AVGuard: A Forensic Investigation Framework for
Autonomous Vehicles

Mohammad Aminul Hoque
Dept. of Computer Science
University of Alabama at Birmingham
Birmingham, AL 35294, USA
mahoque @uab.edu

Abstract—Autonomous vehicles (AVs) rely on on-board sensors
and computation capabilities to drive on the road with limited or
no human intervention. However, autonomous driving decisions
can go wrong for numerous reasons, leading to accidents on the
road. The AVs lack a proper forensics investigation framework,
which is essential for various reasons such as resolving insur-
ance disputes, investigating attacks, compliance with autonomous
driving safety guidelines, etc. To design robust and safe AVs,
identifying the actual reason behind any incident involving the
AV is crucial. Hence, it is essential to collect meaningful logs
from different autonomous driving modules and store them in a
secure and tamper-proof way. In this paper, we propose AVGuard,
a forensic investigation framework that collects and stores the
autonomous driving logs. The framework can generate and verify
proofs to ensure the integrity of collected logs while preventing
collusion attacks among multiple dishonest parties. The stored
logs can be used later by investigators to identify the exact
incident. OQur proof-of-concept implementation shows that the
framework can be integrated with autonomous driving modules
efficiently without any significant overheads.

Index Terms—autonomous vehicle, forensics, security

I. INTRODUCTION
An Autonomous vehicle (AV) is a complex cyber-physical

system capable of understanding the road condition and
making driving decisions accordingly. The emergence of
high-performance computing hardware, development in deep
learning algorithms, and improved sensing technology together
allow AVs to move on the road gradually. Multiple technology
and auto manufacturing companies are working to improve
autonomous driving (AD) and advanced driving assistance
system (ADAS) [1]. Several ride-sharing companies are pro-
viding public ride-sharing services using AVs [2], [3]. The self-
driving cars rely on sensors and AD software to make driving
decisions on the road. However, sensors and AD software
may provide wrong decisions under various circumstances
such as hardware failure or cyber-attacks on AV hardware and
software. Moreover, the AV safety authority needs to review
AVs’ performance and compliance with the safety guidelines
regularly. Furthermore, if an AV becomes associated with an
accident, it is important to figure out the exact reason to resolve
the insurance-related disputes. Due to such requirements, a
trustworthy forensics investigation framework is essential to
collect evidence from AV, ensure secure storage of the evidence,
and present the proof to the investigators.

Digital forensics is a process that allows collecting, preserv-
ing, and analyzing the incidents that take place in a system. This
applied science identifies an incident and collects, examines,
and analyzes the collected evidence data [4]. A well-designed
forensics investigation framework allows the investigator to

Ragib Hasan
Dept. of Computer Science
University of Alabama at Birmingham
Birmingham, AL 35294, USA
ragib@uab.edu

properly understand what happened by answering the questions
of who, when, how, and why an incident was executed in
a system [5]. The digital forensics investigation framework
has been used in different domains such as cloud computing
[6], Internet of Things (IoT) [7], computer networks [8], etc.
However, the traditional forensics approaches cannot meet
the requirements of AVs due to various reasons. The large
volume of sensor data brings new challenges to AV forensics.
Wide range of possible attacks on AVs and high frequency of
decisions generated by the AD software also impose challenges
to forensics investigations. A different combination of sensing
and computation hardware used by the different manufacturing
companies makes the problem more difficult. Current research
works do not answer the following questions: (i) How can
we collect and store evidence from AVs? (ii) How can we
ensure confidentiality, integrity, and secure provenance of the
evidence? (iii) How can we verify the integrity of the obtained
evidence? (iv) How can we detect the source of the fault if an
AV is associated with an accident on the road?

