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ABSTRACT. We prove an existence result for twisted Ké&hler-Einstein metrics,
assuming an appropriate twisted K-stability condition. An improvement over
earlier results is that certain non-negative twisting forms are allowed.

1. INTRODUCTION

Let M be a Fano manifold, together with a line bundle ' — M. Let 5 € ¢1(T)
be a smooth non-negative form that can be expressed as an average

(1) p=[ [Dldu(D),
|T|
where dp is a volume form on the linear system |T'|. A typical example is obtained
if |T'| is basepoint free, and § is the pullback of the Fubini-Study metric under the
corresponding map M — P¥ (see [17, Theorem 19]). More generally we could allow
the divisors D to be in the linear system |kT'| for some k > 1, but for simplicity of
notation we will only consider the case k = 1.
Our goal is to study the existence of solutions to the equation

Ric(w) =w+ 8

on M. We necessarily have w € ¢;(L), where L = K=1 @ T~1 in terms of the
canonical bundle K of M. We call a solution w of this equation a twisted Kéahler-
Einstein metric on (M, 8). The main result is the following.

Theorem 1. There exists a twisted Kahler-Einstein metric on (M, ) if (M, ) is
K-stable.

We will define K-stability of the pair (M, 8) in Section 2 below. Note that if T is
trivial, so that 8 = 0, then L = K !, and we are seeking a Kihler-Einstein metric
on M. In this case Theorem 1 was proven by Chen-Donaldson-Sun [4] in solving
the Yau-Tian-Donaldson conjecture [14, 26, 29]. When § € ¢1(M) is strictly posi-
tive, Datar and the second author [7] showed a slightly weaker statement, namely
that if (M, ) is K-stable, then for any ¢ > 0 there is a solution of the equation
Ric(w) = w+ (1 + €)5. This is more or less equivalent to replacing “K-stable”
by “uniformly K-stable” in the statement of Theorem 1. In much more general-
ity, allowing positive currents 3, the result assuming uniform K-stability was also
shown by Berman-Boucksom-Jonsson [23], using very different techniques. In the
setting when 8 € ¢1(M) is the current of integration along a smooth divisor, the
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statement of Theorem 1 was also shown by Chen-Donaldson-Sun [4], where instead
of twisted Kéhler-Einstein metrics, one considers Kéhler-Einstein metrics with cone
singularities along the divisor. Let us also remark that it would be natural to ex-
tend Theorem 1 to pairs (M, B) that admit automorphisms, using a suitable notion
of K-polystability rather than K-stability. This would not introduce substantial
new difficulties, however in this paper we focus on the case of no automorphisms
to simplify the discussion.

In Section 2 we will give the definition of K-stability of a pair (M, ), which
is similar to log-K-stability [18] and twisted K-stability [9]. In the case when S
is the pullback of a positive form by a map, stability of the pair is related to the
stability of the map in the sense of [10]. We then prove Theorem 1 in Section 3
along the lines of the argument in [7]. An important simplification of the prior
arguments in Chen-Donaldson-Sun [4] as well as [7, 25] is provided by the work of
the second author and Liu [19] on Gromov-Hausdorfl limits of Kahler manifolds
with only lower bounds on the Ricci curvature, rather than a two-sided bound as in
Donaldson-Sun [16]. An additional observation, given in Corollary 9 below, allows
us to obtain the existence of a twisted Kéahler-Einstein metric under the assump-
tion of K-stability, rather than the stronger uniform K-stability which would follow
more directly from the methods of [7].

2. K-STABILITY

Let M, T, be as in the introduction, and L = K~' ® T~'. Note that since M
is Fano, the line bundles T, L are uniquely determined by 5, given that 5 € ¢1(T).
In this section we discuss K-stability of (M, 3), and prove some basic properties.
First we have the following definition, which agrees with that in Tian [26] when T
is the trivial bundle so that g = 0.

Definition 2. A special degeneration for (M, L) of exponent r > 0 consists of an
embedding M C P¥ using a basis of sections of L, together with a C*-action A
on PV such that the limit lim; o A(t) - M is a normal variety.

We will refer to a special degeneration by the C*-action A, leaving implicit the
projective embedding of M that is also part of the data. Next, we define the
Donaldson-Futaki invariant DF(M, ) in the same way as in Donaldson [14], in
terms of the weights of the action on the spaces of sections H°(M, L*") as k — oo.
In addition we will need a differential geometric formula for the Donaldson-Futaki
invariant. For this let Z = lim; o A(t) - M. We can assume that the S L_subgroup
of A acts through SU(N + 1), and so we have a Hamiltonian function § on P¥
generating A.

