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RANK-FINITENESS FOR MODULAR CATEGORIES

PAUL BRUILLARD, SIU-HUNG NG, ERIC C. ROWELL, AND ZHENGHAN WANG

1. INTRODUCTION

Modular categories are intricate organizing algebraic structures appearing in a
variety of mathematical subjects including topological quantum field theory [52],
conformal field theory [38], representation theory of quantum groups [I], von Neu-
mann algebras [24], and vertex operator algebras [29]. They are fusion cate-
gories with additional braiding and pivotal structures [IL23152] satisfying a non-
degeneracy condition. These extra structures endow them with some “abelian-ness”
which makes the theory of modular categories easier.

Besides the intrinsic mathematical aesthetics, another motivation for studying
modular categories comes from their application in condensed matter physics and
quantum computing [56L57]. Unitary modular categories are algebraic models of
anyons in two-dimensional topological phases of matter (where simple objects model
anyons). In topological quantum computation, anyons give rise to quantum com-
putational models. Modular categories have also been used recently to construct
physically realistic three-dimensional topological insulators and superconductors
[8,65]. Therefore, modular categories form part of the mathematical foundations
of topological quantum computation.

A modular category C over C is a non-degenerate braided spherical fusion cat-
egory over C [Il52]. A fusion category C over C is an abelian C-linear semisimple
rigid monoidal category with a simple unit object 1, finite-dimensional morphism
spaces, and finitely many isomorphism classes of simple objects. The label set Il¢
of C is the set of isomorphism classes of simple objects of the modular category C.
The rank of C is the finite number r = |II¢|. Each modular category C leads to
a (2 + 1)-dimensional topological quantum field theory and, in particular, colored
oriented framed link invariants [52]. The invariant d; for the circle colored by a
label 7 € Il is called the quantum dimension of the label 7, and the global quan-
tum dimension D* = Y7, d7 is an important invariant of C. The invariant of
a Hopf link colored by labels 7, j will be denoted as S;;, which forms the unnor-
malized modular S-matrix S = (S;;),%,j € II¢c. The invariant of the circle with
a right-handed kink colored by a label i is 8; - d; for some root of unity 6;, which
is called the topological twist of the label 7. The topological twists are encoded
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by a diagonal modular T-matrix T = (4;;0;),%,j € Il¢. The modular S-matrix
and modular T-matrix together lead to a projective representation of the modular
group SL(2,7Z) by sending the generating matrices

) b
1 01’ 0 1

to S, T, respectively [1L52]. The modular group SL(2,7) arises here as the mapping
class group of the torus. Amazingly, the kernel of this projective representation of
SL(2,Z) is always a congruence subgroup of SL(2,Z) [43]. The S-matrix deter-
mines the fusion rules through the Verlinde formula, and the T-matrix is of finite
order ord(T') by Vafa’s theorem [I]. Together, the pair (S, T') is called the modular
data of C.

The abelian-ness of modular categories first manifests itself in the tensor product,
via the braiding. But a deeper sense of abelian-ness is hidden in the Galois group
of the number field K¢ = Q[S;],4,j € Ilc: Gal(K¢/Q) is isomorphic to an abelian
subgroup [9L[49] of the symmetric group &,., where r is the rank of C. This profound
abelian-ness permits the application of number theory to the study of modular
categories.

In 2003, the fourth author conjectured that, up to equivalence, there are only
finitely many modular categories of a given rank, which we will call the rank-
finiteness conjecture [491[58].

The first main result of the paper is a proof of this conjecture.

Theorem Bl There are only finitely many modular categories of fized rank r, up
to equivalence.

The idea of the proof is as follows. A classical result of Landau [33] is that
for each n, there are only finitely many finite groups G with exactly n irreducible
complex representations. Landau’s result is proved by dividing the class equation
|G] = > 1[G : C(gi)] by |G| to produce the Diophantine equation 1 = Y ; wi
Observing that this equation has finitely many solutions in the positive integers,
one obtains a bound on |G|, which implies the result. Our proof follows the same
strategy, with the dimension equation D? = Eiel‘[c d? playing the role of the class
equation. First, Ocneanu rigidity implies that for a fixed set of fusion rules, there
are only finitely many equivalence classes of modular categories [23]. Hence, the
rank-finiteness conjecture is reduced to showing that there are only finitely many
possible fusion rules for any given rank. Using the Verlinde formula, we can deduce
the finiteness of fusion rules for a given rank from a bound of the global quantum
dimension D?. In particular, if there were only finitely possible values of D? in
each rank, then rank-finiteness would follow [49, Proposition 6.2]. Since the {d;}
are algebraic integers in a cyclotomic field, not necessarily in QQ, a new approach is
needed.

Recall that the Frobenius-Schur exponent FSexp(C) of a spherical fusion category
C over C is equal to the order of the T-matrix of its (modular) Drinfeld center Z(C),
and for a modular category, FSexp(C) = ord(T), the order of the T-matrix (cf. [44]).
Our technical advance is the second main result, which is of independent interest.
This is a generalization of the Cauchy theorem in group theory to the context of
spherical fusion categories.
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Theorem 3.9l IfC is a spherical fusion category over C with N = FSexp(C), then
the set of prime ideals dividing the principal ideal generated by the global quantum
dimension D of C in the Dedekind domain Z[e*™/N] is identical to that of N.

As a consequence, the quantum dimensions {d;} and D? of a modular category
have special arithmetic properties: they are so-called S-units with respect to the
common set S of prime ideals in the factorization of the ideals generated by D?
and ord(T). Then regarding D* = Y7, d7 as an S-unit equation, we apply a
powerful theorem of Evertse [25]: for any fixed r, there are finitely many non-
degenerate solutions to 1 = Y. x; for S-units z;. It follows that there are only
finitely many solutions to the dimension equation D? = Eienc d?, which, in turn,
bounds D? in terms of the rank. Rank-finiteness then follows.

All these steps can be made effective, so we have explicit bounds for the number of
solutions to the dimension equation. The bound for the number of possible modular
categories for a given rank that we obtained is absurdly large. For example, for
rank = 2, there are only 8 modular categories up to equivalence, while our bound
for the number of solutions to the S-unit equation D? = 1+d? (see Proposition EL3))
is 28-15885x10" " A natural question is to determine if there is a better bound for
the number of modular categories of rank = r. Etingof observes in Remark that
the number of modular categories of rank = r grows faster than any polynomial
in 7.

The rank-finiteness conjecture was motivated by the classification of topological
phases of matter [56,[57]. Topological phases of matter are states of matter which
have an energy gap in the thermodynamic limit and are stable under small yet
arbitrary perturbations. Thus, they cannot be continuously deformed non-trivially
inside topological states of matter. A mathematical manifestation of this rigidity of
topological phases of matter should be rank-finiteness. The rank-finiteness theorem
implies that, in principle, modular categories can be classified for low rank cases.
Indeed, early progress in the classification program is the complete classification of
unitary modular categories of rank at most 4 [49]. The authors of this paper have
now pushed the classification to rank 5, which will appear in a separate publication.