Considering the questions posed above, we present AVGuard
— a forensic investigation framework for AVs. AVGuard extracts
important information from different AD modules and stores
them in a secure and tamper-proof way. AVGuard proposes
to maintain AD decision provenance in two different ways:
hash-chain and bloom filter. The framework creates log proofs
and publishes the proofs on the web at the end of each day for
future investigation. After an incident, the appointed forensic
investigator extracts the related logs, verifies the log integrity
using the log proof, and figures out the incident exactly. The
framework also helps to resolve disputes among different
stakeholders of AV. Our proof-of-concept implementation for
AD perception module using Waymo open source benchmark
dataset [9] demonstrates the feasibility of the framework.
Contribution: The contributions of this paper are as follows:

1) We propose AVGuard — a forensic investigation frame-
work for autonomous vehicles.

2) We introduce a tamper evident scheme to prevent differ-
ent malicious entities from manipulating the collected
evidence after-the-fact.

3) We perform security analysis of AVGuard, implement
a prototype using autonomous driving benchmark data
from Waymo and demonstrate its feasibility.

Organization: The rest of the paper is organized as follows:
Section II and III provides the motivation and challenges of
designing AV forensics framework. Section IV explains the

building blocks of AVGuard framework. Section V contains
the experiment and evaluation of the framework. Section VI
presents the related works and we conclude in section VII.
II. MOTIVATION

Irrespective of the after-effect of an accident involving an
AV, it causes damage to the associated parties, such as auto
manufactures and insurance companies. As more than 40
companies are competing in the AV market [1], such accidents
can hugely damage rival companies’ reputation. We explain
the motivation for the AV forensics framework below:

A. NHTSA guidelines

National Highway Traffic Safety Administration (NHTSA)
provides a 12 step guidelines to ensure the safety of the AVs
[10]. Though these are only the elementary guidelines, and
the manufacturers are not required to follow them completely,
the guidelines are highly helpful for enhancing the safety of
AVs. A proper forensics investigation framework can determine
whether an AD system follows the guideline properly.

B. Insurance dispute

The insurance model is expected to be reformed once
AVs start to move on the road in a significant number. We
already observe several incidents where the AVs are involved
in an accident [11]. After such misfortunes, proper forensic
investigation is essential to resolve insurance disputes.

C. Attack strategies in autonomous vehicles

AV forensics framework can be helpful to analyze the
impact of different attacks on AV hardware and software. Most
important attack strategies that can force the AV to involve in
an accident or reveal confidential information are:

Spoofing attacks: Different sensors of AV can be the victim
of spoofing attacks. Lidar spoofing attacks can cause freezing
or collision attacks [12]. GPS spoofing attacks can force the
AV to depart from the lane [13]. Cameras are also vulnerable
to spoofing attacks that may cause the AV to move out or move
in to the lane [14].

Cache side channel attack: A malicious software can monitor
the cache activity of the victim vehicle and relate possible
routes with it. The cache activity becomes much higher when
the AV makes a turn which is exploited by the attacker to to
predict the destination in a known environment [15].
Adversarial attacks: Adversarial attacks fool the machine
learning model of AV by generating adversarial examples that
contain small noise or perturbation. For example, adversarial
LiDAR point clouds try to minimize the model loss and bias the
model to adversarial examples. Subtle adversarial manipulation
in images and trojan attacks can also cause accidents.

D. Hardware and software failure

Many hardware devices work together to make the AV
work correctly. However, a hardware may fail due to different
reasons, such as wear out of silicon, broken connections,
cosmic radiation, or magnetic fields. Faulty electrical wearing
and computing hardware chip can also lead to hardware
failure. Non-functional sensors (noisy sensor data or inaccurate
perception) can be responsible for software failures. A forensics
investigation framework is required to identify such failures.

III. CHALLENGES OF AUTONOMOUS VEHICLE FORENSICS
As a complex cyber-physical system, the AV imposes new

challenges in log collection, maintaining log integrity, and
proof generation. In this section, we explore the challenges of
AV forensics and analyze the related threat model.

