CATComp: A Compression-aware Authorization

Protocol for Resource-efficient Communications in
IoT Networks

Mahmud Hossain, Golam Kayas, Yasser Karim, Ragib Hasan, Jamie Payton, and S. M. Riazul Islam

Abstract—The Internet of Things (IoT) devices exchange cer-
tificates and authorization tokens over the IEEE 802.15.4 radio
medium that supports a Maximum Transmission Unit (MTU) of
127 bytes. However, these credentials are significantly larger than
the MTU and are therefore sent in a large number of fragments.
As IoT devices are resource-constrained and battery-powered,
there are considerable computations and communication over-
heads for fragment processing both on sender and receiver
devices, which limit their ability to serve real-time requests.
Moreover, the fragment processing operations increase energy
consumption by CPUs and radio-transceivers, which results
in shorter battery life. In this article, we propose CATComp
— a compression-aware authorization protocol for Constrained
Application Protocol (CoAP) and Datagram Transport Layer
Security (DTLS) that enables IoT devices to exchange small-
sized certificates and capability tokens over the IEEE 802.15.4
media. CATComp introduces additional messages in the CoAP
and DTLS handshakes that allow communicating devices to
negotiate a compression method, which devices use to reduce
the credentials’ sizes before sending them over an IEEE 802.15.4
link. The decrease in the size of the security materials minimizes
the total number of packet fragments, communication overheads
for fragment delivery, fragment processing delays, and energy
consumption. As such, devices can respond to requests faster
and have longer battery life. We implement a prototype of
CATComp on Contiki-enabled RE-Mote IoT devices and provide
a performance analysis of CATComp. The experimental results
show that communication latency and energy consumption are
reduced when CATComp is integrated with CoAP and DTLS.

Index Terms—Internet of Things, Compression, Authentication,
Authorization, Token, CoAP, DTLS, 6LoWPAN, CapBAC.

I. INTRODUCTION

With the recent revolution of the computing devices along
with technological advancement in communication, the Internet-
of-Things (IoT) concept is utilized by several application
domains [1]], such as smart city [2]], smart home [3] , intelligent
healthcare assistance [4]], smart transportation management

Manuscript received XX, XX, 2020; revised XX, XX, 2021. This research
was supported in part by the US National Science Foundation (NSF) under
Grant No. DGE-1723768, ACI- 1642078, ECCS-1952090, CNS-1351038, and
CNS-1828363 and in part by the Sejong University research faculty program
(20212023). (All authors contributed equally to this work.) (Corresponding
authors: Mahmud Hossain and S.M. Riazul Islam)

Mahmud Hossain (mahmud @uab.edu), Yasser Karim (yasser@uab.edu), and
Ragib Hasan (ragib@uab.edu) are with the Department of Computer Science,
University of Alabama at Birmingham, USA.

Golam Kayas (golamkayas@temple.edu) and Jamie Payton (pay-
ton@temple.edu) are with the Department of Computer and Information
Science, Temple University, USA.

S. M. Riazul Islam (riaz@sejong.ac.kr) is with the Department of Computer
Science and Engineering, Sejong University, South Korea.

[S, 6], agriculture [7], and so on. Recent research anticipates
that in a year, on an average, around one million new IoT
devices will be deployed to different application domains for
the next few years [8]]. IoT devices are resource-constrained and
operate on low power and lossy networks [9]]. These devices
are embedded with limited powered CPUs, few megabytes
of storages (RAMs and ROMs), and low data-rate radio
transceivers [10]. As such, IoT applications adopt lightweight
communication protocols [11].

IoT devices use the Internet Protocol version 6 (IPv6)
for addressing [12]. They operate in the IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPAN) [13} [14]
and communicate over the IEEE 802.15.4 low-powered and
lossy media, which has limited bandwidth (128 Kbit/s) and
a Maximum Transmission Unit (MTU) of 127 bytes [15].
Furthermore, IoT applications use the Constrained Application
Protocol (CoAP) [16] for communications as it is designed
especially for resource-limited devices and constrained net-
works. Additionally, in lossy networks, devices adopt the User
Datagram Protocol (UDP) instead of Transmission Control
Protocol (TCP) as the transport layer protocol to avoid
communication overheads for large-sized TCP headers and the
three-way handshake [[17,[18]. As such, in constrained networks,
CoAP utilizes DTLS [19] for end to end communication
security, such as authentication, integrity, and confidentiality,
and the Capability based Access Control (CapBAC) [20, 21]]
for authorization.

In DTLS, IoT devices are issued X.509 certifies, which they
exchange for mutual authentication. In CapBAC model, IoT
devices are issued authorization tokens, also referred to as
CapBAC tokens or capability tokens, that contain information
on a device’s access-rights (capabilities) for particular services
and resources provided by an IoT device. A sender device
attaches its token with a CoAP request. A receiver device
validates the token to ensure that the client is authorized to
access the requested services or resources. Communicating
devices exchange certificates and authorization tokens as UDP
payloads over IEEE 802.15.4 links. However, the minimum size
of an X.509 certificate or a CapBAC token is significantly larger
than the 127 bytes MTU of an IEEE 802.15.4 medium (see
Section for details). Therefore, a UDP packet that contains
a certificate or an authorization token is sent in multiple
fragments. The adaptation layer at the 6LoWPAN protocol
stack provides supports for fragmentation and reassembly of
UDP packets that do not fit in the MTU. Note that we use
the terms capability token, authorization token, and CapBAC

token interchangeably in this article.

The sizes of certificates or a tokens vary based on the
type and amount of information included in these security
credentials. Therefore, the number of fragments increases with
the increase in the size of the certificates and tokens. The
number of fragments is proportional to fragment processing
and delivery time. As IoT devices are resource-constrained
and battery-powered, there are considerable computation and
communication overheads for processing these fragments
(fragmentation, routing, and reassembly) both on sender and
receiver devices, which limit their ability to serve real-time
requests. In the literature [9, 22, 23], it has been discussed
several times that packet fragmentation are susceptible to
various types of network attacks, such as fabrication, replay,
duplication, and buffer exhaustion attacks. The possibility of
fragmentation attacks will increase if the number of fragments
is large.

In this regard, we propose CATComp — a compression-aware
authorization protocol for CoAP and DTLS that enables [oT
devices to compress certificates and authorization tokens using
standard compression methods to reduce the size of these
security credentials. CATComp proposes additional message
flights in the CoAP and DTLS handshakes that allow two
communicating devices to negotiate a compression method
during certificates and tokens exchange. A sender device uses
the negotiated method to compress outgoing certificates at
the DTLS layer and authorization tokens at the CoAP layer.
CATComp also provides methods that allow a receiver device to
identify compressed credentials and decompress them at CoAP
and DTLS layers. As the number of packet fragments is reduced
for the compressed certificates and tokens, the communicating
devices have to spend a fewer amount of time on packet
fragmentation, fragment delivery, and fragment reassembly,
which enable a service device to respond to requests faster.
Furthermore, energy consummations are minimized as the
fragment processing overheads are minimized, which results in
longer battery life. Additionally, the chances of fragmentation
attacks are reduced as devices exchange a fewer number of
certificate and token fragments when apply compression using
CATComp.

Contributions: The contributions of this paper are as follows.

1) We propose handshakes at the DTLS and CoAP layers that
enable IoT devices to apply compression and decompression
at the application and transport layers.

2) We design various messages that allow a sender device to
negotiate a particular compression method with a receiver
device while establishing a DTLS session. While the sender
device uses the selected compression method to compress
X.509 certificates in the DTLS layer, the receiver device
uses the negotiated compression method to decompress
incoming certificates. The certificate compression at DTLS
layer reduces the number of packet fragments for X.509
certificates, which results in faster authentication and session
establishment.

3) We also introduce multiple headers at the CoAP layer that
allow a sender device to instruct the DTLS layer to compress
outgoing authorization tokens. The proposed CoAP headers

also enable a receiver device to identify compressed tokens
and apply decompression accordingly. The compression of
the capability tokens reduces the size of the application
payloads; as such, requests are delivered, processed, and
responded faster.

4) We implement a prototype of CATComp using RE-Mote IoT
devices [24] to demonstrate the feasibility of the proposed
scheme. We integrate CATComp with TinyDTLS and CoAP
libraries [25} 26] of the Contiki operating system [27].

5) We provide experimental evaluations which show that
communication overheads for fragment delivery and energy
costs for fragment processing are reduced when CATComp
is adopted to exchange CoAP message over DTLS sessions.
The results also show that, in CATComp, end-to-end
message delivery delays are reduced and the throughput of
a service device is increased as smaller-sized credentials
(certificates and tokens) are exchanged.

Organization: The rest of this article is organized as follows:
Section [lI| provides a background on IoT networking and
security. The motivation and the details of proposed scheme
are presented in Section [[II and Section respectively.
The experiments and evaluations are presented in Section [V]
Section [VI provides a comparative discussion on related works.
Finally, we conclude this article in Section

II. BACKGROUND: IOT NETWORKING AND SECURITY
A. Secure Communication Phases

There are two phases for secure communications: estab-
lishment of a secure session and information exchange over
the secure session. The secure session establishment takes
place at the DTLS layer. Communicating peers exchange
certificates for authentication and session key selection. In
the information exchange phase, a client device sends service-
access requests and authorization credentials over the secure
session. Devices use CoAP for exchanging information over
the secure DTLS session. The information exchange phase
can be further divided into two phases: request phase and
response phase. In the request phase, a client sends a request
and authorization credentials to a service device. In the response
phase, a service device validates the credentials and responds
to the request.