The Cauchy theorem for spherical fusion categories is a generalization of [44]
Theorem 8.4] for integral fusion categories. This question was originally asked
by Etingof and Gelaki in the context of Hopf algebras [20, Question 5.1], and
subsequently verified for Hopf algebras in [3I]. Moreover, the Cauchy theorem
provides an affirmative answer to [14, Question 6.10].

The proof of the Cauchy theorem for spherical fusion categories relies heavily
upon higher Frobenius-Schur (FS )-indicators, which are discussed in Section [2
The theory of F'S-indicators has played a key role in several recent results such as
the congruence subgroup theorem [44] and Galois symmetry [14] (cf. Section[224).

For a finite group G, the nth F'S-indicator of a representation V' over C with
character xy is given by v, (V) := ﬁ >_gec Xv(g"). The Frobenius-Schur theorem
asserts that the second F'S-indicator v2(V') of an irreducible representation V' must
be —1, 0, or 1.

The second F'S-indicator for a primary field of a rational conformal field theory
is introduced by Bantay [2] as an expression in terms of the associated modular
data. Bantay’s expression provides a formula for the second FS-indicator of a
simple object in a modular category. Second F'S-indicators are later introduced by
Fuchs, Ganchev, Szlachdnyi, and Vescernyés for certain C*-fusion categories [27],
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by Linchenko and Montgomery [34] for semisimple Hopf algebras, and by Mason
and Ng [37] for semisimple quasi-Hopf algebras. In each case, they are shown to
satisfy an analogue of the Frobenius-Schur theorem. The less familiar higher F'S-
indicators (n > 2) are also defined for semisimple Hopf algebras in [34] and studied
extensively by Kashina, Sommerh&user, and Zhu in [31].

The second FS-indicators are first shown in [37] to be invariants of the inte-
gral fusion categories Rep(H), where H is a semisimple quasi-Hopf algebra over C.
This result motivates the development of higher F'S-indicators v,, for pivotal cate-
gories by Ng and Schauenburg [45], and in particular, spherical fusion categories C
over C [44]. The invariance of higher F'S-indicators for Rep(H) [42] follows from
their categorical treatment. For a spherical fusion category C, there exists a min-
imal positive integer N = FSexp(C), called the F'S-exponent of C, which satisfies
vN(Xy) = dy, for all k € Mg, X, € k [44]. The F'S-exponent of a spherical fusion
category behaves, in many ways, like the exponent of a finite group. In fact, the
FS-exponent of Rep(G) for any finite group G is equal to the exponent of G.

Inspired by the paper of Sommerhduser and Zhu [51I], Ng and Schauenburg for-
mulate a categorical definition of generalized F'S-indicators in [43] so that SL(2,Z)
acts on them in two different but compatible ways. These generalized F'S-indicators
reveal new arithmetic properties of modular categories, which include the congru-
ence kernels of their projective representations of SL(2,Z) (loc. cit.) and the Galois
symmetry [I4] conjectured by Coste and Gannon [I1].

Our reduction of rank-finiteness to Evertse’s theorem obscures the nature of
rank-finiteness for modular categories. The key to Evertse’s finiteness of S-unit so-
lutions is the Schmidt subspace theorem, which implies finiteness theorems for some
simultaneous approximations to algebraic numbers by elements of a number field.
A more direct proof of rank-finiteness might shed light on whether rank-finiteness
also holds for spherical fusion categories. One potential approach is taking the
Drinfeld center of spherical fusion categories and then deducing rank-finiteness for
spherical fusion categories from the modular case. The key hurdle to this approach
is controlling the rank of the Drinfeld center in terms of the rank of the original cat-
egory. In light of [I6], this appears to be difficult: even for integral fusion categories
C, the rank of the Drinfeld center Z(C) is super-polynomial in the rank of C.

The contents of the paper are as follows. Section [2]is a collection of necessary
results on fusion and modular categories. In Section[3] we prove the Cauchy theorem
for spherical fusion categories and rank-finiteness for modular categories, as well
as for modularizable premodular categories. In Section [ we conclude with a
discussion of asymptotics and future directions.

2. MODULAR CATEGORIES

In this section, we will collect some conventions and essential results on spherical
fusion categories and modular categories. Most of these results can be found in
[1123]43H45,52] and the references therein. All fusion and modular categories are
over the complex numbers C in this paper unless stated otherwise.

2.1. Basic definitions. A modular category is a braided spherical fusion category
in which the braiding is non-degenerate. Modular categories were first axiomatized
by Turaev [53], based on earlier notions in rational conformal field theory by Moore
and Seiberg [38] and related foundational work of Joyal and Street [30]. Early
interesting examples arose in the work of Reshetikhin and Turaev [48] on quantum
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groups and their application to low-dimensional topology. In this section, we will
give the precise definition and describe some further properties and consequences
of the definition.

2.1.1. Fusion categories. Recall from [23], a fusion category C (over C) is an abelian
C-linear semisimple rigid monoidal category with a simple unit object 1, finite-
dimensional morphism spaces, and finitely many isomorphism classes of simple
objects.

Here a monoidal category is a category C with

(i) a bifuntor ® : C x C — C,
(ii) anatural isomorphism (associativity) apyw : (UQV)@W — U(VW),
(iii) and a unit object 1 with natural isomorphisms Ay : 1 ® V — V and
pv VRV,

so that the associativity and the unit satisfy the pentagon and triangle compatibility
axioms [36]. A monoidal functor is a pair (F, ¢) where F : C — D is a functor with
F(1l¢) Z 1pand ¢y, : F(VRW) — F(V)®F (W) is a natural isomorphism which
is compatible with the associator. Two monoidal categories C and D are equivalent
if there is a monoidal functor (F, ¢) from C to D so that the functor F': C — D is
an equivalence of the underlying ordinary categories [36].

In a fusion category C with tensor product ® and unit object 1, the left dual of
V e Cis a triple (V*,dby,evy), where dby : 1 > V@ V* andevy : V@V — 1
are the coevaluation and evaluation morphisms. The left duality can be extended
to a monoidal functor (—)* : C — C°, and so (—)** : C — C defines a monoidal
equivalence. Moreover, we can choose 1* = 1. The linear space of morphisms
between objects V and W will be denoted as Home (V, W). Right duals are similarly
defined,

Let II¢ be the set of isomorphism classes of simple objects of the fusion category
C. The rank of C is the finite number r = |II¢|, and we denote the members of Il
by {0,...,r—1}. We simply write V; for an object in the isomorphism class i € Il¢.
By convention, the isomorphism class of 1 corresponds to 0 € Il¢. The rigidity of
C defines an involutive permutation ¢ — ¢* on Il¢, which is given by V;-» = V;* for
all ¢ € Tl¢.

2.1.2. Braidings. A braiding c¢ of a fusion category C is a natural family of iso-
morphisms cyy : VW — W ®V in V and W of C which satisfy the hexagon
axioms,

CU,VOW

U(VeoW)— (VW)U UV)eW We{UeV)

T

UV)eW Ve(WeU) U (VeW) Wel)eV

c®idl Tid ®c id ®cl Tct@id

VelU)eW —=VaUeW), Ua(WeV)—UcW)aV,
[0

CUQV,W
s

for all U, V,W € C, where « is the associativity isomorphism of C (cf. [30]).

