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Abstract—Autonomous vehicles often need human driver to
take over in some complicated conditions. Such a sudden takeover
could jeopardize the vehicle’s safety and stability if not han-
dled properly. Hence, if the driver’s takeover intention can be
recognized as early as possible, the vehicle can have sufficient
time to make important takeover preparation. The existing in-
car monitoring systems are mostly based on camera, which have
several key limitations, such as brightness condition and motion
obscurity. On the other hand, WiFi-based wireless sensing has
recently shown a great promise in human activity recognition,
but mainly for large-scale movements performed in the room
environment.

In this paper, we propose WiDrive, a real-time in-car driver
activity recognition system based on Channel State Information
(CSI) changes of WiFi signals. WiDrive consists of three major
components: A novel algorithm to extract small-scale in-car
human activity features, a real-time recognition system based on
Hidden Markov Model (HMM), and an online adaptation algo-
rithm to adapt for different drivers and vehicles. We implement
WiDrive with commercial WiFi devices and evaluate it in real
cars. Our results show that WiDrive has an average recognition
accuracy of 91.3% and improves the takeover safety.

I. INTRODUCTION

Autonomous vehicles have received increasing research
attention in recent years. Despite the ideal objective of being
100% autonomous, many such vehicles often need to switch
between the self-driving and human-driven modes by perform-
ing the “takeover” action. For example, the human driver may
desire to take over the driving wheel in some complicated
conditions (e.g., when another car ignores the red light or
unexpectedly stops ahead due to severe weather or accidents).
Likewise, when the human driver is unable to safely drive the
vehicle (e.g., due to the influence of alcohol, drug, or fatigue),
future autonomous vehicles may force a takeover back to
the self-driving mode. In either case, the human driver could
suddenly make a movement at any time that either is a takeover
attempt itself (former case) or can trigger one if necessary
(latter case). Such a sudden takeover, if not handled properly,
can generate potential risks, because the autonomous vehicle
may lose its stability and result in undesired accidents. From
the mechanical perspective, it is highly desirable to recognize
a takeover intention in real time, such that the vehicle can
have sufficient time to gradually adjust its steering setting for
vehicle control preparation [1][2].

There exist some approaches for driver activity recogni-
tion. One commonly used system is camera [3][4], as it is
cost-efficient and easy to be installed. With advanced image
processing techniques, camera can provide detailed informa-

tion about the driver activities. However, traditional camera
has several key limitations, such as Line-of-Sight (LoS) and
brightness condition. Though the emergence of the infra-red
camera and multi-camera systems has partially overcome the
limitations, the camera system still has problems such as poor
behavior in direct sunlight, obscurity caused by motions, and
edge erosion [5][6]. Moreover, a recent study has shown the
defect of state-of-the-art image processing algorithm known as
“the elephant in the room” (see Section II) [7]. Besides camera,
another possible solution is radar systems. They do not have
these limitations and can recognize activities using radio wave
reflection [8][9]. However, current radar systems on vehicles
are usually used outside to detect large objects (e.g., other
nearby vehicles). Fine-grained, short-range radar systems are
still in the experimental stage and not yet available.

On the other hand, WiFi sensing has recently shown a great
promise in human activity recognition [10][11][12]. Compared
with radar systems, WiFi devices are easier to install and have
a significantly lower cost. In addition, they do not have the
limitations of camera. The WiFi-based solution is also non-
intrusive, i.e., the device does not need to be attached to
the human body. Recent studies show that WiFi-based human
activity recognition system can achieve an accuracy over 90%
for in-room activities [11][12], and its feasibility has been
proven in a wider range of application scenarios, e.g., smoking
detection [13] and people identification [14]. However, most
WiFi activity recognition systems are designed only for large-
scale activities in the room environment only.

With the development of WiFi-based V2V (Vehicle to
Vehicle) network, WiFi is expected to soon replace Bluetooth
for in-car interaction [15]. However, existing WiFi-based in-
room activity recognition techniques cannot be directly applied
to driver activity recognition, mainly due to three challenges.
First of all, the range and duration of these activities can be
much smaller than those of an in-room activity due to space
limitation: The frequency shift caused by driver activities is
much smaller, making it hard to capture in WiFi signals;
Moreover, these activities usually last short (<1s). Thus, the
recognition scheme should be sensitive in both time and
frequency domains. Second, existing studies on activity recog-
nition can recognize one activity only after it is completely
finished. However, it could be too late to do such recognition
for certain emergency driving scenarios. The activity should
be recognized as early as possible, such that the vehicle can
have sufficient time for the takeover preparation. Third, the
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classification model should be adaptive and robust for different
vehicles and drivers. For in-room activities, the classification
model is often trained offline and fixed [11][16]. As a result, an
offline trained model achieves low accuracy when the driver
is not included in the training set or applied to a different
environment (e.g., a new car). Thus, an online adaptation
algorithm is required. Although recent studies [5][17][18] have
started to recognize driver activities with WiFi signals, they
only try to differentiate larger-scale movements (arm vs. head),
focus mainly on non-emergency activities (no need for real-
time recognition), and do not have online model adaptation.

In this paper, we propose WiDrive, a WiFi-based driver
activity recognition system. It analyzes the moving speed of
the driver’s body parts, and extracts the direction information
of small-scale activities with WiFi receivers. WiDrive is a real-
time recognition system that can not only recognize activities
in a short time, but also finish the recognition when the
activity is still being performed. In addition, to be more robust,
the classification parameters of WiDrive are designed to be
updated adaptively for a new environment or a new user.

The main contributions of this work are as follows:

« We propose WiDrive, an in-car activity recognition sys-
tem using commodity WiFi devices. WiDrive can rec-
ognize at least seven takeover-related small-scale in-car
activities with an overall accuracy of 91.3%.

WiDrive can recognize an ongoing activity within 60ms
before it is finished. This leads to as much as 60% safety
performance improvement compared to other solutions.
WiDrive is designed to be adaptive and can update its
classification model, based on Expectation Maximization
(EM) algorithm, to fit different vehicles or drivers.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III presents the motivation
by analyzing a typical driver takeover scenario. Section IV
presents the design of WiDrive. Section V presents the evalu-
ation results of WiDrive. Section VI concludes the paper.