Proposition 3. Let w denote the restriction of the Fubini-Study metric to Z. We
then have

DF(M,\) = -V~! / 0 (nRic(w|z) — Rw) Aw™ 1,
z
where V' is the volume of Z, and R is the average scalar curvature, so that the
integral above is unchanged by adding a constant to 6.

Proof. Let us denote by ws the restriction of the Fubini-Study metric on A(e™*)- M.
We thus have a family of metrics ws = wg + v/—109ps on M in a fixed Kédhler
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class. Since the central fiber Z of our degeneration is normal, the Donaldson-
Futaki invariant DF(M, \) is given by the asymptotic derivative of the Mabuchi
functional [20] along this family wy (see Paul-Tian [22, Corollary 1.3]). Le. we have
DF(M,\) = lim —V~' [ ¢y(nRic(ws) — Rws) Aw™ L.
§—00 M

In addition we have ¢s = 6 under identifying M with A(e™®) - M. It therefore
remains to show that these integrals on M converge to the corresponding integral
on Z.

If Z were smooth, then this convergence would be immediate. It is thus enough
to show that the singularities of Z do not contribute to the limit. For this, note
first that we have a uniform upper bound Ric(ws) < Cws for the Ricci curvatures,
where C' depends on the curvature of the Fubini-Study metric, since curvature
decreases in holomorphic subbundles. We can view Cw, — Ric(ws) as a positive
current of dimension (n — 1,n — 1), supported on A\(e™*) - M. As s — oo, these
currents converge (along a subsequence if necessary) weakly to a limit current T
supported on Z. On the regular part of Z, this limit current is necessarily given by
Cw — Ric(w) in terms of the Fubini-Study metric w, and since the codimension of
the singular set is at least 2, this determines T O

We are now ready to define the twisted Futaki invariant of the special degener-
ation.

Definition 4. Suppose that we have a special degeneration A for M with Hamil-
tonian 6 as above, and Z = lim; ;o A(t) - M. Under the assumption (1) we have
an induced current v = limy_,9 A(¢),3 on Z. The twisted Futaki invariant of this
special degeneration is then defined to be

Futg(M,\) = DF(M,\) +nV_1/ 0 (v — cwps) Awis',
z

where c is a constant so that the expression is invariant under adding a constant to

0.
Given this, we define K-stability of (M, 3) as follows.

Definition 5. The pair (M, §) is K-stable, if Futg (M, A) > 0 for all special degen-
erations for (M, L), with equality only if X is trivial.

It will be important for us to replace the smooth form S with currents of inte-
gration along divisors. The definition of the twisted Futaki invariant above applies
in this case too, leading to log-K-stability (see Donaldson [15], Li [18]), and we
will need to compare these two notions. As in [7], the twisted Futaki invariant
with a smooth form £ is the same as the twisted Futaki invariant using a generic
divisor in the same class. This follows from the decomposition (1), together with
the following result from Wang [27, Theorem 26].

Proposition 6. Let D C PN have dimension n — 1, and A\ a C*-action with
Hamiltonian 0 as above. Suppose that 0 is normalized to have zero average on PV.
Let Do = limy_,o A(t) - D, and denote by w(Dg, A) the weight of the induced action
on the Chow line over Dy. Then (up to a multiplicative normalization constant)

w(Dg, \) = — i fuw"t
0
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Under a projective embedding of the Chow variety, we can view each D as in
this proposition as a line in a vector space V spanned by a vector vp. The weight
w(Dg, A) is determined by the lowest weight in the weight decomposition of vp
under the C*-action . It follows that as D varies in a linear system as in (1), there
will be a hyperplane section H C |T| such that the corresponding weights will all
be equal for D ¢ H. More precisely we have the following.

Proposition 7. Given any C*-action N with Hamiltonian 0 on P, there is a
hyperplane H C |T| such that for all D € |T| we have

2 lim fuw ! < lim OAN#)B AW

( ) t—0 )\(t)D t—0 )\(t)M

with equality for D € |T|\ H. In addition, given an action of a torus T, we can
choose a D € |T| such that equality holds above for all A C T.

