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ABSTRACT
We propose CLEANN, the first end-to-end framework that enables

online mitigation of Trojans for embedded Deep Neural Network

(DNN) applications. A Trojan attack works by injecting a backdoor in

the DNN while training; during inference, the Trojan can be activated

by the specific backdoor trigger. What differentiates CLEANN from

the prior work is its lightweight methodology which recovers the

ground-truth class of Trojan samples without the need for labeled data,

model retraining, or prior assumptions on the trigger or the attack. We

leverage dictionary learning and sparse approximation to characterize

the statistical behavior of benign data and identify Trojan triggers.

CLEANN is devised based on algorithm/hardware co-design and

is equipped with specialized hardware to enable efficient real-time

execution on resource-constrained embedded platforms. Proof of

concept evaluations on CLEANN for the state-of-the-art Neural

Trojan attacks on visual benchmarks demonstrate its competitive

advantage in terms of attack resiliency and execution overhead.

KEYWORDS
Deep Learning, Trojan Attack, Embedded Systems, Sparse Recovery

ACM Reference Format:
Mojan Javaheripi, Mohammad Samragh, Gregory Fields, Tara Javidi, and Fari-

naz Koushanfar. 2020. CLEANN: Accelerated Trojan Shield for Embedded

Neural Networks. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD ’20), November 2–5, 2020, Virtual Event, USA. ACM,

New York, NY, USA, 9 pages. https://doi.org/10.1145/3400302.3415671

1 INTRODUCTION
With the growing popularity of AI-powered autonomous systems,

the demand for superior intelligence has led to increasingly more

complex model development processes. Training contemporary deep

learning models requires massive datasets and high-end hardware plat-

forms [18, 26]. Amid this trend, clients rely on third party databases

and/or major cloud providers to build their models. Unfortunately, out-

sourcing of content or computations opens up new challenges as it ex-

tends the potential attack surface to malicious third party entities [29].

In this paper, we focus on Trojan attacks [14, 23], where the malicious

third party provider inserts a hidden Trojan trigger, also dubbed a

“backdoor”, inside the model during training. During inference, the at-

tacker can hijack the model prediction by inserting the Trojan trigger

inside the input data. Figure 1 illustrates examples of Neural Trojans.
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Figure 1: Example Trojans: (a) BadNets [14] with a sticky note
and TrojanNN [23] with (b) square and (c) watermark triggers.

Identification and mitigation of Trojans is particularly challenging

for the clients since the compromised model performs as expected

on their benign data, i.e., when the Trojan is not activated. To

tackle Trojan attacks, contemporary research proposes either

reverse-engineering the trigger pattern from the model [5, 15, 22, 36]

or identifying the presence of a trigger at the input [6, 8, 12]. The

former class of methods require time-consuming reverse-engineering

and retraining. The latter approaches induce a high overhead on DNN

inference that hinders their applicability to embedded systems. To

ensure model robustness in safety-sensitive autonomous systems,

it is crucial to augment the models with an online Trojan mitigation

strategy. To the best of our knowledge, none of the earlier works

provide the needed lightweight defense strategy.

We propose CLEANN, the first end-to-end accelerated frame-

work that enables real-time Trojan shield for embedded DNN

applications. CLEANN’s lightweight method is devised based on

algorithm/hardware co-design; our algorithmic insights offer a highly

accurate and low-overhead method in terms of both the offline defense

establishment and online execution; our hardware accelerator enables

low-latency and energy-efficient defense execution on embedded

platforms. CLEANN harvests the irregular patterns caused by Trojan

triggers in the input space and/or the latent feature-maps of the victim

DNN to detect adversaries. Our method leverages key concepts and

theoretical bounds from sparse approximation [9] to learn dictionaries

that absorb the distribution of the benign data. We then utilize the

reconstruction error obtained from the sparse approximation to

characterize the benign space and identify the Trojans.

To ensure applicability to various attacks and trigger patterns,

CLEANN sparse recovery acts on both frequency and spatial domains.

Our proposed defense is compatible with the challenging threat model

in which the attacker has full control over the geometry, location, and

content of the Trojan trigger. The contaminated model is shipped to

the client, who is unaware of the existence of the Trojan and does

not have access to any labeled data. CLEANN countermeasure is

unsupervised, meaning that no labeled training data or contaminated

Trojan sample is required to establish the defense. Notably, CLEANN

is the first defense to recover the ground-truth labels of Trojan data

without performing any model training and/or fine-tuning.

We validate the effectiveness of CLEANN by performing extensive

experiments on various state-of-the-art Trojan attacks reported

to-date. CLEANN outperforms prior art both in terms of Trojan

resiliency and algorithm execution overhead. CLEANN brings down
978­1­6654­2324­3



the attack success rate to 0% for a variety of physical [14] and complex

digital [23] attacks with minimal drop in classification accuracy. Our

customized accelerated defense shows orders of magnitude higher

throughput and performance-per-watt compared to commodity

hardware. In brief, the contributions of CLEANN are as follows:

Introducing CLEANN, the first end-to-end accelerated framework

for online detection of Neural Trojans in embedded applications.

Constructing a novel unsupervised Trojan detection scheme based

on sparse recovery and outlier detection. The proposed lightweight

defense is, to our best knowledge, the first to enable recovering the

original label of Trojan samples without model fine-tuning/training.

Providing bounds on detection false positive rate using the

theoretical ground of sparse approximation and outlier detection.

Devising the first customized library of Trojan shields on FPGA

which enables high-throughput and low-energy Trojan mitigation.

2 BACKGROUND AND RELATED WORK
2.1 Trojan Attacks
Throughout this paper, we focus on Trojan attacks on DNN classifiers.

Below, we overview state-of-the-art attack algorithms.

� BadNets. Authors of BadNets [14] propose adding the Trojan

trigger into a random subset of training samples and labeling them

as the attack target class. The DNN is then trained on the poisoned

dataset. The shape of the Trojan trigger can be arbitrarily chosen by

the attacker, e.g., a sticky note on a stop sign as shown in Figure 1-a.