II. RELATED WORK

Camera is one commonly used sensor for driver activity
recognition. The captured images can be processed to provide
information about the traffic [4] and driving behaviors [3].
Infra-red and thermal cameras have overcome the limitations
of the traditional camera (e.g., darkness and illumination
[19][20]. However, a camera-based solution still relies on the
placement of the devices, and has problems like poor behavior
in direct sunlight, fragile lens subject to physical damage, and
obscurity by motions [6]. Moreover, image processing algo-
rithms commonly have the problem known as “the elephant
in the room”, i.e., the overlap of items in the image can cause
recognition failures [7]. Thus, camera is not the best solution
for the takeover detection scenario.

With the wide-spread WiFi networks, using WiFi receivers
as a sensor has been a growing topic for human-computer
interactions. Some initial studies focus on the Received Sig-
nal Strength Indicator (RSSI) for sensing and localization
[10][21][22]. WiGest records the fluctuations caused by hand
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movements to recognize different gestures, but it can only
work when the hand is within several centimeters around
the receiver and the gestures are limited to hand push-pull
combinations. Recent research studies have shown that the
Channel State Information (CSI) can be used to recognize
more fine-grained activities like finger movements than using
RSSI [23][11][24][25][26]. Moreover, CSI can be directly
extracted in many commercial Network Interface Card (NIC)
like Intel 5300 [27]. For example, CARM proposes a CSI
speed model and extracts the movement patterns of human
body [11]. WiHear uses the reflection signals from lip move-
ments to detect spoken words. [23]. Xi et al. propose to
use CSI for counting the number of people in a crowd
[26]. Several studies have leveraged CSI signal to detect
small-scale human gestures. WiDraw is proposed to track
the motion of people hands using Angle-of-Arrival estimation
[25]. QGesture leverages CSI phase to track human hand
movements [24]. However, these studies either have to use
a lot of transmitters (>10) [25], or have to rely on special
devices that are not commercially available [23][26]. Hence,
they are not suitable for cost-efficient in-car recognition of
small-scale driver activities.

Recently, some research has started to address in-car activity
recognition with CSI [5][17][18]. Wibot is proposed to clas-
sify the driver’s activities into head or arm movements [5].
However, the difference between head and arm movements
is too coarse-grained for takeover recognition. WiFind aims
to infer whether the driver is fatigued using Hilbert-Huang
Transform [17], but is also coarse-grained as it can only
recognize whether the activity is fatigue-related or not. ViHOT
is proposed to track the head rotation for the driver with CSI
phase difference [18] However, all the three aforementioned
solutions focus only on the non-emergency activities and do
not consider the vehicle’s dynamics. In contrast, WiDrive aims
to recognize the small-scale takeover activities, in real time,
using CSI and takes the vehicle’s dynamics into consideration
to dynamically optimize the recognition performance.

III. MOTIVATION

In this section, we motivate the designs of 1) real-time
recognition and 2) online model adaptation for WiDrive. For
real-time recognition, we analyze a real-world example as
shown in Figure 1(a). Car A is on the autonomous driving
mode and following another car (Car B). At some time point,
Car B slows down due to some reasons (e.g., a mechanical
failure). Noticing this situation, the driver of Car A decides
to switch off autonomous driving and pass car B by reaching
out for the steering wheel, and starts to manually take the
pass maneuver. However, due to the difference between the
vehicle’s autonomous control law and the driver’s assumption,
there exist some risks in the first few seconds after the
driver gets back the control of the vehicle [1][2]. We use a
widely adopted virtual-reality driving simulation environment
to simulate our motivation scenario [28]. In our simulation, a
sinusoidal pulse is set to simulate the traveling path of Car A
and the driver is told to track this path. In order to reduce the
impact of driving styles on the experiment, we have recruited
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Fig. 1: Motivation scenario setup and results. (a) The
motivation scenario and the typical trajectories of two
recognition delays. (b) The average tracking error (meters)
related to recognition delay for three volunteers.

three volunteers to conduct the experiment independently. At
the beginning of the experiment, the driver is asked to follow
a straight line for a few seconds (autonomous driving with
hands off the steering wheel), then grab the steering wheel and
track the trajectory (manual driving). Note that the steering
ratio is normally different for autonomous driving, so the
takeover results in a steering change [1]. To better illustrate the
importance of early recognition, we define “recognition delay”
as the monitoring time to do the recognition for an ongoing
in-car activity. For instance, if the recognition delay is 0.5s,
it indicates that the driver’s takeover activity is recognized
0.5 seconds after the driver starts to approach the steering
wheel. Once the driver’s takeover intention is recognized, the
simulator adjusts the steering ratio gradually. Generally, an
earlier recognition results in an earlier change of the steering
ratio, so it can achieve a better stability and safety result.
Figure 1(a) shows the typical traveling trajectories for 0.1s
recognition delay (the red curve), 0.9s recognition delay (the
blue curve), and ideal case (the black dash line). We can
clearly see the oscillation made by the vehicle in the blue
curve, which is caused by the steering setting change after the
manual driving begins. This oscillation is dangerous because it
not only causes vehicle instability, but also can interfere with
other nearby vehicles. On the other hand, the trajectory of 0.1s
recognition delay is almost as the same as the ideal trajectory,
indicating that an early recognition and preparation for the
takeover activity could improve the driver’s performance of
controlling the vehicle. Figure 1(b) shows the average tracking
errors with recognition delay for the three volunteers. The
tracking error stays small given a 0.3s recognition delay.
As the recognition delay becomes larger, the tracking error
increases rapidly with a normal speed (40mph), indicating that
the vehicle does not have sufficient time to adapt its steering
setting to the manual driving mode, so the driver cannot track
the path well. Furthermore, the tracking error can be as large
as 3.3m for the 0.9s recognition delay. Given that a typical
lane’s width is only 4m, this can causes a serious accident.
This result shows that the takeover activity must be recognized
in real time in order to leave sufficient time for the vehicle to
do the takeover preparations. Otherwise, the driver may not be
able to keep the vehicle in control, which can cause accidents.
To motivate the necessity of online model adaptation, we
test the robustness of the existing WiFi recognition schemes
using offline training scheme in the vehicle [29]. We test
four different activities: Approach the driving wheel (App),
withdraw from the driving wheel (With), reach for items
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Fig. 2: Robustness test for activity recognition system.