Proof. (Compare [17, Lemma 9].) Using (1) the equation (2) is true when averaged
over |T|, i.e. we have

/ lim/ 0w™ "t du(D) = lim (M) BAW"E
T A(t)-D

‘ t—0 t—0 )\(t)M

At the same time by Proposition 6, up to a normalizing constant, the limit on the
left hand side of (2) is a Chow weight in geometric invariant theory. In particular
it is given by the minimal weight under the weight decomposition of the vector
corresponding to D in the Chow variety, under the C*-action A. Generically, i.e.
on the complement of a hyperplane (corresponding to the vanishing of the lowest
weight component), this weight will achieve its minimum and is independent of D.

For the second statement in the Proposition, we can take a generic D that has
a non-zero component in all the weight spaces which appear under the action of T
on elements in 7. O

This result leads to an important finiteness property of special degenerations
inside a fixed projective space. We first have the following (that is essentially a
standard piece of Geometric Invariant Theory).

Lemma 8. Fiz v > 0. There is a finite set F C R with the following property.
Suppose that we have a special degeneration \ of exponent r for M, and a divisor
D € |T| on M such that the limit (Mo, Do) of the pair (M, D) under X is not fized
by any C* subgroup of SL(N + 1) commuting with A, apart from X itself (i.e. the
centralizer of \ in the stabilizer group is just X). Let 0 be the Hamiltonian for A
normalized to have zero average on PN, and let ||\|| denote the L*-norm of 6 on
PY. Then the normalized twisted Futaki invariant |\||~*Futp (M, \) lies in F.

Proof. Note first of all that since any C*-subgroup can be conjugated into a maxi-
mal torus of SL(N + 1), up to moving the pair (M, D) in its orbit, we can assume
that A is in a fixed maximal torus T. Then if (Mg, Dyp) is as in the statement
of the Lemma, the normalized twisted Futaki invariant is determined by the pair
(My, Dy), since the induced C*-action is uniquely determined up to scaling.

The pair (My, Dy) is represented by a point in a product of Chow varieties,
i.e. under a projective embedding by a line spanned by a vector v in a vector
space V admitting a T-action. Under the decomposition of V into weight spaces
for the T-action, the weights appearing in the decomposition of v must lie in a
codimension-one affine subspace of t* by the assumption that (My, Dg) has a one
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dimensional stabilizer in T. The normalized twisted Futaki invariant is determined
by this affine subspace rather than the components of v in each corresponding
weight space. Since there are only a finite number of possible such affine subspaces,
we can have only finitely many different normalized twisted Futaki invariants. [

Corollary 9. Fixr > 0. Suppose that for any € > 0 we have a special degeneration
A of exponent r for (M, L) such that | \||"'*Futg(M, 3) < e. Then (M,f) is not
K-stable.

Proof. Given a special degeneration A, we will show that we can either find another
special degeneration with non-positive twisted Futaki invariant, or we can find a
special degeneration A’ to which Lemma 8 applies, and which has smaller normalized
twisted Futaki invariant than A. If € is sufficiently small, this will necessarily be
non-positive.

By conjugating, we can assume that A is in a fixed maximal torus T. By
Proposition 7, we can choose a D € |T|, such that the twisted Futaki invariant
Futg(M,7) = Futp(M, ) for any C* subgroup 7 in T. Let us consider the effect
of varying the C*-action on the central fiber and the normalized twisted Futaki
invariant.

As above, we can view the pair (M, D) as a line spanned by a vector v in a
vector space V' with an action of T. We decompose v = ) v,, into components on
which the torus acts by weights «; € t*. Let us denote by W C t* the weights that
appear in this decomposition. For any C*-subgroup 7 C T, we will also denote by
T € tits generator. The central fiber (My, D) under this C* is determined by the
sum of those components v, for which (o, 7) is minimal, i.e. {a,7) < (8, 7) for all
B € W. Let us denote by W, C W the set of these minimal weights. The stabilizer
of (Mg, Do) in T is then the subgroup with Lie algebra