B. CoAP as an Application Layer Protocol

CoAP implements a request and response model. A client
sends a CoAP request message over a UDP packet. The
recipient replies with a CoAP response message. The details
of a CoAP message is presented in Figure [I. CoAP message
use binary format: a fixed size 4-byte header, a variable length
Token, a sequence of CoAP options, and payload. The Ver
indicates CoAP version and T indicates the types of a CoAP
message. There are four types of CoAP messages: Confirmable
message (T=0), Non-confirmable message (T=1), Acknowledge
message (T=2), and Reset message (T=3). A Confirmable
message must be acknowledged by the recipient through an
Acknowledge message. However, a Non-confirmable message
is not acknowledged. A recipient sends a Reset message to

. TABLE I: Fields of a CapBAC Token.
2Bit | 2Bit 4 Bit 8 Bit 16 Bit
Field Name | Description

Ver T TKL Code Message ID UUID A unique random number assigned to every token.

Issuelnstant The time at which the token was issued.
. IssuerID The identity of the issuer.
Token (]f any, TKL bytes) t Signature The signature of the issuer.
Option Delta Option Length Option Value Public Key The public key of the issuer.
. . N ServiceList An array of services. A client is granted access to the
(if any) (if any) (if any) services mentioned in the list.
URI An Universal Resource Identifier (URI) assigned to
Payload Marker (FF) Payload (if any) every IoT service.

Access Right A list of actions. A client is authorized to perform the

Fig. 1: CoAP headers.

reject a request. The TKL indicates the length of a token. The
Code indicates the message type of request or response, i.e.,
GET (1), POST (2), PUT (3), and DELETE (4). The message
ID indicates the identifier of a message. A Token is used to
differentiate between concurrent requests. A recipient sends
back the token and message ID in the response message.

Zero or more option fields may follow a token. CoAP options
are similar to HTTP headers. Every CoAP option is assigned
an option number, such as Uri-Host (1), Uri-Port (3), Uri-Path
(11), Content-Format (12), and Uri-Query (15). HTTP headers
are represented in the plain text. In contrast, CoAP options
are encoded with Delta encoding to minimize the size of a
message. The Option Delta field is the difference between two
consecutive options. For example, if a message contains the
aforementioned options and the order of their appearance in a
request message remains same, then the value of their option
delta fields are 1, 2, 8, 1, and 3 respectively. To calculate the
Option Number from an Option Delta value, the Option Delta
values of current and all previous options before it are summed
up. For instance, the Option Number (12) of the Content-Format
option can be computed by summing up options values 1, 2,
8 and 1. The fields Option Length and Option Value indicate
the size and value of an option field respectively. The Payload
Marker (0OxFF) indicates the end of the options and the start
of the payload.

C. CapBAC for Authorization

CapBAC schemes [20] 21]] protect IoT services and resources
from unauthorized accesses. In the CapBAC model, a client’s
rights, such as read and write privileges, for accessing particular
services and resources are mapped to the capabilities of the
client. The capabilities of the client determine if the client is
authorized to issue commands (e.g., GET, POST, DELETE,
and PUT) to an IoT device. Every client of an IoT-based
system is issued an authorization token. The access rights of a
client is encoded in the token. A trusted issuer signs the token;
therefore, it cannot be forged. As shown in Figure [2] a client
device sends a request (e.g., GET or POST) for a particular
service (e.g., POST coap://thermostat/temperature/status) to an
IoT device. The client attaches its capability token with the
request. The IoT device validates the token and ensures that
the client is authorized to perform the action. Figure 3| shows
the CoAP messages for an authorized request and response. A
CapBAC token is encoded in a JSON format. Figure [shows

actions specified in the list.

Obligation The token must not be accepted before the time

specified in NB or after the time mentioned in NA.
Context A set of context information used as inputs for token
Constraints validation.

the content of a CapBAC token. Table ff provides the details
of fields of a CapBAC token.

Issuer
1. Issue Token
gb\e' %0 y Oe
CapBAC Token N o
¥ %, %,
(P S, %
0%
2. Request & () 3. Relay Request @0
. CapBAC Token] &Token a7
—_—)] \ / /
. (D _— &9
Client Device 7. Relay Response Gateway 6. Response IoT Device

Fig. 2: The CapBAC model.

D. DTLS for Communication Security

In the DTLS [19], IoT devices use X.509 certificates as
their identities for authentication [28l [29]. The details of the
DTLS handshake for the certificate-based mutual authentication
are presented in Figure [5. Flight 1: The client sends the
ClientHello record that contains the protocol version and a
list of cipher suites and compression methods supported by
the client. Flight 2: The server replies with the ServerHello
record that contains the cipher suite and compression method
chosen from the lists offered by the client. The server sends

Request: POST /temperature/status

Header: POST (T=CON, Code=1, MID=0x7d34)
Uri-Path: "temperature/status "
Content-Format: "application/json"

Payload: Capability Token

1 | CON=0 | 0 | POST =2 | MID = 0x7d34
OD=11 OL=18B temperature/status
OD=1 OL=2B application/json (id =50)
FF {capability token}

(a) CoAP request message

Response: "22.3 C"
Header: 2.05 Content (T=ACK, Code=69, MID=0x7d34)
Payload: "22.3 C"

1 | ACK=2 |0| 2.05=69 | MID = 0x7d34

"22.3C” (6 B)

(b) CoAP response message.

Fig. 3: Authorized POST Request and ACK Response message.
OD = Option Delta. OL = Option Length.

"UUID" : "9E371587234d004E19AEd5C578702E94",
"Issuelnstant" : "2017-09-15T12:10:47Z",
"IssuerID" : "admin@users.iha.com",
"ClientID": "alice@users.iha.com",
"IssuerPublicKey": "048E3408...684400D314",
"Signature": "C27D4ES5A9..DFFDE8B7E5C42F5203BF9AF",
"ServiceList": [{

"URI": "coap://node786/pacemaker",

"AccessRight": {

"ACT": ["GET"," POST "]
}

"Obligation": {
"NotBefore": "08:00:00",
"NotAfter": "21:00:00"
b
"ContextConstraint": {
"DeviceContext": {
"OperatingMode": "Energy Saving",
"BatterySatus": "80%"
5
"UserContext": {
"Location":["33.50","86.80"]
}
}
}, {service,}, ...,{service, }, {service,}]

}
Fig. 4: A CapBAC token in a JSON envelope [21]].

Client Server

Flight 1 ClientHello
ServerHello, ServerCertificate, ServerKeyExchange, Flight 2
[Certificate Request], Server Hello Done
Flight 3 [ClientCertificate], ClientKeyExchange,
[CertificateVerify]
Flight 4 ChangeCipherSpec
(5) Finished
Flight 5
ChangeCipherSpec
Flight 6 O Finished —
(G o
[...]1Optional; & Encrypted

Fig. 5: A fully authenticated DTLS handshake.

its X.509 certificates (ServerCertificate record), a request
(CertificateRequest record) for the client’s certificate, and
cryptographic materials (ServerKeyExchange record) require
to derive a session key. The ServerHello record indicates the
end of Flight 2. Flight 3: The client sends its X.509 certificate
(ClientCertificate record), a proof of possession of the public
key embedded with the certificate (CertificateVerify record)
and credentials for deriving a session key (ClientKeyExchange
record). Flight 4-6: The ChangeCipherSpec record contains the
negotiated options (e.g., cipher suite and compression method)
for the session. The Finish record contains an encrypted
message digest of all previous handshake messages.

E. IEEE 802.15.4 as the Communication Medium

6LoWPAN nodes communicate over a low data rate (approx-
imately 250 kbps) radio link such as IEEE 802.15.4 [30]. The
MTU of the IEEE 802.15.4 medium is 127 bytes. However,

the MTU for a IPv6 packet is 1280 octets. Therefore, a full
IPv6 packet does not fit in an IEEE 802.15.4 frame. The
6LoWPAN adaptation layer provides functionalities for IPv6
header compression so that an IPv6 packet can fit the 127 bytes
MTU. However, if the datagram does not fit the link’s MTU
then it is broken into fragments. As shown in Figure[6] starting
from a maximum physical layer packet size of 127 octets
and the maximum header overheads of 98 octets, the resultant
maximum frame size at the application layer is 29 octets. As
a result, application payloads larger than 29 bytes are sent in
multiple fragments. Packet fragmentation and reassembly take
place in the adaptation layer.

IEEE 802.15.4 Frame (127 B)

25B 2-3B 40 B 8B 51 B (min)
IEEE 802.15.4 | Compr. 1Pv6 uUDP

Header Header | Header | Header IPV6 Payload

a. Header Compression

25B 4-5B | 2-3B 40 B 8B 46 B (min)
IEEE 802.15.4 Frag. Compr. 1Pv6 UDP

Header Header | Header | Header | Header [Pv6 Payload

b. Fragmentation + Header Compression

25B 5-17B | 4-5B 2-3B 40B 8B 29 B (min)
IEEE 802.15.4 Mesh Frag. Compr. IPv6 UDP IPv6

Header Header Header | Header | Header | Header | Payload

¢. Mesh Addressing + Fragmentation + Header Compression

Fig. 6: IEEE 802.15.4 Frame. min = Minimum.