(b) Top View
Fig. 3: Multipath reflection of WiFi signals in the vehicle.
(Reach) and grab the door (Door). Two sets of experiments
are conducted: First, we test these activities in a new vehicle
that is different from the one used in model training; Then we
test with a new user whose activities are not included in the
training set. Figure 2 shows that the accuracy drops from over
90% to nearly 70% in a different vehicle, and drops even more
for a new driver. With this accuracy for only four activities, the
off-line trained model cannot be directly used in a different car
or for a different driver. This result shows that an adaptation
algorithm is needed to improve the recognition accuracy when
the system is used in a new vehicle or with a new driver.
IV. DESIGN OF IN-CAR ACTIVITY RECOGNITION SYSTEM
In this section, we first introduce the design overview of
WiDrive, then introduce the details of each component.

(a) Side View

A. Channel State Information and Activity Recognition

Modern WiFi devices usually contain multiple transmitting
and receiving (Tx-Rx) antenna pairs. In order to perform
rate adaptation or power optimization, the receiver has to
continuously monitor the situation of the wireless channel and
reports information back to the transmitter. Information about
the wireless channel is called Channel State Information (CSI).
For WiFi devices, CSI consists of channel frequency response
of each subcarrier between each Tx-Rx pair. Taking multipath
issues into consideration, the total channel system response
should be the summation of signals (both amplitude and phase)
coming from LoS paths and all the other reflection paths.
By analyzing CSI, we could know how the reflection paths
change: The changes on a certain reflection path lead to the
change in the phase of the WiFi signal on the corresponding
path [11]. If the changes are caused by human activities, these
changes in CSI can be used to recognize different activities.
As shown in Figure 3, the blue lines and red lines represent
the static propagation paths and dynamic paths, respectively.
For dynamic signals that are reflected by the moving human
body, the speeds of body parts are recorded as Doppler shift
in the corresponding CSI values.
B. Design Overview

We propose WiDrive, a system to recognize in-car activities
based on CSI of WiFi signals. Figure 4 shows the framework
of WiDrive. Generally, there are three major components in
WiDrive: 1) Small-Scale Activity Feature Extraction, 2) Real-
Time Recognition, and 3) Online Model Adaptation. Specif-
ically, when the driver performs an activity (e.g., stretching
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and grabbing the wheel), WiDrive can capture the sudden
change of wireless signals, and record the following CSI
values. Afterward, the energy distribution of recorded CSI
values during the activity is extracted by the time-frequency
analysis as feature vectors. These feature vectors serve as the
input to the real-time recognition component, even if the whole
activity is not finished yet. After the whole activity finishes
and when the activity type can be confirmed by other devices,
such as additional cameras, the model adaptation component
adjusts the parameters of the real-time recognition component
to improve the recognition accuracy.

The feature of an activity can be seen as the combination
of the moving speeds of different human body parts (limbs,
head, and torso) at different time points [11][14]. For example,
activities involving only arms are much faster than those of the
torso but with a less reflection area; Approaching the driving
wheel causes a larger Doppler shift compared with swiping
hands. Thus, the first component aims to extract the features
of those activities using conjugate multiplication proposed in
WiDance [29]. Then the signal is denoised by a low-pass filter
and Principle Component Analysis (PCA) is applied to reduce
the dimension of CSI signals. We use time-frequency analysis
to extract activity features through Fourier transform.

While existing work focuses mainly on in-room large-
scale human movement recognition (e.g., running, walking),
a particular challenge for in-car activity recognition is that a
driver can move only the upper body in a much smaller scale
(than in-room activities) due to the limited space in a car cabin.
Small-scale activities involve only limb motions and usually
last short. Though several designs have been proposed to track
small-scale activities like gestures and finger motions, either
they can only work within a limited distance (<30cm) [30][25]
(while the driver’s hand can be anywhere near the driver’s seat
when the vehicle operates autonomously), or the recognition
delay cannot meet the stringent time requirement of takeover
(>0.7s) [24]. We propose to recognize small-scale activity
through time-frequency analysis by finding the optimal time
window and overlap ratio to fulfill the conflicting minimum
frequency resolution requirement and visibility requirement of
the time-varying signal. Then the activity is formulated as
a sequence of feature vectors that are sent to the real-time
recognition component for the activity recognition.

Another key novelty of WiDrive is its real-time recognition,
which aims to recognize the activity quickly, even before the
driver finishes it. However, there is a trade-off between the
recognition accuracy (a longer trace results in a higher accu-
racy) and the vehicle control performance (earlier recognition
allows better control preparation). We model this trade-off as
a multi-objective optimization problem and find the best time
point to finish the activity monitoring and start the recognition.
Then, we fuse the feature vectors from two WiFi receivers and
use Hidden Markov Models with Gaussian Mixture emissions
Model (HMM-GMM) based classifier to recognize the activity.

The third component is online model adaptation. After
an activity is recognized, we may be able to evaluate our
recognition accuracy by comparing our result with the ground
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truth, which sometimes can be provided by other sensors, e.g.,

a camera. Note that the ground truth cannot be always obtained
due to the limitations (e.g., direct sunlight), and WiDrive
uses this component only when it can get the correct result
from other sensors. If the accuracy is not sufficient, WiDrive
adjusts the model using our adaptation algorithm based on the
EM algorithm. The online model adaptation ensures a high
accuracy, even when WiDrive is applied to different vehicles
or different drivers.

C. Small-scale Activity Recognition

A key challenge for in-car activity recognition is its small
scale due to the space constraint in a car cabin. To explain the
challenge in detail, we first introduce the existing WiFi-based
recognition approaches and their major limitations.

