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ABSTRACT

We propose CLEANN, the first end-to-end framework that enables
online mitigation of Trojans for embedded Deep Neural Network
(DNN) applications. A Trojan attack works by injecting a backdoor in
the DNN while training; during inference, the Trojan can be activated
by the specific backdoor trigger. What differentiates CLEANN from
the prior work is its lightweight methodology which recovers the
ground-truth class of Trojan samples without the need for labeled data,
model retraining, or prior assumptions on the trigger or the attack. We
leverage dictionary learning and sparse approximation to characterize
the statistical behavior of benign data and identify Trojan triggers.
CLEANN is devised based on algorithm/hardware co-design and
is equipped with specialized hardware to enable efficient real-time
execution on resource-constrained embedded platforms. Proof of
concept evaluations on CLEANN for the state-of-the-art Neural
Trojan attacks on visual benchmarks demonstrate its competitive
advantage in terms of attack resiliency and execution overhead.
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1 INTRODUCTION

With the growing popularity of Al-powered autonomous systems,
the demand for superior intelligence has led to increasingly more
complex model development processes. Training contemporary deep
learning models requires massive datasets and high-end hardware plat-
forms [18, 26]. Amid this trend, clients rely on third party databases
and/or major cloud providers to build their models. Unfortunately, out-
sourcing of content or computations opens up new challenges as it ex-
tends the potential attack surface to malicious third party entities [29].
In this paper, we focus on Trojan attacks [ 14, 23], where the malicious
third party provider inserts a hidden Trojan trigger, also dubbed a
“backdoor”, inside the model during training. During inference, the at-
tacker can hijack the model prediction by inserting the Trojan trigger
inside the input data. Figure 1 illustrates examples of Neural Trojans.
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Figure 1: Example Trojans: (a) BadNets [14] with a sticky note
and TrojanNN [23] with (b) square and (c) watermark triggers.

Identification and mitigation of Trojans is particularly challenging
for the clients since the compromised model performs as expected
on their benign data, i.e., when the Trojan is not activated. To
tackle Trojan attacks, contemporary research proposes either
reverse-engineering the trigger pattern from the model [5, 15, 22, 36]
or identifying the presence of a trigger at the input [6, 8, 12]. The
former class of methods require time-consuming reverse-engineering
and retraining. The latter approaches induce a high overhead on DNN
inference that hinders their applicability to embedded systems. To
ensure model robustness in safety-sensitive autonomous systems,
itis crucial to augment the models with an online Trojan mitigation
strategy. To the best of our knowledge, none of the earlier works
provide the needed lightweight defense strategy.

We propose CLEANN, the first end-to-end accelerated frame-
work that enables real-time Trojan shield for embedded DNN
applications. CLEANN’s lightweight method is devised based on
algorithm/hardware co-design; our algorithmic insights offer a highly
accurate and low-overhead method in terms of both the offline defense
establishment and online execution; our hardware accelerator enables
low-latency and energy-efficient defense execution on embedded
platforms. CLEANN harvests the irregular patterns caused by Trojan
triggers in the input space and/or the latent feature-maps of the victim
DNN to detect adversaries. Our method leverages key concepts and
theoretical bounds from sparse approximation [9] to learn dictionaries
that absorb the distribution of the benign data. We then utilize the
reconstruction error obtained from the sparse approximation to
characterize the benign space and identity the Trojans.

To ensure applicability to various attacks and trigger patterns,
CLEANN sparse recovery acts on both frequency and spatial domains.
Our proposed defense is compatible with the challenging threat model
in which the attacker has full control over the geometry, location, and
content of the Trojan trigger. The contaminated model is shipped to
the client, who is unaware of the existence of the Trojan and does
not have access to any labeled data. CLEANN countermeasure is
unsupervised, meaning that no labeled training data or contaminated
Trojan sample is required to establish the defense. Notably, CLEANN
is the first defense to recover the ground-truth labels of Trojan data
without performing any model training and/or fine-tuning.

We validate the effectiveness of CLEANN by performing extensive
experiments on various state-of-the-art Trojan attacks reported
to-date. CLEANN outperforms prior art both in terms of Trojan
resiliency and algorithm execution overhead. CLEANN brings down



the attack success rate to 0% for a variety of physical [ 14] and complex
digital [23] attacks with minimal drop in classification accuracy. Our
customized accelerated defense shows orders of magnitude higher
throughput and performance-per-watt compared to commodity
hardware. In brief, the contributions of CLEANN are as follows:

Introducing CLEANN, the first end-to-end accelerated framework
for online detection of Neural Trojans in embedded applications.

Constructing a novel unsupervised Trojan detection scheme based
on sparse recovery and outlier detection. The proposed lightweight
defense is, to our best knowledge, the first to enable recovering the
original label of Trojan samples without model fine-tuning/training.
Providing bounds on detection false positive rate using the
theoretical ground of sparse approximation and outlier detection.

Devising the first customized library of Trojan shields on FPGA
which enables high-throughput and low-energy Trojan mitigation.

2 BACKGROUND AND RELATED WORK
2.1 Trojan Attacks

Throughout this paper, we focus on Trojan attacks on DNN classifiers.
Below, we overview state-of-the-art attack algorithms.