A. Challenges

AV forensics framework imposes several unique challenges
for forensics investigation along with the traditional challenges
of digital forensics. Significant challenges of AV forensics are:
Huge amount of data: An AV generates a huge amount of
data each day. In each second, radar and ultrasonic sensors
generate 10-100 KB, GPS generates 50 KB, cameras generate
20-40 MB, and LiDAR generates 10-70 MB data. On average,
an AV generates 4000 GB of data each day. Such massive
amount of sensor data impose challenges in AV forensics.
Log accessibility: Proper access control of information and
logs collected from AV is essential. The developers of AD
and the investigators should be able to access the low level
information. However, any third party malicious entity should
not be able to extract any meaningful data from the logs.
Evidence Examination: An AD system may generate a
considerable amount of logs due to dynamic road scenarios.
The investigator may face challenges to correlate the logs of
different AD modules to extract crucial information as all the
AD components work together. The investigator also must be
able to construct the proof in front of the court.

Evidence integrity: Current event data recorder systems
installed in the AVs do not ensure the integrity of the
collected data. A dishonest party can manipulate the data
before presenting it as evidence. Hence, the integrity of the
collected data is essential and challenging in AV forensics.
B. Threat model

A threat model helps to identify and prioritize potential
attacks on a system. Here, we analyze the attackers, attacker
model, and potential attacks on AV forensics framework.

1) Assets: Assets are the most important things of a system
that are targeted by the attackers. The most important assets
of AV forensics are the log proof and the ordering of the log
proof. The attackers can be interested in these assets because
they may try to frame an honest entity or extract information
regarding the user destination, AD software, and sensors.

2) Attacker’s capability: In the AV forensics framework, a
dishonest auto manufacturing company may alter the collected
logs. Moreover, the car owner may have white-box access to
the AD system that enables her to modify or insert fake logs.
The investigator assigned by the law enforcement agency may
collude with an auto manufacturing company or car owner
and alter the logs. Finally, an external attacker may install
malicious software that may interfere with the log collection
process. Despite such capabilities, we assume that the AVGuard
can collect the AD logs and publish the proof on the web.

3) Possible attacks: Possible attacks on forensics investiga-
tion framework of AV are listed as follows:

Log modification: All the entities related to AV forensics such
as car owners, manufacturing companies, and the investigator
may try to modify, alter, or insert fake logs.

Confidentiality attacks: An external attacker or dishonest
entity may extract information from the collected logs regarding
the user and the AV. Attacker can gain knowledge regarding
the sensors and AD software from the logs which may allow
to launch more sophisticated attacks on the AVs.
Repudiation by the user: In the advanced driving assistance
system (ADAS), such as L2 and L3 autonomous driving, a
driver can be fully responsible for an accident despite the help
from ADAS system. In that case, the user may claim that the
logs are altered or belong to another driver.

Repudiation by the auto manufacturing company: An auto
manufacturing company may deny a log provenance after-the-
fact, which may contain proof of faults that occurred due to
software or hardware issues in the AV.

IV. BUILDING BLOCKS OF AVGUARD

In this section, we explain the building blocks of AVGuard
that contains log collection from different AD modules, proof
creation, and proof verification processes. The AVGuard is
supposed to be integrated with the AD system and trusted for
forensic investigation in AVs. We also assume that the AV is
equipped with 4G/LTE/5G communication devices.
A. Log provenance approach

We propose two separate approaches for log provenance:
hash chain and bloom filter.
Hash chain: Hashing is one of the most primitive approaches
for integrity preservation. Hash chain preserves the ordering
of the hash values. The hash of the i*" log is appended to the
(i +1)*" log to create the (i + 1)*" hash element. For the first
element, hash of the first log uses an initialization vector to
begin the chain creation process.
Bloom Filter: A Bloom Filter is a probabilistic data structure
used to identify whether an element is a member of a set [16].
The Bloom Filter can identify the membership without any
false-negative result. It accumulates the hash values of the logs,

which is used for membership verification later.
Localization

Kalman Filter
Traffic Sign & Particle Filt
Light article Filter
Detection ¥ .
__ PID Acceleration
Prediction Controller Braking
Rod N Detection —