CARM [11] and WiDance [29] propose to use CSI for
in-room activity recognition with a good accuracy. However,
these approaches cannot be used directly for in-car activities,
because in-car activities do not have large torso motion due to
the space limitation. The typical activities like approaching the
driving wheel and shifting the gear only involve arm motions
and their duration is usually small (less than 1s). As a result,
the amplitude of wireless signals reflected from human body
becomes smaller and so the WiFi signal change is harder to
capture. On the other hand, WiDraw [25] can track the small
motion of human hands and claims that its error is within 10%,
but requires a large number of stationary WiFi transmitters
(usually > 10). This assumption can be hard to meet due to
limited space in the car cabin. QGesture [24] proposes to use
the CSI phase to track the hand’s traveling distance, but the
phase change is sensitive to other turbulence like random body
motions and surrounding changes.

We leverage time-frequency analysis to recognize small-
scale activities with Short Time Fourier Transform (STFT),
because STFT can preserve negative Doppler shifts while
wavelet transform cannot. This is crucial in recognizing mov-
ing direction. However, small-scale activities have one issue
using STFT: Under a certain sampling rate, a short time
window used by STFT leads to few data points accumulated
in each window length, so the frequency resolution is low. On
the other hand, a large time window cannot capture the quick
changing signal in the time domain, because it cannot reflect
how exactly the signal changes in one single time window.
Small-scale activities require a high frequency resolution,
because the Doppler shift caused by the motion is limited,
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i.e., it needs a long time window to distinguish how speed is
distributed in the spectrum, while the short duration of in-car
activities requires a short time window that can capture quick
body speed changes during the activity.

To resolve the conflict, we utilize overlapping of two
consecutive time windows to increase the visibility for time-
varying signals while preserving frequency resolution. The
redundant data introduced by overlapping allow us to have
the visibility to see when the body speed changes in a very
short time (less than a time window size). Figure 5 shows an
example of how overlapping works. Frequency components f;
and f5 are in the same window shown in Figure 5(a). Thus,
we cannot know when f; and fo appear within time window
1, because the whole time window will be transformed into
frequency domain and we only know f7 and f5 are in time
window 1. If we use an overlap ratio of 50% (shown in Figure
5(b)), we can know fi is only in time window 1, but f
appears in both windows. Thus, we can find out that f; is
in the first half of time window 1 and f> is in the second
half of time window 1 by comparing the frequencies in time
windows 1 and 2, which doubles the visibility for time-varying
signals while preserving frequency resolution. The more data
points overlapped, the better visibility can be provided for
time-varying signals.

However, overlapping introduces redundant data to be pro-
cessed and increases recognition time overhead, which is
an issue for a real-time system like WiDrive. To resolve
the conflict between time-frequency resolution and the time
overhead, we formulate an optimization problem with regard
to time window length AT and overlap ratio r,(0 < r, < 1) to
minimize the time overhead of the system. The time overhead
can be expressed as NV L2, where N is the number of feature
vectors of an activity and L is the length of the feature vector.
Specifically, N = Tyora1/[AT (1 —1,)] given that Tioq is the
duration of the activity; L = £pee +1og, (Fuuwr — Frnaz)s Feut
is the cutoff frequency for the low-pass filter, and F};,,, is the
threshold frequency. Below F),,,, we equally divide the band
of [0, Fipqz) into several sub-bands whose bandwidth is exact-
ly frequency resolution AF', while the bandwidth decreases
exponentially for frequency band [Fy.qz, Feyui]; Though N
and L should be integers, we relax these constraints as a
way to approximate the optimal solution to the problem.
Mathematically, the problem is formulated as:

min NL?

1 Tin
t — <AT< 1
s.t S S1n (1)

1= AFAT

where Fy;, and T}, are the lowest requirements for frequency
resolution and maximum allowed time interval to distinguish
speed change, respectively. Both of them are given according
to the range and duration of the activity. In our implementa-
tion, Iy, is chosen to be 4Hz because otherwise the Doppler
shift will be overwhelmed for a small time window, and
T is chosen to be 0.08s to capture the changes in one
activity. The objective function is to minimize the computation
overhead. This is a convex optimization problem and we can
solve it using the Lagrange multiplier method by transforming
the original problem into an unconstrained one by assigning
auxiliary variable \; to each constraint shown in Equation (1)
[31].

D. Real-Time Recognition

Within the allowed time length for driver takeover, three
operations must be finished: 1) driver monitoring to collect a
data trace for activity recognition, 2) recognition computation,
and 3) vehicle control if the driver is recognized as intending to
take over. Hence, a key challenge of real-time driver activity
recognition is to decide how much time each operation can
take while ensuring the total time is shorter than the allowed
time length. As discussed before, for data collection, the longer
it takes, the more accurate the recognition result will be, but
leaves less time for computation and control.

1) Modeling accuracy-timeliness trade-off: In order to im-
prove the real-time recognition performance, we hope to rec-
ognize an activity before it is finished. However, the decision
of how long we should monitor an ongoing activity for the
recognition is not trivial: For one activity, longer monitoring
time of the activity yields better accuracy but leaves less
preparation time for the vehicle to react. As shown in Section
III, if the vehicle does not have sufficient time to prepare
for the takeover action, it may lose its stability or increase
the accident risk. Conversely, if the activity is recognized
with insufficient data, the vehicle could receive false alarms
and lower the user experience. Therefore, there is a trade-
off between the recognition accuracy and the takeover control
performance. We formulate it as a multi-objective optimization
problem. Our objective vector F' is defined as follows:

MAXAF (tq, tc) = [acc(ta), safety(v,tc)|}, 2)

where t. is the duration for the vehicle to do the takeover
preparation; ¢4 is the duration for WiDrive to collect data and
perform real-time recognition; v is the velocity of the vehicle.