» BadNets. Authors of BadNets [14] propose adding the Trojan
trigger into a random subset of training samples and labeling them
as the attack target class. The DNN is then trained on the poisoned
dataset. The shape of the Trojan trigger can be arbitrarily chosen by
the attacker, e.g., a sticky note on a stop sign as shown in Figure 1-a.
Thus, BadNets are considered a viable physical attack.

» TrojanNN. More recently, TrojanNN [23] assumes the attacker
does not have access to the training data but can modify the DNN
weights. The attack first selects one or few neurons in one of the hidden
layers, then extracts the Trojan trigger in the input domain to activate
the target neurons. The DNN weights are then modified such that
the model predicts the attacker’s target class whenever the selected
neurons fire. Unlike BadNets, the triggers generated by TrojanNN,
e.g., the square and watermark patterns in Figure 1-c,d, are not similar
to natural images. However, TrojanNN is a viable attack algorithm in
the digital domain; Notably, most Trojan mitigation methods are less
successful in identifying the complex triggers of TrojanNN [5, 24].

2.2 Existing Defense Strategies

» Robust Training and Fine-tuning. One plausible threat model
assumes that the client has access to the training dataset but is
unaware of the existing Trojans. Robust learning methods aim at
identifying malicious samples during training [3, 20, 34]. For an
already infected DNN, authors of [21] perform pruning to remove
the embedded Trojans at the cost of clean accuracy degradation. We
assume a more constrained attack model where the victim does not
have any access to the training dataset. Additionally, CLEANN does
not rely on expensive model retraining to establish the defense.

» Trigger Extraction. Several methods inspect the DNN model
for existence of a backdoor attack by reverse engineering the trigger.
Neural Cleanse [24] provides a method for extracting Trojan triggers
without access to the training dataset. Follow up work improves
the search overhead [5] and reverse engineered trigger quality [15].
Though effective for simple Trojan patterns, their performance drops
when reverse engineering more complex triggers, e.g., those created
by TrojanNN [23]. Our method is different than the above works in

that, instead of reverse engineering the trigger, we study the statistics
of sparse representations from benign samples and detect abnormal
(outlier) triggers during inference. This allows CLEANN to identify
complex Trojan triggers without prior knowledge about the attack
algorithm. Additionally, CLEANN does not involve expensive reverse
engineering and can be executed in real-time on embedded hardware.
» Data and Model Inspection. Perhaps the closest method to
CLEANN are those that check the input samples to identify the pres-
ence of Trojan triggers. Authors of [4] query the infected model and
use activation clustering on hidden layers to detect Trojans. Similarly,
NIC [25] compares incoming samples against the benign and Trojan
latent features to detect adversaries. These method require access
to the labeled contaminated training dataset, which may not viable
inreal-world settings. CLEANN, in contrast, does not require access
to the training data or infected data samples to construct the defense.

Sentinet [6] extract critical regions from input data using gradient
information obtained by back propagation. Februus [8] takes a similar
approach along with utilizing GANS to inpaint Trojan triggers with
the caveat that the number of data samples required for GAN training
is large. STRIP [12] runs the model multiple times on each image
with intentional injected noise to identify Trojans. While the above
works show high detection accuracy, their computational burden of
multiple forward/backward propagations is prohibitive for embedded
applications. CLEANN achieves a better detection accuracy with low
computational complexity and sample count, making it amenable
for real-time deployment in embedded systems.
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Figure 2: High-level overview of CLEANN Trojan detection
methodology. CLEANN detects both digital and physical attacks
using a pair of input and latent feature analyzers.

3 CLEANNMETHODOLOGY

Figure 2 illustrates the high-level flow of CLEANN methodology
for Trojan detection. CLEANN comprises two core modules, dubbed
the DCT and feature analyzers, specializing in the characterization
of the DNN input space and latent representations, respectively. By
aggregating the decision of the two analyzers, CLEANN is able to
thwart a wide range of physical and digital Trojan attacks.

0 DCT Analyzer. The DCT analyzer acts as an image prepro-
cessing step. This module investigates all incoming samples in the
frequency domain in search for suspicious frequency components
that are anomalous in clean data. Towards this goal, we design four
components for this module as shown in Figure 2. First, the Discrete
Cosine Transform (DCT) extraction module transforms the input
image to the frequency domain. We then perform sparse recovery on
the extracted frequency components and reconstruct the signal using



a sparse approximation. The outlier detection module uses a con-
centration inequality to detect anomalous reconstruction errors and
generate a binary mask with non-zero values denoting the potential
Trojan-carrying regions. The anomalous regions in the input image
are then suppressed by the binary mask before entering the victim
DNN. To ensure compatible dimensions between the input image and
the binary mask, a nearest neighbor upsampling component is also
included inside the DCT analyzer. Frequency analysis is particularly
useful for detecting digital Trojans. However, physical attacks, e.g.,
the sticky note in Figure 2, might evade frequency-domain detection.
@ Feature Analyzer. This module investigates patterns in the latent
features extracted by the victim DNN to find abnormal structures. The
feature analyzer is placed at the penultimate layer inside the victim
DNN. This choice of location allows us to leverage all the visual in-
formation extracted from the input image by the DNN for making the
classification decision. The sparse recovery module in the feature ana-
lyzer serves two purposes: (i) denoising input features for use in the re-
maining layers of the victim DNN, (ii) anomaly detection on the recon-
struction errors for distinguishing Trojans. Notably, the first property
allows CLEANN to recover the ground-truth labels for Trojan sam-
ples by effective removal of Trojan triggers. To ensure scalability to
various output dimensions, we include a dimension reduction module
that adaptively adjusts the feature size while maximally preserving the
informative content of the signals. To allow the reconstructed output
to flow in the remaining layers of the DNN, a twin dimension restoring
layer recovers the original tensor shape. The extracted distributions
from latent layers successfully detect attacks in the physical domain.