GPS Free Sp.ace - Predictive
Detection Behavior
Planning

Control

Steering
l—»

Controller

MU Object
Detection & ’W‘
Sensors Tracking Generation
Perception Planning

Fig. 1. Autonomous vehicle components

B. Log entry description

AVGuard identifies different events and generates logs from
different AD modules. The module-based AD system has five
components: sensors, perception, localization, planning, and
control. Figure 1 shows the details of all the AD components.
Here we explain the formats of the logs that are collected from
each of the modules. In each collected log, the first and the
second elements denote the module name and timestamp.
Sensors module: All the sensors that are installed in the AV
are set to report in a fixed frequency. For example, the cameras

are usually set to capture 30 frames per second, and LiDARs
report data in 10 Hz frequency, which generates around 10000
points in each scan. AVGuard creates a log each second using
the camera, LiDAR, and GPS readings. Format for sensors
module log entry is:

LE=<Sensor, T, CameraFPS, LiDARPointCount, GPSFreq>

The log structure uses LiDAR, camera, and GPS considering
them as the most important sensors for AD. Readings from
other sensors, such as radar, can also be included in the logs.
Perception module: The perception module is responsible for
understanding the objects and their movements from sensor
data. The main objects required to be recognized by the AV
are pedestrians, cars, traffic lights and their condition, road
signs, and lanes. The AVGuard framework collects a log for a
frame. Log entry structure for perception module is:

LE =< Perception, T, cars, pedestrians, trafficLight, roadsign,
laneDetectionConfidence, undefindedObjects>

The perception log structure will help to identify different
attacks on AVs later. For example, a LiDAR spoofing attack
may create multiple copies of an object, hide an object, or
create a fake object - the logs record all of these. Moreover,
this strategy will also help identify whether an AV involves
an accident due to object recognition failure. The perception
module does not require to create logs for each frame as the
logs of the adjacent frames will contain similar information.
Instead, the module can select a certain number of frames each
second and create logs by extracting the required information.
Localization module: The localization module estimates the
current location of the ego vehicle within 2-10 centimeter
accuracy. This module performs state estimation by fusing
sensor data using a multi-sensor fusion (MSF) model through
the Extended Kalman Filter. Moreover, this module uses an
HD map to estimate the current location using a particle filter,
which updates the belief regarding the AV’s location using the
perception module’s output. A new log entry is created when
the localization module finds out a new landmark on the road.

LE = <Localization, T, landmark>
Planning module: The planning module predicts the motion of
other objects and performs path planning along with trajectory
generation. For path planning, the AV uses a finite state
machine (FSM) to generate trajectory considering other agents’
movement. A state transition in the finite state machine takes
place once the module decides to change the maneuver. Format
of logs in the planning module is:

LE =< Planning, T, FSM>

Here, FSM denotes the current state of the AV in the finite
state machine. As an example, Carla [17] is an open-source
autonomous driving simulator that implements the planning
module with a finite state machine that has five states: (i)
road-following, (ii) left-turn, (iii) right-turn, (iv) intersection-
forward, and (v) hazard-stop. For each transition in the finite
state machine, a new log entry is created.
Control module: The control module is responsible for
executing the vehicle control commands after generating the
trajectory. It runs the acceleration, brake, and steering command

to control and move the vehicle forward to reach the destination.
Log entry for the control module is defined as follows:

LE =<Control, T, acceleration, brake, steering>

For the control module, new log entries are added when
the module decides to accelerate or brake. The steering angle
defines the direction of the vehicle. If the steering angle crosses
a threshold, then a new log entry is created. In each log entry,
one or two out of the three values may be empty.

| Sensors | | Perception | | Localization |

| Control |

5 |
—PI Log Collection Module |4—
I

Proof DB

API
o)y 2 i)

Fig. 2. Overview of the AVGuard Framework
C. Proof creation in AVGuard

We assume that the AV has adequate local storage to store the
log provenance. The AV can also communicate with a remote
cloud server and publish the newly created log provenance. A
robot operating system (ROS) node collects all the logs from
different AD modules. The ROS node works in a publisher-
subscriber architecture, and each of the modules broadcasts
the logs after creating them. Let us consider that one log entry
collected from an AD module is as follows:

LE = <Module, T, vall, val2, val3,....>

The log entry, except the timestamp, is encrypted with the
public key of law enforcement agency as follows:

ELE = < PKga(Module,vall,val2,val3,....), T >

Here, PK 1 g 4 denotes the public key of the law enforcement
agency. The log is encrypted to ensure the confidentiality of the
AD data, which otherwise can be used to infer user information,
AD algorithms, hardware properties, etc. To ensure integrity,
we hash the entry and chain it with the previous log entry.

HLE = < H(ELE,HLE,,.,) >

The HLE),,., is the hashed log chain up to the previous log.
The ELFE is signed by the private key of the manufacturing
company. A log proof LP is created by concatenating the
vehicle identification, user identification, signed K LFE, and
HLE. Storing both the userld and vehicleld is essential because
the AV can be used in a ride-sharing service. T is the log
timestamp that is used with userld and vehicleld for searching
the logs from the storage later during the investigation.

LP = < HLE, Sy (ELE), vehicleld, userId, T >

Here, Sy/(ELE) is a digital signature computed on the
encrypted log entry (ELE) using the private key of the auto
manufacturing company. Finally, the log proof is added to a
log proof chain (LPC). If there are n log proofs created for a
journey, then LPC is created as follows:

| Planning |

Log DB

Web Server

LPC = < LP,,LP5,LP;,.......... ,LP, >

The LPC is saved into the log database in the AV. After
reaching the destination, the log collection module retrieves the
LPC for that journey and stores in the proof database. Finally,
at the end of the day, the log collection module publishes all
the LPC in the web. A LPC is considered as the story of a
journey from origin to destination. A different LPC is created
when another journey starts.

The proof creation can also be performed using a bloom
filter. For bloom filter based proof creation, a log proof tuple
is created using HLE, ELE, vehicleld, and userld. Later, the
tuples are stored in the log database. Once the AV reaches the
destination, all the log proofs are restored from the log database
and inserted into the accumulator after hashing. Hence, the
final log proof (FLP) is created as follows:

FLP = < H(AEp),Sm(AED), t,userId,vehicleld >

Here, t is the signature timestamp, and AFEp is the accumu-
lator entry for each journey, signed by the auto manufacturing
company’s private key. The tuple is stored in the proof database.
All the FLPs and the log proofs are published on the web at
the end of the day. Figure 3 shows the operational model for
log proof creation in the AVGuard framework.

Autonomous
Driving Module

Log Collection
Module

T

| |

L 1. Generate log L 2. Encrypt :
U‘/\ |

3. Create Log :

|

|

| LogDB | | ProofDB| |Web|

Proof

| 4. Store Log
Proof

|
|
|
|
|
|
|
|
|
|
|
|
I
5. Store Log Pfoof Chain ‘[I
|
|
6. Create Acdumulator Entry l
|

7. Store Final :Log Proof ‘C]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
8. Pubhsh in the Webl ‘D
I

I:H:I'

Fig. 3. OperationI model of log prloof creation inI AVGuard

In step 1, different AD modules create logs and send them to
the log collection module. The log collection module encrypts
the log entry in step 2 and creates the log proof in step 3. The
log proof is stored in the log database in step 4. For log chain-
based proof creation, the log proof chain is extracted at the end
of the journey and stored in the proof database in step 5. For
bloom filter based proof creation, the log collection module
uses log proofs from log database to create accumulator entry
in step 6 and stores the final log proof in the proof database
in step 7. Finally, the proof is published on the web in step 8.
D. Proof verification

