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Abstract

The diffusion of water through silicate melts is a key process in volcanic systems. Diffusion controls the growth of the bub-
bles that drive volcanic eruptions and determines the evolution of the spatial distribution of dissolved water during and after
magma mingling, crystal growth, fracturing and fragmentation, and welding of pyroclasts. Accurate models for water diffu-
sion are therefore essential for forward modelling of eruptive behaviour, and for inverse modelling to reconstruct eruptive and
post-eruptive history from the spatial distribution of water in eruptive products. Existing models do not include the kinetics of
the homogeneous species reaction that interconverts molecular (H2Om) and hydroxyl (OH) water; reaction kinetics are impor-
tant because final species distribution depends on cooling history. Here we develop a flexible 1D numerical model for diffusion
and speciation of water in silicate melts. We validate the model against FTIR transects of the spatial distribution of molecular,
hydroxyl, and total water across diffusion-couple experiments of haplogranite composition, run at 800–1200 !C and 5 kbar.
We adopt a stepwise approach to analysing and modelling the data. First, we use the analytical Sauer-Freise method to deter-
mine the effective diffusivity of total water DH2Ot as a function of dissolved water concentration CH2Ot and temperature T for
each experiment and find that the dependence of DH2Ot on CH2Ot is linear for CH2Ot K 1:8 wt.% and exponential for CH2Ot J 1:8
wt.%. Second, we develop a 1D numerical forward model, using the method of lines, to determine a piece-wise function for
DH2Ot CH2Ot ; Tð Þ that is globally-minimized against the entire experimental dataset. Third, we extend this numerical model to
account for speciation of water and determine globally-minimized functions for diffusivity of molecular water DH2Om CH2Ot ; Tð Þ
and the equilibrium constant K for the speciation reaction. Our approach includes three key novelties: (1) functions for dif-
fusivities of H2Ot and H2Om, and the speciation reaction, are minimized simultaneously against a large experimental dataset,
covering a wide range of water concentration (0:25 # CH2Ot # 7 wt.%) and temperature (800

$
C # T # 1200

$
C), such that

the resulting functions are both mutually-consistent and broadly applicable; (2) the minimization allows rigorous and robust
analysis of uncertainties such that the accuracy of the functions is quantified; (3) the model can be straightforwardly used to
determine functions for diffusivity and speciation for other melt compositions pending suitable diffusion-couple experiments.
The modelling approach is suitable for both forward and inverse modelling of diffusion processes in silicate melts; the model is
available as a MATLAB script from the electronic supplementary material.
" 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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1. INTRODUCTION

The diffusion of water through silicate melts is one of the
most important processes in volcanic systems. Volcanic
eruptions are driven by the buoyancy arising from bubbles
that grow when volatiles that are dissolved in the magma
diffuse into them (Blower et al., 2001; McBirney and
Murase, 1970; Sparks, 1978). Water is the most important
volatile component because it is usually the most abundant,
and because the dissolved total water concentration CH2Ot

strongly affects the viscosity of the melt (Hess and
Dingwell, 1996). As bubbles grow, water exsolves at the
bubble–melt interface, setting up a gradient in its concen-
tration, which drives the diffusion of water through the
melt. Diffusion of water also plays a central role in shaping
a wide range of other physical and chemical processes in the
volcanic system, including welding of pyroclasts in the con-
duit (Gardner et al., 2018; Wadsworth et al., 2014) and in
ignimbrites (Sparks et al., 1999), outgassing of fractured
magma (Castro et al., 2012) and pyroclasts (Hort and
Gardner, 2000), and bubble resorption during pressuriza-
tion or cooling (McIntosh et al., 2014; Watkins et al.,
2012). Consequently, considerable experimental efforts
have been spent in quantifying water diffusivity in silicate
melts, and it is known to depend on bulk melt composition,
temperature, and CH2Ot (Nowak and Behrens, 1997; Wang
et al., 2009; Zhang et al., 2017; Zhang and Ni, 2010;
Zhang et al., 1991).

An accurate, quantitative model for diffusion is required
for both forward and inverse modelling of volcanic pro-
cesses. Forward models that include diffusion are routinely
used to explore a wide range of volcanic and magmatic pro-
cesses (e.g., Proussevitch and Sahagian, 2005). Inverse mod-
elling, in which the spatial distribution of dissolved water in
eruptive products is used to infer their eruptive history, is
an emerging area (Ferguson et al., 2016; Humphreys
et al., 2008; McIntosh et al., 2014; Watkins et al., 2009),
which has the potential to transform our understanding
of pre- and syn-eruptive processes. Diffusivity models are
often built on data collected from diffusion-couple experi-
ments, in which pieces of glass with different dissolved
water contents are placed in contact and held at elevated
temperature and pressure, during which time the step pro-
file in water concentration is smoothed by diffusion. Suites
of samples quenched after different dwell times are analysed
and the spatial distribution of water used to reconstruct dif-
fusivity (Fanara et al., 2013; Nowak and Behrens, 1997;
Zhang and Ni, 2010). However, these studies rarely propa-
gate uncertainties through to the resulting diffusivity mod-
els. This is particularly problematic for inverse models,
because model uncertainty affects the quality and unique-
ness of the interpretations.

Reconstructing eruptive histories through inverse mod-
elling is particularly effective when water speciation is
accounted for (McIntosh et al., 2014), so accurate models
for speciation are also required. Water exists as at least
two species when dissolved in silicate melts: molecular
water (H2Om) and hydroxyl groups (OH). Molecular water
is the diffusing species, whilst OH is essentially immobile,
since it is bound to the silicate network (Zhang et al.,

1991). Water species interconvert with bridging oxygens

O
$
according to an equilibrium speciation reaction

H2Om þO
$!2OH ð1Þ

where the equilibrium position depends mainly on temper-
ature and dissolved water content. Consequently, analysis
of the spatial distributions of the two species, and their rel-
ative concentrations, supports the deconvolution of the
temperature and pressure histories of a sample (McIntosh
et al., 2014).

We develop the first 1D numerical model for water dif-
fusion and speciation reaction (including kinetics) in silicate
melts, which we validate against data from diffusion-couple
experiments. The numerical model includes component
models for diffusivity and speciation of water as functions
of temperature and dissolved water concentration. We use
the numerical model to minimize simultaneously the diffu-
sivity and speciation models from the same experimental
data, and carefully propagate experimental uncertainties.

We anticipate three categories of users of the work pre-
sented in this article. For convenience, we guide those users
to the following sections:

(1) Those seeking a validated model for diffusivity of
total water with well-constrained confidence intervals
are directed to Section 4, and Eqs. (13) and (14) and
Table 2.

(2) Those seeking validated and internally-consistent
models for diffusivity of molecular water and the
equilibrium constant of the speciation reaction, with
well-constrained confidence intervals, are directed to
Section 5, and Eqs. (23) and (25), and Table 4.

(3) Those seeking a flexible numerical model that can be
used to forward model diffusion and speciation, to
inverse model the spatial distributions of water spe-
cies in natural or experimental samples, and to design
experiments and analyse the resulting samples, are
directed to section 5, and to the online electronic sup-
plement, where a downloadable MATLAB imple-
mentation is available.

2. BACKGROUND

The solubility and diffusivity of water have been widely
investigated in rhyolitic melt compositions because of its
significant impact on the physical properties of the melt.
Thorough reviews of the behaviour of water in silicate melts
can be found in Zhang and Ni (2010) and Zhang et al.
(2007). Here we first briefly describe how water is dissolved
in rhyolite melts and transported through the silicate net-
work, then summarize modelling methodologies to date
and introduce our approach.

2.1. Speciation and kinetics

Infrared spectra of hydrous volcanic glasses (Stolper,
1982a,b) indicate that they contain at least two dissolved
water species: molecular (H2Om) and hydroxyl (OH). This
can be explained by reaction of molecular water with bridg-
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ing oxygens (O
$
) within the silicate network to produce

hydroxyl groups, according to the speciation reaction (Eq.
(1)). The equilibrium constant of the speciation reaction
(Eq. (1)) is defined as:

K ¼ XOH
2

XH2OmXO
$

ð2Þ

where XOH, XH2Om , and XO
$ are, respectively, the mole frac-

tions of hydroxyl water, molecular water, and bridging oxy-
gens normalized to a single oxygen basis. Both the
equilibrium and kinetics of the speciation reaction are
strongly temperature-dependent. Comparison of high-
temperature, in situ measurements (Nowak and Behrens,
1995, 2001; Shen and Keppler, 1995) and room-
temperature measurements of rapidly quenched experiments
(Ihinger et al., 1999; Zhang, 1994; Zhang et al., 1997b, 1995;
Zhang andXu, 2007; Zhang et al., 2003) shows that the high-
temperature equilibrium speciation can be preserved only if
quench occurs rapidly from relatively low temperatures near
the glass transition (e.g., <800 K) (Zhang et al., 2007).
Quenching from higher temperatures results in observed spe-
ciation equivalent to speciation at temperatures near the glass
transition. The equilibrium constant K for the speciation
reaction follows an Arrhenius dependence on temperature
T and can be described using a symmetric ternary regular
solution model (Hui et al., 2008; Ihinger et al., 1999; Silver
and Stolper, 1989; Silver et al., 1990; Zhang et al., 1991)

K ¼ d1e d2þd3XH2Omþd4XOHð Þ1000T ð3Þ

where parameters d1 ' ' ' d4 are related to binary interactions

between the three species in the melt (H2Om, OH, and O
$
).