A braided fusion category is a pair (C,c¢) in which ¢ is a braiding of the fusion
category C. We simply call C a braided fusion category if the underlying braiding
¢ is understood.
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2.1.3. Spherical fusion categories. A pivotal structure of a fusion category C is an
isomorphism j : Ide — (—)** of monoidal functors. One can respectively define the
left and the right pivotal traces of an endomorphism f:V — V in C as

idef

* id®j; " ev
ptr’(f) = (1 DLvy e gy L2, yr gy ML e gy 0y 1>

f®id v ®id

p_trT(f):( v, gy SO gy v 8 v**®v*eV—V*>1)

Note that ji; = j;+ (cf. [50, Proposition A.1]), and so we have ptr(f) =
ptr"(f*). Since 1 is a simple object of C, both pivotal traces ptr®(f) and ptr"(f)
can be identified with some scalars in C. A pivotal structure on C is called spherical
if the two pivotal traces coincide for all endomorphisms f in C. In a spherical
category, the pivotal trace(s) will be denoted by ptr(f).

For the purpose of this paper, a pivotal (resp. spherical) category (C, j) is a fusion
category C equipped with a pivotal (resp. spherical) structure j. We will denote
the pair (C,j) by C when there is no ambiguity. The left and the right pivotal
dimensions of V € C are defined as d*(V) = ptrf(idy) and d"(V) = ptr"(idy),
respectively. o o

2.1.4. Modular categories. Following [32], a twist (or ribbon structure) of a braided
fusion category (C,¢) is an C-linear automorphism, 6, of Id¢ which satisfies

Ovew = (v @ Ow) o cwy o cvw, 0y = by~

for V,W € C. A braided fusion category equipped with a ribbon structure is called
a ribbon fusion or premodular category.

Associated with the braiding c is an isomorphism of C-linear functors w : Id¢ —
(—)**, called the Drinfeld isomorphism. When C is a strict fusion category, uy is
the composition,

Uy _(VM}‘/*(@V**®VK1®—C>V*®V®V**M}V**:V)

If u is the Drinfeld isomorphism associated with ¢, and 6 is a ribbon structure,
then

(2.1) j=ub

is a spherical structure of C. This equality defines a one-to-one correspondence
between the spherical structures and the ribbon structures on (C, ¢). In particular,
every premodular category admits a spherical structure.

A premodular category C is called a modular category if the S-matriz of C,
defined by

Sij = p_tr(CV},Vi* o Cvi*vvj) for i,7 € ll¢,

is non-singular. Note that S is a symmetric matrix and that d" (V;) = So; = Sio
for all 3.
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2.2. Further properties and basic invariants.

2.2.1. Grothendieck ring and dimensions. The Grothendieck ring Ko(C) of a fusion
category C is the Z-ring generated by Il with multiplication induced from ®. The
structure coefficients of Ky(C) are obtained from

Vio Vi = P N Vi,
kelle
where Ni’fj = dim(Home (Vi,V; ® V;)). This family of non-negative integers
{Ni’fj}i,j,keﬂc is called the fusion rules of C.
In a braided fusion category, Ky(C) is a commutative ring and the fusion rules
satisfy the symmetries

k k j* k*
(2.2) N =Nj, =N/,. =N ., NP = 8; 4.
The fusion matriz N; associated to V;, defined by (N;)k; = Ni’fj, is an integral

matrix with non-negative entries. In the braided fusion setting, these matrices
are normal and mutually commuting. The largest real eigenvalue of N; is called
the Frobenius-Perron dimension of V; and is denoted by FPdim(V;). Moreover,
FPdim can be extended to a Z-ring homomorphism from K(C) to R and is the
unique such homomorphism that is positive (real-valued) on Il¢ (see [23]). The
Frobenius-Perron dimension of C is defined as

FPdim(C) = ) FPdim(V;)?.
i€lle
Definition 2.1. A fusion category C is said to be
(i) weakly integral if FPdim (C) € Z,
(ii) integral if FPdim (V;) € Z for all j € Il¢,
(ili) pointed if FPdim (V;) =1 for all j € Il¢.
Furthermore, if FPdim (V') = 1, then V is invertible.

Remark 2.2. The terminology invertible arises from the fact that FPdim (V) =1
if and only if V ® V* = 1. The set of invertible simple objects generates a full
fusion subcategory C,: called the pointed subcategory.

Let C be a pivotal category. It follows from [23, Proposition 2.9] that d"(V*) =

dr(V) is an algebraic integer for any V' € C. The global dimension of C is defined
by

D*= % (V).
iclle
Remark 2.3. It is worth noting that the global dimension D? can be defined for
any fusion category (cf. [23]) and does not depend on the existence, or choice, of a
pivotal structure.

By [23139], a pivotal structure of a fusion category C is spherical if, and only if|
d"(V) is real for all V € C. In this case, d" (V) = d’ (V), and we simply write d (V)
to refer to the dimension of V. Furthermore for i € Il¢, we adopt the shorthand
di = d(V;).

A fusion category C is called pseudo-unitary if D> = FPdim(C). For a pseudo-
unitary fusion category C, it has been shown in [23] that there exists a unique
spherical structure of C such that d (V') = FPdim(V') for all objects V € C.
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2.2.2. Spherical and ribbon structures. The set of isomorphism classes of invertible
objects G(C) in a fusion category C forms a group in Ky(C) where i~! = i* for i €
G(C). For modular categories C, the group G(C) parameterizes pivotal structures
on the underlying braided fusion categoryﬁ

Lemma 2.4. Let C be a modular category. There is a bijective correspondence
between the pivotal structures of the underlying braided fusion category C and the
group of invertible objects G(C). Under this correspondence, the inequivalent spher-
ical structures of C map onto the mazximal elementary abelian 2-subgroup, QG(C),

of G(C).

Proof. Let jo be the spherical structure of the modular category C. For any pivotal
structure j of C, we have j; 15 € Autg(Ide), the group of automorphisms of the
monoidal functor Idc. Moreover, j — jg 14 defines a bijection between the set
of pivotal structures of C and Autg(Ide). Note that j is spherical if, and only
if, the associated dimension function is real valued, and hence for any simple V,
(jo'9)v = Avidy for some real scalar A\y. By [28, Theorem 6.2], Autg (Ide) =
G(C), and hence the first statement follows. In particular, jg 14 has finite order.
Thus, j is a spherical structure of C if, and only if, (jo_lj)v = +idy for any simple
V, or jy 'j € Autg(Ide) is of order < 2. Therefore, the second statement follows
from the isomorphism Autg(Ide) = G(C). O

Remark 2.5. The isomorphism Autg (Idc) = G(C) is determined by the braiding ¢
and the spherical structure jo of the modular category (C, ¢, jo). By [39, Corollary
7.11], (C,¢,j) is a modular category for all spherical structures j of C, so that
there are exactly |G(C)| pivotal and |Q22G(C)| spherical structures on the fusion
category C.

In any ribbon fusion category C the associated ribbon structure, 6, has finite
order. This celebrated fact is part of Vafa’s Theorem (see [I}[54]) in the case of
modular categories. However, any ribbon category embeds in a modular category
(via Drinfeld centers; see [39]) so the result holds generally. Observe that 6y, =
0, idy; for some root of unity 6; € C. Since 61 =idy, 8p = 1. The T-matriz of C is
defined by T;; = 6;;0; for 4,5 € Ilc. The balancing equation

(2.3) 0:0;Si; = > NEdyby
kelle

is a useful algebraic consequence, holding in any premodular category. The pair
(S,T) of S- and T-matrices will be called the modular data of a given modular
category C.