The investigator extracts the log proof chain or accumulator
entry using web API based on timestamp, userld, and vehicleld.
The proof verification consists of two steps: integrity verifi-
cation and sequence verification. We explain the verification
process for both hash chain and bloom filter.
Hash chain: For hash chain based proof verification, the log
proof chain (LPC) is extracted, and the integrity verification is

performed for each of the log proofs in LPC'. Initially, the first
log proof LP is taken from the LPC, and ELFE is extracted
using the auto manufacturing company’s public key. Then the
initialization vector is concatenated with the FLE of the log
proof and the hash of the concatenated value is matched with
the stored HLE of LP. If the hashes match, then the integrity
is confirmed, and the next log proof is extracted to perform
the same operation. Otherwise, the investigator decides that
the evidence is tampered with by a malicious entity.
Bloom filter: For integrity verification in bloom filter-based
proof, the Accumulator Entry (AEp) is decrypted using the
auto manufacturing company’s public key. After signature
verification, the hash is calculated and matched with the hash
stored in the F'LP. The proof is rejected if the signature or hash
verification fails. Later, all the log proof tuples are extracted
using web API, and their membership of the accumulator
entry is verified. The sequence verification is performed by
calculating the hash of the concatenation of ELFE with the
previous HLE. Later, the hash is matched with the HLFE
stored in the log proof tuple. If any log is altered, the sequence
verification fails.
E. Security Analysis

In the AV forensics investigation, the related entities are the
auto manufacturing company, car owner/ride-sharing service
user, and the investigator. For security analysis purposes, we de-
fine the following symbols: M denotes an honest manufacturing
company, M’ denotes a dishonest manufacturing company, U
denotes an honest car owner, U’ denotes a dishonest car owner,
I denotes an honest investigator, and I’ denotes a dishonest
investigator. All of them can be malicious individually, or they
can collude among themselves. Table I shows the overview of
possible attacks and motives. The AVGuard framework can
prevent all possible collusion attacks. For hash chain based
proof verification, the presence of any altered or reordered
logs breaks the log chain, and the verification is rejected. For
example, if the investigator tries to insert some fake logs to
frame an honest auto manufacturing company, the ELE and
HLFE are changed. Hence, when the next ELE is hashed to
match the HLE, the algorithm rejects it. Again, for bloom
filter-based proof verification, the hash of the fake log gets
rejected in the membership verification process. Hence, the
AVGuard framework can successfully detect any confidentiality
and integrity violation listed in table I.

V. EXPERIMENT AND EVALUATION

In this section, we explain our implementation of AVGuard
framework prototype for the perception module and analyze
the performance based on proof creation time, verification time,
and storage overhead.
A. Experimental setup

Currently, there are several sources of high-quality AD
benchmark data available. Waymo open dataset [9] is an
open-source high-quality and diverse dataset that contains
1150 scenes with a span of 20 seconds each. The data were
collected using five LiDAR sensors and five high-resolution
pinhole camera. Each frame of the dataset is annotated with
five information: count of vehicles, pedestrians, traffic signs,

—e—Hash Chain —e—Bloom Filter 0.1%FP

200000

150000

100000

50000

Time (millisecond)

0 2000 4000 6000 8000
Number of Logs

Fig. 4. Proof creation time required by hash chain and bloom filter

10000 12000

—e—Hash Chain —e—Bloom Filter 0.1%FP
7000

6000

0 2000 4000 6000 8000

Number of Logs
Fig. 5. Proof verification time required by hash chain and bloom filter
cyclists, and unknown. We extracted frames using the APIs
provided by the dataset and figured out the required information
to generate the perception logs. We performed this operation
for 12000 frames to generate an equal number of logs.

For cryptographic operations, we used 2048-bit RSA signa-
tures and a 256-bit SHA-256 hashing algorithm. We extracted
all the logs using python and stored them in a file. Later, we
used the stored logs and implemented all the cryptographic
operations in Java. We performed our experiment in a Macbook
pro with a 2.3GHz dual-core Intel Core i5 processor with
8GB memory. The AD hardware contain more computation
capability, hence, the computation should be faster in real AV.

