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Abstract. Bollobás and Riordan, in their paper “Metrics for sparse graphs,” proposed a number of
provocative conjectures extending central results of quasirandom graphs and graph limits to sparse
graphs. We refute these conjectures by exhibiting a sequence of graphs with convergent normalized
subgraph densities (and pseudorandom C4-counts), but with no limit expressible as a kernel.

The study of pseudorandom and quasirandom graphs, initiated by Thomason [12, 13] and Chung,
Graham, andWilson [5], plays a central role in graph theory. A particularly nice aspect of this theory
is that many notions of quasirandomness are equivalent for dense graph sequences. The theory of
graph limits [11], developed by Lovász and collaborators, further generalizes these concepts. Some
of the central results of these theories are summarized below. Consider a sequence of graphs Gn

whose number of vertices goes to infinity with n. We write |G| and eG respectively for the number
of vertices and edges of G, and t(F,G) = hom(F,G)|G|−|F | for the homomorphism density of F in
G.

(1) C4 counts control quasirandomness [5]. If t(K2, Gn) → p and t(C4, Gn) → p4 for some
constant p, then t(F,Gn)→ peF for all graphs F , and furthermore Gn converges to p in the
cut norm (i.e., satisfies a discrepancy condition).

(2) Existence of graph limits [5]. If t(F,Gn) converges as n→∞ for every F , then there exists
a graphon W : [0, 1]2 → [0, 1] such that t(F,Gn)→ t(F,W ).

(3) Equivalence of convergence [2]. t(F,Gn) converges as n→∞ for every F if and only if Gn

is a Cauchy sequence with respect to the cut metric.
Implications concerning subgraph densities often fail for naive generalizations to sparse graphs.

Here we call a sequence of graphs Gn sparse if eGn/|Gn|2 → 0 as n → ∞. We normalize all the
quantities considered according to the decaying edge-density.

There is much interest in extending the above ideas to sparse graphs. The first such systematic
study was undertaken by Bollobás and Riordan [1]. They considered natural notions of convergence
and metrics for sparse graphs, and gave many interesting results and examples, as well as a long list
of provocative conjectures. A recurring theme in their paper, as well as in other works in this area, is
that one quickly runs into difficulties as soon as subgraph counts are involved. The lack of a general
purpose “counting lemma” in sparse graphs appears to be a fundamental difficulty. This issue lies
at the heart of the sparse regularity method of Conlon, Fox, and Zhao [6, 7, 8], who developed
novel counting lemmas in sparse graphs and hypergraphs under additional pseudorandomnesses
hypotheses, building on and simplifying the Green–Tao theorem on arithmetic progressions in the
primes [9]. Some of the subsequent extensions of the Bollobás–Riordan sparse graph limit theory,
in particular the Lp theory of sparse graph limits [3, 4], largely avoids the issues of subgraph counts
in favor of other metrics.

Given real p > 0 and graphs F and G, we define the normalized F -density in G to be

tp(F,G) =
hom(F,G)

peF |G||F |
.
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Here we will primarily be concerned with N -vertex graphs with edge density p = N−o(1), so that
there is only a lower order difference between homomorphism counts and subgraph counts (after
accounting for automorphisms of H). The normalization in tp(F,G) is chosen so that for a sequence
of random graphs Gn = G(n, p), one has tp(F,Gn)→ 1 for all F almost surely.

A kernel is a symmetric measurable function W : [0, 1]2 → [0,∞), where symmetric means that
W (x, y) = W (y, x). (The word graphon is often used in the literature for kernels with [0, 1]-values.)
We say that a kernel is bounded if there is some real C so that 0 ≤W ≤ C holds pointwise. Given
a graph H, we define the H-density of a kernel W to be

t(H,W ) =

∫
[0,1]V (H)

∏
uv∈E(H)

W (xu, xv)
∏

v∈V (H)

dxv.

Bollobás and Riordan [1] proposed the following conjectures. Throughout, let Gn be a sequence
of graphs with edge-density pn = 2eGn/|Gn|2 satisfying pn = |Gn|−o(1). For a graph F , write

cF = lim
n→∞

tpn(F,Gn).

• [1, Conjecture 3.4] If cF exists and is finite for all graphs F , then there is some kernel W
such that t(F,W ) = cF for all graphs F .
• [1, Conjecture 3.3] If cF exists for all graphs F and supF c

1/eF
F <∞, then there is a bounded

kernel W such that t(F,W ) = cF for all graphs F .
• [1, Conjecture 3.21] If cF exists and is finite for all graphs F and cC4 = 1, then cK3 = 1.
• [1, Conjecture 3.9] If cF exists and is finite for all graphs F and cC4 = 1, then cF = 1 for
all graphs F .