{n € t|n is constant on W, },

where we can view any 7 € t as a function on t*. In particular the stabilizer of
(Mo, Dy) is T precisely when W, spans a codimension-one affine subspace in t*.
Consider again our given special degeneration A. If W, spans a codimension-
one affine subspace, then we are already done. Otherwise, we can find another
C*-action 7 which is orthogonal to A in t (here we use the inner product on t
given by the L?-product on PV of the corresponding Hamiltonian functions), and
is constant on W,. For rational ¢ let us consider the C*-actions A + t7. We can
find an interval (a1, as) containing 0, such that if ¢ € (a1, as) then Wyir = Wi,
however for i = 1,2 we have Wyyq,r 2 Wi. For ¢t € (a1,a2) the central fibers
(My, Do) of the degenerations given by A + ¢7 will all be the same. As a result
the twisted Futaki invariant varies linearly in ¢, while the norm is smallest when
t = 0. It follows that the normalized twisted Futaki invariant of A + ¢t7 will be
strictly smaller for either ¢ = ay or ¢ = ao than for ¢t = 0. Moreover the original
central fiber (My, Dg) will be a specialization of the new (M{, D{)), and so M| is
also normal. The new central fiber has smaller stabilizer, and so after finitely many
such steps the result follows. (I

3. PROOF OF THE MAIN RESULT

In this section we prove Theorem 1, along similar lines to the argument in [7].
Instead of the partial C%-estimate in [25], we will use the main result in [19],
which leads to substantial simplifications, and allows us to work with non-negative



6 JULIUS ROSS, GABOR SZEKELYHIDI

B rather than just those that are strictly positive. We first set up the relevant
continuity method.

3.1. The continuity method. Let o € ¢1(L) be a Kéhler form, and consider the
equations

(3) Ric(wt) = twe + (1 — t)a + B,

for wy € ¢1(L). For t = 0 the equation can be solved using Yau’s theorem [28],
and the set of ¢ € [0, 1] for which the solution exists is open. Suppose that we can
solve the equation for t € [0,T). If t > ¢y > 0, then by Myers’ theorem we have a
diameter bound, and since the volume is fixed, the Bishop-Gromov theorem implies
that the manifolds (M, w;) are uniformly non-collapsed. Along a sequence t, — T,
we can extract a Gromov-Hausdorff limit Z. Let us denote by M} the metric spaces
(M,w, ), so My, — Z in the Gromov-Hausdorff sense.

Theorem 1.1 in [19] (which is based on ideas of Donaldson-Sun [16]) implies that
for a sufficiently large ¢ > 0, we have a sequence of uniformly Lipschitz holomorphic
maps Fj, : M, — P, using sections of Lf. These converge to a Lipschitz map
F. : Z — PV that is a homeomorphism to its image. We will identify Z with
its image Fio,(Z), which is a normal projective variety. Up to choosing a further
subsequence we can assume that

(Fi)«[(1 = te)a+ B = v

weakly for a positive current v on Z. Note that since the Fj are all defined using
sections of L¢, we have a sequence g, € PGL(N + 1) such that Fj, = g, o F1, so Z
is in the closure of the PGL(N + 1)-orbit of Fy(M).

We next show that Z admits a twisted Kéahler-Einstein metric, which we can
formally view as a solution of the equation Ric(wr) = Twr + 7. More precisely, let
us denote by L the Q-line bundle on Z such that L' = O(1). We then have the
following.

Proposition 10. The Q-line bundle L over Z admits a metric with locally bounded
potentials with the following property. Locally on Z,.q, if the metric is given by
e~ ¥T, then its curvature form w,., satisfies

_ —Tor—
(4) Wo, =e ¥ v

in the sense of measures, where \/—100¢ = ~. Here Zreg denotes the regular set
of Z in the complex analytic sense.

Proof. The metric on (a power of) L is obtained by the partial C%-estimate, as a
limit of metrics hy, on L — M, that have curvature wy, . More concretely, the partial
C-estimate implies that under our embeddings Fj, : M) — P¥, the pullback of
the Fubini-Study metric is uniformly equivalent to hg. Using this we can extract a
limit metric on O(1)|z which will also be uniformly equivalent to the restriction of
the Fubini-Study metric.

Let us now consider a point p € Z,., and a sequence p, € My, such that p, — p
under the Gromov-Hausdorff convergence. We have a holomorphic chart z; on a
neighborhood of p, and using the maps F}, this gives rise to charts zx; on neighbor-
hoods of pr, € M, for large k, converging to z;. Using these charts we can view the
metrics wy, as being defined on a fixed ball B C C". By the gradient estimate for
holomorphic functions, we have a uniform bound w;, > C 'wgy.. In addition, by
[19, Proposition 3.1] we can assume (shrinking the charts if necessary) that we have



TWISTED KAHLER-EINSTEIN METRICS 7

uniformly bounded Kéhler potentials ¢;, for the wy, . Let us denote by ay, B the
forms corresponding to «, 8 on M. Equation (3) implies that ay, 8 have potentials
Yoy, Vs, satisfying the equation

(5) Wl = e~ thpn, —(1=tk)bay, =¥,
k )

i.e.