F. Fragmentation Mechanism

The 6LoWPAN adaptation layer provides functionality
for IPv6 header compression and packet fragmentation. In
the case of packet fragmentation, each 6LoWPAN fragment
contains a fragment header that carries information for in-
place reassembly, even for out-of-order fragments. If an entire
payload (e.g., IPv6 datagram) fits the MTU of an IEEE 802.15.4
link then it is unfragmented and the 6LoWPAN encapsulation
does not contain a fragmentation header. However, if the
datagram does not fit the link’s MTU then it is broken into
fragments.

| IPv6 Header Payload |

L)

AN

FRAGI | OmRIEVE | by i0ad || FRAGN | Payload || FRAGN | Payload |
__Header |

Dispatch Datagram | Datagran; |Dispatch Datagram | Datagram | Offset
11000 Size Ta; 11100 Size Tag >
5b 11b 16b 5b 11b 16b 8b

Fig. 7: Packet Fragmentation.

There are two types of fragment header: FRAG1 and FRAGN.
The first fragment of a packet contains the first fragment header
(FRAG1). In contrast to regular IP fragments, 6LoWPAN
fragments only include IP header information in the initial
fragment of a packet. The second and subsequent fragments,
up to and including the last, contain the second fragment header
(FRAGN). As the fragment offset can only express multiples
of eight bytes, all fragments for a datagram except the last one
must be multiples of eight bytes in length.

As shown in Figure [/} FRAG]1 contains three fields: dispatch,
datagram size, and datagram tag. The dispatch field is used to
distinguish between FRAG1 and FRAGN. The datagram size

field encodes the size of the entire IP packet before link-layer
fragmentation (but after IP layer fragmentation). The value
of datagram size is the same for all link-layer fragments of
an IP packet. The datagram tag is a unique per sender and
fragmented packet, and is included in each fragment header. In
contrast to the FRAG1 header, the FRAGN header contains an
additional field datagram offset which indicates the position
of the current payload within the original IPv6 packet.

Only the first fragment (FRAG1) contains end-to-end routing
information (IPv6 address). However, a receiving node uses
the datagram tag of the remaining fragments (FRAGN) to
correlate them to the FRAGI to derive IP-based routing or
processing decisions for these fragments. Thus, the datagram
tag enables a receiving node to look up routing information
for all the fragments belonging to a fragmented packet after
the FRAG1 has been received.

G. Routing in IoT Network

Based on which layer the routing decision — packet or
packet fragments forwarding decision — occurs, the 6LoWPAN
routing protocols can be classified into two categories [12} 31]
— Figure E] shows the differences. For the mesh-under scheme,
the routing decision is taken in the adaptation layer. In this
routing scheme, each fragment is perpended with a mesh
routing header (see Figure [6). A forwarding node uses the
link layer addresses to derive a routing decision on a per-
fragment basis. In contrast, the route-over scheme delegates
the decision to the network layer on a per-packet basis. An IP
packet is fragmented by the adaptation layer and all fragments
are sent to the next hop based on the routing table. The next
hop reassembles them in order to reconstruct the original IP
packet in the adaptation layer when all fragments are received
successfully. The reconstruction process starts only when the
last fragment arrives. Once reconstructed, the packet is sent to
the network layer. Finally, the packet is fragmented again and
these fragments are delivered to the next hop.

Application Layer (CoAP) Application Layer (CoAP)

Transport layer (TCP/UDP) Transport layer (TCP/UDP)

Routing
Network Layer (IPv6) Network Layer (IPv6) | (rpL)
2 Routi
ELO WPAN Adaptation (;;ISI = 6LoWPAN Adaptation Layer
ayer

802.15.4 MAC Layer 802.15.4 MAC Layer

802.15.4 PHY Layer 802.15.4 PHY Layer

6LoWPAN Mesh-under Routing 6LoWPAN Route-over Routing

Fig. 8: Position of Routing Modules.

III. PROBLEM STATEMENT AND MOTIVATION

CoAP was designed to avoid fragmentation of a UDP packet.
However, the X.509 certificates and authorization tokens are
sent in a large number of fragments as they do not fit in a
single IEEE 802.15.4 frame. These large number of fragments

increase packet delivery time and limit IoT devices to serve a
request faster. Additionally, the processing of these fragments —
packet fragmentation on the sender end and reassembly on the
receiver end — increases energy consumptions by the sender
and receiver IoT devices. In this section, we discuss how the
sizes of the certificates and authorization tokens can increase
communication overheads and energy costs of the IoT devices.

A. Communication Overhead for Certificate & CapBAC Token

The size of a CapBAC token depends on the amount of
information it contains on the access rights of a client. Figure 9]
shows a correlation between the number of services to which
a client is granted access and the sizes of the authorization
tokens issued to the client. From the figure, it can be observed
that the size of a token increases when the client is granted
access to a higher number of services. This is because the
token issued for the higher number of services contains more
information on the capabilities of the client than the token
issued for the lower number services. It can also be noted that
the minimum size of a token is greater than 800 bytes which is
larger than the 127 bytes MTU. As a result, a CapBAC token
has to be sent in multiple fragments. Additionally, the number
of fragments increases with an increase in the token size.

9000

8000 7725

7000

E 4043

2202

1281
817

1 2 4 8 16
Number of Service

Fig. 9: Service count Vs. Token size.

In the DTLS, a client and a server exchange their X.509
certificates for mutual authentication and to set up a secure
connection (see Figure[5). The size of an X.509 certificate varies
with the size of the public key attached with the certificate
and the type of the public key cryptography used, such as
RSA or Elliptic Curve Cryptography (ECC), used to verify
the certificate. As shown in Figure the size of a certificate
increases as the length of a public key increases. From the
figure, it can also be noted that the minimum size of an X.509
certificate is larger than 127 bytes MTU. Therefore, certificates
are fragmented prior to sending to an IEEE 802.15.4 link.

From the above discussion, it is evident that authorization
tokens and X.509 Certificates contribute a notable portion in
packet size. In this regard, we posit that authorization tokens
and certificates should be compressed to minimize the number
of fragments and packet processing delays as well as to enable
IoT devices performing mutual authentication and authorization
faster.

2000
1800
1600

0

1024 2048 3072 112
RSA

—_ = =
(= S
(===l
oS © O

D ®
(=2 =]
oS © O

Certificate Size (in Bytes)

[5%3
(=3
(=1

ECC
Key Lenght (in Bits)

Fig. 10: X.509 Certificate size Vs. Public key length.
B. Large Number of Packet Fragments

Uncompressed certificates and capability tokens result in a
large number of packet fragments. We provided a correlation
between the size of the security materials and the number of
fragments in Figure [T1] and Figure [I2} From Figure [T1] it can
be noted that there is a significant increase in the number of
fragments as the size RSA and ECC keys are increased. The
number of fragments also increases as a client is given access
to a higher number of services (see Figure [I2).

90

80 ® Link Layer Security Absent
70 m Link Layer Security Present
=
@
£ 60
on
«
=50
s
- 40
2
£ 30
=
Z 20
10
0
1237 1590 1935 1050
RSA ECC
Certificate Size (in Bytes)
(a) Certificate size Vs. Packet fragments (Mesh-under routing).
50
45 ® Link Layer Security Absent
40 ® Link Layer Security Present
|
a 35
g 30
=
o 25
52
E 15
10
5
0

1237 1590

RSA

1935 1050

ECC
Certificate Size (in Bytes)

(b) Token size Vs. Packet fragments (Route-over routing).

Fig. 11: An analysis of packet fragments for X.509 certificates.

From the figures, it can also be observed that the number of
fragments is larger in Mesh-under routing than in Route-over
routing. This is because of the space of an application payload
in the IEEE 802.15.4 is reduced by 17 Bytes if Mesh-under

%)
@D
S

m Link Layer Security Absent 309

w
=3
=1

m Link Layer Security Present

-
£ 250
£
o0
£ 200
=
-
=)
5 150
=
E
Z 100
45 52
50 29 33 II
, WA
817 1281 2202 7725

Capability Token Size (in Bytes)

(a) Certificate size Vs. Packet fragments (Mesh-under routing).

u Link Layer Security Absent

u Link Layer Security Present

184
168
160
-
5 140
g
120
97
100 88
80
60 48 53
40 28 31
18 20
20
. HH
817

1281 2202 4043 7725
Capability Token Size (in Bytes)

Number of Frag

(b) Token size Vs. Packet fragments (Route-over routing).
Fig. 12: An analysis of packet fragments for CapBAC tokens.

routing is adopted — the space for an application payload is
46 Bytes and 29 Bytes in Mesh-under and Route-over routing
respectively (see Figure [6).

Moreover, the number of packet fragments increases when
link-layer security (LLS) is used [33]. The 802.15.4
security layer is handled at the media access control layer,
below application control. The 802.15.4 specification defines
various security suites for link security. In LLS, an additional
32 bits (4 bytes) Message Authentication Code (MAC) is
added to the IEEE 802.15.4 frame. As a result, the room
for an application payload is reduced, and the number of
fragments is increased. An increasing number of fragments
creates significant network overhead. Additionally, these kinds
of communications are vulnerable to fragmentation attacks.
Even the security layer of IEEE 802.15.4 can not protect the
devices from the fragmentation attacks. Therefore, reducing the
number of fragments is desirable to minimize the risk of the
fragmentation attacks and lower the communication overhead.