B. Result

The proof creation time refers to the time required for
creating the proof after receiving the logs from different AD
modules. Figure 4 shows the proof generation time for different
log provenance methods. The proof verification time refers
to the time required for integrity verification and sequence
verification. Figure 5 shows the proof verification time required
by both the approaches. We observe that for both the cases,
time increased linearly with number of logs where the bloom
filter required more time than the hash chain.

We also analyzed the storage overhead induced by both the
proof creation approaches. For the hash chain approach, each
log proof required overhead of 32 bytes. On the other hand, we
considered 1% and 0.1% false-positive rates for bloom-filter for
12000 logs, which required 14.04KB and 21.06KB of storage,
respectively. AVGuard creates an accumulator entry for each
journey. Hence, if an AV completes m number of journeys
each day, then the bloom filter’s storage requirement would be
21.06*m each day for 0.1% false-positive rate.

10000 12000

VI. RELATED WORKS
The forensics analysis framework has been studied widely
in the context of connected vehicles. Hossain et al. proposed a

TABLE I
COLLUSION MODEL AMONG DIFFERENT RELATED STAKEHOLDERS OF AV FORENSICS

Is Honest?
User Manufacturing Investigator Notation Action Motive
Company
Yes Yes Yes UMI No Attack N/A
Yes Yes No uMmr Tampering logs False accusation to car owner or auto manufac-
turing company
Yes No Yes UM’L Hide or alter logs before publishing in the web | False accusation to car owner or other inter-
acting agents on the road to save company
reputation
Yes No No uM'T Hide or alter logs or repudiate published log | Collusion between manufacturing company and
proof investigator to frame car owner or other interact-
ing agents on the road
No Yes Yes U'MI Identify other users’ destinations or analyze au- | Use extracted information to launch different
tonomous driving software and hardware external attacks on AV
No Yes No uMr Hide or alter logs or repudiate published log | False accusation to auto manufacturing company
proof to hamper their reputation
No No Yes UM’L Hide or alter logs or repudiate published log | False accusation to other related agents or stake-
proof holders such as insurance company
No No No uUM'r Hide or alter logs or repudiate published log | False accusation to other related agents or stake-
proof holders such as insurance company

forensics investigation framework for the internet of vehicles
(IoV) named Trust-IoV [18]. T-Box is an automotive data
recording method that collects information from an in-vehicle
network [19]. It stores the collected information in a trusted
execution environment (TEE). CVShield [20] is also a TEE-
based sensor data integrity protection mechanism that relocates
all the codes related to sensor data reading and processing
from the rich execution environment (REE) to TEE. Oham
et al. [21] proposed a blockchain-based liability attribution
framework based on the evidence reported by the nearby
witness AVs if an AV is involved in an accident. Besides
the context of vehicles, researchers have proposed forensics
investigation frameworks for different other domains, such as
cloud computing [6], computer networks [8], internet of things
[7], [22], etc. However, the forensics investigation framework
is mostly unexplored for AVs. In this paper, we have addressed
the issue by proposing AVGuard.

VII. CONCLUSION AND FUTURE WORKS

With more AVs having started to move on the road, they
require a forensics investigation framework for different reasons
such as improvements in AD, compliance with AD safety
guidelines, resolving insurance disputes, etc. The forensics
investigation framework ensures the secure storage of collected
information and uses them to analyze an incident later. In this
paper, we have proposed AVGuard - a forensic investigation
framework for AVs that can ensure the collected logs’ confiden-
tiality and integrity and verify the generated proofs’ integrity.
The AVGuard framework will help to fulfill the requirements
of different forensics investigation use cases for AVs. In the
future, we plan to implement the log collection process for all
other AD modules and analyze the performance.

ACKNOWLEDGEMENT

This research was supported by the National Science
Foundation through awards ECCS-1952090, DGE-1723768,
ACI-1642078, and CNS-1351038.

REFERENCES
[1] “40+ corporations working on autonomous vehicles,” 2020. [Online].