Thus, BadNets are considered a viable physical attack.

� TrojanNN. More recently, TrojanNN [23] assumes the attacker

does not have access to the training data but can modify the DNN

weights. The attack first selects one or few neurons in one of the hidden

layers, then extracts the Trojan trigger in the input domain to activate

the target neurons. The DNN weights are then modified such that

the model predicts the attacker’s target class whenever the selected

neurons fire. Unlike BadNets, the triggers generated by TrojanNN,

e.g., the square and watermark patterns in Figure 1-c,d, are not similar

to natural images. However, TrojanNN is a viable attack algorithm in

the digital domain; Notably, most Trojan mitigation methods are less

successful in identifying the complex triggers of TrojanNN [5, 24].

2.2 Existing Defense Strategies
� Robust Training and Fine-tuning. One plausible threat model

assumes that the client has access to the training dataset but is

unaware of the existing Trojans. Robust learning methods aim at

identifying malicious samples during training [3, 20, 34]. For an

already infected DNN, authors of [21] perform pruning to remove

the embedded Trojans at the cost of clean accuracy degradation. We

assume a more constrained attack model where the victim does not

have any access to the training dataset. Additionally, CLEANN does

not rely on expensive model retraining to establish the defense.

� Trigger Extraction. Several methods inspect the DNN model

for existence of a backdoor attack by reverse engineering the trigger.

Neural Cleanse [24] provides a method for extracting Trojan triggers

without access to the training dataset. Follow up work improves

the search overhead [5] and reverse engineered trigger quality [15].

Though effective for simple Trojan patterns, their performance drops

when reverse engineering more complex triggers, e.g., those created

by TrojanNN [23]. Our method is different than the above works in

that, instead of reverse engineering the trigger, we study the statistics

of sparse representations from benign samples and detect abnormal

(outlier) triggers during inference. This allows CLEANN to identify

complex Trojan triggers without prior knowledge about the attack

algorithm. Additionally, CLEANN does not involve expensive reverse

engineering and can be executed in real-time on embedded hardware.

� Data and Model Inspection. Perhaps the closest method to

CLEANN are those that check the input samples to identify the pres-

ence of Trojan triggers. Authors of [4] query the infected model and

use activation clustering on hidden layers to detect Trojans. Similarly,

NIC [25] compares incoming samples against the benign and Trojan

latent features to detect adversaries. These method require access

to the labeled contaminated training dataset, which may not viable

in real-world settings. CLEANN, in contrast, does not require access

to the training data or infected data samples to construct the defense.

Sentinet [6] extract critical regions from input data using gradient

information obtained by back propagation. Februus [8] takes a similar

approach along with utilizing GANs to inpaint Trojan triggers with

the caveat that the number of data samples required for GAN training

is large. STRIP [12] runs the model multiple times on each image

with intentional injected noise to identify Trojans. While the above

works show high detection accuracy, their computational burden of

multiple forward/backward propagations is prohibitive for embedded

applications. CLEANN achieves a better detection accuracy with low

computational complexity and sample count, making it amenable

for real-time deployment in embedded systems.

Figure 2: High-level overview of CLEANN Trojan detection
methodology. CLEANN detects both digital and physical attacks
using a pair of input and latent feature analyzers.

3 CLEANN METHODOLOGY
Figure 2 illustrates the high-level flow of CLEANN methodology

for Trojan detection. CLEANN comprises two core modules, dubbed

the DCT and feature analyzers, specializing in the characterization

of the DNN input space and latent representations, respectively. By

aggregating the decision of the two analyzers, CLEANN is able to

thwart a wide range of physical and digital Trojan attacks.

1 DCT Analyzer. The DCT analyzer acts as an image prepro-

cessing step. This module investigates all incoming samples in the

frequency domain in search for suspicious frequency components

that are anomalous in clean data. Towards this goal, we design four

components for this module as shown in Figure 2. First, the Discrete

Cosine Transform (DCT) extraction module transforms the input

image to the frequency domain. We then perform sparse recovery on

the extracted frequency components and reconstruct the signal using



a sparse approximation. The outlier detection module uses a con-

centration inequality to detect anomalous reconstruction errors and

generate a binary mask with non-zero values denoting the potential

Trojan-carrying regions. The anomalous regions in the input image

are then suppressed by the binary mask before entering the victim

DNN. To ensure compatible dimensions between the input image and

the binary mask, a nearest neighbor upsampling component is also

included inside the DCT analyzer. Frequency analysis is particularly

useful for detecting digital Trojans. However, physical attacks, e.g.,

the sticky note in Figure 2, might evade frequency-domain detection.

2 Feature Analyzer. This module investigates patterns in the latent

features extracted by the victim DNN to find abnormal structures. The

feature analyzer is placed at the penultimate layer inside the victim

DNN. This choice of location allows us to leverage all the visual in-

formation extracted from the input image by the DNN for making the

classification decision. The sparse recovery module in the feature ana-

lyzer serves two purposes: (i) denoising input features for use in the re-

maining layers of the victim DNN, (ii) anomaly detection on the recon-

struction errors for distinguishing Trojans. Notably, the first property

allows CLEANN to recover the ground-truth labels for Trojan sam-

ples by effective removal of Trojan triggers. To ensure scalability to

various output dimensions, we include a dimension reduction module

that adaptively adjusts the feature size while maximally preserving the

informative content of the signals. To allow the reconstructed output

to flow in the remaining layers of the DNN, a twin dimension restoring

layer recovers the original tensor shape. The extracted distributions

from latent layers successfully detect attacks in the physical domain.

3.1 Defense Construction and Execution
CLEANN consists of two main phases to mitigate Trojan attacks:

�Offline Preprocessing. During this phase, we learn the parameters

for dictionary-based sparse recovery and outlier detection modules by

leveraging a small set of unlabeled benign samples. Our methodology

is entirely unsupervised, meaning no Trojan data is involved in

defense construction. This, in turn, ensures applicability to a wide

range of Trojan patterns and attacks. CLEANN pre-processing phase

is low-complexity as it does not involve any training or fine-tuning

of the victim DNN. We only perform this step once for each (model,

dataset) pair. The learned analyzer modules can then be transferred

to a variety of attacks without any fine-tuning overhead.