The first term acc(ty) is the recognition accuracy. We
infer their relationship by collecting data on real vehicles and
establish a statistical model offline based on the measured
recognition result with logarithmic curve fitting, because it
provides the minimum square error among all fitting options.
The relation between accuracy and ¢, is defined as:

acc(tq) = In(a(tqe + b)) + co, 3

where «, b and ¢y are the parameters to be estimated in
the curve fitting process. The second term safety(v,t.) is
the safety index that reflects the effectiveness of the takeover
control performance, and is related to the dynamics of the
vehicle. The dynamics of the vehicle can be viewed as a
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combination of lateral tracking error [ and stability [ in most
cases on the road. Specifically, with a fixed fraction coefficient
(u = 0.6) and a turning scenario, we can approximate [, and
[ with t. and v based on the general steering model [32]:

L (o.4e) = 3.732

1 + ¢—(0.4385t+0.1234tcv—3.95))
B(v,t.) = 0.651t2 — 0.10vt, + 0.83t. + 0.38v

“

Note that different scenario may have different [, and 3 esti-
mations. In a real implementation, [, and /3 can be estimated
online by leveraging the path finding and tracking system
[33][34]. After that, we compute safety(v,t.) related to I,
and [ as follows in order to combine these two factors:

safety(v,te) = ()\emls(v,tc) +(1- )\)eczﬁ(v,tc)) )

where A is the weight for the lateral tracking error term; c;
and cy are chosen according to the road condition, vehicle
dynamics and preference of vehicle manufacturers.

The constraint of our model comes from the fact that the
total takeover time is limited. Thus, the summation of ¢; and ¢..
should be smaller than the total takeover time T3},:,;. Because
Tiotar 1s usually small, we take the computation overhead
tcomp into consideration and model tcomp = ktg + b as the
complexity of our classification algorithm. Mathematically,
the constraint of our multi-objective optimization function is
formulated as follows:

te +tq+ tcomp < Ttotal (6)

2) Optimal trade-off point calculation: To solve this multi-
objective optimization problem, we propose to find the set of
optimal solutions using the Pareto front theory. The Pareto
front is a widely used tool to solve multi-objective optimiza-
tion problem, and it is defined as the set of points where
no objective can be improved without sacrificing at least
one other objectives. Here we first find the Pareto front of
our problem, then solve the problem by converting it to a
single objective optimization problem. As shown in Figure
6(a), the feasible zone is shown as the shadow area below
the red line. To find the Pareto front, we need to map every
[ta,te] pair in the feasible zone to the objective function zone
[acc(tq), safety(v,t.)]. Then the Pareto front can be found
when the inequality constraint becomes an equality constraint
(i.e., teFtg+teomp = tiotar). On the Pareto front, all the points
are equally optimal, because we can not improve acc(tq)
without degrading safety(v,t.), or vice versa.

On the Pareto front, we choose the best trade-off point as the
point whose distance between the ideal point (red dot in Figure
6(b)) and itself is minimum. This point is called the knee point

906

and is widely used as the best trade-off point [35][36]. Figure
6(b) shows how to find the knee point: We draw a normal line
to the Pareto front starting at the ideal point. Then the knee
point can be found as the intersection of the normal line and
the Pareto front (green dot in Figure 6(b)).
E. Online Adaptation of HMM Parameters

The widely-used training algorithm for Hidden Markov
Models with Gaussian Mixture emissions Model (HMM-
GMM) based classifier is the Baum-Welch algorithm, which
can only work offline in a batch mode [37]. However, this
offline model is not sufficient for different vehicles and drivers,
or when a driver changes his posture pattern for an activity.
Moreover, the HMM classifier cannot be re-trained when a
new activity trace is collected due to computation overhead
and storage limitations. Thus, we propose to have an adaptive
design for the in-car activity recognition system: It should
learn and update its classifier’s model if the driver activity
is not recognized correctly. When such activity sample is
collected, the classifier changes its set of parameters to fit the
new environment or a new driver. For an HMM classifier, the
parameter set f can be defined as 0 = (7, A, w, p, 3). 7 is the
prior probability vector for the HMM model; A is the transition
probabilities for the HMM model; w is the weight matrix for
GMM; o is the mean matrix for GMM; X is the covariance
matrix for GMM. Generally, the HMM parameters (7 and A)
reflect the typical posture changing during an activity, and
GMM parameters (w,j,3) represent how exactly the activity is
performed and how velocities are distributed for each posture.

Specifically, we leverage the EM algorithm [38], a well-
known algorithm for hidden state parameter estimation, to
derive our online adaptation process. In our case, whenever
a new sample Orp is obtained from our wireless receiver and
the recognition result is not correct given the ground truth, we
start a round of adaptation by assigning a weight W to Op
and calculating the lower bound of the likelihood function for
activity estimation in the training set, namely Q(6,0;) as:

T—1
Q0,60:) = > > p(S|0x, ) log p(Os, S|6)
t=1 S (7)
+ WY p(S|Or,0:) log p(Or, 516))
S

where 0; is the parameter set estimator for HMM model before
current round of adaptation. O is the t*® old sample; S is the
hidden state set; 7" is the number of old samples. Let Xfi be
the random variable for the hidden state, where the d'" feature
vector in the t*" sample belongs to (e.g., X7 is the hidden state
that the 1st feature vector in the 2nd activity sample in the
training set belongs to), the update equation for the element
in 7 using Lagrange multiplier can be derived as [31]:
_ Xt et =ile) | WX =il
N-14+W N-1+W

where 7; in set 0 (m, A, w, p, ) represents the prior
probability in hidden state S;. In Equation (8), the first term
only uses the old samples, so it can be calculated in the
previous round of adaptation and be retrieved in this round
of adaptation; The second term includes the new sample, and
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Fig. 7: An illustration of WiDrive’s adaptation algorithm.
(a) Accumulated probability of current training set. (b)
Prior probability 7; for the classifier with five states.
is calculated using the first feature vector and the old estimator.
In other words, with Equation (8), the probability 7; is updated
with a weight averaging approach.