Auvailable: https://www.cbinsights.com/research/autonomous-driverless-
vehicles-corporations-list/

[2] CNBC, “Waymo makes autonomous vehicles available to lyft riders,”
2019. [Online]. Available: https://www.cnbc.com/2019/06/27/waymo-
makes-autonomous-vehicles-available-to-lyft-riders.html

[3] Baidu, 2019. [Online]. Available:
https://www.marketwatch.com/story/baidu-debuts-robotaxi-ride-hailing-
service-in-china-using-self-driving-electric-taxis-2019-09-26

[4] K. Kent, S. Chevalier, T. Grance, and H. Dang, “Guide to integrating
forensic techniques into incident response,” NIST Special Publication,
vol. 10, no. 14, pp. 800-86, 2006.

[5] R. Marty, “Cloud application logging for forensics,” in proceedings of
the 2011 ACM Symposium on Applied Computing, 2011, pp. 178-184.

[6] S. Zawoad, A. K. Dutta, and R. Hasan, “Seclaas: secure logging-as-a-
service for cloud forensics,” in ACM ASIACCS, 2013, pp. 219-230.

[71 M. Hossain, Y. Karim, and R. Hasan, “Fif-iot: A forensic investigation
framework for iot using a public digital ledger,” in 20/8 IEEE ICIOT.
IEEE, 2018, pp. 33-40.

[8] S. Khan, A. Gani, A. W. A. Wahab, M. Shiraz, and I. Ahmad, “Network
forensics: Review, taxonomy, and open challenges,” Journal of Network
and Computer Applications, vol. 66, pp. 214-235, 2016.

[9] P. Sun, H. Kretzschmar et al., “Scalability in perception for autonomous

driving: Waymo open dataset,” in JEEE CVPR, 2020, pp. 2446-2454.

NHTSA, “Automated driving systems: A vision for safety 2.0,” 2017.

National Transportation Safety Board, 2018. [Online]. Available:

https://j.mp/37TWTAfC

Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A.

Chen, K. Fu, and Z. M. Mao, “Adversarial sensor attack on lidar-based

perception in autonomous driving,” in ACM CCS, 2019, pp. 2267-2281.

J. Shen, J. Y. Won, Z. Chen, and Q. A. Chen, “Drift with devil: Security of

multi-sensor fusion based localization in high-level autonomous driving

under gps spoofing,” arXiv preprint arXiv:2006.10318, 2020.

S. Jha, S. Cui, S. S. Banerjee, Z. Kalbarczyk, and R. Iyer, “MI-driven

malware that targets av safety,” arXiv preprint arXiv:2004.13004, 2020.

M. Luo and G. E. Suh, “Stealthy tracking of autonomous vehicles with

cache side channels,” in USENIX Security, 2020, pp. 859-876.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable

errors,” Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.

A. Dosovitskiy, G. Ros, A. Lopez, and V. Koltun, “Carla: An open urban

driving simulator,” arXiv preprint arXiv:1711.03938, 2017.

M. M. Hossain, R. Hasan, and S. Zawoad, “Trust-iov: A trustworthy

forensic investigation framework for the internet of vehicles (iov).” in

ICIOT, 2017, pp. 25-32.

S. Lee and D. H. Lee, “T-box: A forensics-enabled trusted automotive

data recording method,” IEEE Access, vol. 7, pp. 49 738-49755, 2019.

S. Hu, Q. A. Chen, and H. X. Liu, “Cvshield: Guarding sensor data in

connected vehicle with trusted execution environment,” in ACM Workshop

on Automotive and Aerial Vehicle Security, 2020, pp. 1-4.

C. Oham, S. S. Kanhere, R. Jurdak, and S. Jha, “A blockchain based

liability attribution framework for autonomous vehicles,” arXiv preprint

arXiv:1802.05050, 2018.

V. R. Kebande and I. Ray, “A generic digital forensic investigation

framework for internet of things (iot),” in IEEE FiCloud. 1EEE, 2016,

pp- 356-362.

[10]
(1]

(12]

[13]

[14]
[15]
[16]
[17]

(18]

[19]

[20]

[21]

[22]

