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1. Background 

Most ecological or environmental datasets, collected by individual 
researchers or small projects, are viewed as being from the “long tail of 
science” because they are low volume and formatted according to the 
needs of the individual scientist (Heidorn, 2008). These small, tabular, 
site-based datasets often document historical environmental conditions, 
providing a reference by which to assess environmental change. 
Through the integration of disparate datasets from many small projects, 
broader temporal and spatial scale research questions can be addressed, 
offering vast potential for new inferences about regional or global level 
processes. Integrating long-tail data can be daunting, however, because 
they may differ by temporal and spatial scales, units, semantics, data 
collection methodology, sampling design, and data organization. Hence, 
harmonizing heterogeneous datasets prior to analysis may be far more 
time-consuming than the data analysis itself (Anaconda, 2020; Wick
ham, 2014), and several mechanisms to streamline the process of inte
grating data have been proposed or implemented in the last decade. 

Data repositories support and ease the process of data integration by 
providing FAIR (Findable, Accessible, Interoperable, and Reusable) data 
(Wilkinson et al., 2016). Before data can be integrated, they must be 
findable, and a repository usually offers several ways to query its corpus 
of metadata. Repositories that require extensive, standardized metadata 
and keywords from standard vocabularies may offer increased discov
erability through faceted data searches (Diepenbroek et al., 2017). 
Accessibility of data is ensured when repositories 1) assign a persistent 
identifier such as a DOI to each dataset, 2) provide a clear data use li
cense, and 3) provide manual or web services API data download 

capabilities. Interoperability is a function of the quality of metadata 
required by the repository. A repository that accepts detailed metadata 
in a standard format such as the Ecological Metadata Language (EML) 
(Fegraus et al., 2005), which describes the physical structure of a 
dataset, allows automated data extraction from the repository to port 
into workflows for data integration. The quality and richness of meta
data have a direct bearing on data reusability. Metadata without ele
ments such as parameters, units, methods and study design description 
may render a dataset of little use to a synthesis project. Lack of metadata 
is considered a risk factor for future data reusability (Mayernik et al., 
2020). 

One challenge to data integration is understanding the meaning of 
terms, or concepts, used in the metadata and data to describe parameter 
names, sampling and analytical methods. Within a given data integra
tion project, a common set of terms and their definitions must be 
adopted that can be mapped to the source datasets to harmonize se
mantics across all datasets (Soranno et al., 2015). For datasets using an 
idiosyncratic set of terms, interpreting the meaning of parameter names 
may require time-consuming consultation with the data originator 
before datasets can be combined. Data integration would require less 
effort if data providers used standardized domain terminologies and 
definitions when selecting parameter names or assigning keywords. 
Although in some disciplines, such as organismal trait research, several 
controlled vocabularies are in use (e.g., Garnier et al., 2017; Walls et al., 
2012), smaller projects that integrate trait data rarely refer to them 
(Schneider et al., 2019). In other disciplines, e.g., ecology, it may still be 
difficult to know which terminology is of highest quality or most 
appropriate to apply. Implementation of ontologies will further assist 
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data integration efforts by clarifying semantic relationships between 
concepts in the dataset, improving data discovery and interoperability 
(Kissling et al., 2018a, 2018b; Parr et al., 2016). 

Data are most easily integrated and reused if they are provided in a 
community developed standard format with standard terminology. The 
Darwin Core Archive (DwC-A) is an example of a data standard that 
stores species data in a self-contained dataset along with a metadata file 
indicating how the data are organized (Wieczorek et al., 2012). Pa
rameters in the data files are drawn from the Darwin Core glossary of 
terms, and the structured, XML-based metadata file in the DwC-A fa
cilitates machine readability of the data. The Global Biodiversity In
formation Facility (GBIF) accepts data that are submitted as DwC-A files 
and then aligns them based on Darwin Core terms. GBIF can then enable 
integration of hundreds of millions of species occurrence records from 
many different sources through its data portal (Heberling et al., 2021). 