2.2.3. Modular data and SL(2,Z) representations.

Definition 2.6. For a pair of matrices (5,T) for which there exists a modular
category with modular data (S,T), we will say (S,T) is realizable modular data.

The fusion rules {Ni]fj}i,j,kenc of C can be written in terms of the S-matrix, via
the Verlinde formula [IJ,

1 S’iaS'aS *a ..
(2.4) Nf; = B > # for all 4,5, k € Tl .
aclle a

IThe second part of this result was pointed out to us by Naidu.
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The modular data (S,T") of a modular category C satisfy the conditions
(2.5) (ST)? = p+ 52, S?=ptpC, CT =TC, C? =id,
where p* = D iele d26F" are called the Gauss sums, and C' = (0ij*); jem, 1s called

the charge conjugation matriz of C. In terms of matrix entries, the first equation
in (23] gives the twist equation

(2.6) P Sk = 0,0k Y 0:8:;Si -
The quotlent , called the anomaly of C, is a root of unity, and
(2.7) pTp~ = D%
Moreover, S satisfies
(28) Sz’j = Sji and Sij* = Sz’*j
for all 7,5 € IIe. These equations and the Verlinde formula imply that
_ 1 _
(2.9) Sij* = Sij and ﬁ Z Sijsjk = 5ik-
jelle

In particular, S is projectively unitary.
A modular category C is called self-dual if i = ¢* for all i € Il¢. In fact, C is
self-dual if and only if S is a real matrix.
Let D be the positive square root of D2. The Verlinde formula can be rewritten
as
SN,;S~t=D,; foriellg,

. In particular, the assignments ¢, : i — 2=

where (D;),, = dab gé‘: g for i € Ile
determine (complex) linear characters of Ko(C). Since S is non-singular, {¢q }aer,
is the set of all the linear characters of Ky(C). Observe that FPdim is a character
of Ky(C), so that there is some a € II¢ such that FPdim = ¢,. By the unitarity of
S, we have that FPdim(C) = D?/(d,)*.

As an abstract group, SL(2,7Z) = (s,t | 5* = 1, (st)® = 52). The standard choice

for generators is
and t:= L1
n =10 1|

Let n : GL(Il¢,C) — PGL( Hc ) be the natural surjection. The relations (Z.3])
imply that

(2.10) pe:s5—n(S) and t— n(T)

define a projective representation of SL(2,Z). Since the modular data are an
invariant of a modular category, so is the associated projective representation type
of SL(2,Z). The following arithmetic properties of this projective representation
will play an important role in our discussion (cf. [43]). Let Qun := Q(¢n), where
(N is a primitive Nth root of unity.

Theorem 2.7. Let (S,T) be the modular data of the modular category C with
N = ord (T). Then the entries of S are algebraic integers of Q. Moreover, N
is minimal such that the projective representation pe of SL(2,Z) associated with
the modular data can be factored through SL(2,Z/NZ). In other words, ker o is a
congruence subgroup of level N.
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Definition 2.8. A modular representation of C (cf. [43]) is a representation p of
SL(2,7Z) which satisfies the commutative diagram

SL(2,7Z) ——~ GL(Il¢, C)

_ n
Pc

PGL(Il¢,C).

+
Let ¢ € C be a fixed 6th root of the anomaly p—_ For any 12th root of unity =z,
p

it follows from (Z3)) that the assignments

3
g S, tes I

z3pt ¢

define a modular representation of C. Moreover, {p$ | z!? = 1} is the complete
set of modular representations of C (cf. [14, Section 1.3]). Since D? = pTp~, we
have ¢3/p* = /D, where v = £1. Thus, one can always find a 6th root of unity
x so that pS : s — S/D. For the purpose of this paper, we only need to consider
the modular representation p of C which assigns s — S/D. Note also that p$(s)
and pS(t) are matrices over a finite abelian extension of Q. Therefore, modular
representations of any modular category are defined over the abelian closure Q,p
of Qin C (cf. []).

Let p be any modular representation of the modular category C, and set
s=p(s) and t=p(t).

It is clear that a representation p is uniquely determined by the pair (s, t), which
will be called a normalized modular pair of C. In view of the preceding paragraph,
there exists a root of unity y such that (S/D,T/y) is a normalized modular pair of
C.

(2.11) P55

2.2.4. Galois symmetry. Observe that for any choice of a normalized modular pair
(s,t), we have = = % = ¢q(i). For each o € Aut(Qap), o(¢s) given by

0

o(¢a)(i) = o (zo‘;) is again a linear character of Ko(C), and hence o(¢,) = ¢s(a)
for some unique & € Sym(Il¢). That is,

(2.12) o (s"“) = 210@  for all dyq € e .
S0a 506 (a)

Moreover, there exists a function €, : IlI¢ — {£1}, which depends on the choice of
s, such that
(2.13) 0(8i) = €5(1)s5(i); = €5 (J)8i6(;) foralli,j € Il¢
(cf. [4l Appendix B], [I1], or [23] Appendix]). The group Sym(Il¢) will often be
written as &, where r = |II¢| is the rank of C.

The following theorem will be used in the sequel.

Theorem 2.9. Let C be a modular category of rank r, with T-matrixz of order N.
Suppose (s,t) is a normalized modular pair of C. Set t = (§;;t;) and n = ord(t).
Then

(a) N |n|12N and s,t € GL.(Q,). Moreover,

(b) (Galois symmetry) for o € Gal(Q,/Q), 02(t;) = ts()-
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Part (a) of Theorem 2.9 is proved in [43], whereas part (b) is proved in [14]
Theorem TI(iii)].

In the sequel, we will simply denote by F4 the field extension over Q generated
by the entries of a complex matrix A. If F,4/Q is Galois, then we simply write
Gal(A) for the Galois group Gal(F4/Q).

In this notation, if (S,7) is the modular data of C, then Fr = Qu, where
N =ord (T), and we have Fg C Fp by Theorem 27l In particular, Fg is an abelian
Galois extension over Q.

For any normalized modular pair (s,t) of C we have F; = Q,,, where n = ord ().
Moreover, by Theorem 20, Fg C Fy C F;. In particular, the field extension F,/Q is
also Galois. The kernel of the restriction map res : Gal(t) — Gal(S) is isomorphic
to Gal(F;/Fg).

The following important lemma is proved in [I4, Proposition 6.5].

Lemma 2.10. Let C be a modular category with modular data (S,T). For any
normalized modular pair (s,t) of C, Gal(F:/Fg) is an elementary 2-group.

2.2.5. Frobenius-Schur indicators. A strict pivotal category is a pivotal category in
which the associativity isomorphisms are identities, the pivotal structure j : Id¢ —
(—)** is the identity, and the associated natural isomorphisms {yy @ U* @ V* —
(V@ U)* are also identities. Moreover, we have the following theorem (cf. [45]).

Theorem 2.11. Fvery pivotal category is pivotally equivalent to a strict pivotal
category.