3.1 Defense Construction and Execution

CLEANN consists of two main phases to mitigate Trojan attacks:

» Offline Preprocessing. During this phase, we learn the parameters
for dictionary-based sparse recovery and outlier detection modules by
leveraging a small set of unlabeled benign samples. Our methodology
is entirely unsupervised, meaning no Trojan data is involved in
defense construction. This, in turn, ensures applicability to a wide
range of Trojan patterns and attacks. CLEANN pre-processing phase
is low-complexity as it does not involve any training or fine-tuning
of the victim DNN. We only perform this step once for each (model,
dataset) pair. The learned analyzer modules can then be transferred
to a variety of attacks without any fine-tuning overhead.

» Online Execution. CLEANN methodology is devised based on
light-weight solutions to enable efficient adoption in embedded
systems. We provide a hardware-accelerated pipeline for end-to-end
execution of CLEANN where the analyzer modules are either
integrated inside the victim DNN or running in parallel with it. The
DCT extraction and upsampling components are implemented as
an additional convolution layer at the input of the victim DNN. We
devise a customized library for implementing the sparse recovery,
outlier detection, and dimensionality reduction and restoring
modules on FPGA. These FPGA-accelerated modules are executed
synchronously with the victim DNN to raise alarm flags for Trojans.

3.2 Threat Model

In our threat model, we assume the client has purchased the
trained DNN model infected with Trojans from a malicious party.
Accordingly, we consider the following constraints on our defense
strategy: (1) The client has access to model weights but not the

training data. (2) The client has access to clean test data but they
are unlabeled. (3) The client is not aware whether or not the model
is infected with Trojans. (4) No prior knowledge is available about
possible Trojan trigger shapes and/or patterns.

To construct the defense, we assume access to a small corpus of
unlabeled data'. This is a realistic assumption as access to small
amounts of data is possible via online resources. For instance, pub-
licly available repositories enable data generation through generative
networks for Faces”. We consider the most generic and challenging
form of Trojan attacks in which the attacker can control the trigger
size, shape, and content. CLEANN mitigation is made possible in such
scenario by constructing the defense using benign unlabeled data.

4 CLEANN COMPONENTS
4.1 DCT extraction

In natural images, most of the energy is contained in low frequencies.
However, this property does not necessarily hold true for the Trojan
triggers. Figure 3 shows the visualization of the frequency compo-
nents for a Trojan sample, normalized by the magnitude of frequency
components for benign data. Here, the magnitudes are averaged across
100,000 image patches and the Trojan samples contain a watermark
trigger generated by [23]. As seen, Trojans have much larger compo-
nents in the high-frequency domain compared to benign samples.
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Figure 3: Average magnitude of DCT components for Trojan
samples, normalized by benign data, shown in the three RGB
channels. Trojans contain abnormally larger amounts of
high-frequency components (highlighted regions).

To perform frequency analysis, we divide each input image
into non-overlapping patches? of size P P. We transform each
image patch to another patch of same size in the frequency domain
using DCT. Eq. (1) encloses the formula used to compute the DCT
transformation Fy, , of a P P patch.

P 1P 1 1 1
Fup=Cup xi,jcos[”T”(i E)]cos[%(j g)] e
i=0 j=0

Here, x;,j is the input pixel located at the i,j coordinate and Cyy
is a scalar constant that depends on the frequency coordinates. The ex-
tracted 2D DCT components F,, , are then sorted in decreasing order
in terms of the information they carry following a zigzag pattern [30].

We represent the DCT transform as a group convolution with
kernel size P and c;, groups where c;j, =3 and 1 for RGB and gray-
scale images, respectively. The kernel weights of the convolution
layer are initialized with the DCT basis coefficients which are pre-
computed based on Eq. (1). The stride of the convolution is set to P to

"ess than 1% of the training set size across all of our evaluations
2http://www.whichfaceisreal.com/index.php

3We use P =4 for small image benchmarks where input image dimensions are less than
32 pixels. For larger input image sizes we use P=8.



account for image patching. Such representation allows for an efficient
implementation of the DCT Analyzer, which can be easily integrated
into the architecture of the victim model as a pre-processing layer.

4.2 Sparse Recovery

Sparse coding is referred to learning methods where the goal is
to efficiently represent the data using sets of over-complete bases.
Given a matrix of (n) data observations X R! ", sparse coding
extracts a dictionary of normalized basis vectors D R! ™ and the
sparse representation matrix V. R ™. Formally, the sparse coding
objective can be written as:

i X =min X D.V %4 2
rg}z‘ngp min 2 v Vo (2)

where y is a regularization coefficient that promotes sparsity in the
coded representation V. Dictionary learning algorithms provide
solutions to the above optimization problem by finding a dictionary
D that minimizes E,,  fp x , where is the distribution over the
inputs. CLEANN extracts D by performing dictionary learning over
legitimate (benign) data. The out-of-distribution Trojan samples are
thus expected to show a high reconstruction error, whereas benign
samples will be accurately reconstructed with small error.