C. Increased Request Serving Delay

The time to deliver a request to a receiver IoT node increases
with an increase in the number of packet fragments. A receiver
has to spend more time on reassembling the fragments of a
request than on preparing a response to the request. Hence,
the receiver cannot serve a real-time request. Additionally,
the larger the number of fragments, the more the fragment
processing overhead on the on-path nodes — the nodes located

on the path between a sender and a receiver. The intermediate
nodes have to find routes for every fragment. It can also
be noted that the packet delivery time is larger in Route-
over routing than in Mesh-under routing. In the Router-over
routing, every on-path node has to reassemble the fragments to
determine the next hop. Additionally, the on-path nodes have
to re-fragment the packet prior to send it to the next hop.

D. Vulnerable to Fragmentation Attacks

The 6LoWPAN fragment reassembly mechanism does not
provide support to verify the integrity of an individual packet
fragment. A receiver has to reassemble an entire packet to
confirm whether or not the packet fragments are modified
in transit. Adversaries can exploit this vulnerability of the
reassembly method to perform fragmentation attacks [9], such
as duplication and alteration. In the duplication attack, an on-
path adversary sends an additional fabricated fragment along
with the legitimate packet fragments. On the other hand, an
adversary modifies a legitimate packet fragment in the alteration
attacks. The resource consumption of a receiver increases due to
such attacks. A receiver reassembles the packet fragments and
learns that the one or more fragment was modified in-transit;
therefore, it requests the sender to retransmit the packet. Such
fragment reassembly and retransmission increase CPU and
memory consumption. Adversaries can perform these attacks
on large-sized requests (e.g., certificates and capability tokens)
to exhaust reassembly buffer or battery of an IoT node. As
such, the compression of certificates and capability tokens
will reduce the packet size significantly which will yield less
number of fragments. Hence, the possibility of a fragmentation
attack will decrease also.

IV. PROPOSED SCHEME

We propose CATComp - a protocol that facilitates certificate
and authorization token compression at DTLS and CoAP
layers, respectively. During the DTLS session establishment,
CATComp enables a sender device to adopt a compression
scheme to reduce the size of X.509 certificates that are
used authentication. CATComp also provides the ability to
compresses authorization tokens that are attached to CoAP
requests. The sizes of the certificates and CoAP requests are
reduced after the compression, which results in a minimal
number of packet fragments for a service request. Furthermore,
the fragment processing overheads are reduced both on the
sender and receiver ends as devices need to exchange a fewer
number of packet fragments for compressed certificates and
tokens. As such, service IoT devices can serve requests faster.

A. Certificate Compression

A client and a server negotiate a compression algorithm for
a session by exchanging ClientHello and ServerHello messages
(see Flight 1-2 of Figure[5). The compression algorithm is used
to compress application data. However, we propose a scheme
that compresses the client’s and server’s certificates (or a chain
of certificates) by using the negotiated compression method.
The operational model of the proposed certificate compression
scheme is shown in Figure [I3]

Step 1: The server receives a list of compression method
supported by the client through the ClientHello record (see
Flight 1 of Figure [5). If the server does not support the client
provided compression methods it sends its certificate in the
plain text (conventional approach) as shown in Step 2.1 — 3.1.
Otherwise, the server follows our proposed approach to send
its certificate.

Step 2: The server replies with the ServerHello record that
contains the compression algorithm chosen by the server.

Step 3-5: The server retrieves the certificate (or the certifi-
cate chain) from its memory (ROM or RAM). It is possible that
the certificate is already stored in the memory in the compressed
format. There are two reasons for which a certificate can be
stored in compressed format: a) to save storage (see Storage
Savings of Section|[V-B); b) to avoid compression during DTLS
handshake; thus, to achieve faster authentication and session
key establishment. If the certificate is already compressed then
the server moves to Step 5. Otherwise, the server provides
the certificate and selected compression method as the inputs
to Algorithm [T to compress the certificate. The Algorithm
first computes the length of the uncompressed certificate and
then compresses it. To this end, the Algorithm creates a
DTLS handshake record of type ServerCertificateCompressed.
The server sends the ServerCertificateCompressed record and
CertificateRequest record to the client. We propose two new
type of handshakes, such as ServerCertificateCompressed
and ClientCertificateCompressed, to exchange compressed
certificates. The DTLS handshake records of type ServerCer-
tificateCompressed and ClientCertificateCompressed have two
fields: uncompressedLenght and compressedCertificateData.
The unCompressedLength indicates the length of a certificate
before compression and the compressedCertificateData indi-
cates the compressed certificate.

Step 6: The client decompresses ServerCertificateCom-
pressed.compressedCertificateData and retrieves the certificate
in the plain text format. The client discards the certificate
if ServerCertificateCompressed.unCompressedLength does not
match with the length of the uncompressed certificate. The
client sends a bad_certificate Alert record to the server and
aborts the connection.

Step 7-9: The client also follows the same procedure as
described in Steps 3-5 to send its compressed certificate. The
client generates the ClientCertificateCompressed record by
executing Algorithm [1| and sends it to the server.

Step 10: The server decompresses ClientCertificateCom-
pressed.compressedCertificateData and retrieves the client’s
certificate in the plain text format. The server aborts
the connection if after decompression ClientCertificateCom-
pressed.uncompressedLength does not match the actual length.

B. Authorization Token Compression

The current implementation of DTLS provides supports
for payload compression. Once the compression method is
negotiated between a client and a server, the application payload
(CoAP requests and responses) are compressed regardless of
their sizes. However, we propose to compress CoAP request
messages (Conformable and Non-conformable) that contain

Fig. 13: The operational model of certificate compression

1. ClientHello [List of Compression Method] o

[IF list does not contain Server supported compression method]|

2.1 ServerHello, ServerCertificate [plain text]

CertificateRequest
3.1 ClientCertificate [plain text] ~

Conventional Approach

[ELSE list contains Server supported compression algorithm]

2. ServerHello

<

<

. . S
3. Retrieve Server Certificate
4. Compress Certificate
5. ServerCertificateCompressed,

CompressedCertificateRequest

6. Decompress Server Certificate

7. Retrieve Client Certificate

8. Compress Certificate X .
9. ClientCertificateCompressed

Proposed Approach

Server

10. Decompress Client Certificate [Jr

procedure.

Algorithm 1: Certificate Compression Procedure

Input
Input

: CompessMethod
: certificateChain

Output : compressedCertificate

Output : uncompressLength

if CompessMethod equals NULL or certificateChain equals NULL
then

else

end

return NULL ;

struct {
uncompressedLenght uL;
compressedCertificateData ccD;
} certificate_compressed;
compressedCert «— NULL;
combinedCert «<— EMPTY;
uncompressLength <— 0;
for cert in CertificateChain do
CombinedCert.Append(cert);
UncompressLength += cert.Length;

end

CompressedCert «— CompessMethod.Compress(CombinedCert);

certificate_compressed.uL <— UncompressLength;

certificate_compressed.ccD «— CompressedCert;

if option equals client then
ClientCertificateCompressed <— certificate_compressed;
return ClientCertificateCompressed;

else if option equals server then
ServerCertificateCompressed <— certificate_compressed;
return ServerCertificateCompressed;

else

| return NULL;
end

messages are tiny in sizes, typically in between 32 bytes to 64
bytes. For instance, the response messages of wearable medical
sensors contain the physical conditions of a patient, such as
temperature, pulse, blood pressure, glucose level, respiration
level, and so on. This information can be represented in a few
numbers of bytes. Similarly, response messages from smart
home appliances contain a small number of bytes. As such, a
response message can be sent in a single fragment (or a couple
of fragments) and do not require to be compressed. Moreover,
the compression of such a small response message may even
increase the size of the response because compression headers
are added to the response payload.

We propose a set of CoAP options for enabling authorization
token compression at the CoAP layer (see Table [M). The
Token_Offset is used to compute the starting address of a
token in the request payload. The starting address is calculated
as address of payload marker (FF) + Token_offset. The
Token_Encoding indicates the method used to compress the
authorization token. Uncompressed_Length is the length of
the token before compression. The Compression_Flag is used
to inform the DTLS layer whether or not a CoAP request or
response should be compressed. The Compression_Flag can
have two values: zero or one. The DTLS layer skips payload
compression when Compression_Flag is set to one. Otherwise,
an entire CoAP request or response is compressed in the DTLS
layer — Steps 1-15 of the conventional approach of Figure [14]

Client

L
1. Request = Header +

Server

[DTLS| [DTLS]
== 1

Conventional

Options + Req. Data + Approach
Token
2. Request N
=
3. Compress (Request)
4. Encrypt (Request)
) 5.Enc(Com(Req))
1=
g ==
%)) 6. Decrypt (Req.)
ﬁ 7. Decompress (Req.)
e 8. Request N
é 9. Response
2 10. Compress (Resp.)
g 11. Encrypt (Resp.)
&} 12.Enc(Com(Resp

13. Decrypt (Resp.)

14. Decompress (Resp.) []
15. Response

Proposed Approach
1. Request = Header + g 98

capability tokens. As shown in Figure [3| the request message
is relatively larger than the response message (Acknowledge
and Reset). Unlike the response message, a CapBAC token is
added to the request; therefore, the size of the request payload
becomes larger than the response message. The response

y

L

§ Options + Req. Data +
j' Compressed Token
A
§ 2. Request
&) 3.Encrypted (Req.)
it 4. Request
@ 5. Decompress Token []
o)
£ 6. Response
S [7.Encrypted (Resp
8. Response

T

]

Fig. 14: The operational model of token compression procedure.

The operational model of the proposed token compression
scheme is shown in Figure [14 (steps 1-8). Step 1: An
authorization token is first compressed and then attached to
the CoAP request payload. The proposed CoAP options (see
Table [lI) are also added after the CoAP headers. The client
sets the Compression_Flag to one.