For the regular solution model, the entropy of mixing is
identical to the ideal mixing solution, but all configurations

of the three species (H2Om, OH, O
$
) are not energetically

equivalent. See Silver and Stolper (1989) for a full descrip-
tion of the physical meanings of d1 ' ' ' d4.

Quantification of the speciation kinetics allows measure-
ments of water speciation to be used to calculate cooling
rates (Zhang et al., 1997b, 2000; Zhang and Xu, 2007).
The forward reaction rate kf (rate of consuming H2Om to
produce OH) is related to the backward reaction rate kb
(rate of consuming OH to produce H2Om) via the equilib-
rium constant (Zhang et al., 1997b)

K ¼ kf
kb

ð4Þ

leading to equations for the rate of change of each species
(Zhang et al., 1997b)

@XH2Om

@t
¼ kbXOH

2 ( kf XH2OmXO
$

@XOH

@t
¼ (2

@XH2Om

@t
ð5Þ

These previous studies of speciation and kinetics enable
us to model the speciation reaction at arbitrary total water
concentrations, temperature and cooling rates in silicic
melts. In principle the same approach can be applied to
any melt composition where appropriate experimental data
are available.

2.2. Diffusion

Early work (e.g., Delaney and Karsten, 1981; Shaw,
1974) identified that the apparent diffusivity of total water
H2Ot is dependent on its concentration. Coupling of diffu-
sion and speciation through Fourier-transform infra-red
spectroscopy (FTIR) analysis of diffusion-couple experi-
ments (Nowak and Behrens, 1997; Zhang and Behrens,
2000) allows a better understanding of the transport mech-
anism of water through rhyolite, and shows that the diffu-
sivity of hydroxyl water DOH is much smaller than the
diffusivity of molecular water DH2Om in rhyolitic melts even
when OH is the dominant species (Zhang et al., 1991). This
implies that water is transported by rapid diffusion of H2Om

and undergoes subsequent equilibration with the alumino-
silicate network to form OH, via Eq. (1). Overall these data
indicate that: (1) at low water concentrations (K 2 wt.%)
the diffusivity of H2Ot and H2Om is approximately propor-
tional to the concentration of total water (Nowak and
Behrens, 1997, Fig. 6b therein; Zhang and Behrens, 2000);
(2) at higher H2Ot concentrations, H2Ot and H2Om diffusiv-
ities increase exponentially with the concentration of total
water (Ni and Zhang, 2008; Nowak and Behrens, 1997;
Wang et al., 2009); and (3) the apparent diffusivity of
H2Ot can be expressed as a function of the diffusivity of
H2Om and the speciation if local equilibrium between
H2Om and OH is maintained (Wang et al., 2009; Zhang
and Behrens, 2000), leading in first approximation to the
expression at time t, assuming that DOH is negligible

DH2Ot ¼ DH2Om

@XH2Om

@XH2Ot

! "

t

ð6Þ

Diffusivities for hydrous species have also been deter-
mined for dacitic (Ni et al., 2009), andesitic (Ni et al.,
2013), basaltic (Zhang et al., 2017), and phonolitic/tra-
chytic compositions (Fanara et al., 2013). The diffusivity
of hydroxyl water appears to be more significant in mafic
compositions, especially at low H2Ot concentrations
(Zhang et al., 2017). The non-negligible DOH in mafic com-
positions potentially restricts application of Eq. (6) to more
silicic compositions.

2.3. Previous modelling efforts

Due to the concentration dependence of diffusivity, a
straightforward error-function fit is not applicable. There
have been two approaches to calculating concentration
dependent water diffusivities: (1) Boltzmann-Matano analy-
sis, including the Sauer-Freise method (Fanara et al., 2013;
Nowak and Behrens, 1997; Sauer and Freise, 1962); and (2)
forward numerical modelling (Zhang and Behrens, 2000).
The Boltzmann-Matano approach determines diffusivity
graphically from the shape of the inferred relationship
between diffusivity and CH2Ot (Nowak and Behrens, 1997),
while forward numerical approaches model diffusion using
finite difference or finite element methods, iteratively adjust-
ing input parameters to obtain a good fit to measured con-
centration profiles. The Boltzmann-Matano approach has
the advantage of not requiring prior knowledge of the func-
tional relationship to describe diffusivity, however, this
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approach can only handle isothermal and isobaric data,
and cannot account for speciation, and errors increase as
concentration gradients become small. Conversely, numer-
ical methods are more computationally expensive and
require prior knowledge of the functional form; however,
they can handle speciation and arbitrary pressure–tempera
ture–time pathways.

To exploit the strengths of each of these methods, we
developed a stepwise approach that applies both methods
to a single experimental suite. We first use the Sauer-
Freise method (Sauer and Freise, 1962) to determine the
functional form of water diffusivity and its dependence on
concentration and temperature. Once a functional form is
determined, we then use a forward numerical approach to
determine more precisely the diffusion relationship. A
unique aspect of this study is the addition of the speciation
reaction kinetics by incorporating Eqs. (2)–(6) into the
numerical framework.

3. METHODS

3.1. Samples

We use the experimental diffusion-couple samples from
Nowak and Behrens (1997). Diffusion-couple experiments
are preferred over dehydration experiments for modelling
purposes because the boundary conditions are simple (no
flux), the initial water concentrations are known, and diffu-
sion profiles are easily modelled with a 1D geometry. Full
details of sample synthesis and experimental conditions
are given in Nowak and Behrens (1997). Briefly, the starting
materials are haplogranitic glass close to the ternary Albite-
Orthoclase-Quartz (AOQ) minimum composition (Ab38-
Or34Qz28) at 5 kbar (Holtz et al., 1992). The haplogranitic
composition is a widely used synthetic analogue for granite
eutectic melts and is, therefore, a suitable analogue for
associated rhyolites. Crystal-free glass pieces with different,

homogeneous water contents were synthesised and their
water concentration determined by Karl-Fischer titration.
Glass blocks with differing water contents were placed in
contact and held at a range of temperatures (800–1200 !
C) at a pressure of 5 kbar for various dwell-times (30–
720 min) in an internally heated pressure vessel (IHPV).
Run conditions are given in Table 1. Samples were heated
linearly to experimental temperature at )100 !C/min and
were cooled by switching off the furnace, giving a maximum
cooling rate of )200 !C/min; experimental pressure was
maintained throughout quench. Temperature change dur-
ing heating and cooling was recorded, and we use the data
to derive model temperature curves that we use for numer-
ical modelling of the experiments (details in Appendix A).
After quenching, )500 lm thick slabs of the experimental
charge were cut perpendicular to the diffusion interface,
doubly polished, and mounted over a 2 mm wide by
20 mm long slit in a glass slide in preparation for analysis
by Fourier Transform Infrared Spectroscopy (FTIR). We
used samples from experiments that had dwell times
P30 min. Nowak and Behrens (1997) also performed
experiments at pressures below 5 kbar, but these were prone
to exsolution, and the resulting bubbles complicate FTIR
analysis. Consequently, we focus exclusively on the prod-
ucts of experiments at 5 kbar.

3.2. FTIR analysis

For this study we use two analytical FTIR datasets from
the same experimental samples. The data analysis that
forms the core of this study – the minimization of model
coefficients against water species – was performed using
data collected as part of the Nowak and Behrens (1997)
study. They determined concentrations of H2Om and OH
as functions of position along the diffusion axis (which we
define as the x-axis) of the diffusion-couple samples (see
Nowak and Behrens (1997) for full details of the analytical

Table 1
Diffusion-couple experimental samples and conditions – full details in Nowak and Behrens (1997). Water concentrations are for initial values
of high-end/low-end of the diffusion couple.

Sample No. Water concentrations Temperature Pressure Isothermal dwell
CH2Ot (wt.%) T (!C) P (kbar) t (min)

AOQD017† 7.75/2.35 800 5 120
AOQD001* 5.65/1.55 850 5 180
AOQD002* 5.71/1.38 850 5 360
AOQD022† 6.61/0.02 900 5 360
AOQD009* 3.46/0.02 1000 5 60
AOQD024 6.80/0.17 1000 5 120
AOQD005 6.44/0.01 1100 5 30
AOQD015† 7.35/3.75 1100 5 30
AOQD013† 7.25/0.03 1100 5 120.0
AOQD023† 6.96/0.17 1100 5 120.0
AOQD014† 2.07/0.05 1100 5 720.0
AOQD003 5.89/1.50 1150 5 30.0
AOQD006 5.85/0.04 1200 5 30.0
AOQD020 6.91/0.04 1200 5 60.0

Note:
* No speciation data measured by Nowak and Behrens (1997).

† New speciation data acquired for error analysis purposes.
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methodology; an example dataset is presented in Fig. 2 of
that work). We present these data for each sample in the
online supplementary material. We also performed new
analysis of a subset of the same samples (see online supple-
mentary material), explicitly for the purpose of determining
and propagating analytical uncertainties, especially those
arising from uncertainty on measured absorbance peak
height; Nowak and Behrens (1997) quote an error of
0.003 absorbance units.