Figure 4 illustrates this behavior in an example 2D space. The light-
blue dots represent the distribution of benign samples; the two solid
arrows dq and dz are the dictionary atoms and only one of them is used
for sparse reconstruction x. As seen, the magnitude of the reconstruc-
tion error on the outlier sample x is larger than that of regular data
x1,1.., X2 X2 p>> x1 x1 gwhere pisthe Frobenius norm.

While the above simple illustration shows the effectiveness of dic-
tionary learning in 2 dimensions, a similar behavior is observed when
generalizing sparse coding to higher dimensions. For a dictionary
trained on n samples x  , there exist theoretical bounds on the gen-
eralization error for unseen samples drawn from the same distribution

. Let us denote the average reconstruction error over the set of n ob-
served samples by E,. The generalization error of the dictionary Ep
onunseen samplesx,, XisboundedbyEp x, E, J.Vainsencher
etal. [35] prove that the generalization error J for a A-sparse represen-
tationis y/mlln nd n under some orthogonality assumptions
for the dictionary. CLEANN dictionaries are devised to minimize re-
construction error on benign samples. We therefore carefully tune the
dictionary size m and sparsity level A to ensure a low reconstruction
error on the data at hand (E,) as well as a low error bound §.

Figure 4: Illustration of sparse
reconstruction for regular
data (green circle) and out-
of-distribution samples (red
circle).
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» Data. We apply sparse recovery on two data subsets extracted
from a small corpus of randomly selected benign samples.

(1) At the input of the neural network (Section 4.1), each column
of matrix X is the DCT of a single patch in the input image. For
instance, for an 8 8, DCT window, the dimensionality would
be =3 64 (64 DCT coefficients per RGB channel).

(2) At the latent space, each column of X represents a flattened
feature-map with reduced dimensionality.

» Dictionary Learning. We use an adaptive sampling distri-
bution based on the reconstruction error of X, dubbed Column
Selection-based Sparse Decomposition (CSSD) [27] for learning the
dicrionaries. This algorithm initializes D by a small random subset
of X and then iteratively adds columns to D; the probability of a data
sample being appended at each step is proportional to its reconstruc-
tion error with the current column set. Formally, the probability of
the i-th sample x; being selected at the ¢ 1 -thiteration is given by:

b DiD,xi xi 2 3)

Xi 2

where D; corresponds to the columns of the dictionary selected up to
the ¢-th iteration and D, = DZDt lDtT is the pseudo inverse of D;.
The intuition behind Eq. (3) is to give a higher chance of selection to
those elements of X with higher reconstruction errors. This approach
allows us to maximize the amount of embedded information from the
data distribution inside D. While more sophisticated algorithms can
beused [1, 2, 10], our empirical evaluations show that CSSD can suffi-
ciently express the data distribution with minimal generalization error.
» Reconstruction Algorithm. We use Orthogonal Matching Pursuit
(OMP) [7] for sparse recovery as summarized in Algorithm 1.
OMP iteratively finds non-zero elements to construct the sparse
representation x. The added non-zero element at each iteration is
chosen such that it minimizes the Ly norm of the remaining residual
error r; D o 2 which can be solved using Least-square (LS)
optimization. The subset of dictionary columns (D ) that contribute
to the sparse recovery is also expanded over iterations. After A

iterations, the reconstruction is returned as x=D 0.

Algorithm 1 OMP algorithm

Inputs: Dictionary D Rl ™, input sample
x R!, number of non-zero coefficients for sparse recovery (4).

Output: reconstruction x RL

1. rg x > residual error: rg R!
2. D > empty dictionary subset
3: fori=0,., 1 1 do

4 p=Dr; > projection vector: p R
5 Jj=argmax p

6: D D D.j > update dictionary subset
7 v argmin r; D v 3

8 ri1 ri Do > update residual error
9: returnD o

» Distribution Learning with Few Samples. An “over-complete”
dictionary is necessary to ensure representation sparsity [27] and effec-
tive separation of outlier and benign samples. The term over-complete
is used when the number of columns in the dictionary is higher than
the data dimensionality (m >> [). In real-world DNN applications,
however, the number of data samples (m) is often small while the
feature-map dimensionality ([) is large. To tackle this, we apply
Singular Value Decomposition on the high-dimensional feature-maps
to reduce . Inverse SVD can then be applied on the reconstructed
output to recover the original dimensionality. We choose the SVD
rank such that more than 90% of the original energy is preserved.

4.3 Outlier Detection

As discussed in Section 4.2, we leverage the disparity between the
reconstruction error of benign and Trojan samples after undergoing



sparse recovery to detect Trojans. Towards this goal, we first extract
the statistical properties of the reconstruction error across benign
samples. The out-of-distribution samples, i.e., outliers, are then
marked as Torjan. In order to model out of distribution samples,
we utilize a multivariate extension of Chebyshev’s inequality [33].
Consider a random variable R! 9 andlet Xi f\i i denote a set of
observed samples drawn from . Based on the N observations, we
calculate the empirical mean p and the covariance ¥ as follows:

1 N 1 N
- . - . oo, T
y—N;xl, Z=5 1; Xi poXi p 4)
The Chebyshev’s inequality provides an upper bound on
the probability of samples lying outside ellipsoids of the form

x p 3 ' x pT=¢% Letus denote the distance of each sample
from the distribution by:

distxzxyzlxpT 5)
The Chebyshev’s inequality can then be formally written as:
d N> 1 Né?
dist € min{l,Tze} 6)