Step 2-3: The DTLS layer receives the CoAP request and
skips payload compressing as it finds that Compression_Flag
is set to one. The DTLS layer only encrypts the request and
sends the encrypted request to the server.

Step 4: the DTLS layer at the server end decrypts the
payload and finds that the value of Compression_Flag is one;
therefore, it skips payload decompression and forwards the
request to the CoAP layer.

Step S5: The CoAP layer computes the location of the
compressed token in the request payload by using the To-
ken_offset option and starting address of the payload marker
(FF). Afterward, the server decompresses the token using
the compression method specified in the Token_Encoding.
The server discards the request if the value specified in
Uncompressed_Length does not match the token length after
the decompression. The server sends bad_token Reset message
to the client.

Step 6: The server sends a CoAP response (e.g., Acknowl-
edge message) to the client. In response, the client sets the
Compression_Flag to one. Hence, the DTLS layers at the server
and client ends do not compress the response (see Step 7-8).

C. Relevant Issues

Correlation Between Datagrams: There exists a correlation
between datagrams that can be used for compression. Con-
versely, the proposed framework facilities the reduction of
resource overheads for authentication in session establishment
and authorization in information exchange. It therefore does
not need to consider the correlation between datagrams, as the
current specification of DTLS support datagram compression.
However, there is no specification in the existing DTLS protocol
to compress the credentials exchanged in session establishment
and information exchange. The proposed scheme fills this gap
by proposing a compression-aware authorization framework
based on DTLS and CoAP protocols.

CoAP Transfer Modes: In the request phase of the in-
formation exchange phase for secure communications (see
Section II-G), our framework allows a request and authorization
credentials to get delivered to a service devices faster as the
scheme proposes additional headers in the CoAP, which can
be used to compress and reduce the size of access-control
credentials. In the response phase, a service device responds
to a request after a successful authentication and authorization.
CoAP transfer methods such as block and observation modes
are designed for the response phase, where a service device can
send bulk data or periodical updates to a client device. Specially,
the Block Wise Transfer (BWT) has been introduced to enable
a client/server to send a large message in multiple blocks so that
the size of each block is small enough to fit in a single MTU
of the IEEE 802.15.4 to avoid fragmentation. However, BWT
only works on the application layer and does not deal with the

TABLE II: CoAP options for compressing authorization tokens.

Option No. | Name [Format | Values
2048 Token_Offset uintl6 0 - 65535
enum {
. . LZSS (0),
2049 Token_Encoding uint8 127
} comprsn_method
2050 Uncompressed_Length uintl6 0 - 65535
2051 Compression_Flag 1 bit Oorl

credentials (certificates) used in DTLS layer which can still
result in fragmentation issue at the 6LoWPAN layer. Moreover,
the authorization credentials, such as CapBAC tokens, are
considered as the application payload. If the tokens do not fit
in the MTU of 6LoWPAN, they will be sent in different blocks
in BWT. The CATComp works on the authentication/session
establishment phase (DTLS layer) and request phase (authoriza-
tion over CoAP). Thus, CATComp reduces the communication
overheads for exchanging certificates in DTLS layer and the
number of blocks in application layer by compressing the
authorization token. Furthermore, CATComp enables faster
authentication by compressing the certificates in DTLS layer,
which eventually results in faster request processing in BWT.
Moreover, CATCom improves the performance of the CoAP
transfer methods, such as BWT and observations modes, in
the request and response phase by using compressed tokens.

V. EXPERIMENT AND EVALUATION

In this section, we provide an analysis of resource efficiency
of the proposed approach in terms of fragment saving, storage
saving, throughput, communication overhead, and energy cost.

A. Prototype Implementation

We implemented a prototype of CATComp on IoT devices
that run Contiki operating system [27]. We created a 6LoWPAN
network using RE-Mote IoT devices [24] and a Weptech [34]]
border router (see Figure [I5). We integrated CATComp with
the TinyDTLS library [25] of Contiki. We also incorporated
the proposed CoAP options (see Section to the Contiki
CoAP library [26]. We used a lossless compression algorithm
to compress and decompress certificates and tokens. In this
regard, we added the Heatshrink [35] library to Contiki,
which implements the LZSS compression algorithm. Note that
LZSS does not necessarily have to be the only option. The
proposed framework can be integrated with any other lossless
compression algorithm, such as prediction by partial matching
and run-length encoding. We used LZSS as a proof-of-concept
algorithm because it is popular among embedded systems. For
instance, the IoT operating system RIOT [36]] provides a built-
in support for the LZSS compression. Table [[IT presents the
memory footprint of our implementation. We used Contiki’s
memory utility libraries to record the memory usage of the
compression methods.

B. Evaluation

Compression Ratio: We computed the compression ratio (cr)
for a certificate or a capability token as, cr = %‘C’, such that s,

and s, represent the size of an uncompressed and a compressed
certificate or token respectively.

TABLE III: Memory consumption to compress and decompress.

Component | RAM (Bytes) | Flash/ROM (Bytes)
Contiki 11407 41168
COAP 14091 47753
TinyDTLS 14202 47932
Compression | 13862 44001

CoAP Client
Modified CoAP

Internet

CoAP Server

Modified CoAP

Modified DTLS

Border Router

UDP (AAAA::212:7401:1:101)
Contiki Contiki

6LoWPAN

Modified DTLS

AAAA:212:7402 [(S BRI AAAA:212:7404
2002 | e 7| 4404
RE-Mote RE-Mote
ANAA 12 SRR RO, RO, B Aaan202:
7403:3:303 Gaumieny B i

Fig. 15: Experimental setup. Modified CoAP = CoAP + CapBAC
Token Compression. Modified DTLS = DTLS + Certificate
Compression.

The results of the compression ratio for various sized
certificates and token are presented in Figure [I6 From
Figure we can observe that the compression ratios for
the certificates are approximately 1.34. A certificate includes
various fields, such as the issuer’s public key, the issuer’s details
(e.g., name, email, and location), the subject’s public key, the
subject’s details (e.g., country, organization, location, and email
address), signature algorithm, and so on. Although the values
of the public key fields are random, there are redundancies in
the issuer and subject details fields. As such, these low entropy

fields contribute to achieve a compression ratio grater than one.

From Figure [I6a] it can be noted that compression ratios
for the variable-sized certificates are almost same (1.38 and
1.3 for RSA and ECC certificates respectively). Although the
variable-sized certificates share information on issuers and
subject details, the public keys included in the certificates are
generated randomly. Because of the randomness, the public key
fields have high entropy, and the ratios are almost the same. On
the other hand, as shown in Figure [I6b] the compression ratio
for the capability tokens increases as the size of the tokens
increases. This is because the tokens share information about
capability details (see Figure). The JSON fields defining the
capability of a client are the same for multiple services. As
such, the tokens have low entropy and have better compression
ratios than the certificates.

Storage Saving: The storage saving (ss) was computed as,
ss=1-— ;i As shown in Figure @, on an average 27.62% and
23% ROM or RAM storage can be saved for X.509 RSA and
ECC certificates respectively if these are stored in the memory
in the compress format. Furthermore, From Figure [I6b, we
can note that the space saving increases in between 31% to
80% with an increase in the size of capability tokens.

Fragment Saving: We calculated the fragment saving (f)
as the difference between the total number of uncompressed
fragments (f;) and compressed fragments (f.). As such, the

fragment saving is expressed as, fs = fi, — fo = ;“ — o<
Sap Sap

N
S}

35

Compression Ratio
27 Space Saving

14 29 27 30
o 138 24 23 23 .
g 136 s
o0
S 1 20 £
2 z
@
£ 13 1.4 15 ‘g
E 5 137 137 g
© 10 @
128 131 131
13 5
1.26
1.24 0
1024 2048 3072 112 160 256
RSA ECC
Certificates
(a) Certificates.
6 0
7532 80.75
65.76 / 80
5
70
e 50.98 -
5 4 60 &
£ s0 &
g £
23 31.09 k]
S 52 40
g g
LE 4.05 30 &
2.92 20
1 2.04
145 10
0 0
1 2 8 16

4
Number of Services

(b) Capability tokens.

Fig. 16: An analysis of compression ratio and space savings for
certificates and tokens.

Here, s, denotes the size of an application payload and its
values are determined as follows.

29 bytes if Mesh-under Routing

25 bytes if Mesh-under A Link Layer Security
Sap = 46 bytes if Route-over Routing

42 bytes if Route-over A Link Layer Security

The results of fragment savings are presented in Figure [17| and
Figure @ From the figures, we can observe that the number of
packet fragments are reduced significantly if capability tokens
added to the CoAP payload and certificates used in the DTLS
handshake are compressed. It can also be noted that the larger
the size of a capability token the higher the fragment savings.