We analysed this subset of diffusion-couple experiments
using a ThermoFisher Nicolet iN10 spectrometer at the
University of Bristol, UK. Individual analytical points were
measured along the x-axis with a spacing of 20 lm and
along the y-axis with a spacing of 150 lm, using a motor-
ized stage. Spectra were collected using an 80 lm aperture
and KBr beamsplitter with a wavelength range of
675 cm(1 to 6000 cm(1 and 3.85 cm(1 spectral resolution.
Each analysis consisted of 128 scans, which took )25 sec-
onds in total to acquire. The absorption bands at
5230 cm(1 and 4520 cm(1 were used to obtain peak heights
for H2Om and OH respectively (Stolper, 1982a,b). The sam-
ple thickness was recorded using a micrometer by Nowak
and Behrens (1997) with an associated error of ±2 lm.
Concentrations were calculated using the Beer–Lambert
law:

Ci ¼
WAi

qdei
* 100 ð7Þ

where C is the concentration of species i (H2Om or OH) in
wt.% H2O, W is the molar mass of H2O (18.02 g mol(1), A
is the baseline-corrected height of the species absorption
peak (arbitrary units), q is the density of the sample (g
l(1), which depends on the concentration of water (see
Appendix B), d is the thickness of the sample (cm), and e
is the molar absorption coefficient of the species (l mol(1

cm(1). We use linear molar absorption coefficients deter-
mined experimentally for AOQ glass (Nowak and
Behrens, 1997):

eH2Om ¼ 1:79+ 0:02

eOH ¼ 1:56+ 0:02
ð8Þ

For consistency with previous workers (Behrens et al.,
1996; Nowak and Behrens, 1997) we applied a linear base-
line correction by measuring peak height from a tangent to
the minima on either side of the H2Om band at 5230 cm(1,
which we extrapolate to the OH peak at 4520 cm(1. We
determined the mean and standard deviation of A for the
5230 and 4520 cm(1 peak heights by averaging the spectra
collected along the y-axis at each x-position. Methodologies
used for propagation of analytical uncertainties are pre-
sented in Appendix B.

4. DIFFUSIVITY OF TOTAL WATER

Some studies of water diffusion neglect the speciation of
water in silicate melts to approximate the process as diffu-
sion of total water (e.g., Fanara et al., 2013; Nowak and
Behrens, 1997). This greatly simplifies calculations at the
expense of losing information that is contained in the rela-
tive abundances of the molecular and hydroxyl water spe-

cies. Experimental studies have demonstrated that the
diffusivity of total water DH2Ot is dependent on water con-
centration and temperature (Fanara et al., 2013; Nowak
and Behrens, 1997; Wang et al., 2009; Zhang and
Behrens, 2000). The 1D diffusion equation for
concentration-dependent diffusivity is given by Fick’s sec-
ond law:

@CH2Ot

@t
¼ @

@x
DH2Ot

@CH2Ot

@x

! "
ð9Þ

where t is time in seconds, x is the spatial position along the
diffusion axis in metres, and the diffusivity has units m2 s(1.
We adopt two complementary approaches to determining
the diffusivity of total water as a function of concentration
and temperature from the diffusion-couple data: the analyt-
ical Sauer-Freise method; and direct numerical solution of
Eq. (9) using the method of lines.

The Sauer-Freise method (Sauer and Freise, 1962)
allows the diffusivity at a given water concentration to be
calculated without prior knowledge of the functional form
of DH2Ot CH2Otð Þ, hence without making assumptions about
the physical mechanism of diffusion. A limitation of the
method is that it has low accuracy when concentration var-
ies slowly with position, as is the case close to the ends of a
diffusion-couple profile. By contrast, numerical methods
are more accurate over the entire concentration range,
but a functional form for DH2Ot CH2Otð Þ must be assumed.
Our approach is therefore to use the Sauer-Freise method
to determine a functional form that is then implemented
and parameterized numerically.

4.1. Total water diffusivity via the Sauer-Freise method

The Sauer-Freise method (Fanara et al., 2013; Nowak
and Behrens, 1997; Sauer and Freise, 1962) allows
DH2Ot CH2Otð Þ to be determined from data derived from a
diffusion-couple experiment, in which CH2Ot xð Þ is a step
function at t ¼ 0, via integration of Eq. (9). First,
CH2Ot xð Þ data from the diffusion-couple experiment are nor-
malized so that concentration ranges between 0 and 1:

C,
H2Ot

¼
CH2Ot ( Cmin

H2Ot

Cmax
H2Ot

( Cmin
H2Ot

ð10Þ

A smooth function is then fitted to the normalized water
concentration data C,

H2Ot
xð Þ. A Monte Carlo approach is

adopted in which fitting is repeated against multiple syn-
thetic datasets in order to account for analytical uncertainty
on the raw data; this is the most effective way to robustly
propagate analytical uncertainties into the modelling fits,
and is facilitated by the short run-time of the computational
approach. Synthetic datasets are computed by sampling
from a normal distribution using the uncertainty as a func-
tion of water concentration as determined by propagation
of error through the Beer–Lambert law (Appendix B). We
tested polynomial and rational functions of various orders
and found that 5th order polynomials give a good fit whilst
minimizing high-frequency oscillations, consistent with
Fanara et al. (2013) and Nowak and Behrens (1997). The
integrated form of Eq. (9) is:
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DH2Ot xð Þ ¼ 1

(2t
dC,

H2Ot

dx

h i

x

1( C,
H2Ot

xð Þ
h i

x

# $Z 1

x
C,

H2Ot
dx

%

þ C,
H2Ot

xð Þ
h i

x

Z x

(1
1( C,

H2Ot

# $
dx
&

ð11Þ

where (½ .x indicates that the quantity in brackets is evalu-
ated at position x, and t is the effective duration of the
experiment, which is longer than the dwell time because it
includes the higher temperature parts of the ramp and
quench, see Nowak and Behrens (1997) for details. The
DH2Ot xð Þ values computed from the dataset via Eq. (11)
are then transformed to DH2Ot CH2Otð Þ via the polynomial
function, and Eq. (10). Results for a range of diffusion-
couple experiments conducted at different temperatures
are shown in Fig. 1.

As expected, diffusivity increases with dissolved water
concentration (Zhang and Ni, 2010). The DH2Ot CH2Otð Þ
curves show exponential behaviour over the majority of
their range (i.e. linear dependence of lnDH2Ot on CH2Ot , as
shown in Fig. 1b), but the low water concentration end of
each curve shows a marked deviation from exponential
dependence, approximating a linear dependence of DH2Ot

on CH2Ot (most apparent in the inset to Fig. 1a). This is con-
sistent with previous work that has proposed a linear
dependence of DH2Ot on CH2Ot at low water concentrations,
and an exponential dependence at higher water concentra-
tions, as determined using numerical methods (Nowak
and Behrens, 1997; Wang et al., 2009; Zhang and
Behrens, 2000). While our results using the Sauer-Freise
method support the observations of these previous numer-
ical studies, there are two complications. Firstly, the steep-
ening of the lnDH2Ot CH2Otð Þ curves towards the low water
end is seen for all datasets, including those for which the
‘low’ water concentration end of the diffusion couple is rel-

atively high – note the red and dark blue curves in Fig. 1b.
Secondly, most datasets also show a slight steepening of the
lnDH2Ot CH2Otð Þ curve at the high water concentration end.
It is known that the Sauer-Freise method is most accurate
when dCH2Ot=dx is steep, and is less accurate when it is shal-
low (Nowak and Behrens, 1997), and that diffusion-couple
experiments tend to have shallow gradients in water con-
centration near their lowest and highest water concentra-
tions. We therefore hypothesise that the non-exponential
behaviour could be an artefact of the Sauer-Freise method.
Alternatively, if the linear dependence of DH2Ot on CH2Ot at
low water concentrations is real, the Sauer-Freise method
may not be well-suited to quantifying that effect. Later, in
Section 4.2, we test these hypotheses using the numerical
forward model.

The temperature dependence of diffusivity is shown for
three concentrations of total water in Fig. 2. The
DH2Ot Tð Þ curves follow an Arrhenius relationship of the
form

lnDH2Ot ¼ cþ m
1000

T
ð12Þ

where c and m are respectively the y-intercept and gradient
of the curves, and T is the temperature in Kelvin. Previous
studies have also demonstrated that water diffusivity has a
modest dependence on pressure (Ni and Zhang, 2008;
Nowak and Behrens, 1997). However, the experimental
suite to which we have access does not include enough runs
at different pressures (all but three were run at 5 kbar) to
permit a robust characterization of pressure-dependent
behaviour.

The dependence on water concentration can be included
in Eq. (12) by making c and/or m functions of CH2Ot . Based
on inspection of the shape of the curves in Fig. 1, and on
the previous work that identifies a linear-to-exponential

Fig. 1. Diffusivity of total water DH2Otð Þon linear scale (a) and log scale (b) as a function of concentration of dissolved water CH2Otð Þ, derived
using the Sauer-Freise method (Section 4.1, Eq. (11)) for diffusion-couple experiments conducted at different temperatures. We chose a
representative experiment at each temperature that was conducted using the greatest difference in water concentration. Dark lines show best fit
values, lighter-coloured bands indicate the uncertainty (2r) based on propagation of analytical uncertainties using a Monte Carlo approach
(Appendix B). We determined the uncertainty as a function of water concentration by re-analysing water speciation in selected samples from
Nowak and Behrens (1997) and then applied this to the full experimental dataset.
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transition in DH2Ot CH2Otð Þ (Wang et al., 2009; Zhang and
Behrens, 2000), we propose a piecewise functional form
with a linear dependence on concentration at low water
concentration, and an exponential dependence at high
water concentration:

lnDH2Ot ¼

lnCH2Ot þa1
þa2 1000T :CH2Ot #CBrk

H2Ot
ðlinearÞ

a3CH2Ot þa4
þ a5CH2Ot þa6ð Þ 1000T :CH2Ot >CBrk

H2Ot
ðexpÞ

8
>>><

>>>:

ð13Þ

where a1 ' ' ' a6 are empirical coefficients, and CBrk
H2Ot

is the

water concentration at which the functional form changes
from linear to exponential. We can ensure that the piece-
wise function is continuous and smooth by requiring the

value and gradient of DH2Ot at C
Brk
H2Ot

to be the same for both

the linear and exponential functions. This imposes the fol-
lowing constraints

a2 ¼ a3CBrk
H2Ot

þa4þ a5CBrk
H2Ot

þa6
# $1000

T
( lnCBrk

H2Ot
þa1

# $% &
T

1000

a5 ¼
1

CBrk
H2Ot

( a3

 !
T

1000
ð14Þ

which reduce the number of independent parameters in Eq.