There are additional conjectures in [1] that we do not state here precisely since they require
additional definitions. In particular, Conjecture 3.22 concerns graphs of sparser densities and would
imply Conjecture 3.21. Conjecture 5.5 would imply Conjecture 3.3. Conjectures 5.6 and 5.7 propose
equivalences between convergence of subgraph densities and convergence in cut metric, and they
would imply Conjecture 5.5.

We provide a single counterexample that refutes all conjectures in [1].

Theorem 1. There exists a sequence of graphs Gn with |Gn| → ∞ and edge density pn = |Gn|−o(1)
such that for every graph F , writing 4F for the number of triangles in F ,

tpn(F,Gn)→ e−4F as n→∞.

Moreover, there is no kernel W satisfying t(F,W ) = e−4F for all graphs F .

Proof. Let G = Gn = K⊗n
2

n , the n2-th tensor power of Kn. Explicitly, this graph has vertex set
[n]n

2 , with two tuples adjacent precisely when they differ in every coordinate. Its edge density is
p = pn = (1 − n−1)n

2
= (e−1/2 + o(1))e−n. Note that hom(F,Kn) counts proper n-colorings of F .

It is a standard result in graph theory (easily proved using inclusion-exclusion) that

hom(F,Kn) = n|F | − eFn
|F |−1 +

((
eF
2

)
−4F

)
n|F |−2 +OF (n

|F |−3).
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Since hom(F,K⊗n
2

n ) = hom(F,Kn)
n2 ,

tp(F,G) = p−eF |G|−|F | hom(F,Kn)
n2

= (1− n−1)−eFn2

(
1− eFn

−1 +

((
eF
2

)
−4F

)
n−2 +OF (n

−3)

)n2

= (1− n−1)−eFn2
(1− n−1)eFn2 (

1−4Fn
−2 +OF (n

−3)
)n2

=
(
1−4Fn

−2 +OF (n
−3)
)n2

→ e−4F as n→∞.

Finally, the standard proof of the equivalence of quasirandomness for dense graphs shows that
if a kernel W satisfies t(K2,W ) = t(C4,W ) = 1, then W = 1 almost everywhere (see [11, Claim
11.63], whose proof does not require W to be bounded), and hence t(F,W ) = 1 for all graphs F .
Thus there is no W satisfying t(F,W ) = e−4F for all graphs F . �

Remark. After normalizing by dividing by the edge density, the kernels corresponding to Gn converge
in cut norm to the constant kernel. This is a result of the following lemma applied with Wn being the
associated graphon of Gn divided by pn. As a consequence (see [1, Lemma 4.2]), the graph sequence
satisfies the bounded density assumption [1, Assumption 4.1] (also known under the names “no
dense spots” [10] and “L∞ upper regular” [3, 4]).

One can obtain a sequence of graphs with similar properties and |Gn| = n by slowly blowing-up
the above construction (see [1, Remark 3.14]).

Recall the cut norm of U : [0, 1]2 → R is defined by ‖U‖� = supA,B⊆[0,1]

∣∣∣∫A×B U
∣∣∣.

Lemma 2. If a sequence Wn of kernels satisfies t(F,Wn) → 1 whenever F is a subgraph of C4,
then ‖Wn − 1‖� → 0.

Proof. Applying Cauchy–Schwarz twice (e.g., [11, Lemma 8.12]) and expanding,

‖Wn − 1‖4� ≤ t(C4,Wn − 1)

= t(C4,Wn)− 4t(P3,Wn) + 4t(K2,1,Wn) + 2t(K2,Wn)
2 − 4t(K2,Wn) + 1

→ 0. �

Our counterexample illustrates a fundamental difficulty with counting in sparse graphs, and
suggests that additional hypotheses, such as those in [6, 8], may indeed be necessary.

We close by offering a new conjecture. We say that a set S of graphs is sparse forcing if given
a sequence of graphs Gn with |Gn| → ∞ and edge density pn = |Gn|−o(1) such that the limit
cF = limn→∞ tpn(F,Gn) exists for every graph F and satisfies supF c

1/eF
F <∞, and provided cF = 1

for all F ∈ S, one necessarily has cF = 1 for all graphs F . In other words, having quasirandom
density of graphs in S forces quasirandom density of all graphs. Our counterexample above shows
that no set of triangle-free graphs can be sparse forcing. On the other hand, in the dense setting,
i.e., for constant pn, {K2, C4} is forcing, and a well-known conjecture [5] says that {K2, H} is forcing
whenever H is a bipartite graph with at least one cycle.

Conjecture 3. No finite set of graphs S can be sparse forcing.
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tation.
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