End to End Delay Analysis: The average end-to-end delay
(EEDygy,) was defined as the mean time required for delivering
multiple requests under the experiment time. The EED,,,
was calculated as Total Numbegg;alligglgsts Delivered * The EED for a
request was calculated as the sum of the time to establish a
DTLS session as shown in Figure [I3 and the time to send
a CoAP request as shown in Figure [T4. For every request,
two communicating peers performed DTLS certificate-based
authentication, and a capability token was attached to a request.
We considered an RSA certificates of key length 1024 bits and
size 1237 bytes as well as an ECC certificate of key length
256 bits and size 1050 bytes. Additionally, we considered
authorization tokens that contained information on capabilities

Variance
70 - Request Fragment (Uncompressed)
‘2 60 = Request Fragmnet (Compressed)
@
& 50 48
= 37
5 40 33 34
530 :
£
Z 20
10
0
RSA
Mesh Under
(a) Mesh-under routing.
%0 43 i
45 # Variance

+ Request Fragment (Uncompressed)

40 35 " Request Fragmnet (Compressed)

30

Number of Fragments
]
W

2048
RSA

3072

Route Over

(b) Route-over routing.
Fig. 17: Fragment savings for certificate compression.

for two, four, and eight services. We varied the number of
intermediate nodes between a sender and a receiver from one
to three and recorded the end-to-end delay for variably sized
requests. We measured the delays by using the Contiki clock
library [37].

The results are presented in Figure [I9] and Figure 20| From
the figures, it can be observed that there was a significant
reduction in the EED when certificates and tokens were sent
in the compressed format. The total number of fragments was
reduced due to the compression. As a result, a request was
delivered much faster when CATComp was used compared to
the conventional approach, although an additional four bytes
of CoAP options proposed in Table |lI| were added to a request,
and an additional couple of bytes were exchanged through the
ClientHello and ServerHello message (Step 1 & 2 of Figure [I3)
to negotiate a compression method

Runtime Analysis: We analyzed the CPU time for com-
pression and decompression operations. Table shows the
execution time required to compress and decompress certificates
with variable length keys and authorization token with variable
number of service details. It can be noted from Table [[V] that
compression and decompression operations contributed a very
small computation time to the EED when CATComp was
adopted.

Throughput Analysis: To calculate the throughput, we divided
the total number of served requests by the total time taken for
serving the requests. We generated one request every 3 seconds

300
Variance
250 T Request Fragment (Uncompressed)
2 ©Request Fragmnet (Compressed)
=
£ 200
o0
£
Z 150
=
5
' 100
=
z 29 45
50 .
0
1 2 4 8 16
Number of Services (Mesh Under)
(a) Mesh-under routing.
180
160 s Variance
“. Request Fragment (Uncompressed)
» 140 = Request Fragmnet (Compressed)
=
g 120
&
= 100 88
s
= 80
E 60 48
z
40 18
20
0 .
1 2 4 8 16
Number of Services (Route Over)
(b) Route-over routing.
Fig. 18: Fragment savings for token compression.
TABLE IV: Runtime Analysis
Certificate
ECC-128 | ECC-160 | RSA-1024 | RSA-2048
Compression 28 ms 30 ms 31 ms 36 ms
Decompression 19 ms 21 ms 21 ms 25 ms
Authorization Token (Number of Services)
Service 1 | Service 2 Service 4 Service 8
Compression 25 ms 26 ms 28 ms 31 ms
Decompression 17 ms 18 ms 19 ms 22 ms

and recorded the total number of requests served by a receiver
node under the experiment time. An analysis and comparison
of throughput improvement (¢;) are presented in Figure
The throughput improvement was calculated as ¢ =1 — ﬁi
The terms ¢, and 7, represent throughput for compressed and
uncompressed requests respectively. We considered a fixed
sized token of 817 bytes that contained capability description
for a single service while calculating throughputs for the
authorization token. Additionally, we considered an ECC
certificates of key length 256 and of size 1050 bytes for
computing throughputs for the certificate. From the Figure [21]
we can note that, on an average, throughputs increased by 50%
and 39% for RSA and ECC certificates respectively when the
certificates were compressed. From the figure, it can also be
observed that throughputs were increased on an average 187%
when we compressed the capability tokens.

Analysis of Communication Energy Consumption: We
recorded the amount of energy consumed by the radio
transceivers of the communicating devices to set up a DTLS

12000

==0==Uncompressed Request
==@==Compressed Request

9976

8584

10000

@ 7482
E
% 8000
)
=]
B 6000
= 6960
e
< 4000
5 3480
2000 3132
0
2 3 4 2 3 4
RSA ECC
Number of Hops
(a) Mesh-under routing.
10000
8942 «=@==Uncompressed Request
9000
=@ Compressed Request 7617

~ 8000
g
E 7000 5713
£y
= 6000
a
E 5000 5630
S 4000
T 3000
= 3146
5 2815

2000

1000

0
2 3 4 2 3 4

RSA ECC

Number of Hops

(b) Route-over routing.
Fig. 19: An analysis of end-to-end delay for certificates.

session using the certificate-based authentication and exchange
capability tokens over the established session. Furthermore, on
the sender node, we recorded the CPU energy consumption
for packet fragmentation and fragment transmission. On the
receiver node, the CPU energy consumption for receiving and
reassembling the fragments was recorded. The total energy
consumption associated with communications was computed as
the sum of the CPU energy consumption for processing packet
fragments and the radio-transceiver energy consumption for
sending and receiving the fragments. We used Contiki energy
library [38] to measure the amount of energy consumed by
the CPU for packet fragmentation and reassembly and by the
radio transceiver for sending and receiving fragments.

As shown in Figure 22, there was a significant drop in
the energy consumption when the certificate and authorization
token were exchanged in the compressed format. Although an
additional four bytes of CoAP options (Table |lI) were added
to a request and a couple of additional bytes (Step 1 & 2
of Figure [I3) were exchanged between the peers to negotiate
a compression method, the total number of fragments were
reduced, as shown Figure [I7] and [I8] with the decrease in the
sizes of the certificates and tokens, as presented in Figure @
As the communicating devices had to process and deliver a
few numbers of fragments in CATComp, there was a drop in
the over all energy consumption.

Analysis of Computation Energy Consumption: There was
an additional energy consumption by the CPU to compress

35000

32%)

«==@==Uncompressed Request
30000
——
N Compressed Request 24360
E 25000
z
£ 20000 1763216240
E
= 15000 10440
)
; 5220 7830
= 10000
= ——
5000 7888
4872
0 2436 3654 3016 4524 6032 3944 5916
2 3 4 2 3 4 2 3 4
No. of Services 2 No. of Services 4 No. of Services 8
Number of Hops
(a) Mesh-under routing.
35000
=== Uncompressed Request 32384 f
30000 | =@=Compressed Request
—_ 2428
2
é 25000
z 17664 16192
< 20000
2 13248
5 15000
= 7728 10304 8832
.E 10000 5152
= >0
5000 7728
5888 5796
4784 441
o 2392 3588 2944 6 3864
2 3 4 2 3 4 2 3 4

No. of Services 2 No. of Services 4 No. of Services 8

Number of Hops
(b) Route-over routing.
Fig. 20: An analysis of end-to-end delay for tokens.

and decompress the certificates and the tokens. However, the
additional energy was very insignificant compare to the energy
required to receiving and reassembling the fragments. From
Figure 23] it can be observed that the CPU energy consumption
for the compression and decompression operations were only
0.2-0.5% and 0.3-0.5% of the total energy consumption,
respectively, of the total energy consumption.

VI. RELATED WORKS AND COMPARATIVE DISCUSSION

From practical viewpoint, the new trends in transport layer
security are the uses of DTLS due to its lightweight nature.
Leading industries preferred DTLS over Secure Sockets
Layer (SSL) for better performance without compromis-
ing security features [51]]. Similarly, CoAP is also gaining
popularity over its predecessor Hyper Text Transport
Protocol (HTTP) in resource constrained IoT network for
the lightweight design. In recent days, integrating DTLS with
CoAP has gained the attention of the research community,
and many exciting research efforts are found that improve
the efficiency of DTLS-CoAP frameworks. Carrillo et at.
proposed a multihop bootstrapping with intermediaries
in IoT networks using Extensible Authentication
Protocol (EAP) over CoAP layer. The authors utilized the
REST architecture of CoAP to perform the bootstrapping and
allegorically show the effectiveness of the scheme in a similar
approach to our work. A secure multicast architecture for CoAP
is proposed by Park et al. [48]]. The study presented a design to
secure both group communication and pairwise communication

== Average Improvement (%)

(o)
(=}

w
(=]

B
(=]

[%%)
(=}

58
49
43 40
32

44

Throughput Improvement (%)
[~}
(=]

s

(=]

RSA-1024 RSA-2048 RSA-3072
RSA Certificate

ECC-112 ECC-160 ECC-256

Ecc Certificate

(a) Compressed certificates.

300

= Average Improvement (%)

[}
[93
(=}

200

256

—_
(=3
(=}

192

Throughput Improvement (%)
Iy
(=)

114

w
(=]

No. of Service 2 No. of Service 4 No. of Service 8

(b) Compressed tokens.

Fig. 21: Throughput improvement for compressed credentials.