(13) to five: a1, a3, a4, a6, and CBrk
H2Ot

. Fitting of Eq. (13) (sub-

ject to the constraints in Eq. (14)) to the Sauer-Freise data
provides an ‘initial guess’ for the numerical forward model
described in the next section.

4.2. Total water diffusivity via numerical forward modelling

Numerical forward modelling of the water distribution
in the diffusion-couple samples involves solution of Fick’s
second law for the case of concentration dependent diffusiv-
ity (Eq. (9)). This, in turn, requires a function for
DH2Ot CH2Ot ; Tð Þ to be assumed. Based on the analysis of
the Sauer-Freise data, we use the piecewise model presented

in Eqs. (13) and (14). We also test an exponential relation-
ship with first order polynomials

lnDH2Ot ¼ b1CH2Ot þ b2 þ b3CH2Ot þ b4ð Þ 1000
T

ð15Þ

where b1 ' ' ' b4 are empirical coefficients. Forward mod-
elling allows us to test and minimize the DH2Ot CH2Ot ; Tð Þ
models directly against CH2Ot xð Þ data from the diffusion-
couple experiments, hence this method is not susceptible
to any potential artefacts associated with the Sauer-Freise
method, identified in Section 4.1.

Similar to Goudarzi et al. (2016), we solve Eq. (9) using
the method of lines in which the spatial derivative is dis-
cretized using the finite difference method while the time
derivative is maintained as continuous. This results in a
set of coupled ordinary differential equations (in time)
which are solved using the numerical solver ODE15s
(Shampine and Reichelt, 1997) in MATLAB. Details of
the numerical approach are given in Appendix C. The for-
ward numerical model is coupled with a least squares min-
imization algorithm to determine the values of the
parameters in the DH2Ot CH2Ot ; Tð Þ equations (piecewise
and exponential, separately) that give the best fit to the
data. We use the ‘Levenberg-Marquardt’ least squares algo-
rithm within the MATLAB optimization and minimization
toolkit. We determined an initial guess for the diffusion

coefficient parameter values (a1, a3, a4, a6, CBrk
H2Ot

, b1, b2,

b3, b4) using the Sauer-Freise data (Appendix D). We then
calibrate the model to CH2Ot xð Þ experimental data from all
the 14 diffusion couples simultaneously, such that derived
parameter values represent a best-fit to the whole dataset.
The initial spatial distribution of water is taken from
Nowak and Behrens (1997) and the evolution of concentra-
tion at each spatial node with time is computed; an example
is shown in Appendix C. The concentration of water as a
function of position at the final time is then compared to
the observed data for fitting purposes; an example fit is
shown in Fig. 3. The fitting yields best-fit and 5–95% confi-
dence intervals on the values of the parameters in the diffu-
sion models, which are presented in Tables 2 and 3.

The misfit between the output of the numerical forward
model, using the globally-minimized best-fit parameter val-
ues for the piecewise and exponential models, and data
from all 14 diffusion-couple experiments, is plotted in
Fig. 4. The misfit between the data and the models of
Nowak and Behrens (1997), Zhang and Ni (2010), and
Fanara et al. (2013) are also shown. The results show that
the piecewise model gives a better fit to the data than the
exponential model, particularly at low water concentra-
tions. This suggests that the deviation from exponential
dependence of diffusivity on water concentration at low
concentration is real and not simply an artefact of the
Sauer-Freise method. The breakpoint – i.e. the concentra-
tion below which the exponential model no longer accu-

rately captures the data – is found to be CBrk
H2Ot

¼ 1:8 wt.

%. Both the piecewise and exponential models are more
precisely defined at higher water concentrations
(CH2Ot > 4 wt.%) than at lower water concentrations
(CH2Ot < 4 wt.%), as demonstrated by the width of the 1
sigma error bounds. The piecewise function is slightly more

ln
 D

H
2O

t (m
2 s-1

)

Fig. 2. Diffusivity of total water DH2Ot as a function of temperature
for three different CH2Ot . Data can be viewed as vertical transects
across Fig. 1b at 0.5, 2, 3.5, and 5.5 wt.% total water concentration;
colours indicate temperature as for Fig. 1.
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accurate than the Nowak and Behrens (1997) model; this
may, in part, be a result of the greater number of fitting
parameters in the piecewise function. It is also slightly more
accurate than the models of Zhang and Ni (2010) and
Fanara et al. (2013), but we note that these were developed
using different experimental datasets.

5. DIFFUSIVITY AND SPECIATION OF WATER

Models for the diffusion of total water are a simplification
because they neglect the role played by speciation of water.
As presented in Section 2, water in silicate melts exists as
two species – molecular water and hydroxyl water – which
interconvert via the speciation reaction (Eq. (1)). Both the

equilibrium constant and the reaction rate are temperature
dependent, hence information about the thermal history of
a sample is contained in the relative abundances of the water
species, for samples quenched significantly above the glass
transition temperature T g (e.g., Nowak and Behrens,
2001). In previous work, water speciation was determined
independently and then applied to diffusion experiments in
order to develop models of molecular water diffusivity
(Zhang, 1999). By developing a model that includes the
kinetics of the speciation reaction we can now account for
the change in speciation during quench enabling us to mini-
mize for K andDH2Ot simultaneously, from the same dataset.
In this section, we modify the numerical forward model to
capture both diffusion and speciation.

Since hydroxyl water is bound to the silicate structure of
the melt and diffuses much more slowly than molecular
water for rhyolitic compositions (i.e. DOH / DH2Om), we
can neglect diffusion of hydroxyl water, and treat molecular
water as the only diffusing water species (Nowak and
Behrens, 1997; Zhang and Behrens, 2000; Zhang et al.,
1991). For mafic compositions, DOH will need to be
included in the numerical formulation. The rate of change
of concentration of molecular water at any point is there-
fore given by the combined effect of a diffusive component
(transport of molecular water) and a speciation component
(conversion of molecular water into hydroxyl species, and
vice versa), whereas the rate of change of concentration
of hydroxyl water depends only on the speciation reaction.

The change in molecular water concentration owing to
the diffusion of molecular water is captured by Fick’s sec-
ond law:

@XH2Om

@t

% &

diffusion

¼ @

@x
DH2Om

@XH2Om

@x

! "
ð16Þ

The change in molecular water concentration owing to
species interconversion can be derived from Eqs. (2), (4),
(5) and (E.2) (in Appendix E, which describes the conver-
sion between concentration and mole fraction)

@XH2Om

@t

% &

speciation

¼ kf
XOH

2

K
( XH2Om 1( XH2Om ( XOHð Þ

% &

ð17Þ

C H
2O

t (w
t. 

%
)

Fig. 3. Numerical forward modelling of the spatial distribution of
dissolved water in a typical diffusion-couple experiment using a
piecewise (Eq. (13) and (14)) and an exponential model (Eq. (15))
for DH2Ot CH2Ot ; Tð Þ. Model parameters are minimized globally
against the dataset of 14 experiments from Nowak and Behrens
(1997); parameter values are given in Tables 2 and 3. The light
shaded region represents the 2 standard deviation error (2r) as a
function of concentration as determined in Appendix B. We have
chosen the most conservative error estimates from Appendix B and
applied them to the Nowak and Behrens (1997) data for illustrative
purposes.

Table 2
Best-fit parameters for Eqs. (13) and (14), based on global minimization of a numerical forward model to CH2Ot xð Þ data from the 14 diffusion-
couple experiments.

Piecewise model parameters (Eqs. (13) and (14))

Parameter a1 a3 a4 a6 (K) CBrk
H2Ot

(wt.%)

Value (22.835 0.318 (21.964 (5.518 1.849
95% Confidence interval ±1.480 (6%) ±0.072 (23%) ±0.191 (1%) +0.243 (4%) ±0.047 (3%)

Table 3
Best-fit parameters for Eq. (15), based on global minimization of a numerical forward model to CH2Ot xð Þ data from the 14 diffusion-couple
experiments.

Exponential model parameters (Eq. (15))

Parameter b1 b2 b3 (K) b4 (K)

Value 0.530 (21.836 0.035 (5.770
95% Confidence interval ±0.017 (3%) ±0.127 (1%) ±0.020 (57%) ±0.139 (2%)
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The net rate of change of molecular water concentration
is therefore given by:

@XH2Om

@t
¼ @

@x
DH2Om

@XH2Om

@x

! "

þ kf
XOH

2

K
( XH2Om 1( XH2Om ( XOHð Þ

% &
ð18Þ

and, from the stoichiometry of Eq. (1), the rate of change of
hydroxyl water concentration is given by:

@XOH

@t
¼ (2kf

XOH
2

K
( XH2Om 1( XH2Om ( XOHð Þ

% &
ð19Þ

In order to solve Eqs. (18) and (19), we need equations
for the forward reaction rate kf , the diffusivity of molecular
water DH2Om , and the equilibrium constant K.