RiC(wtk) = trwy, + (1 — tk)ak + B.

Our goal is to be able to pass this equation to the limit as k — oo, i.e. tp — T.
Let us observe first that since a, 8 are fixed forms on M, using the lower bound
wi, > C 7 wpye, we have a uniform bound

/ [(1 —tr)oy + Bk] A wgzcl <C.
B

It follows that we can take a weak limit
v = lim (1 — tg)ag + Bk-
k— o0

From (5), and the lower bound for w;, we have uniform upper bounds for (1 —
ti)Va, + ¥s,. These psh functions can also not converge to —oo everywhere as
k — o0, since the volume of B with respect to the metric w;, is bounded above. It
follows that up to choosing a subsequence we can extract a limit

(1 - tkﬁbw + wﬂk — 1/)7 in Llloc‘

We then necessarily have v = /—190%.

Let x > 0, and denote by FE, the set where the Lelong numbers of + are at
least k. By Siu’s theorem [24] E,, is a subvariety in B. From [19, Claim 4.3],
and the subsequent argument, it follows that for any ¢ € FE,., we have V5, —
lim, o r~2"vol(B(q,r)) < ¥(k), where the volume is measured using the limit
metric on Z. Here, and below, (k) denotes a function converging to zero as
k — 0, which may change from line to line. In other words in the limit space Z the
complement of E, is contained in the e-regular set for e = ¥(k).

Suppose now that q ¢ E,, and § is sufficiently small so that Va,,—6~2"vol(B(q, §)) <
€, where V5, is the volume of the Euclidean unit ball. Then we can apply Lemma 11
below to see that on B(q,d) the metrics wy, are bi-Holder equivalent to wgye. On
these balls the Kéahler potentials ¢, satisfy uniform gradient estimates with re-
spect to wy, , since Ay, ¢r, = n, and so the ¢y, satisfy uniform Hélder bounds with
respect to wgye. It follows from this that up to choosing a subsequence we can find
a limit ¢y, — @r in C(B\ Ex), and @7 is uniformly bounded on B. In particular
for wp = v/—190pr, the measures wp converge weakly to wit on B\ E.

To derive the required equation (4), we note that on B\ E, we have

e~ (I=te)Vay, —%s, _y o=% ip Llloc'

From the semicontinuity theorem of Demailly-Kolldr [8] this follows if we bound
the Lelong numbers of 1, which will be the case if k is sufficiently small. It follows
that on B\ E, we have an equality of measures wf = e~ Ter=¥ and since E, has
zero measure with respect to w7, the equality holds on B as well. ([

We used the following lemma in the argument.
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Lemma 11. Suppose that B(p, 1) is a unit ball in a Kdhler manifold with Ric > 0,
together with holomorphic coordinates z; that give an e-Gromov-Hausdorff approz-
imation of B(p,1) to the Euclidean unit ball B(0,1) C C™. There exists an
a>1—Y(e) and C > 0 such that for q,q¢' € B(p,1/2) we have

d(q,q") < Clz(q) — 2(¢')|*.

As above, ¥(e) denotes a function converging to zero as € — 0, which may change
from line to line.

Proof. We can assume that z(p) = 0. It is enough to prove that for any § > 0, if € is
sufficiently small, then for all k£ > 0 and ¢ € B(p,27%), we have |z(q)| > (2 + ).
We prove this by induction.

Suppose that we have shown that |z| > (2+6)~* outside of B(p,27"). Denote by
28 B(p,27F) the same ball scaled up to unit size. By Colding’s volume convergence
theorem [6] and the Bishop-Gromov monotonicity, together with [19, Theorem 2.1],
we have holomorphic coordinates w on this ball, giving a ¥(e)-Gromov-Hausdorff
approximation to the Euclidean unit ball. We can assume that w(p) = 0. Let us
also use the coordinates 2’ = (2+6)*z, which map our ball onto a region containing
the Euclidean unit ball. Viewing w as a function of z, the Schwarz lemma implies
that |w| < (1+ ¥(€))|2’| on the unit z’-ball, and so in particular, using that w is a
Gromov-Hausdorfl approximation, we have |z'| > (1 — ¥(e))/2 outside of the ball
28 B(p,27%~1). Scaling back, this means that |z| > (2 4+ U(e))~1(2 + 6)~F outside
of B(p,27%=1). We then just need to choose € small enough to make ¥(e) < 4, and
the inductive step follows. ([

3.2. The Ding functional and the Futaki invariant. We will next use the
existence of a twisted Kéahler-Einstein metric as in Proposition 10 to deduce the
vanishing of the twisted Futaki invariant, and the reductivity of the automorphism
group.