� Online Execution. CLEANN methodology is devised based on

light-weight solutions to enable efficient adoption in embedded

systems. We provide a hardware-accelerated pipeline for end-to-end

execution of CLEANN where the analyzer modules are either

integrated inside the victim DNN or running in parallel with it. The

DCT extraction and upsampling components are implemented as

an additional convolution layer at the input of the victim DNN. We

devise a customized library for implementing the sparse recovery,

outlier detection, and dimensionality reduction and restoring

modules on FPGA. These FPGA-accelerated modules are executed

synchronously with the victim DNN to raise alarm flags for Trojans.

3.2 Threat Model
In our threat model, we assume the client has purchased the

trained DNN model infected with Trojans from a malicious party.

Accordingly, we consider the following constraints on our defense

strategy: (1) The client has access to model weights but not the

training data. (2) The client has access to clean test data but they

are unlabeled. (3) The client is not aware whether or not the model

is infected with Trojans. (4) No prior knowledge is available about

possible Trojan trigger shapes and/or patterns.

To construct the defense, we assume access to a small corpus of

unlabeled data1. This is a realistic assumption as access to small

amounts of data is possible via online resources. For instance, pub-

licly available repositories enable data generation through generative

networks for Faces2. We consider the most generic and challenging

form of Trojan attacks in which the attacker can control the trigger

size, shape, and content. CLEANN mitigation is made possible in such

scenario by constructing the defense using benign unlabeled data.

4 CLEANN COMPONENTS
4.1 DCT extraction
In natural images, most of the energy is contained in low frequencies.

However, this property does not necessarily hold true for the Trojan

triggers. Figure 3 shows the visualization of the frequency compo-

nents for a Trojan sample, normalized by the magnitude of frequency

components for benign data. Here, the magnitudes are averaged across

100,000 image patches and the Trojan samples contain a watermark

trigger generated by [23]. As seen, Trojans have much larger compo-

nents in the high-frequency domain compared to benign samples.

Figure 3: Average magnitude of DCT components for Trojan
samples, normalized by benign data, shown in the three RGB
channels. Trojans contain abnormally larger amounts of
high-frequency components (highlighted regions).

To perform frequency analysis, we divide each input image

into non-overlapping patches3 of size 𝑃 𝑃 . We transform each

image patch to another patch of same size in the frequency domain

using DCT. Eq. (1) encloses the formula used to compute the DCT

transformation 𝐹𝑢,𝑣 of a 𝑃 𝑃 patch.

𝐹𝑢,𝑣 =𝐶𝑢,𝑣

𝑃 1∑
𝑖=0

𝑃 1∑
𝑗=0

𝑥𝑖, 𝑗 cos
[
𝑢 𝜋
𝑃

(
𝑖 1

2

)]
cos

[
𝑣 𝜋
𝑃

(
𝑗 1

2

)]
(1)

Here, 𝑥𝑖, 𝑗 is the input pixel located at the 𝑖, 𝑗 coordinate and𝐶𝑢,𝑣

is a scalar constant that depends on the frequency coordinates. The ex-

tracted 2𝐷 DCT components 𝐹𝑢,𝑣 are then sorted in decreasing order

in terms of the information they carry following a zigzag pattern [30].

We represent the DCT transform as a group convolution with

kernel size 𝑃 and 𝑐𝑖𝑛 groups where 𝑐𝑖𝑛 = 3 and 1 for RGB and gray-

scale images, respectively. The kernel weights of the convolution

layer are initialized with the DCT basis coefficients which are pre-

computed based on Eq. (1). The stride of the convolution is set to 𝑃 to

1less than 1% of the training set size across all of our evaluations
2http://www.whichfaceisreal.com/index.php
3We use 𝑃 =4 for small image benchmarks where input image dimensions are less than
32 pixels. For larger input image sizes we use 𝑃 =8.



account for image patching. Such representation allows for an efficient

implementation of the DCT Analyzer, which can be easily integrated

into the architecture of the victim model as a pre-processing layer.

4.2 Sparse Recovery
Sparse coding is referred to learning methods where the goal is

to efficiently represent the data using sets of over-complete bases.

Given a matrix of (𝑛) data observations 𝑋 R
𝑙 𝑛 , sparse coding

extracts a dictionary of normalized basis vectors 𝐷 R
𝑙 𝑚 and the

sparse representation matrix𝑉 R
𝑚 𝑛 . Formally, the sparse coding

objective can be written as:

𝑚𝑖𝑛
𝐷,𝑉

𝑓𝐷 𝑋 =𝑚𝑖𝑛
𝐷,𝑉

𝑋 𝐷.𝑉 2 𝛾 𝑉 0 (2)

where 𝛾 is a regularization coefficient that promotes sparsity in the

coded representation 𝑉 . Dictionary learning algorithms provide

solutions to the above optimization problem by finding a dictionary

𝐷 that minimizes E𝑥 𝑓𝐷 𝑥 , where is the distribution over the

inputs. CLEANN extracts 𝐷 by performing dictionary learning over

legitimate (benign) data. The out-of-distribution Trojan samples are

thus expected to show a high reconstruction error, whereas benign

samples will be accurately reconstructed with small error.

Figure 4 illustrates this behavior in an example 2𝐷 space. The light-

blue dots represent the distribution of benign samples; the two solid

arrows𝑑1 and𝑑2 are the dictionary atoms and only one of them is used

for sparse reconstruction 𝑥̃ . As seen, the magnitude of the reconstruc-

tion error on the outlier sample 𝑥2 is larger than that of regular data

𝑥1, i.e., 𝑥2 𝑥̃2 𝐹 >> 𝑥1 𝑥̃1 𝐹 where 𝐹 is the Frobenius norm.