Frobenius-Schur indicators are indispensable invariants of spherical categories
introduced in [45]. They are defined for each object in a pivotal category. Here,
we only provide the definitions of these indicators in a strict spherical category.
Let n be a positive integer and V' an object of a strict spherical category C. We
denote by V& the n-fold tensor power of V. One can define a C-linear operator
E‘(,") : Home (1, V®") — Home (1, V®") given by

i i ev ®id®"
B (f) = (1 D,y gy My OOV e o) pantt YOIV V®") .

The nth Frobenius-Schur indicator of V' is defined as
v (V) = Te(E(Y) .

It follows directly from graphical calculus that (E‘(/n )> = id, and so v, (V) is

an algebraic integer in the nth cyclotomic field Q,, = Q(e%).

The first indicator v (V;) is the Kronecker delta function dgp; on ¢, i.e. v41(V) =1
if V=2 1 and 0 otherwise. The second indicator is consistent with the classi-
cal Frobenius-Schur indicator of an irreducible representation of a group, namely
vo(V) = £1if V=2 V* and 0 otherwise for any simple object V' of C. The higher
indicators are more obscure in nature, but they are all additive complex valued
functions of the Grothendieck ring Ky(C) of C.

The classical definition of exponent of a finite group can be generalized to a
spherical category via the following theorem [44].

Theorem 2.12. Let C be a spherical category. There exists a positive integer n
such that v, (V) =d (V) for all V € C. If N is minimal among such n, then d (V)
are algebraic integers in Qp.
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The minimal integer FSexp(C) := N above is called the Frobenius-Schur expo-
nent. If C is the category of complex representations of a finite group G, then
FSexp(C) = exp(G). For modular categories the Frobenius-Schur indicators v, (V)
are completely determined by the modular data of C, explicitly given in [44] (gen-
eralizing the second indicator formula in [2]).

Theorem 2.13. Let C be a modular category with the T-matriz given by [0;;0;]; jerne -
Then ord (T') = FSexp(C), and

0 n
(2.14) (Vi) = D2 > N} did, ( )
i,j€llc J

for all k € Il¢ and positive integers n.
2.2.6. Modular data.

Deﬁnition 2.14. Let S,T € GL,(C) and define constants d; := Sy;, 0; = Tjj,
Zj 7, and pi = 2;5(507;@)292[1. The pair (S,T) is an admissible modular
data of rank r if they satisfy the following conditions:
(i) d; € Rand S = S with SS' = D21d. T;; = 6; ;0; with N := ord(T) < oo.
(ST)? = p*S?, pyp_ = D? and i—f is a root of unity.

= D2ET 1M6Nforallogi7j,k§(r_1).

)
) N
)
)

iv) 0;0;S:; = :0 NZ* .di0; where i* is the unique label such that Ngi* =1.
(v) Define v, (k) := 4 21550 N, did; ( ) . Then va(k) = 0 if k # k* and

vo(k) = +1 if k = k*. Moreover, v, (k) € Z[e*™/N] for all n, k.

(vi) Fs € Fr = Qu, Gal(]FS/Q) is isomorphic to an abelian subgroup of &,
and Gal(F7/Fg) = (Z/2Z)* for some integer .

(vii) The prime divisors of D? and N coincide in Z[e2™/N ][

Theorem 2.15. Let (S,T) be realizable modular data. Then
(a) (S,T) is admissible, and

(b) for all o € Aut(Qap), (0 (S),o (T)) is realizable.

Proof. (a) follows from the definition of admissible modular data, while (b) follows
from [23] Section 2.7] (see also [12]). O

Remark 2.16. We expect a converse of Theorem 2.I5]to be true: that is, if (S,T)
is admissible, then it is realizable. Indeed, a satisfactory definition of admissible
would be a minimal set of conditions that guarantee realizability.

3. RANK-FINITENESS AND THE CAUCHY THEOREM

The main goal of this section is to prove the following theorem, conjectured by
the fourth author in 2003 (see [58]).

Theorem 3.1 (Rank-finiteness theorem). There are only finitely many modular
categories of fixed rank r, up to equivalence.

2See Section 311
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Prior to this work this conjecture had been resolved only in certain restricted
cases; for instance, it was shown [23], Proposition 8.38] that there are finitely many
weakly integral fusion categories of a given fixed rank through a number theoretic
argument similar to that of Landau [33].

The proof of the rank-finiteness theorem relies upon several well-known reduc-
tions, a new result known as the Cauchy theorem (for spherical fusion categories
B:9) and some results in analytic number theory due to Evertse [25].

In Section Bl the Cauchy theorem for spherical fusion categories is proved, and
in Section we prove Theorem [B.Il We discuss asymptotics related to Theorem
B in Section @

3.1. The Cauchy theorem. Let A be the ring of algebraic integers in C. For
a,b,c € A with a # 0, b = ¢ mod a means that (b —c)/a € A.

Suppose C is a modular category with N = FSexp(C) and ¢ is prime with (¢, N) =
1. We begin with a simple lemma, which is essentially proved in [59, Lemma 1.8]
and [31] Section 3.4].

Lemma 3.2. Let W be a finite-dimensional C-linear space. If E is a C-linear
operator on W such that E1 = idy for some prime number q, then

Tr(E)? = dime W mod q.
In particular, if Tr(E) € Z, then Tr(E) = dime W mod g.
Proof. Let ¢, € C denote a primitive gth root of unity. Then Tr(E) = Z;I;Ol m; é,
where m; is the multiplicity of the eigenvalue (;. Thus,

Tr(E)?=) m!=)» m;=dimcW mod gq.

In particular, if Tr(E) € Z, the second statement follows from Fermat’s little
theorem. O

Recall that the nth Frobenius-Schur indicator v, (V') for V € C is defined as the
trace of a C-linear operator E‘(,n) : Home (1, V®™) — Home (1, V®™). This operator

E‘(,") satisfies
(E("))n =id
1% =1

Moreover, v, (V) is an algebraic integer in Q,, NQy. Since ¢ and N are relatively
prime, we have
l/q(V) S QNﬂQq =Q.
Thus v4(V') € Z. By the preceding lemma, we have proved Lemma 3.3.

Lemma 3.3. For any V € C, v4(V) € Z, and we have
(V) = dime Home (1, V®?) mod q.

Let O be the ring of algebraic integers of Q. It is well known that On = Z[{n],
where (v is a primitive Nth root of unity in C. Set K (C) = Ko(C) ®z On. Then
Kn(C) is an Op-algebra. For any non-zero element a € Oy and «, 5 € Kn(C), we
write « = 8 mod a if « — 8 = ay for some v € Kn(C).

By [4], v, : Ko(C) — Z is a group homomorphism; however, the assignment
V + dim¢ Home (1, V®9) is not. We can extend the v, to an Oy-linear map from
Kn(C) to On, and we continue to denote such an extension by v,. Similarly, we can
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extend the dimension function d : K(C) — On to an Op-linear map from Ky (C)
to On. However, it is important to note that this extension is an Op-algebra
homomorphism.

Note that Kn(C) is a free On-module with Il¢ as a basis. For a =}, asi €
Kn(C), we define §(a) = ag. Obviously, ¢ : Kn(C) = O is On-linear. Although
0(a?) is not On-linear in «, it is Z-linear modulo g.