Let Z ¢ PN be a normal variety, together with the following additional data.
We have a Q-line bundle L on Z (a power of which is just O(1)), and a locally
bounded metric e”%° on L. In addition we have a closed positive current v on
Z. We say that these define a twisted Kéahler-Einstein metric if the conclusion of

Proposition 10 holds, i.e. locally on Z,, we have the equation wg = e~ Teo—¢

where v/—100¢ = 7. In terms of this we can define the twisted Ding functional
on the space of all metrics e™% with locally bounded potentials. Abusing notation
slightly, we will denote by e~7¢~% the measure

—Te—¢ _ ,—T(p—wo), n
e =e Wy -

Note that while @, ¢y are only locally defined in terms of trivializations of L, ¢ — g
is a globally defined bounded function on Z.
We have the Monge-Ampere energy functional E, defined by its variation

1
5B(e) = 3 [ doa

where V' is the volume of Z with respect to w,, and we define the twisted Ding
functional [12] by

D) = ~TE(y) - log ( / eTM) .
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The variation of D is
—T(6 —To—4
5D(p) = _Tv—l/ Spw] — Jz ~T0¢)e
z

JpemTe? ,

and so the critical points satisfy
n _ —Typ—
wg = Ce .

Up to changing ¢ by addition of a constant, this is the twisted KE equation as
required.

The convexity of the twisted Ding functional follows exactly Berndtsson’s ar-
gument in [3] (see also [7]), and so in particular if there is a critical point, then
D is bounded below. As in [4, 7], the key consequences of this convexity are the
reductivity of the automorphism group of (Z,7), and the vanishing of a twisted
Futaki invariant.

The reductivity of the automorphism group is a generalization of Matsushima’s
theorem for Kéhler-Einstein metrics [21] (see also [1, 2, 3, 5, 11]). Following [7], we
define the Lie algebra stabilizer of (Z,), as a subalgebra of s[(N + 1, C) by

gz, ={we HO(TZ) ¢ Ly = 0}
We then have, following [5] (see also [7, Proposition 7])

Proposition 12. Suppose that Z admits a twisted KE metric as above. Then gz
is reductive.

Following Chen-Donaldson-Sun [4] we also apply the convexity of the twisted
Ding functional to deduce the vanishing of a twisted Futaki invariant on Z. For
this we consider the variation of D along a l-parameter group of automorphisms
which fixes the twisting current ~y. If the automorphisms are generated by a vector
field v with Hamiltonian 6, then the variation of ¢ is 6, so we get

fz fe T Y

_ -1
(6) Futry(Z,v) = =TV /Z R s

As a result we have the following.

Proposition 13. Suppose that Z admits a twisted KE metric as above, and let e~¥
be a metric on L with locally bounded potentials. Suppose that v is a holomorphic
vector field on Z with a lift to L, such that the imaginary part of v acts by isometries
on L, and so that v,y = 0. Let 0 denote a Hamiltonian forwv, i.e. Lyw, = V—1008.
Then Futr ,(Z,v) = 0, where Futy (Z,v) is defined as in (6).

As in [7], we need to relate this formula to the “untwisted” Donaldson-Futaki
invariant. A new difficulty here is that the metric w is not in ¢1(Z), and so the
Donaldon-Futaki invariant can not be expressed in terms of the Ding functional.
Instead we use the differential geometric formula given in Proposition 3.

Let e™% denote the restriction of the Fubini-Study metric to L on Z C PV,
and w, its curvature. We can use a method similar to Ding-Tian [13] to give a
more differential geometric formula for the twisted Futaki invariant. The vector
field v is given by the restriction of a holomorphic vector field on P¥, and @ is
the restriction to Z of a smooth function on PV. It follows that we have uniform
bounds |0], |V, |A8| < C on Z,.q4, where we are taking the gradient and Laplacian
using the metric wy, on Z,.4. In addition we have an upper bound Ric(w,) < Cw,,
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on Zyeg, and so the current Cw, — [Ric(w,) — 7] is positive for a sufficiently large
constant C.