Once data are prepared in such a community-accepted standard 
format, automation of data processing steps has the potential to greatly 
accelerate the pace of data integration. The lack of standardization in 
repository approaches to data discovery, filtering, retrieval, and pro
cessing, however, can make workflow implementation challenging, as 
illustrated by the following example from the biodiversity research 
community. Automated workflows are needed that can reliably repro
duce the steps required to derive Essential Biodiversity Variables (EBV) 
(Pereira et al., 2013), which integrate large numbers of heterogeneous 
species occurrence records that vary across space, time, and taxa from 
many repositories. Hardisty et al. (2019) developed workflows to use 
GBIF and Atlas of Living Australia to find, filter, and then retrieve spe
cies occurrence data for further processing and merging into a common 
EBV data product. Although both repositories supply biodiversity data 
and offer similar features, each workflow required custom coding, 
expert advice, and the use of tools external to the repository to complete. 
The authors concluded that repositories need to cooperate to harmonize 
their infrastructure and integrate more tools to facilitate repeatable and 
efficient data processing. 

A limiting factor for any data synthesis project is availability of 
relevant datasets. Many datasets from small-scale government agency or 
academic projects have never been contributed to repositories. There are 
many reasons why researchers do not share data (Kim and Zhang, 2015; 
Astell and Admin, 2018), among which is the lack of incentives to do so. 
This is changing as publishers and funders require data publication from 
authors and grant recipients, and because repositories now assign 
persistent identifiers to datasets, making it possible for dataset authors 
to receive credit for their dataset via a citation. Data citation offers other 
benefits, such as improved scientific reproducibility and provenance 
tracking. Yet datasets are frequently either not cited or cited incorrectly 
(Vannan et al., 2020). Increased awareness of the importance of this 
practice is needed so that data providers can get credit for contributing 
their data to a repository. 

2. This special issue 

In this special issue we share seven papers that describe current data 
synthesis efforts and consider mechanisms for accelerating the pace of 
data integration. The papers touch on the topics identified above, 
illustrating their efficacy, or suggesting needed changes to data man
agement approaches by researchers or data repositories. 

First, a project to harmonize quantitative individual plant-level trait 
data from multiple heterogeneous sources such as taxonomic revisions 
and ecological datasets is described (Lenters et al., 2021). The authors 
developed a workflow that accepts as inputs Excel files with non- 
standard formats and terminologies and a metadata form, filled out by 
the data provider. The metadata form facilitates linking of terms in the 
input dataset to standardized terms from ontologies such as the Plant 
Trait Ontology. R scripts identify errors in the input files, validate the 
metadata, integrate the input datasets, and generate four harmonized, 
machine-readable output files with semantic links to existing ontologies. 

The workflow was successfully used to integrate 15 palm datasets with 
nearly 140,000 individual plant trait measurements. 

Second, Ely et al. (2021) describe development of a metadata and 
data reporting format for leaf-level gas exchange data, which are widely 
used in synthesis projects and for model parameterization. These data 
require specialized expertise to collect, are output in different formats by 
different instruments, and are rarely accompanied by metadata suffi
cient for unambiguous data interpretation. This project undertook to 
develop a unifying standard format for archiving these data to promote 
discoverability and reuse. By engaging over eighty data providers and 
data users, consensus was reached on a reporting format that includes 
guidance for variable names and definitions, file structure, units and 
metadata content. Archive of data consistent with this reporting format 
will improve useability, lessening the burden of data integration of leaf- 
level gas exchange data. 

Third, Bond-Lamberty et al. (2021) describe a metadata and data 
reporting format for observations of soil-to-atmosphere carbon dioxide 
flux, or soil respiration. No centralized repository exists for these 
chamber-level measurements, and the aim of this project is to facilitate 
archiving the data in a machine actionable format that fosters data 
synthesis across multiple data sources. With community input, the au
thors selected standard variable names and definitions, and developed a 
suite of templates to help data providers format their data per the 
standard. The reporting standard is maintained in an open online github 
repository and will evolve as community needs change. 

Fourth, O’Donnell et al. (2021) describe their process for harmo
nizing long-term greater sage-grouse monitoring data collected by state 
agencies in nine states in the western United States. The authors detail 
how they standardized the data across different sampling methodolo
gies, terminologies, degrees of quality control and data file structures. 
An open source software tool was generated to automate the integration 
of the state datasets. The paper includes several figures and tables 
illustrating analyses performed with the synthesized dataset. 