Figure 7(a) shows the target likelihood function Q(6,6;) of
each round of adaptation when applying with a new driver.
The gap between the red curve and blue curve is caused by
the change of HMM-GMM parameters after each round of
adaptation, which indicates the improvement on Q(0,6;). We
can see that Q(6,0;) increases quickly for the first few sam-
ples, indicating that the mismatch between the original HMM-
GMM model and the current activity sample is decreasing.
After several rounds of adaptation, Q(6,6;) becomes almost
static, indicating that the parameters have already been adapted
to the new scenario. Figure 7(b) shows the change of state
probability m;, which gradually becomes stable after about five
rounds of adaptation. Similarly, the formulas for the element
a;; in transition matrix A and GMM parameters (w, j) are
updated adaptively in the same way with 7;.

For every observed new sample which is misclassified, a
round of adaptation is conducted by WiDrive. This process is
preformed continuously and the calculation results are stored
for possible next rounds. To avoid storing a large old sample
set, we forget the sample when it is too old. The speed of
forgetting old samples depends on the weight WW: A larger
weight indicates that WiDrive counts less on old samples, so
it should store fewer old samples.

FE. Discussion

1) False Alarm and Rollback: As an activity recognition
system, despite a high accuracy, WiDrive still has false posi-
tives, e.g., the driver reaches his arms out but not aims for the
driving wheel, which might raise the concern that WiDrive
could lead to car instability with false alarms, as it may
mistakenly disable the autonomous driving system. To that
end, once WiDrive recognizes a takeover activity, it can still
work with the vehicle control system to keep the vehicle stable
while changing the steering setting gradually by using haptic
feedback control [2][39]. WiDrive can also set a timer for the
takeover activity: If there is no change of the vehicle dynamic
for a certain time period upon a recognized takeover activity,
WiDrive will consider this recognition as a false alarm and
rollback the vehicle settings.

2) Impact of Surrounding Objects: One concern of in-car
recognition system is that the environment is mobile: Objects
outside the vehicle may impact on the robustness of the activity
recognition. In order to test the impact of surrounding objects,
we have collected activity traces on the road and calculated
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Fig. 8: Device placement inside the car.

their spectrum. Results show that the impact of the outside
objects is negligible compared to the driver’s activity. WiDrive
can still recognize the activity in a moving vehicle with an
accuracy above 90%. The reason is that the major changes
are caused by the driver’s activity as the driver is much closer
to the WiFi devices. The Doppler shift caused by surroundings
is much weaker than that by the driver’s activity.

3) Multiple People in the Vehicle: One major concern of
WiFi-based activity recognition systems is that it can work for
single person only, since the reflection path change would be
mixed if there are two or more subjects acting together in the
same environment. For in-car scenario, the problem is simpler
than that of the indoor scenario, because the position for each
person in the vehicle is fixed. Thus, we could minimize other
passengers’ impact by placing the receiver close to the driver
and far to the others. We have also conducted experiments with
one passenger on the front seat, and let him perform activities
together with the driver. The result shows that WiDrive can
still recognize the driver’s activity with an accuracy of 88.2%,
regardless of what activity the passenger performs. It is our
future work to further improve the accuracy of WiDrive in the
scenarios with one or more passengers.

V. EVALUATION

In this section, we conduct the evaluation of WiDrive. We
first introduce the experiment setup. We then test WiDrive
with other baselines, component by component (Sections V-B
to V-E). At last, we test the overhead of WiDrive (Section
V-F).

A. Experiment Setup

1) Testbed Setup: The testbed consists of one TP-Link
Archer A7 as the transmitter and two ThinkPad T400 laptops
with Intel 5300 wireless NICs (chosen to fit the modified driver
[27]) as receivers to establish two Tx-Rx pairs in different di-
rections. For each Tx-Rx pair, the transmitter has one antenna,
and the receiver has three antennas. We generate packets using
ping command at the transmission rate of 800pk#/s. CSI values
are collected with modified network driver on a packet basis
[27]. In order to align the start point of the transmission period,
we write a script to synchronize the two laptops to begin CSI
collection at nearly the same time. In a real implementation,
the synchronization can be done by the central Electronic
Control Unit (ECU) in the vehicle, and CSI could be collected
using embedded systems instead of laptops. The placement of
our devices is shown in Figure 8. The transmitter is placed in
the middle of the dash broad. One receiver lays on the driving
wheel, and the other is on the passenger seat so that the two
receivers are orthogonal to each other.
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Fig. 9: Recognition accuracy for WiDrive with different
time window sizes. (a) Comparison of different activity
ranges for WiDrive and two baselines. (b) Detailed recog-
nition accuracy with different time window size.

2) Candidate Activities Collection and Segmentation: For
candidate activities, we categorize them as three types:

o Driver’s Intentional Takeover. This type of activities
indicate that the driver is trying to take the control
back from autonomous driving mode and the vehicle
should do the preparation for the takeover. Specifically,
this type of activities include those that will change the
vehicle’s dynamic settings, e.g., approaching the steering
wheel (app), switching off the autonomous driving mode
(switch) and shifting the gear (gear).

Vehicle’s Passive Takeover for Safety. This type of
activities indicate that the driver is not paying sufficient
attention to the driving tasks and the vehicle should be
noticed, so that the vehicle can enter the autonomous
driving mode without any driver’s input if necessary. This
type of activities include distracted behaviors like eating/
drinking (eat), fetching items (fetch), and withdrawing
from the driving wheel (with).

Other activities relevant to safety. This type of activities
do not trigger the takeover action. However, they are still
among the driver’s most performed tasks [40]. Thus, we
still list them as candidate activities for future usage such
as operating door buttons (door). Note that some activities
(e.g., turning the driving wheel during manual driving)
are excluded from the candidate activities because they
can be detected using internal sensors of the vehicle [5].

For each of these activities, we collect more than 80 traces
per driver from eight volunteers (7 males and 1 female) in
the real car. In order to automatically detect the start point of
in-car activities, we propose to use the percentage of the near-
zero frequency energy as an indicator to do the segmentation.
For each time window, we calculate the percentage of the
near-zero frequency (-SHz~5Hz) after Fourier transform and
smooth it using median filter. Afterwards, we compare it with
a pre-defined threshold. When the percentage is lower than
the threshold, a possible activity begins and CSI value will be
recorded until the percentage rises again.