Lemma 3.4. For o € Kn(C), we have
d(a?) = 04(vg(a)) mod g,
where o4 € Gal(Qn/Q) is defined by oq(Cn) = (%

Proof. Let a = >, . a;i. Then o = 37, afi? mod g. Since ¢ is Op-linear,

we have
5(a?) = §( Z ali?) = Z alé(i?) mod q.

i€lle i€lle
Since §(i?) = dimc Home(1, Vi®q), it follows from Lemma [3.3] that
0(i?) = v4(V) mod q.
Thus, we find
5(a?) = Z alvg(V;) mod q.

i€lle
Note that for a € Oy, a = Zj aj(]{, where a; € Z. Therefore,

af = Zagﬁf\? = Zajoq(g;f) = o4(a) mod q.
J J

Hence, we have
6(a?) = Z oq(i)vg(Vi) = 0q(vg(er)) mod .
iclle

The last equality follows from the Oy-linearity of v,, and v, (V;) € Z for all
1 € lle. O

By [44], d; € Oy for i € Ilc. Therefore, R =}, ;. dii is an element of Kn(C).

Notice that R defines a rank 1 ideal of Kn(C) as iR = d; R for all i € II¢. Thus,
for « € Kn(C), aR = d(a)R, where d : Kn(C) — Op is the extended dimension
function. Therefore,

R"=R"'R=d(R" " )R=D"""YR.
Now, we can write our first proposition for the indicators of the wvirtual object

R.

Proposition 3.5. Let R =)
N. Then we have

ieme dit € Kn (C), and q a prime number not dividing

04 (14(R)) = D*97V mod ¢.

Proof. By the preceding discussion, we have R? = D>~V R, Since 6(R) = dy = 1,
we have §(R?) = D*@~1), By Lemma 4]

04(vg(R)) = D@1 mod q. O
Proposition 3.6. For any o € Gal(Qn/Q), ds (o) is a unit of Oy.
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Proof. Without loss of generality, we may assume 6(0) = 1. Then

1

(Dz)*dz/D2 or d? = D?/o(D?).

Obviously, the norm of D?/o(D?) is 1, and so is d?. Therefore d; is a unit in
On. O

Remark 3.7. The preceding is another proof of the fact proved in [46] that D? is
a d-number.

Proposition 3.8. v,(R) = dggl(o) .

Proof. Note that
deyq (Vi) = dede dj 9q = =3 (Z d20q> > d30;e
0,5,k J

Choose y so that s = S/D and t = T'/y give a modular representation. Reexpressing
Equation ([Z7), we find that

800 = D2 = (Zsol ) ngjg;l
j

Let 7 € Aut(Qap) such that 7|, = o, '. Applying 7 to this equation and
applying ([213), we find

2( 0)0 — d‘r(O SOO - (Z 307(1 ) ZSOT(j)T

By Galois symmetry, Theorem 2.0 we have
q
O
T Hy)

since 77 '|gy = 04. Therefore, in terms of §; = yt;, we get 7(6F') = Gf(‘i)Kil for
some constant K independent of 4, which yields

T(t) =1 () =71 (t{—(i)) =

2 2 2 q 2 —q
4 (0)S00 = (Z 50+<i>9+(z—>> D 56002

J
Thus,

(Zd%)q) Zd?@;q = v,(R). O

Theorem 3.9 (Cauchy theorem for spherical fusion categories). Let C be a spherical
fusion category. Then the set of prime ideals dividing the principal ideal generated
by D? is identical to that of N = FSexp(C) in Oy = Z[e*™/N].

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



872 PAUL BRUILLARD, SIU-HUNG NG, ERIC C. ROWELL, AND ZHENGHAN WANG

Proof. We first consider the case when C is a modular category. Since N | DS [17],
every prime ideal factor of N in Oy is a factor of D2. Suppose p is a prime ideal
factor of D?. By Propositions and [3.8], we find the congruence

o4(d?) = DY mod ¢

for any prime ¢ t N where i = &q_l(O). By Proposition 3.6, d; is a unit of Oy.
Therefore, we have the equality of ideals On = (D?) + (g). This implies that g & p.
Therefore, pNZ = (p) for some prime p | N. Hence, p is a prime factor of N in Oy.

Now, we assume C is a general spherical fusion category. Then its Drinfeld cen-
ter Z(C) is modular and dim Z(C) = (dimC)? by [39]. Since N = FSexp(C) =
FSexp(Z(C)) by [43], the theorem follows from the modular case, i.e. N and
(dim C)? have the same set of prime ideal factors in Oy. O

Remark 3.10. If C is the category of representations of a finite group G, then
FSexp(C) = exp(G) and dimC = |G|. The preceding theorem implies that p is a
prime factor of |G| if, and only if, p | exp(G); this is simply an equivalent statement
of the classical Cauchy theorem for finite groups.

3.2. Proof of rank-finiteness. To prove Theorem [B.I] we first reduce to proving
that there are finitely many possible fusion rules using (braided) Ocneanu rigidity,
due to Ocneanu, Blanchard and Wassermann (unpublished), a proof of which may
be found in [23].

Theorem 3.11. There are only finitely many (braided, modular) fusion categories
which have the same fusion rules up to (braided, modular) monoidal equivalence.

Remark 3.12. Ocneanu rigidity for fusion categories was first proved by Blanchard
and Wasserman, and the extension to the braided case can be found in [23, Remark
2.33]. For the finiteness of spherical structures see Lemma [2.4]

Next we may reduce to bounding the FP-dimension using (see e.g. [23, Propo-
sition 8.38] and [49, Proposition 6.2]).

Corollary 3.13. There are finitely many (braided, modular) fusion categories C
satisfying FPdim (C) < M for any fized number M > 0, up to (braided, modular)
monoidal equivalence.

For the reader’s convenience, we provide an explicit bound on the Ni’“j in terms
of FPdim(C) for fusion categories.

Lemma 3.14. If C is a rank n fusion category, then for a € ¢, we have the
inequality

[ Nallmax < FPdim (V5) < nf|Ne [|max,
where || A|lmax s the maz-norm of the complex matriz A given by

HAHmaw = max ‘Aij| .
0,3

Proof. Note that
Ry= Y FPdim(a)a
acllc
generates a one-dimensional ideal of K¢(C) = Ko(C) ®z C, and that aRy =
FPdim(V, )Ry for all a € II¢. In particular, there is unit vector x with positive
components such that N,z = FPdim(V,,)z for all a € Il¢.
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Let p (A) denote the spectral radius of an nxn complex matrix A. Recall that the
2-norm of A is given by || A||2 = v/p (A*A). Thus, for a € ¢, || Ng||2 > FPdim(V,).
On the other hand,

HNaHg = p(N;Nao) = p(Na=Nao) = p (Z Nzlz)*,aNb>
belle
< Z N?. ,FPdim(V;) = FPdim(V,") FPdim(V,) = FPdim(V,)?.
belle
Therefore, |Ny|2 = FPdim(V,) for all @ € IIz. The result then follows by the
inequality
[Allmax < [[Al2 < nl|Allmax

for any n X n complex matrix A. |

Next we give an explicit bound on ord (T) in terms of the rank of C.