While the above simple illustration shows the effectiveness of dic-

tionary learning in 2 dimensions, a similar behavior is observed when

generalizing sparse coding to higher dimensions. For a dictionary

trained on 𝑛 samples 𝑥 , there exist theoretical bounds on the gen-

eralization error for unseen samples drawn from the same distribution

. Let us denote the average reconstruction error over the set of 𝑛 ob-

served samples by𝐸𝑜 . The generalization error of the dictionary𝐸𝐷
on unseen samples𝑥𝑢 𝑋 is bounded by𝐸𝐷 𝑥𝑢 𝐸𝑜 𝛿 . Vainsencher

et al. [35] prove that the generalization error 𝛿 for a 𝜆-sparse represen-

tation is
√
𝑚𝑙 ln 𝑛𝜆 𝑛 under some orthogonality assumptions

for the dictionary. CLEANN dictionaries are devised to minimize re-

construction error on benign samples. We therefore carefully tune the

dictionary size𝑚 and sparsity level 𝜆 to ensure a low reconstruction

error on the data at hand (𝐸𝑜 ) as well as a low error bound 𝛿 .

Figure 4: Illustration of sparse
reconstruction for regular
data (green circle) and out-
of-distribution samples (red
circle).

� Data. We apply sparse recovery on two data subsets extracted

from a small corpus of randomly selected benign samples.

(1) At the input of the neural network (Section 4.1), each column

of matrix𝑋 is the DCT of a single patch in the input image. For

instance, for an 8 8, DCT window, the dimensionality would

be 𝑙 =3 64 (64 DCT coefficients per RGB channel).

(2) At the latent space, each column of 𝑋 represents a flattened

feature-map with reduced dimensionality.

� Dictionary Learning. We use an adaptive sampling distri-

bution based on the reconstruction error of 𝑋 , dubbed Column

Selection-based Sparse Decomposition (CSSD) [27] for learning the

dicrionaries. This algorithm initializes 𝐷 by a small random subset

of𝑋 and then iteratively adds columns to 𝐷; the probability of a data

sample being appended at each step is proportional to its reconstruc-

tion error with the current column set. Formally, the probability of

the 𝑖-th sample 𝑥𝑖 being selected at the 𝑡 1 -th iteration is given by:

𝑝 𝑖
𝐷𝑡𝐷𝑡 𝑥𝑖 𝑥𝑖 2

𝑥𝑖 2
(3)

where 𝐷𝑡 corresponds to the columns of the dictionary selected up to

the 𝑡-th iteration and 𝐷𝑡 = 𝐷𝑇
𝑡 𝐷𝑡

1𝐷𝑇
𝑡 is the pseudo inverse of 𝐷𝑡 .

The intuition behind Eq. (3) is to give a higher chance of selection to

those elements of𝑋 with higher reconstruction errors. This approach

allows us to maximize the amount of embedded information from the

data distribution inside 𝐷. While more sophisticated algorithms can

be used [1, 2, 10], our empirical evaluations show that CSSD can suffi-

ciently express the data distribution with minimal generalization error.

�Reconstruction Algorithm. We use Orthogonal Matching Pursuit

(OMP) [7] for sparse recovery as summarized in Algorithm 1.

OMP iteratively finds non-zero elements to construct the sparse

representation 𝑥 . The added non-zero element at each iteration is

chosen such that it minimizes the 𝐿2 norm of the remaining residual

error 𝑟𝑖 𝐷 𝑣 2 which can be solved using Least-square (LS)

optimization. The subset of dictionary columns (𝐷 ) that contribute

to the sparse recovery is also expanded over iterations. After 𝜆

iterations, the reconstruction is returned as 𝑥̃ =𝐷 𝑣 .

Algorithm 1 OMP algorithm

Inputs: Dictionary 𝐷 R
𝑙 𝑚 , input sample

𝑥 R
𝑙 , number of non-zero coefficients for sparse recovery (𝜆).

Output: reconstruction 𝑥̃ R
𝑙 .

1: 𝑟0 𝑥 ⊲ residual error: 𝑟0 R
𝑙

2: 𝐷 ⊲ empty dictionary subset

3: for 𝑖 =0,..., 𝜆 1 do
4: 𝑝 = 𝐷 𝑟𝑖 ⊲ projection vector: 𝑝 R𝑚

5: 𝑗 =argmax 𝑝
6: 𝐷 𝐷 𝐷 :, 𝑗 ⊲ update dictionary subset

7: 𝑣 argmin 𝑟𝑖 𝐷 𝑣 2

8: 𝑟𝑖 1 𝑟𝑖 𝐷 𝑣 ⊲ update residual error

9: return 𝐷 𝑣

� Distribution Learning with Few Samples. An “over-complete”

dictionary is necessary to ensure representation sparsity [27] and effec-

tive separation of outlier and benign samples. The term over-complete

is used when the number of columns in the dictionary is higher than

the data dimensionality (𝑚 >> 𝑙). In real-world DNN applications,

however, the number of data samples (𝑚) is often small while the

feature-map dimensionality (𝑙) is large. To tackle this, we apply

Singular Value Decomposition on the high-dimensional feature-maps

to reduce 𝑙 . Inverse SVD can then be applied on the reconstructed

output to recover the original dimensionality. We choose the SVD

rank such that more than 90% of the original energy is preserved.

4.3 Outlier Detection
As discussed in Section 4.2, we leverage the disparity between the

reconstruction error of benign and Trojan samples after undergoing



sparse recovery to detect Trojans. Towards this goal, we first extract

the statistical properties of the reconstruction error across benign

samples. The out-of-distribution samples, i.e., outliers, are then

marked as Torjan. In order to model out of distribution samples,

we utilize a multivariate extension of Chebyshev’s inequality [33].