B. In-car Activity Recognition Accuracy with Complete Traces

In this section, we disable WiDrive’s real-time recognition
and online adaptation to focus on evaluating its recognition
accuracy of small-scale in-car activities with complete traces
collected after the entire activity is finished. We first perform
activities with different scale of activities (how far the hu-
man body moves) and compare the recognition accuracy of
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WiDrive (AT = 0.33s, 75% overlap ratio) with two baselines:
WiDance [29] (AT = 0.12s, 0% overlap ratio) and Halflap
(AT = 0.33s, 50% overlap ratio), which is widely used in
spectrum analysis and recognition applications [41].

WiDrive outperforms WiDance by 15% on average and
Halflap by 10% for small-scale activities (<20cm). Generally,
a larger-scale motion results in a higher accuracy because:
1) the frequency shift is higher because human body moves
faster; 2) The reflection area becomes larger when the range of
activities is larger. Figure 9(a) shows that WiDance performs
the worse, because the Doppler shift caused by the activity
will be overwhelmed in the low frequency band and cannot be
captured; Halflap is better than WiDance because it considers
using a larger window with overlap to increase frequency
resolution, but the accuracy is still lower than WiDrive for
small-scale activities. As the scale of the activities becomes
larger, the difference between the baselines and WiDrive
becomes smaller because the Doppler shift caused by the
activities is stronger than that of small-scale activities and is
easy to capture. Figure 9(b) shows the relation between the
time window length and the recognition accuracy for activity
scale 30cm and Scm: The accuracy reaches its maximum when
the time window is chosen between 200ms to 400ms, and it
drops sharply when the time window is not in this range.

Then we test the recognition accuracy of WiDrive by doing
a ten-fold cross validation and compare it with two baselines:
CARM [11] and HMM-based WiDance [29]. CARM is a
well-known recognition scheme but it cannot distinguish the
moving direction of an activity; HMM-based WiDance uses
WiDance’s signal processing algorithm and uses HMM to
recognize activities. Wibot is also an in-car activity recog-
nition scheme that uses peak analysis to do recognition [5].
Compared with time-frequency analysis, the features (e.g. peak
width, peak height) used in the peak analysis cannot reflect
the time-varying characteristics for the CSI signal during the
activity. Peak analysis also is well known to be prone to noises
and interference, because there could be false peaks or valleys
in the signal [42]. Thus, it is not selected for comparison.

Figure 10 shows confusion matrices for WiDrive and base-
lines, whose elements on the diagonal show the accuracy for
each activity type. WiDrive provides an overall accuracy with
91.3%, which is 14% higher than HMM-based WiDance and
30% higher than CARM. CARM and HMM-based WiDance
only achieve an overall accuracy of 62.3% and 78.7%, re-
spectively. CARM cannot identify app and with well because
their difference lies mainly in the different activity direction.
Moreover, CARM only leverages one Rx-Tx pair to recognize
the activity so it performs the worst among the schemes.
HMM-based WiDance can distinguish app and with with an
accuracy over 89%, but the accuracy for other activities are
below 80%, because reflection signals for an in-car activity are
not as strong as that of an indoor activity. WiDrive manages to
overcome this problem by choosing the optimal window length
and overlap ratio, and finding the best way to formulate the
feature vector and fuse the CSI data.

Besides recognition accuracy, Figure 11(a) shows the True
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Fig. 11: True Positive Rate (TPR) and True Negative Rate
(TNR) Comparison. (a) Each activity using WiDrive. (b)
Average of all activities using different approaches.

Positive Rate (TPR) and True Negative Rate (TNR) of WiDrive
for each activity. The overall TPR and TNR of WiDrive is
91.2% and 93.7%, respectively, which indicates that WiDrive
can achieve a good trade-off between the missed detection and
the false alarm. WiDrive outperforms HMM-based WiDance
by 15.4% and 14.9% in terms of TPR and TNR, and outper-
forms CARM by 30.4% and 27.5% in terms of TPR and TNR
as shown in Figure 11(b).

C. Different Placements of WiFi Devices

WiDrive uses Doppler shift to recognize different human
activities. Thus, the recognition accuracy could be affected
by different placements of the devices, because different
placements of the devices could result in different traveling
paths of wireless signal reflected from human body. We test
four different placement settings shown in Figure 12. Figure
12(a) is the default placement setting of WiDrive. In order to
see how the angle for the two receivers affects the recognition
accuracy, we change the angle to 135° and 180° between
the two receivers and the router shown in Figure 12(b) and
Figure 12(c), respectively. In Figure 12(d), we keep the two
receivers to be orthogonal, but each of them has a larger
distance to the router on the dashboard. Though there could
be an infinite number of device placement setups, we choose
these placements as they can minimize the impact of the other
passengers. In the real system, WiDrive could be embedded
into the car body so that the most possible positions are all

included in Figure 12.
Recei\(er 1

Receiver 1 Receiver 1

g

Receiyer 1

LN LUK
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Receiver 2 WiFi AP Receiver 2 WiFi AP Receiver 2WiFi AP Receiver 2 WiFi AP
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Fig. 12: Top view of different device placement locations.
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Figure 13 shows the accuracy of each activity for the four
placements. The overall accuracy does not change much for
different device placements, indicating that WiDrive is robust
and can be set in different locations on the car body. However,
if we examine the accuracy for each activity, we can see that
compared with placement (a), the accuracy of some activities
(door; gear, eat, and switch) decrease by 6.30% and 5.92% for
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Fig. 14: Comparison of WiDrive with others baselines at
low or high driving speed.

placement (c) and (d), respectively, while the accuracy for the
others does not change much. The main reason for the drop is
that the distance between the driver and the receiver on the side
will be larger compared with placement (a), and these activities
(door, gear, eat and switch) rely heavily on the Doppler shift
on this receiver to be recognized: The reflected signal is
weaker for placements (c) and (d), so the Doppler shift caused
by the human activity will be harder to capture by the receiver
due to the interference. On the other hand, the other activities
(app, with, and fetch) have more distinctive features for the
receiver on the steering wheel and their dependency on the side
receiver is much smaller, so the accuracy of these activities
does not change as the placement changes.