The kinetics of the speciation reaction have been deter-
mined empirically via controlled cooling-rate experiments
(Zhang et al., 1997b, 2000). A model for the forward reac-
tion rate was proposed by Zhang et al. (1997b); in Appen-

dix F we extend the validity of that model to a wider range
of cooling rates (0.00017–94 K/s) and total water concen-
trations in the range 0:5 # CH2Ot # 7:7 wt.%, using data
from Zhang et al. (2000). This yields:

kf ¼ e 78:55+0:17ð ÞXH2Ot
7:65+0:6ð Þe

(42620
T ð20Þ

where kf has units of s(1 and errors represent the 95% con-
fidence interval of the model fit.

The diffusivity of molecular water is related to the diffu-
sivity of total water for the case where species equilibrium
(Eq. (1)) is reached at every point along a concentration
profile (Wang et al., 2009)

DH2Om ¼ DH2Ot

dXH2Ot

dXH2Om

ð21Þ

Manipulation of Eqs (2) and (E.2) gives

K ¼ 4 XH2Ot ( XH2Omð Þ2

XH2Om 1þ XH2Om ( 2XH2Otð Þ
ð22Þ

a) b)

CH2Ot
 (wt. %)CH2Ot

 (wt. %)

CH2Ot
 (wt. %)CH2Ot

 (wt. %)

c) d)

Fig. 4. Misfit between the experimental dataset as a function of total water concentration and the piecewise model (Eq. (13) and (14)), and:
(a) the exponential model (Eq. (15)); (b) the Nowak and Behrens (1997) model; (c) the Zhang and Ni (2010) model (Eq. (14) therein); and (d)
the Fanara et al. (2013) model. Misfit is calculated as the percentage residual: 100* CH2Ot observedð Þ ( CH2Ot modelð Þð Þ=CH2Ot modelð Þ.
Parameter values for the piecewise and exponential models are given in Tables 2 and 3. The dashed envelopes represents one standard
deviation of the misfit.
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which can be recast as a quadratic equation in XH2Om , and
solved to give XH2Om XH2Ot ;Kð Þ. This, in turn, allows the
derivative term in Eq. (21) to be determined, yielding an
expression for the diffusivity of molecular water:

DH2Om ¼ DH2Ot 1(
1
2 ( XH2Otffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XH2Ot 1( XH2Otð Þ 4
K ( 1
( )

þ 1
4

q

2

64

3

75

(1

ð23Þ

It remains to find an expression for the equilibrium con-
stant – we do this by fitting a numerical forward model to
the experimental diffusion couple data Nowak and Behrens
(1997). The equilibrium constant follows an Arrhenius
dependence on temperature (Nowak and Behrens, 2001;
Zhang and Ni, 2010). We consider two functional forms,
an ideal mixing model

K ¼ c1ec2
1000
T ð24Þ

and a non-ideal (regular solution) mixing model, in which
the equilibrium constant is a function of the mole fractions
of the dissolved water species (Hui et al., 2008; Ihinger
et al., 1999; Silver and Stolper, 1989; Silver et al., 1990;
Zhang et al., 1991)

K ¼ d1e
d2þd3XH2Omþd4XOHð Þ1000T ð25Þ

where the coefficients c1, c2, and d1 ' ' ' d4 must be deter-
mined from experimental data. Previous work on rhyolites
has indicated that water mixes ideally with silicate melt for
CH2Ot < 2:5 wt.%, but that a regular solution model is
appropriate for higher concentrations (Ihinger et al., 1999).

5.1. Numerical forward modelling of diffusion and speciation

The numerical forward model is an extension of the one
used in Section 4.2, and details of the implementation are
given in Appendix C. We solve Eqs. (18) and (19) to deter-
mine the time-evolution of the distribution of molecular

and hydroxyl water in the diffusion-couple samples. The
model uses Eq. (20) for the forward reaction rate kf , and
Eq. (23) for the diffusivity of molecular water DH2Om . This,
in turn, uses the piecewise model (Eqs. (13) and (14)) for the
diffusivity of total water DH2Ot , with coefficients minimized
against CH2Ot using the numerical forward model for total
water (Table 2), as described in Section 4.2. The equilibrium
constant K is determined using either the ideal mixing
model (Eq. (24)) or the regular solution model (Eq. (25)).
The only unknowns in the numerical forward model are
the coefficients of Eqs. (24) or (25), and these are deter-
mined by globally minimizing to the suite of CH2Om xð Þ
and COH xð Þ data from the diffusion couples. Note that,
since all the constituent models include temperature as a
variable, the model captures the diffusion–reaction beha-
viour through the higher temperature parts of the heating
ramp and quench process, as well as through the high-
temperature experimental dwell.

5.1.1. Ideal mixing
The numerical forward model was used to model pro-

files for CH2Om xð Þ and COH xð Þ for the diffusion-couple sam-
ples assuming an ideal mixing model for the equilibrium
constant (Eq. (24)); example results are shown in Fig. 5.
Note that the final speciation is not representative of the
high temperature equilibrium but is ‘frozen in’ during
quench (Nowak and Behrens, 1997; Zhang and Ni, 2010).
We sweep through different values of the coefficients c1
and c2 and compute the least squares error simultaneously
across the entire suite of diffusion couples for which speci-
ation data are available (11 of 14 experiments).

The parameter sweep demonstrates significant covaria-
tion between c1 and c2, such that no meaningful global min-
imum can be found. Rather, there is a ‘low-error trench’
(Fig. 6) describing a continuum of pairs of coefficient values
that give a similarly good fit to the data. Previously sug-
gested values of c1 and c2 from studies that determined
the equilibrium constant from FTIR measurements of spe-

Fig. 5. Numerical forward modelling of the spatial distribution of molecular and hydroxyl water in the diffusion-couple experiments assuming
ideal mixing (Eq. (24)) and the piecewise diffusion equation. Fits to two representative datasets are presented. The minimized coefficients of
Eq. (24) are c1 ¼ 26:6 and c2 ¼ (4:179, which are similar to those presented in Nowak and Behrens (2001). The light shaded regions represent
the 2 standard deviation analytical error (2r) error as a function of concentration as determined in Appendix B.
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cies concentrations in quenched samples (Behrens and
Nowak, 2003; Zhang et al., 1997a) and in situ at magmatic

temperatures (Nowak and Behrens, 2001) fall within this
low-error trench (Fig. 6). This demonstrates that: (1) the
numerical forward modelling approach that we adopt yields
a K Tð Þ relationship that is consistent with previous work;
and (2) published models of the form of Eq. (24) perform
similarly well for the current dataset.

5.1.2. Non-ideal mixing
Fig. 5 shows that the numerical forward model with

ideal mixing tends to underestimate COH at intermediate
CH2Ot . This suggests that a simple ideal mixing model is
insufficient to describe the data. We therefore focus on
the ‘regular solution’ as the simplest extension of ideal mix-
ing, where the entropy of mixing is identical to the ideal
mixing solution, but all configurations of the three species

(H2Om, OH, O
$
) are not energetically equivalent (Hui

et al., 2008; Ihinger et al., 1999; Silver and Stolper, 1989).
As for the ideal mixing model, we modelled CH2Om xð Þ

and COH xð Þ for the diffusion-couple samples, using the reg-
ular solution model to describe the equilibrium constant
(Eq. (25)). The coefficients of Eq. (25) were globally mini-
mized against the data using a non-linear fitting algorithm
in MATLAB. We use a fixed value for d2 of (2.87 K
(Ihinger et al., 1999) to reduce the number of free parame-
ters from 4 to 3 and thus minimize the other coefficients,
which are presented in Table 4. We chose this parameter
because 1000Rd2 represents the standard state enthalpy
change for the reaction among species when H2Ot

approaches 0 (Ihinger et al., 1999), where R is the gas con-

Fig. 6. Sum of squared errors between the ideal mixing model and
data as a function of the coefficients of Eq. (24), c1 and c2. There is
considerable covariance between the coefficients, such that a
meaningful global minimum cannot be determined. Previous
estimates of the coefficients fall within a ‘low-error trench’ of
coefficient values: Z1997 = Zhang et al. (1997a), NB2001,
2003 = Nowak and Behrens (2001) and Behrens and Nowak
(2003).

Table 4
Globally-minimized best-fit parameters for Eq. (25) (non-ideal mixing/regular solution model), based on fitting the numerical forward model
to diffusion-couple data.

Parameter d1 d2 (K) d3 (K) d4 (K)

Value 6.431 (2.87
From Ihinger et al. (1999)

(4.486 0.515

95% Confidence interval ±0.250 (4%) – ±0.340 (8%) ±0.406 (79%)

Fig. 7. Numerical forward modelling of the spatial distribution of molecular and hydroxyl water in a diffusion-couple experiment assuming
non-ideal mixing – the regular solution model (Eq. (25)). The coefficients of Eq. (25), d1, d3, and d4 are minimized against the whole suite of
samples for which speciation data are available by comparing model results with the species data. The light shaded regions represent the 2
standard deviation analytical error (2r) as a function of concentration as determined in Appendix B.
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stant. Representative results are presented in Fig. 7 and
show a significant improvement in the fit to COH xð Þ data.

We also determined the values for the equilibrium con-
stant at ‘apparent equilibrium’ Kaeð Þ using the ‘frozen-in’
speciation (Eq. (2)) from the full suite of samples for which
speciation data are available, and compared these with the
values computed numerically using the ideal mixing model
and the regular solution (Fig. 8). The temperature of ‘ap-
parent equilibrium’ T aeð Þ is calculated using the
geospeedometers of Zhang et al. (1997b) and Zhang et al.
(2000) (Appendix F). These results show a significant
improvement in fit for the regular solution model, suggest-
ing that non-ideal mixing is occurring (although we note
that this study was not specifically designed to investigate
melt structure or species interactions).