Proposition 3.15. If C is a modular category of rank r with modular data (S,T),
then ord (T) < 227/3+832r/3,

Proof. By [9], any abelian subgroup G of &, satisfies |G| < 3"/3. On the other
hand, since Gal (F7/Q) = (Z/NZ)*, by Lemma 210 [Fr : Fg] < 2™ where m — 1
is the number of prime factors of ord (7). The fundamental theorem of Galois
theory can be utilized to relate m and [Fg : Q]. To do this, we note that

Gal (Fs/Q) = Gal (Fr/Q) /Gal (Fr/Fs),
where

Gal (Fr/Q) = (Z/NZ)" = H(Z/p?il)*

in terms of distinct prime-power cyclic subgroups. Since Gal (Fr/Fg) is an elemen-
tary 2-group by Lemma 2T0] we see that at least m — 3 (non-trivial) cyclic factors
survive in the quotient (the three possible exceptions correspond to primes 2 and
3 in ord (T)). The structure of the maximal abelian subgroup of &, ensures that
m —3 <r/3+ 1. It follows that

[Fr:Q] = [Fr: Fg] [Fs : Q] < 2m37/3 < 27/3+437/3

On the other hand, Fr = Qqq(ry and so [Fr : Q] = ¢ (ord (7')). In particular,
if ord (T') # 2 or 6, then [Fr : Q] > y/ord (T). Thus ord (T) < 2%7/3+8327/3 gince
22/3+832/3 > ¢, O

The last ingredient of the proof of Theorem Bl is a deep result from analytic
number theory, which necessitates some further notation and background.

Definition 3.16. Let K be a number field and S be a finite set of prime ideals in
the ring Ok of algebraic integers of K. An element v € K* is a S-unit if the prime
factors of the principal fractional ideal («) are all in S.

Remark 3.17. The S-units form a finitely generated multiplicative abelian group
which we will denote by Oy s [60].
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Remark 3.18. It should be noted that S-units are often treated adelically in
which case a more delicate treatment involving places is required. While we will
not need this level of detail here, it should be mentioned that it is utilized in [25].
A detailed introduction to S-units and their relationship to adeles can be found in
most modern texts on advanced number theory, e.g. [60].

The S-units arise in a wide range of subdisciplines in number theory and are
typically found to obey an S-unit equation,

xo+ -+, =0, suchthat ax,€ Ofg.
Such an equation is said to be a proper S-unit equation if one requires that
T + -+ x. 0

for each proper, non-empty subset {ig,41,...,4.} of {0,1,...,n}.

In 1984, Evertse took up a study of S-units and the S-unit equation through
analyzing the projective height [25]. By bounding the projective height, he showed
that S-units obey a remarkable finiteness condition loc. cit.

Theorem 3.19. If K is a number field, S is a finite set of primes of Ok, and
n s a fived positive integer, then there are only finitely many projective points
X =[zg:-:x,] € P'K satisfying the proper S-unit equation,

o+ +x, =0.
With this last ingredient we can now proceed to the following proof.

Proof of the rank-finiteness theorem. For fixed rank r, [3, Proposition 6] (or Propo-
sition B.I0]) ensures that ord (T') is bounded strictly in terms of r. For such ord(T),
let S be the (finite) set of primes in Oyq¢7y dividing ord(7"). The Cauchy theorem
(Theorem [3.9) coupled with [20, Lemma 1.2] then implies that D? and d, are S-
units for all simple objects V. Furthermore, the definition of the global dimension
of the category, 0 = D? —d3 — ... — d?_,, and the condition that d? and D? are
real positive algebraic integers for all @ implies that (D2, —d2, ..., —dgfl) satisfies
a proper S-unit equation. In particular, Theorem [3.19 shows that there are finitely
many projective solutions to this equation. Recalling that d2 = 1 allows us to fix
the normalization and conclude that there is an upper bound on D? and a lower
bound on d, for all a.

On the other hand, FPdim (C) = D?/d? for some simple dimension d,. Conse-
quently, the lower bound on d, and an upper bound on D? imply an upper bound
on FPdim (C). The result then follows from Corollary [B.I3]and the observation that
these bounds depend only on the rank. O

3.3. Extensions of rank-finiteness. A premodular category C is called modu-
larizable [6] if there exists a modular category D and a dominant ribbon functor
F : C — D. For a premodular category C the failure of modularity is encoded in
the Miiger centralizer C'—the symmetric fusion subcategory of C generated by all
X such that cx ycy x = idxgy for all objects Y [40]. It is known ([6, Cor. 3.5],
[13]) C is modularizable if and only if C’ = Rep(G) as a symmetric fusion category,
for some finite group G (i.e. C’ is Tannakian). Modularization is a special case
of a general construction called de-equivariantization [I5] in which one quotients
out an action of a finite group G on a category C obtaining a new category Cg.
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The inverse operation equivariantization gives a way to recover C from Cg. We can
easily extend rank-finiteness to modularizable premodular categories.

Corollary 3.20. There are finitely many modularizable, premodular categories of
rank .

Proof. We follow the notation in [I5]. Let C be a premodular category such that
C' =~ Rep(@) is Tannakian and Cg = D its modularization. Note that the equiv-
ariantization D¢ 22 C by [I5]. First observe that under the (faithful) forgetful
functor C — D the image of each simple object X € C is a sum of at most |G]|
distinct simple objects in D (see [7, Prop. 2.1]). Since the rank of Rep(G) is
at most 7, |G| is bounded as a function of r [33]. Therefore, the rank of Cq is
bounded in terms of r. By Theorem [B.1] there are only finitely many modulariza-
tions of rank r premodular categories. On the other hand, each modular category
D has only finitely many equivariantizations of bounded rank for groups of bounded
order [22]. O

We remark that to extend rank-finiteness to all premodular categories, it is
enough to consider only premodular categories with C’ = sVec. Indeed, if Rep(G) C
C’ is a maximal central Tannakian subcategory, then the de-equivariantization Cg
is premodular with no Tannakian subcategories. Hence, the resulting category is
either modular or has C' 2 sVec (cf. [15]).

We have assumed throughout that C has base field C. A referee pointed out that
rank-finiteness for modular categories holds in more general settings.

First, it is clear that these results are equally valid over an algebraically closed
field of characteristic 0. Second, [19, Proposition 3.8] implies that there are only
finitely many rational forms for modular categories, so rank-finiteness holds over
any field of characteristic 0.

Over fields of characteristic p, rank-finiteness can be extended for modular cate-
gories C with D? # 0. By applying the methods of [23 Section 9], we see that such
a category has finitely many lifts to a field of characteristic 0, and equivalence of
the lifts implies equivalence of the original categories.

4. ASYMPTOTICS AND FUTURE DIRECTIONS

4.1. Asymptotics. The proof of Theorem 1] can be naively algorithmized to
determine possible sets of fusion rules for modular categories of a given rank r.
Recall that (’)Hé s Is a finitely generated abelian group [60]. A set of generators

for the free part of O ¢ is known as a system of fundamental S-units and there are

known algorithms for computing such a system, e.g. [I0]. We have the following
algorithm.