Consider a random variable R
1 𝑑 and let 𝑥𝑖

𝑁
𝑖=1 denote a set of

observed samples drawn from . Based on the 𝑁 observations, we

calculate the empirical mean 𝜇 and the covariance Σ as follows:

𝜇=
1

𝑁

𝑁∑
𝑖=1

𝑥𝑖 , Σ=
1

𝑁 1

𝑁∑
𝑖=1

𝑥𝑖 𝜇 𝑥𝑖 𝜇 𝑇 (4)

The Chebyshev’s inequality provides an upper bound on

the probability of samples lying outside ellipsoids of the form

𝑥 𝜇 Σ 1 𝑥 𝜇 𝑇 = 𝜖2. Let us denote the distance of each sample

from the distribution by:

𝑑𝑖𝑠𝑡 𝑥 = 𝑥 𝜇 Σ 1 𝑥 𝜇 𝑇 (5)

The Chebyshev’s inequality can then be formally written as:

𝑑𝑖𝑠𝑡 𝜖2 𝑚𝑖𝑛

{
1,
𝑑 𝑁 2 1 𝑁𝜖2

𝑁 2𝜖2

}
(6)

The above inequality implies that one can categorize samples

satisfying large enough values of 𝜖 as out-of-distribution, i.e.,

outlier. Based on this intuition, we measure the empirical mean and

covariance in Eq. (4) on a held-out dataset of benign samples and use

the Chebyshev’s inequality to characterize Trojaned data that do not

belong to the benign probability distribution. The right-hand side of

Eq. (6) provides the probability of a benign sample being categorized

as outlier or Trojan. For large-enough values of 𝑁 (𝑁 ), this

probability tends to𝑚𝑖𝑛
{
1, 𝑑

𝜖2
}
.

Figure 5-a, b illustrates example Trojan data together with the

corresponding reconstruction error heat maps. As seen, the Trojan

trigger patterns have relatively larger reconstruction error compared

to the rest of the image. Figure 5-c visualizes the output of the outlier

detection. Here, we generate a binary mask where the values of 0 and

1 correspond to in-distribution and outlier labels, respectively. As

seen, parts of the input image that are covered with the Trojan trigger

are correctly distinguished from benign regions.

Figure 5: (a) Example Trojan data with watermark and square
triggers [23], (b) reconstruction error heatmap, and (c) output
mask from the outlier detection module.

� Tuning the parameter 𝜖. We provide a systematic way to tune

the parameter 𝜖 for outlier detection, based on the user-defined

constraints on Trojan defense performance. An incoming sample

𝐼 R
𝑑 𝐾 𝐾 is labeled as Trojan if at least one of its enclosing

components 𝐼𝑘 R
𝑑 is categorized as an outlier based on Eq. (6). The

probability of an image being categorized as Trojan is therefore:

𝐼 𝑇𝑟𝑜 𝑗𝑎𝑛 =1
𝐾 𝐾∏
𝑘=1

𝐼𝑘 𝐵𝑒𝑛𝑖𝑔𝑛 (7)

When examining the outlier detection scheme on benign sam-

ples, the left-hand side of Eq. (7) is equivalent to the False Pos-

itive Rate (FPR), i.e., the probability of a benign image being

mistaken for a Trojan. Eq. (6) provides that for benign samples

𝐼𝑘 𝐵𝑒𝑛𝑖𝑔𝑛 𝐼𝑘 𝐵𝑒𝑛𝑖𝑔𝑛 1 𝑑
𝜖2

. The FPR is thus upper-bounded by:

𝐹𝑃𝑅= 𝐼 𝑇𝑟𝑜 𝑗𝑎𝑛 𝐼 𝐵𝑒𝑛𝑖𝑔𝑛 1
(
1

𝑑

𝜖2

)𝐾 𝐾
(8)

We can therefore determine the parameter 𝜖 based on the desired

application-specific FPR denoted by 𝐹𝑃𝑅𝑡𝑎𝑟𝑔𝑒𝑡 :

sup
𝜖

𝐹𝑃𝑅=1
(
1

𝑑

𝜖2

)𝐾 𝐾
𝐹𝑃𝑅𝑡𝑎𝑟𝑔𝑒𝑡 (9)

𝑑

𝜖2
1 𝐾 𝐾

√
1 𝐹𝑃𝑅𝑡𝑎𝑟𝑔𝑒𝑡 (10)

where 𝑑
𝜖2

is the per-patch FPR, i.e., 𝐼𝑘 𝑇𝑟𝑜 𝑗𝑎𝑛 𝐼𝑘 𝐵𝑒𝑛𝑖𝑔𝑛 .

� Reducing FPR with Morphological Transforms. As seen in

Figure 5, certain benign elements in the samples might be marked

as Trojan, thus increasing the FPR. To reduce such patterns, we

utilize two operations from morphological image processing, namely,

erosion and dilation, implemented as convolution layers. Erosion

emphasizes contiguous regions in the input mask and removes small,

disjoint regions. Once erosion is applied, binary dilation restores

high-density non-zero regions in the original input mask. Figure 6-a

demonstrates the obtained binary mask from the outlier detection

where the benign regions mistaken for being Trojan are marked with

red boxes around them. Figure 6-b shows how erosion successfully

removes the false alarms and Figure 6-c demonstrates how dilation

restores the original shape of the binary mask in Trojan regions.

Figure 6: (a) Binary Trojan mask with the red rectangles
indicating False alarms. (b) Output mask obtained after ap-
plying 2𝐷 binary erosion. (c) Output mask after restoring the
high-concentration Trojan regions with 2𝐷 binary dilation.

4.4 Decision Aggregation
Figure 7 illustrates the decision flowchart for CLEANN Trojan

detection. As shown, a successful Trojan attack needs to satisfy two

conditions: (1) both the DCT and feature analyzers mistakenly mark

the sample as benign, and (2) the victim model classifies the sample

in the target Trojan class. For each Trojan sample 𝑥𝑡𝑖 , the attack

success 𝑆𝑖 is computed as:

𝑆𝑖 = 1 𝑑𝐷𝐴 𝑥𝑡𝑖 1 𝑑𝐹𝐴 𝑥𝑡𝑖 𝑥𝑡𝑖 ==𝑐𝑡 (11)

where 𝑑𝐷𝐴 and 𝑑𝐹𝐴 denote the decision of the DCT and feature

analyzer modules, respectively, with the value of 1 meaning the

Trojan has been detected. Here, represents the classification

decision made by the victim model and 𝑐𝑡 is the Trojan attack target

class. The overall attack success rate (ASR) is the expectation of 𝑆



over Trojan samples (𝑥𝑡 𝑡 ). Since the three terms in Eq. (11) are

independent, we can write ASR as:

𝐴𝑆𝑅=E 𝑡 1 𝑑𝐷𝐴 E 𝑡 1 𝑑𝐹𝐴 E 𝑡 𝑥𝑡𝑖 ==𝑐𝑡 (12)

Figure 7: Decision flowchart for Trojan detection in CLEANN.