6. IMPLICATIONS AND CONCLUSIONS

We have developed a multi-tiered approach to investi-
gate speciation and diffusion of water in a synthetic rhyolite
analogue (AOQ) using a combination of diffusion-couple
experiments and computational analysis. The results
include: (1) a diffusion model for total water DH2Ot CH2Otð Þ

that explicitly accounts for the change in behaviour from
a linear to exponential dependence as concentration
increases; (2) a modelling framework that uses both total
water diffusivity and the speciation kinetics to give an inter-
nally consistent minimization for the equilibrium coefficient
K; and (3) a flexible numerical model that can handle both
speciation and diffusion of water for arbitrary P-T-t path-
ways. In the following sections we discuss the implications
of these results.

6.1. The piece-wise model yields improved accuracy

Because the dependence of DH2Ot on water concentration
is linear at low CH2Ot (Zhang and Behrens, 2000) but
becomes exponential at higher CH2Ot , we use a piecewise
function with both linear and exponential components
(Eq. (13) and (14)) to model the experimental suite of
diffusion-couple samples of Nowak and Behrens (1997). A
comparison between the piecewise diffusion model and the
exponential model of Nowak and Behrens (1997) show a
good agreement in calculated diffusivities (Fig. 9), particu-
larly at higher water concentration, but at lower water con-
centration and higher temperature the models deviate
strongly. For example, at 1200 !C and )0.25 wt.% the dif-
ference in diffusivity between the two models is approxi-
mately one order of magnitude. For the range of
temperature, water concentration and experimental condi-
tions (Table 1) investigated in the Nowak and Behrens
(1997) dataset, our new piecewise equation provides a small
increase in accuracy as demonstrated by the direct compar-
ison of misfits between models and data (Fig. 4). The
improved accuracy is most marked at low water concentra-
tions, presumably because the original experimental dataset
is heavily weighted towards elevated water concentrations
(e.g., >1 wt.%) which therefore dominate the fit of the expo-
nential model adopted by Nowak and Behrens (1997). This
highlights the importance of including explicitly the linear
behaviour for applications modelling water diffusion in vol-
canic scenarios where water concentrations are low, such as

Fig. 8. The temperature of apparent equilibrium T ae is defined as
the calculated ‘equilibrium’ temperature of the quenched specia-
tion. Other definitions include the closure temperature, the fictive
temperature, or the glass transition temperature of the speciation
reaction (Zhang, 1994). T ae can be thought of as the apparent
temperature at which the final speciation is ‘frozen in’ or quenched.
We computed the temperature of apparent equilibrium T ae for the
whole suite of samples for which speciation data are available by
re-arranging Eqs. (F.2) and (F.3) in Appendix F, using our
expression for kf (Eq. (F.5)), and the expression for quench rate as
a function of temperature (Appendix A, Fig. A.1a). The equilib-
rium constant at apparent equilibrium Kae is computed using Eq.
(2): for each of the calculated T ae from the speciation data we
compute a model Kae value using the Ideal mixing and Regular
solutions along with the speciation data. The purpose of this figure
is to demonstrate that the observed final speciation can be modelled
well by the regular solution, supporting previous interpretations of
non-ideal mixing (Hui et al., 2008; Ihinger et al., 1999). Note that
here, the quench history (dT=dt) is the same for all samples
(Appendix A), so T ae is effectively a proxy for total water
concentration. The scatter observed at higher T ae (low 1000=T ae)
could be due to the increased relative error in the species as total
water, hence also 1000=T ae decreases.

CH2Ot
 (wt. %)
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Fig. 9. Plot of total water, DH2Ot as a function of CH2Ot and
temperature for the piecewise diffusion Eq. (this study, solid lines),
for comparison with the exponential model of Nowak and Behrens
(1997), and the diffusion Eq. for rhyolite (see Eq. (14) in Zhang and
Ni, 2010).
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in the upper conduit, following emplacement of obsidian
flows, or within welded ignimbrite deposits.

The piecewise function explicitly includes a breakpoint
where the behaviour changes from linear to exponential.
For the haplogranitic system investigated we find a best
fit value of the breakpoint at )1.8 wt.% CH2Ot , which is con-
sistent with observations from previous studies (Ni and
Zhang, 2008; Wang et al., 2009; Zhang and Behrens,
2000). A key question for future studies is whether this
breakpoint marks a significant structural change that affects
the diffusion behaviour in silicate melts, as previously sug-
gested (e.g., Behrens and Nowak, 1997; Persikov et al.,
2014) and if so, whether the location of the breakpoint is
dependent on the melt composition.

6.2. Constraints on equilibrium constant, K

Akey innovation of this study is the inclusion of both spe-
ciation and kinetics into the numerical framework. The addi-
tion of speciation to diffusion models enables diffusion-
couple experiments to be used to estimate the equilibrium
constantK given a knownT-t history (including the quench).
We demonstrated this by minimizing for the functional form
of the equilibrium constant K for the well-studied haplo-
granitic system. Our approach is ready for application to
other systems (e.g. dacite, andesite and peralkaline melts)
when data are available, and has the advantage that the equi-
librium constant for speciation can be determined on the
same sample and at the same experimental conditions as
the diffusion coefficients. This internal consistency will help
to minimise uncertainties. Although this study only exam-
ined samples at a fixed pressure, this approach can be easily
applied to experiments at a variety of pressures. One caveat is
that for more depolymerised compositions (andesite and
basalt) diffusion of OH becomes non-negligible (Zhang and
Ni, 2010; Zhang et al., 1991) and may need to be included
in the model. Ideally, experiments would also be performed
at different cooling rates to investigate whether the forward
reaction rate kf could be obtained by appropriate minimiza-
tion of the model. This would create a complete and inter-
nally consistent set of models from a single dataset rather
than building consecutive models from different sets of
experiments and compositions, as is current practice.

6.3. Limitations

The approach and physical/chemical parameters that we
present here have important limitations based upon the
experimental data and functional forms used. The experi-
mental data used for determining the rate of forward reac-
tion kf ranged from 400 !C to 1100 !C, CH2Ot

concentrations from 0.5 to 7.7 wt.%, and cooling rates from
0.00017 to 94 !C/s (Zhang et al., 1997b, 2000). The experi-
mental data used for determining DH2Ot ranged from 800 !C
to 1200 !C and 0.01 to 7.75 wt.% H2Ot at 5 kbar. Therefore,
we have extrapolated the diffusivity function to lower tem-
peratures during quench. However, we note that the diffu-
sivity is very slow at these temperatures, and the time
spent below the calibrated temperature window is short,
so our extrapolation has a minimal effect on the results.

Where we have validated the model, it can be confi-
dently applied. Extrapolation outside of this range may
be reasonable depending on the conditions for example,
the diffusion functional form used in this study has been
applied to lower temperatures (400–550 !C) in other studies
(Zhang et al., 1991). The model presented here considers
disequilibrium processes via the forward reaction rate and
uses the complete quench history, but we do not consider
the diffusivity of OH, which can be important for composi-
tions other than rhyolite (Zhang and Ni, 2010; Zhang et al.,
1991). Low temperature hydration of obsidian may occur
by different mechanisms to high-temperature water diffu-
sion (e.g. Anovitz et al., 2008), so use of our model in these
environments is not recommended. Additionally, our diffu-
sivity equation is only valid for pressures of 5 kbar. How-
ever, the numerical framework and approach provided
here provides a means to expand the calibration parameter
space to develop a broader suite of internally consistent
models for volcanological applications.

6.4. Volcanological applications of the new model

We anticipate that the model will be applied to two cat-
egories of study: (1) inverse modelling of experimental data
– as in the current manuscript – in order to determine dif-
fusivity, equilibrium constant, and speciation kinetics from
experimental data; (2) forward modelling of diffusion and
speciation in natural volcanic and magmatic scenarios.
Inverse modelling, in the most general case, requires only
that the experimental conditions and material composition
are accurately known. It is hoped that the availability of the
model will encourage researchers to design and execute
experimental campaigns to quantify diffusion and specia-
tion for a range of natural melt compositions. Forward
modelling using the full speciation and diffusion model
requires that the following component models for the mate-
rial of interest are known: equilibrium coefficient K X ; Tð Þ,
where X represents mole fractions of the relevant water spe-
cies; forward reaction rate kf X ; Tð Þ; and either the diffusiv-
ity of molecular water DH2Om CH2Ot ; Tð Þ, or the diffusivity of
total water DH2Ot CH2Ot ; Tð Þ. Note that, in the general case,
each of these component models may also be a function
of pressure.