Proposition 14. We have the equality
fZ fe T v

-1 n

=-—nV ! /Z O(Ric(wy) — Twy — ) A wg_l.

Proof. Let us define the (twisted) Ricci potential u on Z,.4 by

(7) e To—v—u — wg-

Interpreting this as an equality of metrics on K ! (on Zreg) and taking curvatures,
we have

(8) Twy, + v+ V—190u = Ric(w,).

Since the current Cw, — [Ric(wy,) — 7] on Z,., is positive, we have v/—100u < Cw,,
on Zyeq. Since the singular set of Z has codimension at least 2, it follows from
this that u is bounded below. Consider a resolution 7 : Z — Z, and let n be a
metric on Z. Let w, = m*w, + en. Then w, gives a family of smooth metrics on Z
converging to m*w, as € — 0. Let us denote the pullback of u to Z by u as well.
We have v/—100u < Cw,. away from the exceptional set, and since u is bounded
below, this inequality holds on all of Z. In particular we have A.u < Cn. Following
Ding-Tian [13], we integrate the inequality

/ A—Gu.wzlgg
214 (u—infu)

by parts to obtain

[ e
5 (Lt (u—infu)2 e ="

Letting € — 0, we obtain the same estimate on Z,., with the metric w,. Just as in
[13] we have that u € LP for any p, and in turn this implies that we have a bound

/ VulPw? < Gy,
Zreg

for any p < 2.
Differentiating the equation (7) along the vector field v we get that on Z,.,

—T0 —v(¢) — v(u) = A6.

Note that we can think of v(1)) as being defined by this equation (since 1) itself is
only defined in local charts), since all other terms are globally defined functions. In
particular by the above estimate for u we have that v(¢) is in LP for p < 2. At the
same time, differentiating (8), and noting that L,y = 0, we get

V—=100[T0 + v(u) + AG] =0,

and therefore we also have /—199v(¢)) = 0. In particular A = v(3)) is a constant
on Z, and so

9) ~T0 — A =V0-Vu+ Af.



TWISTED KAHLER-EINSTEIN METRICS 11

/ o To—v
zZ

is unchanged by flowing along the vector field v, we obtain

/ (=T — N)e~T¢7¥ = 0.
Z

Since the integral

Rearranging this,

S
R e

Using this formula in (9), and integrating, we get

[ Oe=Te=v

= /(VG - Vu + Au)wg,

where all integrals are on Z,.4. To integrate by parts, note that since the singular
set of Z has real codimension at least 4, we can find cutoff functions y. with
compact support in Z,.4 such that x. = 1 outside the e-neighborhood of Z;,4, and
IVxellrs < C. We then have

/Z V@-VuwZzlig(l)/)@VH-Vuwg

reg

= 2% [/QVXE Vuwy, — /XeﬁAuwg}
= —/GAuwZ,

Here we used that |Vu| € L*/3 and so

3/4
’/QVXE~VuwZ < C||VxellLa (/ ( )|vu|4/3wg> —0 ase—0.
supp(Vxe

Similarly we can check that [ Au wp = 0. In conclusion, from (10) we find that

-1 o 0T -1 . n—1
-1V Owg + TW =—-nV . O(Ric(wy) — Twy — ) Awy ™,

as required. O

Suppose now that Z is the central fiber of a special degeneration for M induced
by the one-parameter group A(¢). Then using Proposition 3, we can relate the
twisted Futaki invariant to the Donaldson-Futaki invariant as follows.

Corollary 15. The twisted Futaki invariant above is given by
%) )

Futr . (Z,v) = DF(M,\) +nV ! / O(y — cwy) Awl ™
4

where A is a C*-action generated by the vector field v, and c is a constant so that
the right hand side is unchanged when we add a constant to the Hamiltonian 6.
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3.3. Completion of the proof of Theorem 1. We can now complete the proof
of the main result. According to Corollary 9 it is enough to show that either we
can find special degenerations for M with arbitrarily small twisted Futaki invariant,
thereby contradicting the K-stability of (M, ), or T = 1 and the twisted KE metric
that we obtained on Z is actually the twisted KE metric on M that we set out to
find.