Algorithm 4.1.
(0) Specify the rank, r.
or each integer N wit <NKL : "/° perform steps 2-6.
1) R h i N with 1 < N < 227/3+8321/3 perf 2-6
orm the set of primes §, consisting of the prime factors o over N)-
2) F h f pri S isti f th ime f; f N Q
3)

3) Determine a fundamental system of S-units, €1,...,€5_1.
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(4) Solve the exponential Diophantine system,
r—1
(4.1) T=e" el — Z €1t el aj i €7Z.
j=1
(5) Set D? = €}*' -+ €7 and d? =€t e
(6) Determine the possible sets of fusion rules N¢ , using Lemma 3.4 and the
fact that FPdim(V,) < FPdim(C) < max{D?/d5 : 0 < j <r —1}.

Remark 4.2. Given all possible sets of fusion rules in a given rank we can solve for
all admissible modular data. The balancing equation (Z3]) determines the S-matrix
given all d;, 0;, and Ni’;, which Algorithm E] provides.

We can also effectively decide whether a particular set of fusion rules corresponds
to a modular category, using Tarski’s theorem (see [12]). We cannot, however,
effectively determine all modular categories in a given rank, or even count them up

to equivalence.

In any case, Algorithm ETlis very inefficient, and does not admit any obvious
improvements for several reasons.

First, we cannot expect a bound on ord (7)) that is polynomial in the rank. For
example, ord (T) for C = Rep (D&,,) grows faster than any polynomial in the rank
of C. Indeed, ord(T) = exp(&,,) = lem(l,...,n) = ", while the rank of Rep(D&,,)
is superpolynomial but subexponential, with generating function: II22 , (1—xk)_‘7(k)
where o(k) = >y, d [5]. However, for modular categories coming from quantum
groups, ord(T) is linearly bounded in r. Second, the known algorithms for comput-
ing fundamental systems of S-units rely on computing a shortest vector in a lattice,
a problem which is known to be NP-hard. Third, solving Equation (&I]) is very
difficult—our best bound on the number of solutions is quadruplely exponential.

Proposition 4.3. For fized rank r there are at most
92r/3+8g2r/3
Z (235T2)7"3(w(m)l"g?(’”)+¢(7n)/2+1)—r/2
m=1
possible solutions to the dimension equation,
D*=1+d}+---+d>_,.
3 —
Proof. First note that by [26, Theorem 3], there are at most (23°r2)" (sFr1tra)=r/2
solutions to the proper S-unit equation,
T+ Ttz =1,
subject to z; < x;41 over a field K, where s is the cardinality of S, vy is the
number of real embeddings of K, and 75 is the number of conjugate pair complex
embeddings.
However, s depends on the prime factorization of ord (7). In particular, if p is
a rational prime of ord (T'), and there are at worst ¢ (ord (T')) primes lying over p
in Q (¢ora(ry). Thus there are at most ord (7)) primes in S, where w (m)
is defined to be the number of rational prime divisors of m. Elementary analysis
reveals that w (m) < log, (m), and so s < ¢ (ord (T))'°® (erd(™) 4 1) 4 ry where ry
is the number of distinct real field embeddings of K into C, and ry is the number

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



RANK-FINITENESS FOR MODULAR CATEGORIES 877

of conjugate pair complex field embeddings. However, it is well-known that a non-
trivial cyclotomic field has no real embeddings, in particular ro = ¢ (ord (T)) /2
and s+ 11 4 ry < @ (ord (T))"82°" ™) 4 4 (ord (T)) /2 + 1. Combining these two
results reveals that an upper bound on the number of possible dimension tuples
(DZ, 1,d3,..., d%fl) for a rank r modular category with T-matrix of order ord (T') is

3 T logo (ord(T)) r _
(2357“2)T (plora(m)y's2 F(ord(1)/2+1) "/? The result then follows by summing

over all possible values of ord (T') as determined by Proposition O

Low-rank classification suggests that these bounds are far from sharp. We ask
the following question.

Question 4.4. Is there an asymptotic bound on the number of modular categories
(up to equivalence) in terms of the rank which is better than those implied by Propo-

sition E.3]?

Remark 4.5. Etingof [I8] has pointed out that the number of modular categories
of rank 7 is not polynomially bounded. His example is as follows: Consider V =
(Z/p)™, a vector space over F,, of dimension m, where p > 3 is a prime and m
is large. It is well-known that H3(V,C*) = S2V* & A3V* (see e.g. [2I, Lemma
7.6(iii)]). Because of the summand A3V*, the number of such cohomology classes
for large m is at least ]z)cmg7 for some C > 0, even if we mod out by automorphisms
(which form a group of order at most p™ ). Now take the category Vec(V,w) of
V-graded vector spaces with associativity defined by the cohomology class w, and
let Z(V,w) be the Drinfeld center of such a category. It is known [22] that such
categories Z(V,w) and Z(V,w’) are braided equivalent if and only if Vec(V,w) is
Morita equivalent to Vec(V,w’) via an indecomposable module category. But the
indecomposable module categories over Vec(V,w) are known to be parameterized
[47] by subspaces W C V and 2-cochain ¢ on W such that dip = w|w, up to gauge
transformation. There are at most me subspaces, and freedom in choosing %) is in
/\QW*, so again there are at most pm2. As m3 dominates m?, we still have at least
pcm3 such categories, even up to Morita equivalence, and hence modular categories
up to equivalence. On the other hand, FPdim(Z(V,w)) = p*™, so the rank is at
most p>™. Thus we get that the number of modular categories of rank< r is at
least e(cl8(M?) = r“log(”Q, for some ¢ > 0, which is faster than any polynomial
inr.

Along similar lines, one might ask the following question.

Question 4.6. Is there an explicit upper bound on FPdim (C) solely in terms of
the rank?

Remark 4.7. This question seems tractable as the analysis of Evertse shows that
the projective height of [-D?:1:d}:---:d?_;] can be bounded in terms of field
data and hence in terms of ord (T'). This suggests that the relationship between
the FP-dimension and the categorical dimension can be combined, as in the proof
of Theorem B.1] to study this question.

On the other hand, Etingof asked [I8] the following question.

Question 4.8. Can |D2 — 1} be explicitly bounded away from 0 in terms of the
rank?
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Remark 4.9. This question can be reduced to the problem of finding a shortest
vector by exploiting the lattice structure of Of ¢ under an appropriate embedding
into Euclidean space.

4.2. Future directions. Besides obtaining better asymptotics and classification
of low rank modular categories, there are several other open problems.

Physicists propose to use the modular S, T matrices as order parameters for the
classification of topological phases of matter [35]. Therefore, a natural question is if
a modular category is uniquely determined by its modular S, T matrices. We believe
that unitary modular categories are determined by their modular S, T matrices.

The S,T matrices satisfy many constraints as given in Section It is in-
teresting to characterize realizable modular data in terms of such constraints, in
particular, whether or not admissible modular data are always realizable.

For the application to topological quantum computation, it is important to un-
derstand the images of the representations of the mapping class groups from a
modular category. In particular, when do all representations have finite images? If
so, which finite groups arise as such images? The property F' conjecture says that
the representations of all mapping class groups from a modular category have finite
images if and only if D? € Z [41,[49].
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