TABLE V: Comparative analysis with the prior survey works. RD =

Real Device, SS = Storage Saving

FR = Fragmentation Reduction, ER = End-to-End Delay Reduction, TI = Throughput
Improvement.
Properties Compression at DTLS Compression at CoAP Evaluation

Schemes Header/Payload | Certificate Header/Payload | Authorization Token | RD | SS | FR | ER | TI
Raza(2012) [39] v X X X X X X X X
Raza(2011) [40] v X X X X X X X X
Lithe et al. [41] v X v X X X X X X
Hummen et al. [42] v X X X v X v v v
ROHC [43] v X X X X X X X X
Bormann et al. [44] v X v X X X X X X
Granja (2010) [45] v v X X v/ v/ X X X
Granja (2015) [46] v v X X X X X X X
Carrillo et at. [47] X X X X X X X v v
Park et al. [48] X X X X 4 X v v v
Sun et al. [49] X X X X X X X X 4
Roselin et al. [50] X X X X v X X X X
CATComp (Proposed) v v v v 4 4 4 v v

between CoAP clients and servers via exchanging multicast
messages. The work introduced a key management scheme
that can replace DTLS handshake with fewer number of
messages and offers better performance. In [49], the ToT
resource caching to a broker in the application layer was
discussed. Therein, the authors proposed a traffic load balancing
mechanism among the brokers in a CoAP based resource-
constrained IoT network to reduce the energy consumption in
IoT servers. The method demonstrated that not every IoT
resource is suitable for caching to gain energy efficiency.
Moreover, the work introduced an approach to find and monitor
the popular IoT resources which are suitable for caching.
The research also showed that obtaining the optimal load
balancing among the brokers in a resource-constrained network
is NP-hard and therefore introduced an approximation algo-
rithm. The evaluation through simulated experiments showed
that the approximation algorithm performs better than the prior
options in terms of average resource utilization and delay.
Roselin et al. [50] analyzed the remote CoAP server access
support and finds out that the inherent CoAP implementation
is vulnerable to a potential off-path attack. The work showed
the feasibility of the attack using a setup with real devices
and proposes machine learning based solutions to mitigate the
attacks. Similar to our work, all of the aforesaid researches

focus on improving the operations of DTLS-CoAP frameworks.
Depending on the nature of the problems of interests, these
works presented appropriate analysis illustrating the feasibility
and efficiency of the work using either mathematical models
or experiment-based procedural frameworks like our work.

The existing research works related to compression pre-
dominantly focused on the compression of packet headers at
different layers of the protocol stack. Several prior research
works proposed schemes for the compression of packet headers
such as record header, handshake header or authorization header.
The X.509 certificates and the authorization tokens have not
been considered for compression in previous research works.

In the context of IoT, some compression mechanisms have
been proposed which are protocol specific. Raza et al. [39]
proposed 6LoWPAN header compression for DTLS. They
introduced compression of DTLS record and handshake header.
In another work[40], compression of IPsec’s authentication
header(AH) was proposed in 6LoWPAN stack. Raza et al.
[41] also presented an integration of DTLS and CoAP for IoT
which includes a scheme for DTLS header compression. In
comparison with our work, these works significantly focused
on DTLS header compression. On the other hand, we proposed
a scheme for the payload compression.

Hummen et al. [42] proposed Slimfit, a compression layer

1600
1400 ' Compressed

1200

1000
760

Energy (mJ)
(=) o®©
(=3 =3
=1 =1

450

Number of Token

(a) Communication energy consumption for authorization tokens.

~ Uncompressed
= Compressed

400 370
340

600

500

300

Energy (mJ)
w
8

o

L]

[

=3

=1
o
]

=3
=1
o
]

rsa-1024

ecc-160

rsa-2048

ECC RSA

Certificate

(b) Communication energy consumption for certificates.
Fig. 22: Communication energy consumption

for HIP DEX. HIP DEX is an end-to-end security protocol
designed for constrained network environments in the IP-based
IoT. This layer works just under the HIP DEX layer. The Slimfit
layer compresses expendable HIP DEX protocol information.
Mainly, the HIP header was the central focus. As we can see,
this scheme does not consider payload for compression where
our proposed module significantly address the compression of
payload.

The RObust Header Compression (ROHC) framework [43]]
addressed protocol-specific compression profiles. It provided
an efficient and flexible header compression concept. Also,
there is proposed standardization for 6LoWPAN Generic
Compression of Headers and Header-like Payloads[52]. Both
of these schemes made suggestion about a header compression.
Although 6LoWPAN GHC presented techniques for Header-
like payload but these are not CoAP payload. Granja et al.
[43] proposed and evaluated the usage of compressed security
headers for the network layer with IoT. The authors also
observed that payload space scarcity would be problematic with
the application which requires larger payloads. They suggested
employing security at other layers such as compressed IPSec.

From our analysis, we can observe that existing research
work predominantly focused on the compression of packet
headers at different layers of the protocol stack. It is quite
comprehensible that in the early stage of the communication
packet headers consume a significant portion of the total packet
sizes. However, as the communication goes on, the payload
becomes the main portion of a packet and compression of

800

= Compress 687
700

Decompress

600 567

Energy (uJ)
W S W
(=3 (=3 =3
(=] (=] =]

(%)
=3
=1

=3
=1

2 4 8
Number of Services

(a) CPU energy consumption to compress and decompress the tokens.

1000
900

ompress

274

921
Decompress f—
800 f—
700 630 650 —
3 600 509 =
g5 500 — = 457
5 — —
= 400 —
= —

300
200
100

0

ecc-160

ecc-256 rsa 1024

rsa-2048

ECC RSA

Certificate

(b) CPU energy consumption to compress and decompress the certificates.
Fig. 23: Computation energy consumption

the payload can significantly improve end to end delay and
communication overheads. Our proposed model centers around
compression of the certificates and authorization tokens. We
summarize the comparative analysis of the proposed model
with the prior related works in Table [V,

VII. CONCLUDING REMARKS

In this article, we proposed CATComp — a compression-
aware protocol that enables IoT devices to exchange com-
pressed X.509 certificates and authorization tokens. In 6LoW-
PAN networks, often, certificates and authorization tokens
contribute a significant portion in a communication packet.
Therefore, the number of packet fragments varies with the
size of these certificates and authorization tokens. CATComp
enables communicating devices to compresses X.509 certifi-
cates and authorization tokens at the DTLS and CoAP layers
before sending them over the low-powered and lossy networks.
Thus, CATComp enables devices to minimize the number of
packet fragments significantly. We implemented a prototype
of CATComp on Contiki-enabled RE-Mote IoT devices and
provided a performance analysis of CATComp in terms
of communication and energy efficiency. The experimental
results showed that sizes of the DTLS and CoAP payloads
were reduced significantly by compressing certificates and
authorization tokens. The smaller-sized payloads resulted in
decreasing the number of packet fragments, which yielded less
communication overhead and energy consumption for fragment

processing. As such, devices could exchange messages faster
and experience longer battery life.

REFERENCES

[1] R. Petrolo, V. Loscri, and N. Mitton, “Towards a smart
city based on cloud of things, a survey on the smart
city vision and paradigms,” Transactions on Emerging
Telecommunications Technologies, vol. 28, no. 1, 2017.

[2] A. S. Deese, J. Jesson, T. Brennan, S. Hollain, P. Ste-
fanacci, E. Driscoll, C. Dick, K. Garcia, R. Mosher,
B. Rentsch et al., “Long-term monitoring of smart city
assets via internet of things and low-power wide-area
networks,” IEEE Internet of Things Journal, 2020.

[3] Y. Meng, W. Zhang, H. Zhu, and X. S. Shen, “Securing
consumer iot in the smart home: Architecture, challenges,
and countermeasures,” IEEE Wireless Communications,
vol. 25, no. 6, pp. 53-59, 2018.

[4] M. Hossain, S. R. Islam, F. Ali, K.-S. Kwak, and R. Hasan,
“An internet of things-based health prescription assistant
and its security system design,” Future generation com-
puter systems, vol. 82, pp. 422-439, 2018.

[5] F. Zhu, Y. Lv, Y. Chen, X. Wang, G. Xiong, and F.-
Y. Wang, “Parallel transportation systems: toward iot-
enabled smart urban traffic control and management,”
IEEE Transactions on Intelligent Transportation Systems,
2019.

[6] H. Sedjelmaci, M. Hadji, and N. Ansari, “Cyber secu-
rity game for intelligent transportation systems,” I[EEE
Network, vol. 33, no. 4, pp. 216-222, 2019.

[7] O. Eljjah, T. A. Rahman, I. Orikumhi, C. Y. Leow, and
M. N. Hindia, “An overview of internet of things (iot)
and data analytics in agriculture: Benefits and challenges,”
IEEE Internet of Things Journal, vol. 5, no. 5, pp. 3758—
3773, 2018.

[8] Forbes, “Roundup of internet of things forecasts,” Online
at https://goo.gl/iVt5uz, 2017.

[9] R. Hummen, J. Hiller, H. Wirtz, M. Henze, H. Shafagh,

and K. Wehrle, “6lowpan fragmentation attacks and

mitigation mechanisms,” in Proceedings of the sixth ACM
conference on Security and privacy in wireless and mobile

networks. ACM, 2013, pp. 55-66.

Y. Luo and L. Pu, “Practical issues of rf energy harvest

and data transmission in renewable radio energy powered

iot,” IEEE Transactions on Sustainable Computing, 2020.

[11] M. Hossain and R. Hasan, “P-hip: A lightweight and
privacy-aware host identity protocol for internet of things,”
IEEE Internet of Things Journal, 2020.

[12] T. Winter, “RPL: IPv6 routing protocol for low-power
and lossy networks,” IETF, RFC, 2012.

[13] A. M. Efendi, A. F. P. Negara, O. S. Kyo, and D. Choi,
“A design of 6lowpan routing protocol border router with
multi-uplink interface: Ethernet and wi-fi,” Advanced
Science Letters, vol. 20, no. 1, pp. 56-60, 2014.

[14] N. Kushalnagar, G. Montenegro, C. Schumacher et al.,
“Ipv6 over low-power wireless personal area networks
(6lowpans): overview, assumptions, problem statement,
and goals,” 2007.