The most obvious practical volcanological application
of our new numerical framework is the use of precise for-
ward numerical modelling of speciation and diffusion to
invert measurements on natural samples to determine their
eruptive P-T-t pathways. During magma ascent, decreasing
water solubility causes water to diffuse into bubbles at a
rate that depends on the evolving water concentration
(and temperature for non-isothermal ascent). During and
after eruption, cooling causes the solubility of water in
the melt to increase (resulting in diffusion back into the
melt, e.g., McIntosh et al., 2014) and simultaneously alters
the equilibrium speciation towards more H2Om-rich com-
positions (e.g. Nowak and Behrens, 2001). Therefore, cou-
pling the diffusion and speciation model presented here with
a bubble growth model (e.g., Blower et al., 2001;
Proussevitch and Sahagian, 1998; Proussevitch et al.,
1993), would enable a robust investigation of the P-T-t his-
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tory of magma during the final stages of eruption and
emplacement. This would provide a new approach to quan-
titative understanding of syn-eruptive magma decompres-
sion and cooling that could be used to reconstruct
conduit processes during volcanic eruptions, including vol-
canological phenomena such as transitions in eruptive style,
with application to silicic volcanism around the world.
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APPENDIX A. TEMPERATURE–TIME PATHS OF
THE EXPERIMENTS

The experimental samples go through a heating-dwell-
quench pathway that we wish to reproduce in our numeri-
cal calculations. The heating rate for the experiments was

100 !C min(1 until reaching the dwell temperature. After
the dwell time, which varied from 1800 s (30 min) to
43,200 s (720 min), samples were quenched by turning off
the furnace. Cooling temperature–time data from an exper-
imental dwell temperature of 1200 !C and 800 !C, are plot-
ted in Fig. A1. The data are well described by an
exponential Newton cooling curve of the form

T ¼ T a þ T o ( T að Þeht ðA:1Þ

where T is the temperature in Kelvin at time t (seconds),
T a is the ambient temperature, T o is the initial temperature
at time t ¼ 0, and h is the cooling constant. The best fit
value of h is determined by linear regression of data for
dT=dt against T ( T að Þ. Ambient temperature T a is not
recorded directly but is estimated from the data by deter-
mining the value of T a at which the y-intercept is zero
(Fig. A1a).

Temperature–time paths used in the numerical simula-
tions of the experiments comprised a constant-rate heating
ramp of dT=dt ¼ 100!C min(1 from ambient temperature
to the experimental temperature, followed by an isothermal
dwell (durations in Table 1), then Newton cooling to 300 !C
(well below the glass transition temperature T g).

APPENDIX B. PROPAGATION OF ANALYTICAL
UNCERTAINTIES

The uncertainty on measured concentrations of H2Om

and OH is computed from the uncertainties on the quanti-
ties in Eq. (7). The uncertainty on W is neglected. The
uncertainty on A is taken as the standard deviation of the
peak heights for spectra collected in each y-direction.
Uncertainty on d is ± 2 mm, and uncertainty on e is given
in Eq. (8). The density q (in g l(1) depends on total dis-
solved water concentration according to Nowak and
Behrens (1997)

T0 = 47 °C
h = -0.357 s-1

R2 = 0.98

Fig. A1. (a) The cooling rate (dT=dt) versus the difference between temperature (T ) and ambient temperature (T a) for runs with initial
temperature T 0 ¼ 1200 !C (orange circles) and T 0 ¼ 800 !C (green circles). Linear regression of the data gives cooling constant
h ¼ (0:357 s(1. (b) The temperature versus time data during cooling from 1200 !C and 800 !C collected during the experimental runs of
Nowak and Behrens (1997). The black line represents the regressed cooling model (Eq. (A.1)) which defines the T tð Þ cooling function for use in
the numerical model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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q ¼ 2362 +15ð Þ ( 14:5 +2:5ð Þ * CH2Ot ðB:1Þ

hence the uncertainty on q also depends on the dissolved
water concentration. Total water concentration is com-
puted from Eqs. (7), (B.1), and (E.1)

CH2Ot ¼
100W H2O

2362( 14:5CH2Ot

AH2Om

deH2Om

þ AOH

deOH

! "
ðB:2Þ

This is a quadratic equation in CH2Ot and is solved ana-
lytically using the quadratic formula. Uncertainties on the
quantities in Eq. (B.2) are propagated through to determine
the uncertainty on CH2Ot using a Monte Carlo approach,
described later in this appendix. The value of q, and the
associated uncertainty, is computed for each CH2Om , COH

data pair via Eq. (B.1), Eq. (7) is then used to compute
the values of CH2Om and COH and their associated uncertain-
ties for each measurement point. Uncertainties are propa-
gated through Eqs. (B.1) and (7) according to standard
error formulae:

S ¼ aþ b( c ! dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dað Þ2 þ dbð Þ2 þ dcð Þ2

q

S ¼ ab
cd ! dS

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
da
a

( )2 þ db
b

( )2 þ dc
c

( )2 þ dd
d

( )2q

S ¼ xn ! dS
S ¼ n dx

x

** **

ðB:3Þ

where dS is the uncertainty on quantity S, da is the uncer-
tainty on quantity a, etc. These formulae are predicated

on the assumption that uncertainties are normally dis-
tributed and are uncorrelated.

We note that the uncertainty on concentration varies
with absolute concentration: uncertainty at low water con-
centration (CH2Om K 1 wt.%) is typically 10–15% relative,
but <5% relative at higher water concentrations (Fig. B1).
Of the six samples that were re-analysed (6 of 14), the most
conservative estimate of uncertainty comes from sample
AOQD013, which covers a wide range in CH2Ot . The frac-
tional uncertainty (2r Cið Þ=Ci, where Ci is the concentration
of species i and r is its uncertainty) for each datapoint in
the Nowak and Behrens (1997) dataset was assumed to be
the same as the fractional uncertainty determined from
sample AOQD013 at the same species concentration, inter-
polated as necessary.

Monte Carlo method for uncertainty propagation

We use a Monte Carlo approach to propagate the ana-
lytical uncertainties on the quantities in Eq. (B.2) through
to determine the uncertainty on CH2Ot . Note that we adopt
this approach because the quadratic formula contains the
same term more than once, violating the assumption of
uncorrelated errors in the standard error formulae (Eq.
(B.3)). For each analytical point, we generate 10,000 differ-
ent synthetic values of the relevant measured quantities,
drawn from a normal distribution about the mean mea-
sured value, with standard deviation taken as the uncer-
tainty: e.g., 10,000 different values of the absorption

Fig. B1. Uncertainty of the measured species concentrations and how they relate to the absolute value of the concentration. Note that relative
uncertainty rises as the absolute concentration decreases.
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coefficient eH2Om are drawn from a normal distribution with
mean 1.79 and standard deviation 0.02, etc. The value of
CH2Ot is computed for each of the 10,000 synthetic sets of
values, and the uncertainty on CH2Ot is taken as the stan-
dard deviation of the resulting distribution.

We adopt a similar approach to propagating the uncer-
tainties in the diffusion-couple data through subsequent
analysis. Each time a function or model is to be fitted
to experimental data – i.e., CH2Ot xð Þ, CH2Om xð Þ, and
COH xð Þ – we produce between 2000 and 10,000 synthetic
datasets in which the concentration at any x-position is
drawn from a normal distribution with mean equal to
the measured value at that point, and standard deviation
given by the associated uncertainty. The function or model
is then fitted to each synthetic dataset in turn, resulting in
a distribution of best-fit or minimized parameters. The dis-
tribution is then used to determine the mean and standard
deviation on the best fit values or minimized parameters.
Quantities that are derived in this way are presented as
the mean value, and the standard deviation is taken as
the associated uncertainty.

APPENDIX C. NUMERICAL FORWARD MODEL

The numerical forward model solves Fick’s second law
(Eq. (9) of the main text) using the method of lines, via
MATLAB’s ODE solver ODE15s. Eq. (9) is repeated here
for convenience:

@CH2Ot

@t
¼ @

@x
DH2Ot

@CH2Ot

@x

! "
ðC:1Þ

The spatial dimension x is discretized into a number n of
equally-spaced blocks along the length of the diffusion cou-
ple, which is composed of a ‘wet’ glass part of length Lw and
a ‘dry’ glass part of length Ld . The finite difference grid is
block-centred, such that the ODEs are solved at the mid-
point of each of the blocks – the ‘nodes’ – which have
position

xi ¼
2i( 1ð Þ Lw þ Ldð Þ

2n
( Lw ðC:2Þ

where i ¼ 1 ' ' ' n, such that x ¼ 0 marks the boundary
between the wet and dry glasses. The concentration of total
water at each node is represented by a value in wt. % in a
1* n matrix: CH2Ot xið Þ. For nodes with xi < 0, the initial
concentration of dissolved water is set to the ‘wet’ glass
value; for nodes with xi > 0, it is set to the ‘dry’ glass value.
The outer boundaries have a Neumann boundary condi-
tion, such that the diffusive flux of water is zero (i.e.
DH2Ot@CH2Ot=@x ¼ 0 at x1 and xn).

The function that is called by the solver ODE15s is rep-
resented by the following pseudo-code:

1. Determine the temperature at the current timestep
(Appendix A).

2. Calculate the diffusivity of total water DH2Ot at each node
using Eqs. (13) and (14) (piecewise model) or Eq. (15)
(exponential model), based on current temperature,
and the concentration of total water at each node.

3. Determine spatial gradient in water concentration
@CH2Ot=@x at each node using the diff() function on
the concentration array CH2Ot xið Þ.

4. Determine the diffusive flux at each node
J ¼ (DH2Ot@CH2Ot=@x; set J ¼ 0 at x1 and xn.

5. Determine the gradient of the diffusive flux @J=@x at
each node using the diff() function on the flux array
J xið Þ; this is equal to the (@CH2Ot=@t at each node,
according to Fick’s second law.

In this way, ODE15s solves @CH2Ot=@t for each node
throughout the duration of the diffusion-couple experiment.
The final output is the concentration matrix CH2Ot xið Þ at the
end of the experiment, but note that the spatial distribution
of water is computed throughout the experimental run-
time; an example is shown in Fig. C1, in which the evolu-
tion of the spatial distribution of total water over time

Fig. C1. (a) Temperature-time profile for a diffusion couple numerical model run which includes a ramp and a quench. (b) Results of a
numerical model illustrating the evolution of CH2Ot x; tð Þ through various times of the experiment. The profile at the final time (t = 2.2 h) is then
compared against the observations in order to regress diffusion coefficients.
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CH2Ot x; tð Þ is shown for various times through the numerical
experiment.