The above inequality implies that one can categorize samples
satisfying large enough values of ¢ as out-of-distribution, i.e.,
outlier. Based on this intuition, we measure the empirical mean and
covariance in Eq. (4) on a held-out dataset of benign samples and use
the Chebyshev’s inequality to characterize Trojaned data that do not
belong to the benign probability distribution. The right-hand side of
Eq. (6) provides the probability of a benign sample being categorized
as outlier or Trojan. For large-enough values of N (N ), this
probability tends to min{l,j‘l2 }

Figure 5-a, b illustrates example Trojan data together with the
corresponding reconstruction error heat maps. As seen, the Trojan
trigger patterns have relatively larger reconstruction error compared
to the rest of the image. Figure 5-c visualizes the output of the outlier
detection. Here, we generate a binary mask where the values of 0 and
1 correspond to in-distribution and outlier labels, respectively. As
seen, parts of the input image that are covered with the Trojan trigger
are correctly distinguished from benign regions.

Figure 5: (a) Example Trojan data with watermark and square
triggers [23], (b) reconstruction error heatmap, and (c) output
mask from the outlier detection module.

» Tuning the parameter e. We provide a systematic way to tune
the parameter e for outlier detection, based on the user-defined
constraints on Trojan defense performance. An incoming sample
I R? K K g Jabeled as Trojan if at least one of its enclosing
components I RY is categorized as an outlier based on Eq. (6). The

probability of an image being categorized as Trojan is therefore:
K K
1 Trojan =1 1—1 1, Benign (7)
k=1
When examining the outlier detection scheme on benign sam-
ples, the left-hand side of Eq. (7) is equivalent to the False Pos-
itive Rate (FPR), i.e., the probability of a benign image being
mistaken for a Trojan. Eq. (6) provides that for benign samples
1. Benign i Benign 1 6% The FPR is thus upper-bounded by:
d\K K
FPR= | TrojanI Benign 1 (1 6—2) (8)

We can therefore determine the parameter € based on the desired
application-specific FPR denoted by FPR;grget:

d\K K
sup FPR=1 (1 —2) FPRiarget C))
€ €

d e —
6_2 1 KA FPRtarget (10)

where 64’12 is the per-patch FPR, i.e., j Trojan I} Benign .

» Reducing FPR with Morphological Transforms. As seen in
Figure 5, certain benign elements in the samples might be marked
as Trojan, thus increasing the FPR. To reduce such patterns, we
utilize two operations from morphological image processing, namely,
erosion and dilation, implemented as convolution layers. Erosion
emphasizes contiguous regions in the input mask and removes small,
disjoint regions. Once erosion is applied, binary dilation restores
high-density non-zero regions in the original input mask. Figure 6-a
demonstrates the obtained binary mask from the outlier detection
where the benign regions mistaken for being Trojan are marked with
red boxes around them. Figure 6-b shows how erosion successfully
removes the false alarms and Figure 6-c demonstrates how dilation
restores the original shape of the binary mask in Trojan regions.

Figure 6: (a) Binary Trojan mask with the red rectangles
indicating False alarms. (b) Output mask obtained after ap-
plying 2D binary erosion. (¢) Output mask after restoring the
high-concentration Trojan regions with 2D binary dilation.

4.4 Decision Aggregation

Figure 7 illustrates the decision flowchart for CLEANN Trojan
detection. As shown, a successful Trojan attack needs to satisty two
conditions: (1) both the DCT and feature analyzers mistakenly mark
the sample as benign, and (2) the victim model classifies the sample
in the target Trojan class. For each Trojan sample xit , the attack
success S; is computed as:

1 dpa xi xi ==c (11)

Si= 1 dpa xit
wheredpy anddpy  denote the decision of the DCT and feature
analyzer modules, respectively, with the value of 1 meaning the
Trojan has been detected. Here, represents the classification
decision made by the victim model and c; is the Trojan attack target

class. The overall attack success rate (ASR) is the expectation of S



over Trojan samples (x! ). Since the three terms in Eq. (11) are
independent, we can write ASR as:

ASR=E : 1 dpsa E ¢1 dpa E : xi ==c" (12)

Detected | Detected™ o, Classify
Trojan? Trojan? Sample

Yes— ./  Discard
Figure 7: Decision flowchart for Trojan detection in CLEANN.
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The first and second terms in the equation above are quantified
using the True Positive detection rate (TPR). In this context, TPR
measures the ratio of Trojan samples that are correctly identified
by the defense. Let us denote the TPR for the DCT and feature
analyziers with TPRp 4 and TPRp 4, respectively. Eq. (12) can then
be equivalently written as:

N
1
ASR= 1 TPRps 1 TPRpa ﬁz xi ==c (13)
i=1
Similarly, the classification accuracy on benign samples ACC C
can be written in terms of the FPR of the DCT and feature analyzers:

N
1
ACC C= 1 FPRps 1 FPRpa —Z xi ==c¢;  (14)
N i=1
where ¢; denotes the correct class for the i th sample.