[10]

[15] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler,
“Transmission of ipv6 packets over ieee 802.15. 4 net-
works,” IETF, RFC 4944, 2007.

Z. Shelby, K. Hartke, and C. Bormann, “The constrained
application protocol (CoAP),” IETE, RFC 7959, 2016.
M. Masirap, M. H. Amaran, Y. M. Yussoff, R. Ab Rah-
man, and H. Hashim, “Evaluation of reliable udp-based
transport protocols for internet of things (iot),” in IEEE
Symposium on Computer Applications & Industrial Elec-
tronics (ISCAIE). 1EEE, 2016, pp. 200-205.

G. A. Akpakwu, G. P. Hancke, and A. M. Abu-Mahfouz,
“Cacc: Context-aware congestion control approach for
lightweight coap/udp-based internet of things traffic,”
Transactions on Emerging Telecommunications Technolo-
gies, vol. 31, no. 2, p. €3822, 2020.

E. Rescorla and N. Modadugu, ‘“Datagram transport layer
security version 1.2,” IETF, RFC 6347, 2012.

S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-
based security approach to manage access control in
the internet of things,” Mathematical and Computer
Modelling, vol. 58, no. 5, pp. 1189-1205, 2013.

J. L. Hernandez-Ramos, A. J. Jara, L. Marin, and A. F.
Skarmeta, “Distributed capability-based access control for
the internet of things,” Journal of Internet Services and
Information Security (JISIS), vol. 3, no. 3/4, pp. 1-16,
2013.

H. Kim, “Protection against packet fragmentation attacks
at 6lowpan adaptation layer,” in International Conference
on Convergence and Hybrid Information Technology.
IEEE, 2008, pp. 796-801.

M. Hossain, Y. Karim, and R. Hasan, “Secupan:
A security scheme to mitigate fragmentation-based
network attacks in 6lowpan,” ser. CODASPY ’18.
New York, NY, USA: Association for Computing
Machinery, 2018, p. 307-318. [Online]. Available:
https://doi.org/10.1145/3176258.3176326

[16

—_

[24] Re-Mote, “Z1 6lowpan iot device,” http://zolertia.io/z1,
2017.

[25] O. Bergmann, “Tinydtls,” Web page:
http://tinydtls.sourceforge.net/. Visited, pp. 02-15,
2013.

[26] Contiki-CoAP, “Contiki CoAP Library,” https://github)

com/contiki-os/contiki/tree/master/apps/er-coapl 2017.
Contiki, “Contiki os: An open source operating system
for the internet of things,” 2016. [Online]. Available:
http://www.contiki-os.org/

R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and
K. Wehrle, “Towards viable certificate-based authentica-
tion for the internet of things,” in Proceedings of the
2nd ACM workshop on Hot topics on wireless network
security and privacy. ACM, 2013, pp. 37-42.

T. Kothmayr, C. Schmitt, W. Hu, M. Briinig, and G. Carle,
“Dtls based security and two-way authentication for the
internet of things,” Ad Hoc Networks, vol. 11, no. 8, pp.
2710-2723, 2013.

N. Kushalnagar, G. Montenegro, D. E. Culler, and J. W.
Hui, “Transmission of ipv6 packets over ieee 802.15. 4
networks,” IETF, RFC, 2007.

https://goo.gl/iVf5uz
https://doi.org/10.1145/3176258.3176326
http://zolertia.io/z1
https://github.com/contiki-os/contiki/tree/master/apps/er-coap
https://github.com/contiki-os/contiki/tree/master/apps/er-coap
http://www.contiki-os.org/

[31] A. H. Chowdhury, M. Ikram, H.-S. Cha, H. Redwan,
S. Shams, K.-H. Kim, and S.-W. Yoo, “Route-over vs
Mesh-under Routing in 6LoWPAN,” in International
conference on wireless communications and mobile com-
puting: Connecting the world wirelessly. ACM, 2009.
J. Arkko, V. Devarapalli, and F. Dupont, “Using ipsec to
protect mobile ipv6 signaling between mobile nodes and
home agents,” RFC Editor RFC-3776, 2004.

S. Praptodiyono, M. I. Santoso, T. Firmansyah, A. Ab-

durrazaq, I. H. Hasbullah, and A. Osman, “Enhancing

ipsec performance in mobile ipv6 using elliptic curve
cryptography,” in 6th International Conference on Elec-
trical Engineering, Computer Science and Informatics

(EECSI). 1EEE, 2019, pp. 186-191.

[34] Weptech, “6LOWPAN IoT Gateway,” Online at https:
/lwww.weptech.de/en/6lowpan/gateway-saker.html, 2017.

[35] Heatshrink, “An implementation of the LZSS Compres-
sion Method,” |https://github.com/atomicobject/heatshrink,
2017.

[36] RIOT, “Lightweight compression library,” http://doc!
riot-os.org/group__pkg__heatshrink.html#details, 2020,
accessed on October 8, 2020.

[37] Contiki, “Contiki clock library,” http://www.eistec.se/docs/
contiki/a02184.html, 2017, accessed on May 8, 2017.

[38] contiki, “Contiki apis for measuring energy consumption,
http://contiki.sourceforge.net/docs/2.6/a00452_source.
html, 2017.

[39] S. Raza, D. Trabalza, and T. Voigt, “6lowpan compressed
dtls for coap,” in Distributed Computing in Sensor Systems
(DCOSS), 2012 IEEE S8th International Conference on.
IEEE, 2012, pp. 287-289.

[40] S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt,
and U. Roedig, “Securing communication in 6lowpan
with compressed ipsec,” in International Conference on
Distributed Computing in Sensor Systems and Workshops
(DCOSS). 1EEE, 2011, pp. 1-8.

[41] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and
T. Voigt, “Lithe: Lightweight secure coap for the internet
of things,” IEEE Sensors Journal, vol. 13, no. 10, pp.

[46] J. Granjal, E. Monteiro, and Silva, “Security for the
internet of things: a survey of existing protocols and

[32]

[33]

’

[42]

[43]

3711-3720, 2013.

R. Hummen, J. Hiller, M. Henze, and K. Wehrle, “Slimfit—
a hip dex compression layer for the ip-based internet
of things,” in 9th International Conference on Wireless
and Mobile Computing, Networking and Communications
(WiMob). 1EEE, 2013, pp. 259-266.

C. Bormann, C. Burmeister, M. Degermark,
H. Fukushima, H. Hannu, L.-E. Jonsson, R. Hakenberg,
T. Koren, K. Le, Z. Liu et al., “Robust header
compression (rohc): Framework and four profiles: Rtp,
udp, esp, and uncompressed,” Tech. Rep., 2001.

C. Bormann, “Guidance for light-weight implementations
of the internet protocol suite,” IETF, RFC, 2013.

J. Granjal, E. Monteiro, and J. S. Silva, “Enabling network-
layer security on ipv6 wireless sensor networks,” in IEEE
Global Telecommunications Conference (GLOBECOM),
2010, pp. 1-6.

open research issues,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 3, 2015.

D. Garcia-Carrillo and R. Marin-Lopez, “Multihop boot-
strapping with eap through coap intermediaries for iot,”
IEEE Internet of Things Journal, vol. 5, no. 5, pp. 4003—
4017, 2018.

C. Park, “Security architecture for secure multicast coap
applications,” IEEE Internet of Things Journal, vol. 7,
no. 4, pp. 3441-3452, 2020.

X. Sun and N. Ansari, “Traffic load balancing among
brokers at the iot application layer,” IEEE Transactions
on Network and Service Management, vol. 15, no. 1, pp.
489-502, 2018.

A. G. Roselin, P. Nanda, S. Nepal, X. He, and J. Wright,
“Exploiting the remote server access support of coap
protocol,” IEEE Internet of Things Journal, vol. 6, no. 6,
pp. 9338-9349, 2019.

Fortinet, “Technical note: Using dtls to improve ssl vpn
performance,” https://kb.fortinet.com/kb/documentLink|
do?externallD=FD38162, 2020.

C. Bormann, “6lowpan generic compression of headers
and header-like payloads,” 2013.

https://www.weptech.de/en/6lowpan/gateway-saker.html
https://www.weptech.de/en/6lowpan/gateway-saker.html
https://github.com/atomicobject/heatshrink
http://doc.riot-os.org/group__pkg__heatshrink.html#details
http://doc.riot-os.org/group__pkg__heatshrink.html#details
http://www.eistec.se/docs/contiki/a02184.html
http://www.eistec.se/docs/contiki/a02184.html
http://contiki.sourceforge.net/docs/2.6/a00452_source.html
http://contiki.sourceforge.net/docs/2.6/a00452_source.html
https://kb.fortinet.com/kb/documentLink.do?externalID=FD38162
https://kb.fortinet.com/kb/documentLink.do?externalID=FD38162

	Introduction
	Background: IoT Networking and Security
	Secure Communication Phases
	CoAP as an Application Layer Protocol
	CapBAC for Authorization
	DTLS for Communication Security
	IEEE 802.15.4 as the Communication Medium
	Fragmentation Mechanism
	Routing in IoT Network

	Problem Statement and Motivation
	Communication Overhead for Certificate & CapBAC Token
	Large Number of Packet Fragments
	Increased Request Serving Delay
	Vulnerable to Fragmentation Attacks

	Proposed Scheme
	Certificate Compression
	Authorization Token Compression
	Relevant Issues

	Experiment and Evaluation
	Prototype Implementation
	Evaluation

	Related Works and Comparative Discussion
	Concluding Remarks