Fifth, Huber et al. (2021) explore how machine actionability of data 
and metadata varies across data repositories. Data synthesis would be 
more efficient if data and metadata could be read directly into analytical 
environments from persistent identifiers, without the need for inter
vention by a human. The authors surveyed multiple research in
frastructures (RIs), such as PANGAEA and NEON, and found that dataset 
persistent identifiers resolve to human-accessible landing pages and do 
not provide machine-actionable links to data objects. They also observed 
that individual RIs develop specialized software libraries to allow con
nections between their APIs and the many programming languages used 
by scientists for data analysis. The landscape of tools used to access and 
ingest RI data and metadata into analytical platforms is thus heteroge
neous and not standardized. The authors argue for future coordination 
among RIs to harmonize technologies and develop generic approaches 
to loading data into analysis tools, regardless of the programming lan
guage used. They offer a roadmap to reach this goal with specific 
implementation suggestions. 

Sixth, O’Brien et al. (2021) discuss how raw ecological community 
data held in repositories can be processed by repository personnel into a 
harmonized format to facilitate data integration. Community observa
tion data frequently differ with respect to data collection protocols and 
environmental sampling conditions, making them a challenge to syn
thesize. Data managers from the Environmental Data Initiative (EDI) 
repository and National Ecological Observatory Network (NEON) 
cooperated to develop a data model that accommodates different types 
of measurements, sampling designs, and taxonomic resolution. NEON 
and EDI have transformed 530 datasets into this format, called eco
comDP. Both infrastructures have developed workflows and an R code 
library (Smith and Sokol, 2021) that will regenerate the harmonized 
data products when the underlying raw data are updated. DwC-A files 
can also be created. An advantage of this approach to providing 
harmonized data is that it does not result in a separate database for the 
harmonized data, but rather includes the transformed datasets in the 
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repository that houses the raw data. 
Finally, Agarwal et al. (2021) explore approaches for citing groups of 

datasets from the perspective of both data producers, who want credit 
for their data being used, and data users, who want a compact citation. 
Ensuring that all datasets used in a data integration effort are appro
priately cited may be problematic if the number of dataset citations 
exceeds the space available for them in a paper. The authors discuss 
three current approaches—data collections, dynamic data citations, and 
data papers– for resolving citation and credit issues in the context of 
different use cases from their experiences with earth and environmental 
science data. They note that none of these methods solve all issues and 
propose that a ‘container’ with a unique identifier could contain cita
tions for anything from dynamic data citations to data papers to sup
porting documentation about the resources in the ‘container’. 

3. Conclusions 

This special issue illustrates that progress is being made toward 
making long-tail data less time-consuming and difficult to integrate. 
Based on these papers, we can offer some recommendations to scientists 
and data repositories whose goal is to make data more interoperable and 
reusable: 

1) Use of domain-specific standard terminologies by both data pro
viders and repositories can significantly lessen the pre-analysis time 
needed to harmonize datasets. When data providers do the work of 
mapping their data to standardized resources containing concepts 
and their definitions, they make the data easier to understand, sup
port machine processing, and make the data more discoverable;  

2) Employing a common data format for a given scientific domain, 
whether the formatting is done by the data provider or by the re
pository, facilitates machine actionability and reduces the need for 
tedious pre-harmonization dataset transformations;  

3) Data repositories should coordinate technology development to 
provide a common set of tools to support data and metadata inges
tion into arbitrary analytical platforms. This approach will allow 
repositories to benefit from economies of scale, and researchers will 
not have to develop different workflows for each data repository they 
use; and  

4) For situations where datasets are too numerous to cite individually in 
a synthesis paper, the ecological informatics community needs to 
provide clear citation advice to ensure that data providers receive 
credit and data synthesizers have a succinct citation. 
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Schigel, D., Schulz, K.-S., Skidmore, A., Guralnick, R.P., 2018b. Towards global data 
products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 
1531–1540. https://doi.org/10.1038/s41559-018-0667-3. 