The first and second terms in the equation above are quantified

using the True Positive detection rate (TPR). In this context, TPR

measures the ratio of Trojan samples that are correctly identified

by the defense. Let us denote the TPR for the DCT and feature

analyziers with𝑇𝑃𝑅𝐷𝐴 and𝑇𝑃𝑅𝐹𝐴, respectively. Eq. (12) can then

be equivalently written as:

𝐴𝑆𝑅= 1 𝑇𝑃𝑅𝐷𝐴 1 𝑇𝑃𝑅𝐹𝐴
1

𝑁

𝑁∑
𝑖=1

𝑥𝑡𝑖 ==𝑐𝑡 (13)

Similarly, the classification accuracy on benign samples𝐴𝐶𝐶 𝐶
can be written in terms of the FPR of the DCT and feature analyzers:

𝐴𝐶𝐶 𝐶 = 1 𝐹𝑃𝑅𝐷𝐴 1 𝐹𝑃𝑅𝐹𝐴
1

𝑁

𝑁∑
𝑖=1

𝑥𝑖 ==𝑐𝑖 (14)

where 𝑐𝑖 denotes the correct class for the 𝑖 th sample.

5 CLEANN HARDWARE
In the following, we delineate the hardware architecture of CLEANN

components that enable a high throughput and low energy execution.

� Matrix-Vector Multiplication Core. Many of the fundamental

operations performed in CLEANN include matrix-vector multipli-

cation (MVM). In particular, the outlier detection module requires

two MVMs to calculate the distance function shown in Eq. (5).

Additionally, the dimensionality reduction and restoring components

in the feature analyzer are realized using MVMs with weight matrices

𝑊 R
𝑙 𝑟 and𝑊 R

𝑟 𝑙 , respectively, where 𝑙 is the dimensionality

of the input and 𝑟 is the SVD rank. We devise an FPGA core for MVM
and vector addition, realized using DSP blocks with Multiplication

Accumulation (MAC) functionality [17, 31]. Figure 8 presents the

high-level schematic of CLEANN vector-matrix multiplication.

We provide two levels of parallelism in our design controlled

by parameters P and SIMD in figure (8). This approach allows our

design to achieve maximum resource utilization and throughput on

various FPGA platforms. The weight matrix is divided into subsets

of length P and fed into parallel processing elements (PEs). These

subsets are read from DRAM using a Ping-Pong weight buffer to

overlap memory reads with PE computations. At each cycle, PEs
perform partial dot-product on the fetched weight and input partitions

of length 𝑆𝐼𝑀𝐷; the same input partition is shared across all PEs. We

devise a tree-based reduction module and an accumulator to enable

summation of partial dot-product outputs.

� Sparse Recovery Core. The sparse recovery module performs

OMP to reconstruct input signals. We provide a reconfigurable and

scalable OMP core on FPGA to accelerate sparse recovery. OMP

relies on sequential execution of three steps: (1) The dictionary

column with the maximum dot-product with the current residual

vector is selected. (2) An LS optimization step generates the sparse

Figure 8: Schematic representation of CLEANN MVM core with
its internal parallelization levels.
representation of the current residual vector with the columns of the

dictionary selected so far. (3) The residual is updated based on the

new sparse representation and the selected dictionary columns.

We utilize CLEANN MVM core to implement the first step above.

For the second step, we implement the LS optimization using a𝑄𝑅
factorization of the dictionary matrix. We leverage the modified

Gram Schmidt (MGS) method [13] to perform the factorization.

Since the dictionary matrix expands by one column each iteration, it

is not necessary to recompute the𝑄 and 𝑅 matrices very time. Instead,

we iteratively form the𝑄 and 𝑅 matrices as outlined in Algorithm 2.

Using the acquired new column for the𝑄 matrix, the residual update

step takes the following form:

𝑟𝑖 1 𝑟𝑖 𝑄𝑖 𝑄𝑖
𝑇 𝑟𝑖 (15)

Due to the low memory footprint of CLEANN components, we

store all required data in the available on-chip Block RAMs. By

eliminating the overhead of external memory access, CLEANN

enjoys a low latency and high power efficiency.

Algorithm 2 QR factorization with MGS

Inputs: New dictionary column 𝐷𝑖 ,𝑄𝑖 1, 𝑅𝑖 1.

Output:𝑄𝑖 , 𝑅𝑖 .

1: 𝑅𝑖

[
𝑅𝑖 1 0

0 0

]
, 𝜖𝑖 𝐷𝑖

2: for 𝑗 =1, , 𝑖 1 do
3: 𝑅𝑖 𝑗,𝑖 𝑄𝑖 1 𝑗 𝑇 𝜖𝑖
4: 𝜖𝑖 𝜖𝑖 𝑅𝑖 𝑗,𝑖 𝑄𝑖 1 𝑗

5: 𝑅𝑖 𝑖,𝑖 = 𝜖𝑖 2

6: 𝑄𝑖 =𝑄𝑖 1 𝜖𝑖 𝑅𝑖 𝑖,𝑖

6 EXPERIMENTS
We evaluate CLEANN on three visual classification datasets of vary-

ing size and complexity, namely, MNIST [19] for handwritten digits,

GTSRB [32] for road signs, and VGGFace [28] for face data. The num-

ber of classes for each dataset is 10, 43, and 2622, respectively. We cor-

roborate CLEANN effectiveness against variations of two available

state-of-the-art Neural Trojan attacks. In what follows, we provide de-

tailed performance analysis and comparisons with prior art. We further

demonstrate CLEANN accelerated execution on embedded hardware.