Let us denote by Z C P¥ the Gromov-Hausdorff limit of (M,w;,) along the
continuity path (3). Using Proposition 10 we know that Z admits a twisted KE
metric. In particular the pair (Z,7) is in the closure of the PGL(N + 1)-orbit of
(M,(1 = T)a + ), where T = limty, and we are identifying M with its image
Fy(M). We can now closely follow the method in [7] of approximating the forms
«, B by currents of integration along divisors in M. Just like in [7], the twisted
Futaki invariants become smaller as T increases (see [7, Equation (23)]). Because
of this, and to simplify the discussion below, we will assume that 7' = 1. Note that
unlike the setting in [7], here we still have a twisting term when 7' = 1, and so this
case is not any easier than the case T' < 1.

By assumption, the form S on M can be written as an integral of currents
of integration, as in Equation (1). Recall also that we have the sequence g €
PGL(N + 1) such that F, = g o Fy, and so gx(M) — Z. As in [7, Lemma 14],
by choosing a subsequence we can ensure that each sequence gi(D) for D € |T)|
converges to a subvariety of PV which we denote by go.(D). It follows that we
have

(9r)+B — lTl[goo(D)] du(D),

in the weak topology. The twisting current v on Z is obtained as the limit of (g )./3
as k — oo, and so we have

5= /T[goow)] (D).

Arguing as in [7, Lemma 15], we can find a finite set D}, ..., D, € |T| such that
the Lie algebra of the stabilizer of the tuple (Z, goo (D)), - -, goo(D}.)) in PGL(N+1)
is gz~, and in particular it is reductive. In addition there is a subset E C |T'| of
measure zero such that if Dy,..., D € F, then the stabilizer of the extended tuple
(Z, 9o (DY) -+ Goo (DL, oo (D1), - - -, goo (D)) is still reductive. Suppose that this
tuple is not in the PGL(N +1)-orbit of (M, D},...,D., Dy,...,Dk). Then we can
find a C*-subgroup A\ C PGL(N + 1) and an element g € PGL(N + 1) such
that

Z = lim Ac(t)gic - M,
Joo(D}) = lim Ak () gk - D, fori=1,...,r,
goo(Dj) = }iné Ak (t)grx - Dj, for j=1,..., K.
—
Suppose that A\i is generated by a vector field wg, with Hamiltonian 0, and we
normalize O so that it has zero average on PV . In addition we can scale wg so that

10k ||z = 1. Note that since Z is not contained in a hyperplane, the Hamiltonian
O cannot be constant on Z, unless A\ is trivial.
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We can choose Dy, ...,Dg € |T|\ E so that no d + 1 lie on a hyperplane in |T|.
Here d is the dimension of the projective space |T'|. From Proposition 7 we have

K
1
lim Ok A (W) gr)BAwWES = —) lim O wis' +O(1/K)
205k (g M K ;HO Ak (£)gxc-Ds s

K
1
=2, oweist v O0/K)
i=1 Y Yoo (i

since d is independent of K.
At the same time given any € > 0 we can choose K large and the D, so that

1 K

—Z Ongglg/HK'y/\w}ﬁgl-l—e.
K =1 /g\oo(Dz) Z

Let us denote by vk = lim;0(Ax (t)gx )+ the limit current on Z. Combining our
inequalities, and the assumption of twisted K-stability, we have

OSFutg(gK-M,)\K) :DF(Z,)\K)—i-nV_l/ O (WK—Wps)Aw?gl
Z

K
1
:DF(Z,)\K)anV’l?E / (D)GKw?;glchl/ZHKw,’éSJrO(l/K)
i=1 7900 (Di

< DF(Z, k) + nVﬁl/ Ok (7 — cwrs) Awis' + e+ O(1/K)
z
=e+ O(1/K).

Note that in the last line we used Proposition 13 and Corollary 15. Choosing e small
and K sufficiently large, it follows that if the tuples (Z, goo (D)), goo (Dj))i=1,....r.j=1,.... K
are not in the PGL(N + 1)-orbit of (M, D}, D;)i=1,...r j=1,....k for infinitely many
K, then we have special degenerations for (M, ) with arbitrarily small twisted
Futaki invariant. Corollary 9 then implies that (M, ) is not K-stable.

Otherwise, Z is in the PGL(N +1)-orbit of M, and since under our assumptions
M has discrete stabilizer group, it follows that the group elements g are uniformly
bounded. As in [7], this implies that the solutions wy, along the continuity method
satisfy uniform estimates, and so we obtain a solution for t = T as well, as required.
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