5 CLEANN HARDWARE

In the following, we delineate the hardware architecture of CLEANN
components that enable a high throughput and low energy execution.
» Matrix-Vector Multiplication Core. Many of the fundamental
operations performed in CLEANN include matrix-vector multipli-
cation (MVM). In particular, the outlier detection module requires
two MVMs to calculate the distance function shown in Eq. (5).
Additionally, the dimensionality reduction and restoring components
in the feature analyzer are realized using MVMs with weight matrices
W R/ "and W R" ! respectively, where I is the dimensionality
of the input and r is the SVD rank. We devise an FPGA core for MVM
and vector addition, realized using DSP blocks with Multiplication
Accumulation (MAC) functionality [17, 31]. Figure 8 presents the
high-level schematic of CLEANN vector-matrix multiplication.

We provide two levels of parallelism in our design controlled
by parameters P and SIMD in figure (8). This approach allows our
design to achieve maximum resource utilization and throughput on
various FPGA platforms. The weight matrix is divided into subsets
of length P and fed into parallel processing elements (PEs). These
subsets are read from DRAM using a Ping-Pong weight buffer to
overlap memory reads with PE computations. At each cycle, PEs
perform partial dot-product on the fetched weight and input partitions
of length SIMD; the same input partition is shared across all PEs. We
devise a tree-based reduction module and an accumulator to enable
summation of partial dot-product outputs.

» Sparse Recovery Core. The sparse recovery module performs
OMP to reconstruct input signals. We provide a reconfigurable and
scalable OMP core on FPGA to accelerate sparse recovery. OMP
relies on sequential execution of three steps: (1) The dictionary
column with the maximum dot-product with the current residual
vector is selected. (2) An LS optimization step generates the sparse

SIMD Input Vector]

Weight Matrix ~_SIMD

p{ .

Chunk 2
| Chunk rlPE | PE #P|

Figure 8: Schematic representation of CLEANN MVM core with
its internal parallelization levels.
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representation of the current residual vector with the columns of the
dictionary selected so far. (3) The residual is updated based on the
new sparse representation and the selected dictionary columns.

We utilize CLEANN MVM core to implement the first step above.
For the second step, we implement the LS optimization using a QR
factorization of the dictionary matrix. We leverage the modified
Gram Schmidt (MGS) method [13] to perform the factorization.
Since the dictionary matrix expands by one column each iteration, it
is not necessary to recompute the Q and R matrices very time. Instead,
we iteratively form the Q and R matrices as outlined in Algorithm 2.
Using the acquired new column for the Q matrix, the residual update
step takes the following form:

ri1on Qi Qi (15)
Due to the low memory footprint of CLEANN components, we
store all required data in the available on-chip Block RAMs. By
eliminating the overhead of external memory access, CLEANN
enjoys a low latency and high power efficiency.

Algorithm 2 QR factorization with MGS

Inputs: New dictionary column D;,Qi 1,Ri 1.
Output: Qi, R;.

1: R; [Ri ! 0],61' D.

0 0 I
cforj=1, ,i 1 do
Ri j.i Qi1j Te
€ € RijiQiij
: Rjii = € 9
2 Qi=Qi 1 € Riii

6 EXPERIMENTS

We evaluate CLEANN on three visual classification datasets of vary-
ing size and complexity, namely, MNIST [19] for handwritten digits,
GTSRB [32] forroad signs, and VGGFace [28] for face data. The num-
ber of classes for each dataset is 10, 43, and 2622, respectively. We cor-
roborate CLEANN effectiveness against variations of two available
state-of-the-art Neural Trojan attacks. In what follows, we provide de-
tailed performance analysis and comparisons with prior art. We further
demonstrate CLEANN accelerated execution on embedded hardware.

6.1 Attack Configuration

Throughout the experiments, we consider input-agnostic Trojans
where adding the trigger to any image causes misclassification to the
attack target class. Table 1 summarizes the evaluated benchmarks
along with their corresponding Trojan attacks and triggers.

» BadNets. We implement the BadNets [14] attack with various
triggers as an example of a realistic physical attacks. The injected
Trojans include a white square and a Firefox logo placed at the



bottom right corner of the input image. We embed the backdoor by
injecting  10% poisoned data samples during training.

» TrojanNN. We evaluate CLEANN against TrojanNN [23] as a
digital attack with complex triggers. The attack is implemented using
the open-source models shared by TrojanNN authors*. We perform
experiments with two variants of TrojanNN triggers, namely, square
and watermark, crafted for the VGGFace dataset.

Table 1: Evaluated datasets and attack algorithms.

Dataset  Input Size Architecture Attack Trigger
MNIST 1x28x28 2CONV,2MP,2FC  BadNets square
GTSRB  3x32x32  6CONV,3MP,2FC  BadNets o a®
Firefox
. square
VGGFace 3x224x224 13CONYV, 5MP,3FC  TrojanNN
watermark

6.2 Detection Performance

We apply CLEANN Trojan mitigation at the input and latent space
of infected DNNs. To create the defense, we separate 500, 430,
and 2622 clean samples from MNIST, GTSRB, and VGGFace test
sets, respectively. The aforementioned size for the benign dataset
corresponds to 1% of the training data size for MNIST and GTSRB
and 0.1% VGGFace training data. Such low data size requirements
provide a competitive advantage for CLEANN defense in real-world
scenarios. We summarize other defense parameters for our evaluated
benchmarks in Table 2. These parameters are selected to maintain
a high classification accuracy over the benign data.

Table 2: Parameters of CLEANN modules for various datasets. P:
DCT windows size, [: feature size for sparse recovery, m: number
of dictionary columns for sparse recovery, A: sparsity parameter
in sparse recovery, 2: distance threshold for outlier detection.