Lenters, T.P., Henderson, A., Dracxler, C.M., Elias, G.A., Kamga, S.M., Couvreur, T.L.P., 
Kissling, W.D., 2021. Integration and harmonization of trait data from plant 
individuals across heterogeneous sources. Ecol. Inform. 62, 101206. https://doi.org/ 
10.1016/j.ecoinf.2020.101206. 

Mayernik, M.S., Breseman, K., Downs, R.R., Duerr, R., Garretson, A., Hou, C.-Y. Sophie, 
Committee, E.D.G.I. (EDGI) and E.S.I.P. (ESIP) D.S, 2020. Risk assessment for 
scientific data. Data Sci. J. 19, 10. https://doi.org/10.5334/dsj-2020-010. 

O’Brien, M., Smith, C.A., Sokol, E.R., Gries, C., Lany, N., Record, S., Castorani, M.C.N., 
2021. ecocomDP: A flexible data design pattern for ecological community survey 
data. Ecol. Inform. 64, 101374 https://doi.org/10.1016/j.ecoinf.2021.101374. 

O’Donnell, M.S., Edmunds, D.R., Aldridge, C.L., Heinrichs, J.A., Monroe, A.P., Coates, P. 
S., Prochazka, B.G., Hanser, S.E., Wiechman, L.A., Christiansen, T.J., Cook, A.A., 
Espinosa, S.P., Foster, L.J., Griffin, K.A., Kolar, J.L., Miller, K.S., Moser, A.M., 
Remington, T.E., Runia, T.J., Schreiber, L.A., Schroeder, M.A., Stiver, S.J., 
Whitford, N.I., Wightman, C.S., 2021. Synthesizing and analyzing long-term 
monitoring data: a greater sage-grouse case study. Ecol. Inform. 63, 101327. https:// 
doi.org/10.1016/j.ecoinf.2021.101327. 

Parr, C.S., Schulz, K.S., Hammock, J., Wilson, N., Leary, P., Rice, J., Corrigan Jr., R.J., 
2016. TraitBank: practical semantics for organism attribute data. Semant. Web 7, 
577–588. https://doi.org/10.3233/SW-150190. 

Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., 
Bruford, M.W., Brummitt, N., Butchart, S.H.M., Cardoso, A.C., Coops, N.C., 

K. Vanderbilt and C. Gries                                                                                                                                                                                                                    

https://doi.org/10.1016/j.ecoinf.2021.101251
https://doi.org/10.1016/j.ecoinf.2021.101251
https://www.anaconda.com/state-of-data-science-2020
https://www.anaconda.com/state-of-data-science-2020
https://doi.org/10.6084/m9.figshare.5996786.v4
https://doi.org/10.1016/j.ecoinf.2021.101280
https://doi.org/10.1016/j.jbiotec.2017.07.016
https://doi.org/10.1016/j.ecoinf.2021.101232
https://doi.org/10.1890/0012-9623(2005)86[158:MTVOED]2.0.CO;2
https://doi.org/10.1111/1365-2745.12698
https://doi.org/10.1111/1365-2745.12698
https://doi.org/10.1088/1748-9326/aaf5db
https://doi.org/10.1073/pnas.2018093118
https://doi.org/10.1073/pnas.2018093118
https://doi.org/10.1353/lib.0.0036
https://doi.org/10.1016/j.ecoinf.2021.101245
https://doi.org/10.1016/j.ecoinf.2021.101245
https://doi.org/10.1016/j.lisr.2015.04.006
https://doi.org/10.1111/brv.12359
https://doi.org/10.1038/s41559-018-0667-3
https://doi.org/10.1016/j.ecoinf.2020.101206
https://doi.org/10.1016/j.ecoinf.2020.101206
https://doi.org/10.5334/dsj-2020-010
https://doi.org/10.1016/j.ecoinf.2021.101374
https://doi.org/10.1016/j.ecoinf.2021.101327
https://doi.org/10.1016/j.ecoinf.2021.101327
https://doi.org/10.3233/SW-150190


Ecological Informatics 64 (2021) 101372

4

Dulloo, E., Faith, D.P., Freyhof, J., Gregory, R.D., Heip, C., Höft, R., Hurtt, G., 
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