6.1 Attack Configuration
Throughout the experiments, we consider input-agnostic Trojans

where adding the trigger to any image causes misclassification to the

attack target class. Table 1 summarizes the evaluated benchmarks

along with their corresponding Trojan attacks and triggers.

� BadNets. We implement the BadNets [14] attack with various

triggers as an example of a realistic physical attacks. The injected

Trojans include a white square and a Firefox logo placed at the



bottom right corner of the input image. We embed the backdoor by

injecting 10% poisoned data samples during training.

� TrojanNN. We evaluate CLEANN against TrojanNN [23] as a

digital attack with complex triggers. The attack is implemented using

the open-source models shared by TrojanNN authors4. We perform

experiments with two variants of TrojanNN triggers, namely, square

and watermark, crafted for the VGGFace dataset.

Table 1: Evaluated datasets and attack algorithms.
Dataset Input Size Architecture Attack Trigger
MNIST 1x28x28 2CONV, 2MP, 2FC BadNets square

GTSRB 3x32x32 6CONV, 3MP, 2FC BadNets
square

Firefox

VGGFace 3x224x224 13CONV, 5MP, 3FC TrojanNN
square

watermark

6.2 Detection Performance
We apply CLEANN Trojan mitigation at the input and latent space

of infected DNNs. To create the defense, we separate 500, 430,

and 2622 clean samples from MNIST, GTSRB, and VGGFace test

sets, respectively. The aforementioned size for the benign dataset

corresponds to 1% of the training data size for MNIST and GTSRB

and 0.1% VGGFace training data. Such low data size requirements

provide a competitive advantage for CLEANN defense in real-world

scenarios. We summarize other defense parameters for our evaluated

benchmarks in Table 2. These parameters are selected to maintain

a high classification accuracy over the benign data.

Table 2: Parameters of CLEANN modules for various datasets.𝑃:
DCT windows size, 𝑙: feature size for sparse recovery,𝑚 :number
of dictionary columns for sparse recovery, 𝜆: sparsity parameter
in sparse recovery, 𝜖2: distance threshold for outlier detection.

Dataset Trigger Input Analyzer Feature Analyzer
𝑃 𝑙 𝑚 𝜆 𝜖2 𝑙 𝑚 𝜆 𝜖2

MNIST Square 4 48 1000 5 5 10 4 279 500 80 2 10 3

GTSRB Square
4 48 1000 5 5 10 4 85 420

80 3 10 3

FireFox 50 1 10 2

VGGFace Square
8 192 1000 5

5 10 4

520 2622
80 1 10 4

Watermark 8 10 4 80 1 10 4

We evaluate CLEANN Trojan resiliency on physical and digital

attacks in Table 3. Specifically, under “Defended Model”, we evaluate

the drop in clean data accuracy (ACC ), the attack success rate

(ASR), and Trojan ground-truth label recovery (TGR). In addition

to our results, we include prior art performance in terms of the

above-mentioned criteria. On MNIST, CLEANN achieves 0% ASR,

with only 0.1% drop in clean data accuracy, outperforming the prior

art. For GTSRB, CLEANN achieves an ASR of 0% and a lower drop

of accuracy compared to all prior work, except for Deep Inspect,

which suffers from a much higher ASR of 8.8%.

On digital attacks, CLEANN achieves 0.0% ASR with only

0.8% and 2.0% degradation of accuracy for square and watermark

shapes. The watermark trigger covers a large area of the input image,

obstructing the critical features. As such, while CLEANN detects

the Trojan with high success, it shows a lower TGR compared

to our other triggers. Note that Neural Cleanse and Deep Inspect

perform DNN training on synthetic datasets achieved with model

inversion [11]. As a result, their post-defense accuracy is not directly

comparable with CLEANN, which does not perform DNN retraining.

4https://github.com/PurduePAML/TrojanNN

We emphasize that while such retraining contributes to accuracy, it

may not be feasible in real-world applications.

Table 3: Evaluation of CLEANN on various physical and digital
attacks. Comparisons with state-of-the-art prior works, i.e.,
Neural Cleanse(NC) [36], Deep Inspect (DI) [5], Februus [8],
and SentiNet [6] are provided where applicable.

Dataset Trigger Work Retrain Infected Model Defended Model
ACC-C ASR ACC ASR TGR

MNIST
(Physical
Attack)

Square

4 4

NC yes 98.5 99.9 0.8 0.6 NA

DI yes 98.8 100.0 0.7 8.8 NA

CLEANN no 99.3 100.0 0.1 0.0 98.7

GTSRB
(Physical
Attack)

Square

4 4

NC yes 96.5 97.4 3.6 0.1 NA

DI yes 96.1 98.9 -1.0 8.8 NA

Februus yes 96.8 100 1.2 0.0 96.5
CLEANN no 96.5 99.4 0.0 0.0 94.7

Firefox

6 6
CLEANN no 92.6 99.8 0.4 1.7 83.5

VGGFACE
(Digital
Attack)

Square

59 59

NC yes 70.8 99.9 -8.4 3.7 NA

DI yes 70.8 99.9 0.7 9.7 NA

SentiNet no NA 96.5 NA 0.8 NA

CLEANN no 74.9 93.52 0.8 0.0 70.1

Watermark

NC yes 71.4 97.60 -7.4 0.0 NA

DI yes 71.4 97.60 0.5 8.9 NA

CLEANN no 74.9 58.6 2.0 0.0 41.38

Februus performs GAN training. SentiNet only reports results on LFW [16] dataset.

� Sensitivity to Trigger Size. We perform experiments on the

GTSRB dataset with a square Trojan trigger and change the trigger

size such that it covers between 0.4% to 14% of the input image

area. The size range is chosen to ensure that the corresponding triggers

are viable in real settings and provide a high ASR. We summarize the

obtained results in Figure 9. CLEANN significantly reduces the ASR

while enabling recovery of ground-truth labels with a high accuracy

across all trigger sizes. This is expected since CLEANN does not rely

on the trigger size to construct the defense. For average sized Trojans,

CLEANN successfully detects the existence of triggers and reduces

the ASR to less than 1%. For larger trigger sizes, the TGR is relatively

lower since the Trojan occludes the main objects in the image.