Input Analyzer Feature Analyzer
P 1 m A €2 1 m A €2
10

Dataset Trigger

MNIST Square 4 48 1000 5 5 10 279 500 80

2 3

Square 4 80 3 103

GTSRB FireFox 4 48 1000 5 5 10 85 420 50 1 102
Square 5 10 * 80 1 10 *

VGGFace -0 |8 192 1000 5 0t | 5200 2622 o s

We evaluate CLEANN Trojan resiliency on physical and digital
attacks in Table 3. Specifically, under “Defended Model”, we evaluate
the drop in clean data accuracy (ACC ), the attack success rate
(ASR), and Trojan ground-truth label recovery (TGR). In addition
to our results, we include prior art performance in terms of the
above-mentioned criteria. On MNIST, CLEANN achieves 0% ASR,
with only 0.1% drop in clean data accuracy, outperforming the prior
art. For GTSRB, CLEANN achieves an ASR of 0% and a lower drop
of accuracy compared to all prior work, except for Deep Inspect,
which suffers from a much higher ASR of 8.8%.

On digital attacks, CLEANN achieves 0.0% ASR with only
0.8% and 2.0% degradation of accuracy for square and watermark
shapes. The watermark trigger covers a large area of the input image,
obstructing the critical features. As such, while CLEANN detects
the Trojan with high success, it shows a lower TGR compared
to our other triggers. Note that Neural Cleanse and Deep Inspect
perform DNN training on synthetic datasets achieved with model
inversion [11]. As a result, their post-defense accuracy is not directly
comparable with CLEANN, which does not perform DNN retraining.

4https ://github.com/PurduePAML/TrojanNN

‘We emphasize that while such retraining contributes to accuracy, it
may not be feasible in real-world applications.

Table 3: Evaluation of CLEANN on various physical and digital
attacks. Comparisons with state-of-the-art prior works, i.e.,
Neural Cleanse(NC) [36], Deep Inspect (DI) [5], Februus [8],
and SentiNet [6] are provided where applicable.

. . Infected Model Defended Model
Dataset Trigger Work Retrain ACC-C ASR ACC ASR TGR
MNIST Squz NC yes 98.5 99.9 0.8 0.6 NA
(Physical 2”“4” DI yes 988 1000 07 88 NA
Attack) CLEANN no 99.3 100.0 0.1 0.0 987
NC yes 96.5 97.4 3.6 0.1 NA
Square DI yes 96.1 98.9 -1.0 8.8 NA
((l;’l’fyssli{c]:l 4 4 Februus yes 96.8 100 1.2 0.0 965
CLEANN no 96.5 99.4 0.0 0.0 947
Attack) Firefox
6 6 CLEANN no 92.6 99.8 0.4 1.7 835
NC yes 70.8 99.9 -8.4 3.7 NA
Square DI yes 70.8 99.9 0.7 9.7 NA
VGGFACE 59 59 SentiNet no NA 96.5 NA 0.8 NA
(Digital CLEANN no 749 9352 08 0.0 70.1
Attack) NC yes 714 97.60 -7.4 0.0 NA
‘Watermark DI yes 71.4 97.60 0.5 8.9 NA
CLEANN no 74.9 58.6 2.0 0.0 41.38

Februus performs GAN training. SentiNet only reports results on LFW [16] dataset.

» Sensitivity to Trigger Size. We perform experiments on the
GTSRB dataset with a square Trojan trigger and change the trigger
size such that it covers between 0.4%to 14% of the input image
area. The size range is chosen to ensure that the corresponding triggers
are viable in real settings and provide a high ASR. We summarize the
obtained results in Figure 9. CLEANN significantly reduces the ASR
while enabling recovery of ground-truth labels with a high accuracy
across all trigger sizes. This is expected since CLEANN does not rely
on the trigger size to construct the defense. For average sized Trojans,
CLEANN successfully detects the existence of triggers and reduces
the ASR to less than 1%. For larger trigger sizes, the TGR is relatively
lower since the Trojan occludes the main objects in the image.

100 Infected Model:
75 m ACC-C
(]
50 ASR
Defended Model:
25 ACC-C

0 — ¢ ASR

2x2 4x4 8x8 12x12 ATGR
(0.4%) (2%) (6%) (14%)

Trigger Size (Target Area)
Figure 9: Analysis of CLEANN sensitivity to Trojan trigger size.

» Offline Preprocessing Overhead. The preparation of CLEANN
defensive modules consists of the following steps:
DCT extraction and dictionary leaning on benign inputs.
Computing p and ¥ in Eq. (4) for input outlier detection.
Computing SVD and dictionary learning at latent feature maps.
Computing p and ¥ for latent outlier detection.
In practice, the above computation incurs negligible runtime com-
pared to DNN training. We implement the above steps in PyTorch and
measure the runtime on an NVIDIA TITAN Xp GPU. For our GT-
SRB benchmark, the above operations require 0.06, 0.19, 10.47, and
0.1 seconds, respectively. The defense construction time is therefore
11 seconds whichis  1.8% of the time required to train the victim
DNN on this benchmark. For the more complex VGGFace dataset,
the above operations require 1.05, 0.54, 48.3, and 1.2 seconds, respec-
tively, resulting in a total of 51 seconds for defense preparation.