D. Real-Time Recognition

WiDrive needs to finish activity monitoring, recognition
computation and vehicle control action in the total duration
of an activity. Here we evaluate the real-time performance
of WiDrive comparing with three baselines: 1) Conservative
(Con), which is designed to prioritize the control performance
and guarantees that the lateral tracking error will not be lager
than the half width of a lane (the car shall not travel to other
undesired lanes); 2) Aggressive (Agg), where t; is chosen
with the maximum instability index such that the vehicle can
exactly maintain the stability; 3) Manual (Man): no takeover
preparation is taken by the vehicle. In order to evaluate the
impact on vehicle safety, we uses a metric called Safety Per
Lost Accuracy (SPLA), which is calculated as:

SPLA = safety(v,t.)/[1 — acc(tq)] )

SPLA represents the trade-off efficiency in the multi-
optimization model. A higher SPLA score indicates a better
accuracy-safety trade-off. The test scenario remains the same
as in the motivation (Section III). Figure 14 shows that
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WiDrive has the highest SPLA score among all the solutions:
5.35 and 3.35 for the low-speed case and high-speed case, re-
spectively. Conservative has the best performance on the safety
index but it can only achieve 54.5% recognition accuracy. Such
a low accuracy will generate false alarms and missed detection
frequently, so the user experience is lowered. On the other side,
the accuracy of Aggressive is only 2.4% higher than that of
WiDrive, but its safety index is 28.1% lower. Thus, Aggressive
might cause collisions between vehicles on the road because
it totally focuses on the vehicle’s stability and neglects the
tracking error. At last, Manual has the lowest safety score,
indicating that without system assistance, it will be too late to
finish the takeover control. WiDrive achieves the best trade-off
of accuracy and safety by sacrificing only 8.2% safety index
for 25.3% accuracy improvement.

E. Online Model Adaptation

Here we first test WiDrive with six new users whose activi-
ties are not included in the training set. Then we test WiDrive
in a different car other than the one mentioned in Section
V.A to compare the recognition accuracy with and without
adaptation for each user and in a different vehicle, respectively.
Then we compare WiDrive with other well-designed baselines
to show the improvements of our adaptation algorithm.

Figure 15(a) shows the effectiveness of using the online
adaptation algorithm. For all the users, the accuracy is above
83% with adaptation. For users 2 and 3, the offline-trained
HMM model can only achieve 63% and 65% accuracy, be-
cause the in-car space and reflection conditions are different
from in-room ones: A small variation of the activity can cause
a large difference in the reflected CSI signals. Fortunately,
the accuracy rises to 90% and 85% for online adaptation
given a training set of only 25 samples. Figure 15(b) shows
the improvements with the adaptation algorithm. Due to the
different environment, the accuracy of offline-trained model
can drop from 90.2% to 38.4%, especially when the placement
is different from what is shown in Section V.A. This accuracy
indicates that the off-line trained model cannot be directly
applied into another vehicle. Fortunately, with the adaptation
algorithm, the accuracy increases by 35.6% with a training set
size of 40 samples. With the adaptation algorithm, WiDrive
could be directly applied in a new environment or to a new
driver without re-training the whole system.

Then we compare WiDrive with two baselines: 1) Simple
Smooth, which uses the exponential smooth function to get the
new HMM-GMM parameters. 2) Maximum Likelihood Linear
Regression (MLLR), which is a classic adaptation algorithm
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Fig. 16: Evaluation for adaptation algorithm of WiDrive.
TABLE I: System overhead of each step.

Procedure Processing Time (ms)
Activity Segmentation 0.87
Signal Pre-Processing 12.47
Time-Frequency analysis 24.43
Real-Time Recognition 13.45
Adaptive Learning 14.32

in speech signal processing [43]. Figure 16(a) shows that
WiDrive’s accuracy is 91.2% given a training set of 60 sam-
ples, whereas MLLR and Simple Smooth achieve an accuracy
of 88.3% and 85.6%, respectively. Simple Smooth performs
the worst because it does not guarantee the convergence to
the new optimal solution. With the training set size increasing
from 50 to 60, the accuracy for this scheme even drops. On
the other side, WiDrive outperforms MLLR because WiDrive
considers adapting HMM parameters, whereas MLLR only
changes GMM parameters. MLLR can be used for the speech
signals that have well-trained acoustical properties, but does
not work well when it comes to activity recognition. WiDrive
achieves the highest accuracy and outperforms MLLR by 6%
on average. Figure 16(b) shows that the optimal step size for
WiDrive is 0.2 to 0.4: A small step size causes slow adaptation
given a certain training set, while a large step will downgrades
the performance by forgetting the previous data too fast.

F. System Overhead

Here we test the time overhead of WiDrive with complete
activity traces to make sure it can process CSI and recognize
an in-car activity in real time. Table I shows that the overhead
of WiDrive is modest: The total time overhead of WiDrive
is smaller than 60ms, excluding the adaptive learning step.
The most time consuming step is the time-frequency analysis,
which finishes within 30ms for a sampling rate of 800Hz. This
time overhead can be even smaller when a lower sampling rate
is adopted. If WiDrive is implemented in DSP or other em-
bedded systems, the time overhead can be further decreased.

VI. CONCLUSION

In this paper, we have proposed WiDrive, an in-car driver
activity recognition system based on CSI changes of WiFi sig-
nals. Different from existing in-car driver monitoring systems
like camera, our system uses commodity WiFi devices and pro-
vides non-intrusive recognition regardless of light conditions
or obscurity. WiDrive consists of three major components:
an activity feature extraction algorithm to extract information
of small-scale activities, an HMM-based real-time recognition
system, and an online model adaptation algorithm. WiDrive
is evaluated in real car scenarios. The evaluation results show
that WiDrive can achieve a recognition accuracy of 91.3% or
higher and substantially improve the takeover safety.
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