Figure 9: Analysis of CLEANN sensitivity to Trojan trigger size.

� Offline Preprocessing Overhead. The preparation of CLEANN

defensive modules consists of the following steps:

DCT extraction and dictionary leaning on benign inputs.

Computing 𝜇 and Σ in Eq. (4) for input outlier detection.

Computing SVD and dictionary learning at latent feature maps.

Computing 𝜇 and Σ for latent outlier detection.

In practice, the above computation incurs negligible runtime com-

pared to DNN training. We implement the above steps in PyTorch and

measure the runtime on an NVIDIA TITAN Xp GPU. For our GT-

SRB benchmark, the above operations require 0.06, 0.19, 10.47, and

0.1 seconds, respectively. The defense construction time is therefore

11 seconds which is 1.8% of the time required to train the victim

DNN on this benchmark. For the more complex VGGFace dataset,

the above operations require 1.05, 0.54, 48.3, and 1.2 seconds, respec-

tively, resulting in a total of 51 seconds for defense preparation.



6.3 Hardware performance
We implement the proposed Trojan defense strategy on various

hardware platforms and compare the performance of CLEANN

components. The evaluated platforms include server-grade CPUs

and GPUs, embedded CPUs and GPUs, and FPGA. We base our

comparisons on performance-per-Watt defined as the throughput

over the total power consumed by the system. This measure effec-

tively encapsulates two major performance metrics for embedded

applications. Throughout this section, we will target our study on the

GTSRB benchmark but similar trends are observed for other datasets.

� Performance on General Purpose Hardware. We provide an

optimized software library for CLEANN defense components in

Python. In order to benefit from highly optimized backend compilers

for tensor operations on CPU and GPU, our codes are developed

on top of the PyTorch deep learning library. Our provided software

library can be readily instantiated within PyTorch API to enable

simultaneous DNN execution and Trojan defense. We implement our

defense pipeline on the Jetson TX2 embedded development board run-

ning in CPU-GPU and CPU-only modes. We further run the defense

on a server-grade Intel Xeon E5 CPU and an NVIDIA TITAN Xp GPU.

The overall achieved defense throughput with a batch size of 1 ranges

from 11 fps on the embedded CPU up to 28 fps on the server GPU.

Figure 10 illustrates the runtime breakdown for various compo-

nents of CLEANN running on each platform. Here, the sparse recovery

and outlier detection modules are abbreviated as SR and OLD and

the prefixes D- and F- correspond to the DCT and feature analyzers,

respectively. The experiments are performed using a batch size of 1

to resemble real-world applications and runtimes are averaged across

100 runs. For each platform, we normalize the runtime of each com-

ponent by the total defense execution time for one sample. As seen,

the bulk of defense runtime belongs to the sparse recovery module.

This is due to the inherently sequential nature of the OMP algorithm

performed inside this module. CPU and GPU platforms are designed

to excel in massively parallel operations while this does not hold for

OMP. Such behavior further motivates us to design specialized hard-

ware to accelerate the execution of CLEANN components on FPGA.

Figure 10: Latency breakdown of CLEANN components run-
ning on embedded and high-end CPUs (left) and GPUs (right).

� Performance on Customized Accelerator. We implement

CLEANN components on FPGA using the developed sparse recovery

and MVM cores as the basic blocks. The design is developed in Vivado

High-Level Synthesis and synthesized in Vivado Design Suite for the

Xilinx UltraScale VCU108 board. Power consumption is estimated

during synthesis with Vivado Design Suite. Finally, a comprehensive

timing and resource utilization analysis is performed. To maximize

throughput, we tuned the parallelism factors in theMVMmodules to the

highest value such that the design fits within the available resources.

Figure 11 demonstrates the breakdown of execution cycles for

CLEANN components. As seen, the sequential execution of the

sparse recovery core accounts for the majority of computation cycles.

Our FPGA-based sparse recovery core enjoys up to 10 and 18

faster execution, respectively, compared to their CPU and GPU

counterparts. This is enabled by pipelined execution, fine-grained

optimizations to data access patterns, and parallel computation.

Figure 11: Cycle-count
breakdown for execution
of CLEANN components
implemented on FPGA.

We compare the performance-per-Watt and throughput of

CLEANN on different hardware platforms in Figure 12. The

performance-per-watt numbers are normalized by TITAN Xp and the

throughput numbers are normalized by ARM Cortex-A57. As seen, the

power-efficient implementation of CLEANN on FPGA not only en-

joys a high throughput, but it also significantly increases performance-

per-watt compared to commodity hardware. Note that due to the light-

weight nature of CLEANN defense strategy, the server-grade GPU

performs poorly in terms of performance-per-watt compared to other

platforms due to under-utilization and excessive power consumption.

Figure 12: (a) Performance-per-Watt and (b) throughput
across hardware platforms. Reported values for performance
per-watt are normalized by TITAN Xp and throughput values
are normalized by ARM Cortex-A57.

7 CONCLUSION
This paper presents CLEANN, an end-to-end framework for online ac-

celerated defense against Neural Trojans. The proposed defense strat-

egy offers several intriguing properties: (1) The defense construction

is entirely unsupervised and sample efficient, i.e., it does not require

any labeled data and is established using a small clean dataset. (2) It is

the first work to recover the original label of Trojan data without need

for any fine-tuning or model training. (3) CLEANN provides theoret-

ical bounds on the false positive rate. (4) The framework is devised

based on algorithm/hardware co-design to enable accurate Trojan

detection on resource-constrained embedded devices. We consider

a challenging threat model where the attacker can use Trojan triggers

with arbitrary shapes and patterns while no knowledge about the attack

is available to the client. CLEANN light-weight defense and realistic

threat model makes it an attractive candidate for practical deploy-

ment. Our extensive evaluations corroborate CLEANN’s competitive

advantage in terms of attack resiliency and execution overhead.
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