6.3 Hardware performance

We implement the proposed Trojan defense strategy on various
hardware platforms and compare the performance of CLEANN
components. The evaluated platforms include server-grade CPUs
and GPUs, embedded CPUs and GPUs, and FPGA. We base our
comparisons on performance-per-Watt defined as the throughput
over the total power consumed by the system. This measure effec-
tively encapsulates two major performance metrics for embedded
applications. Throughout this section, we will target our study on the
GTSRB benchmark but similar trends are observed for other datasets.
» Performance on General Purpose Hardware. We provide an
optimized software library for CLEANN defense components in
Python. In order to benefit from highly optimized backend compilers
for tensor operations on CPU and GPU, our codes are developed
on top of the PyTorch deep learning library. Our provided software
library can be readily instantiated within PyTorch API to enable
simultaneous DNN execution and Trojan defense. We implement our
defense pipeline on the Jetson TX2 embedded development board run-
ning in CPU-GPU and CPU-only modes. We further run the defense
on a server-grade Intel Xeon E5 CPU and an NVIDIA TITAN Xp GPU.
The overall achieved defense throughput with a batch size of 1 ranges
from 11 fps on the embedded CPU up to 28 fps on the server GPU.
Figure 10 illustrates the runtime breakdown for various compo-
nents of CLEANN running on each platform. Here, the sparse recovery
and outlier detection modules are abbreviated as SR and OLD and
the prefixes D— and F - correspond to the DCT and feature analyzers,
respectively. The experiments are performed using a batch size of 1
to resemble real-world applications and runtimes are averaged across
100 runs. For each platform, we normalize the runtime of each com-
ponent by the total defense execution time for one sample. As seen,
the bulk of defense runtime belongs to the sparse recovery module.
This is due to the inherently sequential nature of the OMP algorithm
performed inside this module. CPU and GPU platforms are designed
to excel in massively parallel operations while this does not hold for
OMP. Such behavior further motivates us to design specialized hard-
ware to accelerate the execution of CLEANN components on FPGA.

B ARM Cortex-A57 [ Intel Xeon E5 I NVIDIA Pascal [l NIVIDATITAN Xp

DCT DCT
D-SR D-SR
D-OLD D-OLD
SVD SVD
F-SR F-SR
SVD*! SVD!
F-OLD F-OLD
0.0 0.2 04 0.6 0.0 0.2 04 0.6 0.8
Normalized Runtime Normalized Runtime

Figure 10: Latency breakdown of CLEANN components run-
ning on embedded and high-end CPUs (left) and GPUs (right).

» Performance on Customized Accelerator. We implement
CLEANN components on FPGA using the developed sparse recovery
and MVM cores as the basic blocks. The design is developed in Vivado
High-Level Synthesis and synthesized in Vivado Design Suite for the
Xilinx UltraScale VCU108 board. Power consumption is estimated
during synthesis with Vivado Design Suite. Finally, a comprehensive
timing and resource utilization analysis is performed. To maximize
throughput, we tuned the parallelism factors in the MVM modules to the
highest value such that the design fits within the available resources.

Figure 11 demonstrates the breakdown of execution cycles for
CLEANN components. As seen, the sequential execution of the
sparse recovery core accounts for the majority of computation cycles.
Our FPGA-based sparse recovery core enjoys up to 10 and 18
faster execution, respectively, compared to their CPU and GPU
counterparts. This is enabled by pipelined execution, fine-grained
optimizations to data access patterns, and parallel computation.

Figure 11: Cycle-count
breakdown for execution
0.6% of CLEANN components

D-diD implemented on FPGA.

2.3%
D-SR
67.6%

We compare the performance-per-Watt and throughput of
CLEANN on different hardware platforms in Figure 12. The
performance-per-watt numbers are normalized by TITAN Xp and the
throughput numbers are normalized by ARM Cortex-A57. As seen, the
power-efficient implementation of CLEANN on FPGA not only en-
joys a high throughput, but it also significantly increases performance-
per-watt compared to commodity hardware. Note that due to the light-
weight nature of CLEANN defense strategy, the server-grade GPU
performs poorly in terms of performance-per-watt compared to other
platforms due to under-utilization and excessive power consumption.

Normalized Performance-per-Watt Normalized Throughput

300 12
200 9
6
100
1x qqx 15 3 o
0

FPGA ARM-A57 Xeon E5 Pascal FPGA Xeon E5 Pascal TITAN Xp
(a) (b)
Figure 12: (a) Performance-per-Watt and (b) throughput
across hardware platforms. Reported values for performance
per-watt are normalized by TITAN Xp and throughput values
are normalized by ARM Cortex-A57.

7 CONCLUSION

This paper presents CLEANN, an end-to-end framework for online ac-
celerated defense against Neural Trojans. The proposed defense strat-
egy offers several intriguing properties: (1) The defense construction
is entirely unsupervised and sample efficient, i.e., it does not require
any labeled data and is established using a small clean dataset. (2) Itis
the first work to recover the original label of Trojan data without need
for any fine-tuning or model training. (3) CLEANN provides theoret-
ical bounds on the false positive rate. (4) The framework is devised
based on algorithm/hardware co-design to enable accurate Trojan
detection on resource-constrained embedded devices. We consider
a challenging threat model where the attacker can use Trojan triggers
with arbitrary shapes and patterns while no knowledge about the attack
is available to the client. CLEANN light-weight defense and realistic
threat model makes it an attractive candidate for practical deploy-
ment. Our extensive evaluations corroborate CLEANN’s competitive
advantage in terms of attack resiliency and execution overhead.
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