Modelling speciation and diffusion

A similar approach is used when the speciation reaction
(Eq. (1)) is included. The local rate of change of molecular
water concentration now includes both a diffusive term
(Fick’s second law) and a term that accounts for the inter-
conversion of molecular water and hydroxyl water (Eq.
(18)) of the main text, reproduced here for convenience):

@XH2Om

@t
¼ @

@x
DH2Om

@XH2Om

@x

! "

þ kf
XOH

2

K
( XH2Om 1( XH2Om ( XOHð Þ

% &
ðC:3Þ

Note that the concentration is expressed as mole frac-
tion, rather that weight percent. Once the local mole frac-
tion of molecular water has been computed, the rate of
change of concentration of hydroxyl water is computed
using Eq. (19) of the main text, reproduced here for
convenience:

@XOH

@t
¼ (2kf

XOH
2

K
( XH2Om 1( XH2Om ( XOHð Þ

% &
ðC:4Þ

The mole fraction of molecular water XH2Om and hydro-
xyl water XOH at each node is represented by a value in a
2* nmatrix: XH2Om xið Þ and XOH xið Þ. The initial distribution
of molecular and hydroxyl water in the ‘wet’ and ‘dry’ parts
of the diffusion couple is computed from the nominal total
water concentration by assuming equilibrium at the starting
temperature. As before, the outer boundaries have a Neu-
mann boundary condition, such that the diffusive flux of
water is zero (i.e. DH2Om@XH2Om=@x ¼ 0 at x1 and xn).

The function that is called by the solver ODE15s is rep-
resented by the following pseudo-code:

1. Determine the temperature at the current timestep
(Appendix A).

2. Calculate the mole fraction of total water at each
node using XH2Ot ¼ XH2Om þ XOH=2 (from Eq. (E.2)).

3. Calculate the diffusivity of total water DH2Ot at each
node using Eqs. (13) and (14) (piecewise model, with
coefficients from Table 2) based on current tempera-
ture and the concentration of total water at each
node (from mole fraction of total water, using Eq.
(E.2)).

4. Calculate the equilibrium constant K at each node
using either Eq. (24) (ideal mixing) or Eq. (25) (regu-
lar solution) based on current temperature and mole
fractions of water species (for regular solution).

5. Calculate the diffusivity of molecular water DH2Om at
each node using Eq. (23).

6. Determine spatial gradient in mole fraction of molec-
ular water @XH2Om=@x at each node using the diff
() function on the mole fraction array XH2Om xið Þ.

7. Determine the diffusive flux at each node
J ¼ DH2Om@XH2Om=@x; set J ¼ 0 at x1 and xn.

8. Determine the gradient of the diffusive flux @J=@x at
each node using the diff() function on the flux
array J xið Þ; this is equal to the diffusive component
of @XH2Om=@t (Eq. (16)) at each node, according to
Fick’s second law.

9. Calculate the forward reaction rate kf at each node
using Eq. (20), based on current temperature and
mole fraction of total water.

10. Calculate the speciation component of @XH2Om=@t
(Eq. (17)) at each node, based on local mole fraction
of water species.

11. Add the diffusive and speciation components to
determine @XH2Om=@t at each node.

12. Calculate @XOH=@t using Eq. (19)/(C.4).

In this way, ODE15s solves @XH2Om=@t and @XOH=@t for
each node throughout the duration of the diffusion-couple
experiment. The final output is the mole fraction matrix
XH2Om xið Þ and XOH xið Þ at the end of the experiment, which
is converted to weight percent using Eq. (E.2).

APPENDIX D. MINIMIZING INITIAL GUESSES FOR
DIFFUSION COEFFICIENTS

The minimization of the forward numerical models
requires an initial ‘guess’ for the coefficients in the piecewise
(Eq. (13) and (14)) and exponential (Eq. (15)) functions for
the diffusivity of total water as a function of concentration
of total water DH2Ot CH2Otð Þ. The piecewise function requires

guesses for coefficients a1, a3, a4, a6, and CBrk
H2Ot

, and the

exponential model requires guesses for coefficients
b1 ' ' ' b4. We determine initial guesses for these coefficients
by fitting equations (13) and (15) to the DH2Ot CH2Otð Þ data
computed using the Sauer-Freise method in Section 4.1.

We perform the minimization using the built in
MATLAB algorithm MultiStart from the global opti-
mization toolbox. MultiStart runs a local solver from
multiple initial starting points (trials) in order to search
for local minima and the global minimum. This approach
is well-suited to cases where there is no a priori knowledge
of the parameter values. Each trial local minimization is
performed using the built in MATLAB FminCon algo-
rithm, which is called by MultiStart (see https://
uk.mathworks.com/help/gads/multistart.html for a
detailed description). The objective function we are mini-
mizing is the root mean square error, defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ( oð Þ2

q

where f are the forecasts which are computed using the
functional forms of the diffusion equation and o are the
observations determined by the Sauer-Freise method. We
averaged the DH2Ot CH2Otð Þ for each different experimental
temperature using a moving radius window of 0.25 wt.%
H2Ot so that the resulting RMSE was equally weighted
by temperature (note that 5 out of 14 experiments are at
1100 !C). Therefore, averaging for each temperature
reduces the effect of greater sampling at a single tempera-
ture (e.g., 1100 !C).
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APPENDIX E. CONVERTING BETWEEN
CONCENTRATION AND MOLE FRACTION

The concentration of total water is the sum of the con-
centrations of molecular and hydroxyl water:

CH2Ot ¼ CH2Om þ COH ðE:1Þ

where all concentrations are expressed as wt.%. Mole frac-
tion and concentration are related via the following equa-
tions (Zhang and Ni, 2010)

XH2Ot ¼
CH2Ot
MH2O

CH2Ot
MH2O

þ
100(CH2Ot

Mmelt

XH2Om ¼ CH2Om

CH2Ot
XH2Ot

XOH ¼ 2 XH2Ot ( XH2Omð Þ
XO

$ ¼ 1( XH2Om ( XOH

ðE:2Þ

where MH2Ot ¼ 18:015 g mol(1 is the molar mass of water,
and Mmelt is the molar mass of the dry silicate melt, which
is approximately 32.575 g mol(1 for the samples used in this
study.

APPENDIX F. EXTENDING RANGE OF VALIDITY
OF THE FORWARD REACTION RATE MODEL

Zhang et al. (1997b) conduct controlled cooling experi-
ments on rhyolites to determine the dependence of the for-
ward reaction rate of Eq. (1) on temperature and
concentration of total water. They assume an Arrhenius
relationship:

kf ¼ Akf e
(Ef
RT ðF:1Þ

where R ¼ 8:314 J mol(1 K(1 is the ideal gas constant, Akf

is a pre-exponential factor, and Ef is the activation energy.
Based on their experimental results, Zhang et al. (1997b)

find Akf ¼ 1:01* 1033XH2Ot
7 s(1 and

Ef ¼ 42; 620R ¼ 354 kJ mol(1, valid for cooling rates in
the range 0.00017–1 K s(1, and CH2Ot in the range 0.5–
3 wt.%. Zhang et al. (2000) present further experimental
data that cover a wider range of cooling rates and water
concentrations; we combine those data with the data from
Zhang et al. (1997b) to develop an updated version of Eq.
(F.1) with extended validity.

Zhang (1994) present an expression for the relaxation
timescale sf of the forward reaction in Eq. (1) at the tem-
perature of apparent equilibrium on quenching, T ae:

sf ¼ 2RT ae
2

qmax Ef ;Eb
( ) ðF:2Þ

where q is the cooling rate and max Ef ;Eb
( )

is the greater of
the activation energies for the forward and backwards reac-
tions – we follow Zhang et al. (1997b) and use
max Ef ;Eb

( )
¼ Ef ¼ 354 kJ mol(1. Zhang (1994) also give

an expression for sf at T ae in terms of the forward and
backward reaction rates which, via Eq. (2), can be
expressed as

sf ¼ 1

kf XH2Om½ .eq þ XO
$

+ ,
eq

# $
þ 4 kf

K XOH½ .eq
ðF:3Þ

where X i½ .eq indicates the mole fraction of species i at equi-
librium. Equating Eqs. (F.2) and (F.3), yields

Akf ¼ 1

2RT ae
2

qaemax Ef ;Ebð Þ e
(Ef
RTae XH2Om½ .eq þ XO

$
+ ,

eq þ
4

Kae
XOH½ .eq

# $

ðF:4Þ

where the subscript ae indicates that the quantity is eval-
uated at the temperature of apparent equilibrium. Values of
qae and Kae are computed from the data of (Zhang et al.,
1997b, 2000) following the approach outlined in Zhang
et al. (2000). The pre-exponential factor Akf is then com-
puted using Eq. (F.4) for the whole dataset and plotted as
a function of the mole fraction of total water in Fig. F1.

The best fit straight line through the combined data is
given by lnAkf ¼ 78:55ð+0:17Þ þ 7:65ð+0:6Þ lnXH2Ot ,
errors represent the 95% confidence interval of the fit. Sub-
stituting this relationship into Eq. (F.1) gives the following
empirical expression for the forward reaction rate

kf ¼ e 78:55+0:17ð ÞXH2Ot
7:65+0:6ð Þe

(42620
T ðF:5Þ

which is valid for cooling rates from 0.00017 to 94 K/s and
H2Ot concentrations from 0.5 to 7.7 wt.%.

APPENDIX G. SUPPLEMENTARY MATERIAL

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.gca.2020.02.026.
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