we can see that

compared with placement (a), the accuracy of some activities

(door, gear, eat, and switch) decrease by 6.30% and 5.92% for

Fig. 13: Recognition accuracy with four different place-
ments (a,b,c,d) shown in Figure 12.

(a) Low Speed Case (40mph) (b) High Speed Case (65mph)
Fig. 14: Comparison of WiDrive with others baselines at
low or high driving speed.

placement (c) and (d), respectively, while the accuracy for the

others does not change much. The main reason for the drop is

that the distance between the driver and the receiver on the side

will be larger compared with placement (a), and these activities

(door, gear, eat and switch) rely heavily on the Doppler shift

on this receiver to be recognized: The reflected signal is

weaker for placements (c) and (d), so the Doppler shift caused

by the human activity will be harder to capture by the receiver

due to the interference. On the other hand, the other activities

(app, with, and fetch) have more distinctive features for the

receiver on the steering wheel and their dependency on the side

receiver is much smaller, so the accuracy of these activities

does not change as the placement changes.

D. Real-Time Recognition
WiDrive needs to finish activity monitoring, recognition

computation and vehicle control action in the total duration

of an activity. Here we evaluate the real-time performance

of WiDrive comparing with three baselines: 1) Conservative

(Con), which is designed to prioritize the control performance

and guarantees that the lateral tracking error will not be lager

than the half width of a lane (the car shall not travel to other

undesired lanes); 2) Aggressive (Agg), where td is chosen

with the maximum instability index such that the vehicle can

exactly maintain the stability; 3) Manual (Man): no takeover

preparation is taken by the vehicle. In order to evaluate the

impact on vehicle safety, we uses a metric called Safety Per

Lost Accuracy (SPLA), which is calculated as:

SPLA = safety(v, tc)/[1− acc(td)] (9)

SPLA represents the trade-off efficiency in the multi-

optimization model. A higher SPLA score indicates a better

accuracy-safety trade-off. The test scenario remains the same

as in the motivation (Section III). Figure 14 shows that
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(a) Different Users (b) Another Vehicle
Fig. 15: Recognition accuracy comparison with or without
adaptation among different users and in a different car.

WiDrive has the highest SPLA score among all the solutions:

5.35 and 3.35 for the low-speed case and high-speed case, re-

spectively. Conservative has the best performance on the safety

index but it can only achieve 54.5% recognition accuracy. Such

a low accuracy will generate false alarms and missed detection

frequently, so the user experience is lowered. On the other side,

the accuracy of Aggressive is only 2.4% higher than that of

WiDrive, but its safety index is 28.1% lower. Thus, Aggressive

might cause collisions between vehicles on the road because

it totally focuses on the vehicle’s stability and neglects the

tracking error. At last, Manual has the lowest safety score,

indicating that without system assistance, it will be too late to

finish the takeover control. WiDrive achieves the best trade-off

of accuracy and safety by sacrificing only 8.2% safety index

for 25.3% accuracy improvement.

E. Online Model Adaptation
Here we first test WiDrive with six new users whose activi-

ties are not included in the training set. Then we test WiDrive

in a different car other than the one mentioned in Section

V.A to compare the recognition accuracy with and without

adaptation for each user and in a different vehicle, respectively.

Then we compare WiDrive with other well-designed baselines

to show the improvements of our adaptation algorithm.

Figure 15(a) shows the effectiveness of using the online

adaptation algorithm. For all the users, the accuracy is above

83% with adaptation. For users 2 and 3, the offline-trained

HMM model can only achieve 63% and 65% accuracy, be-

cause the in-car space and reflection conditions are different

from in-room ones: A small variation of the activity can cause

a large difference in the reflected CSI signals. Fortunately,

the accuracy rises to 90% and 85% for online adaptation

given a training set of only 25 samples. Figure 15(b) shows

the improvements with the adaptation algorithm. Due to the

different environment, the accuracy of offline-trained model

can drop from 90.2% to 38.4%, especially when the placement

is different from what is shown in Section V.A. This accuracy

indicates that the off-line trained model cannot be directly

applied into another vehicle. Fortunately, with the adaptation

algorithm, the accuracy increases by 35.6% with a training set

size of 40 samples. With the adaptation algorithm, WiDrive

could be directly applied in a new environment or to a new

driver without re-training the whole system.

Then we compare WiDrive with two baselines: 1) Simple

Smooth, which uses the exponential smooth function to get the

new HMM-GMM parameters. 2) Maximum Likelihood Linear

Regression (MLLR), which is a classic adaptation algorithm

(a) Recognition Accuracy (b) Step Size Comparison
Fig. 16: Evaluation for adaptation algorithm of WiDrive.

TABLE I: System overhead of each step.
Procedure Processing Time (ms)
Activity Segmentation 0.87
Signal Pre-Processing 12.47
Time-Frequency analysis 24.43
Real-Time Recognition 13.45
Adaptive Learning 14.32

in speech signal processing [43]. Figure 16(a) shows that

WiDrive’s accuracy is 91.2% given a training set of 60 sam-

ples, whereas MLLR and Simple Smooth achieve an accuracy

of 88.3% and 85.6%, respectively. Simple Smooth performs

the worst because it does not guarantee the convergence to

the new optimal solution. With the training set size increasing

from 50 to 60, the accuracy for this scheme even drops. On

the other side, WiDrive outperforms MLLR because WiDrive

considers adapting HMM parameters, whereas MLLR only

changes GMM parameters. MLLR can be used for the speech

signals that have well-trained acoustical properties, but does

not work well when it comes to activity recognition. WiDrive

achieves the highest accuracy and outperforms MLLR by 6%

on average. Figure 16(b) shows that the optimal step size for

WiDrive is 0.2 to 0.4: A small step size causes slow adaptation

given a certain training set, while a large step will downgrades

the performance by forgetting the previous data too fast.

F. System Overhead
Here we test the time overhead of WiDrive with complete

activity traces to make sure it can process CSI and recognize

an in-car activity in real time. Table I shows that the overhead

of WiDrive is modest: The total time overhead of WiDrive

is smaller than 60ms, excluding the adaptive learning step.

The most time consuming step is the time-frequency analysis,

which finishes within 30ms for a sampling rate of 800Hz. This

time overhead can be even smaller when a lower sampling rate

is adopted. If WiDrive is implemented in DSP or other em-

bedded systems, the time overhead can be further decreased.

VI. CONCLUSION

In this paper, we have proposed WiDrive, an in-car driver

activity recognition system based on CSI changes of WiFi sig-

nals. Different from existing in-car driver monitoring systems

like camera, our system uses commodity WiFi devices and pro-

vides non-intrusive recognition regardless of light conditions

or obscurity. WiDrive consists of three major components:

an activity feature extraction algorithm to extract information

of small-scale activities, an HMM-based real-time recognition

system, and an online model adaptation algorithm. WiDrive

is evaluated in real car scenarios. The evaluation results show

that WiDrive can achieve a recognition accuracy of 91.3% or

higher and substantially improve the takeover safety.
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