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1. Background

Most ecological or environmental datasets, collected by individual
researchers or small projects, are viewed as being from the “long tail of
science” because they are low volume and formatted according to the
needs of the individual scientist (Heidorn, 2008). These small, tabular,
site-based datasets often document historical environmental conditions,
providing a reference by which to assess environmental change.
Through the integration of disparate datasets from many small projects,
broader temporal and spatial scale research questions can be addressed,
offering vast potential for new inferences about regional or global level
processes. Integrating long-tail data can be daunting, however, because
they may differ by temporal and spatial scales, units, semantics, data
collection methodology, sampling design, and data organization. Hence,
harmonizing heterogeneous datasets prior to analysis may be far more
time-consuming than the data analysis itself (Anaconda, 2020; Wick-
ham, 2014), and several mechanisms to streamline the process of inte-
grating data have been proposed or implemented in the last decade.

Data repositories support and ease the process of data integration by
providing FAIR (Findable, Accessible, Interoperable, and Reusable) data
(Wilkinson et al., 2016). Before data can be integrated, they must be
findable, and a repository usually offers several ways to query its corpus
of metadata. Repositories that require extensive, standardized metadata
and keywords from standard vocabularies may offer increased discov-
erability through faceted data searches (Diepenbroek et al., 2017).
Accessibility of data is ensured when repositories 1) assign a persistent
identifier such as a DOI to each dataset, 2) provide a clear data use li-
cense, and 3) provide manual or web services API data download
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capabilities. Interoperability is a function of the quality of metadata
required by the repository. A repository that accepts detailed metadata
in a standard format such as the Ecological Metadata Language (EML)
(Fegraus et al., 2005), which describes the physical structure of a
dataset, allows automated data extraction from the repository to port
into workflows for data integration. The quality and richness of meta-
data have a direct bearing on data reusability. Metadata without ele-
ments such as parameters, units, methods and study design description
may render a dataset of little use to a synthesis project. Lack of metadata
is considered a risk factor for future data reusability (Mayernik et al.,
2020).

One challenge to data integration is understanding the meaning of
terms, or concepts, used in the metadata and data to describe parameter
names, sampling and analytical methods. Within a given data integra-
tion project, a common set of terms and their definitions must be
adopted that can be mapped to the source datasets to harmonize se-
mantics across all datasets (Soranno et al., 2015). For datasets using an
idiosyncratic set of terms, interpreting the meaning of parameter names
may require time-consuming consultation with the data originator
before datasets can be combined. Data integration would require less
effort if data providers used standardized domain terminologies and
definitions when selecting parameter names or assigning keywords.
Although in some disciplines, such as organismal trait research, several
controlled vocabularies are in use (e.g., Garnier et al., 2017; Walls et al.,
2012), smaller projects that integrate trait data rarely refer to them
(Schneider et al., 2019). In other disciplines, e.g., ecology, it may still be
difficult to know which terminology is of highest quality or most
appropriate to apply. Implementation of ontologies will further assist


mailto:krvander@fiu.edu
www.sciencedirect.com/science/journal/15749541
https://www.elsevier.com/locate/ecolinf
https://doi.org/10.1016/j.ecoinf.2021.101372
https://doi.org/10.1016/j.ecoinf.2021.101372
https://doi.org/10.1016/j.ecoinf.2021.101372
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecoinf.2021.101372&domain=pdf

K. Vanderbilt and C. Gries

data integration efforts by clarifying semantic relationships between
concepts in the dataset, improving data discovery and interoperability
(Kissling et al., 2018a, 2018b; Parr et al., 2016).

Data are most easily integrated and reused if they are provided in a
community developed standard format with standard terminology. The
Darwin Core Archive (DwC-A) is an example of a data standard that
stores species data in a self-contained dataset along with a metadata file
indicating how the data are organized (Wieczorek et al., 2012). Pa-
rameters in the data files are drawn from the Darwin Core glossary of
terms, and the structured, XML-based metadata file in the DwC-A fa-
cilitates machine readability of the data. The Global Biodiversity In-
formation Facility (GBIF) accepts data that are submitted as DwC-A files
and then aligns them based on Darwin Core terms. GBIF can then enable
integration of hundreds of millions of species occurrence records from
many different sources through its data portal (Heberling et al., 2021).

Once data are prepared in such a community-accepted standard
format, automation of data processing steps has the potential to greatly
accelerate the pace of data integration. The lack of standardization in
repository approaches to data discovery, filtering, retrieval, and pro-
cessing, however, can make workflow implementation challenging, as
illustrated by the following example from the biodiversity research
community. Automated workflows are needed that can reliably repro-
duce the steps required to derive Essential Biodiversity Variables (EBV)
(Pereira et al., 2013), which integrate large numbers of heterogeneous
species occurrence records that vary across space, time, and taxa from
many repositories. Hardisty et al. (2019) developed workflows to use
GBIF and Atlas of Living Australia to find, filter, and then retrieve spe-
cies occurrence data for further processing and merging into a common
EBV data product. Although both repositories supply biodiversity data
and offer similar features, each workflow required custom coding,
expert advice, and the use of tools external to the repository to complete.
The authors concluded that repositories need to cooperate to harmonize
their infrastructure and integrate more tools to facilitate repeatable and
efficient data processing.

A limiting factor for any data synthesis project is availability of
relevant datasets. Many datasets from small-scale government agency or
academic projects have never been contributed to repositories. There are
many reasons why researchers do not share data (Kim and Zhang, 2015;
Astell and Admin, 2018), among which is the lack of incentives to do so.
This is changing as publishers and funders require data publication from
authors and grant recipients, and because repositories now assign
persistent identifiers to datasets, making it possible for dataset authors
to receive credit for their dataset via a citation. Data citation offers other
benefits, such as improved scientific reproducibility and provenance
tracking. Yet datasets are frequently either not cited or cited incorrectly
(Vannan et al., 2020). Increased awareness of the importance of this
practice is needed so that data providers can get credit for contributing
their data to a repository.

2. This special issue

In this special issue we share seven papers that describe current data
synthesis efforts and consider mechanisms for accelerating the pace of
data integration. The papers touch on the topics identified above,
illustrating their efficacy, or suggesting needed changes to data man-
agement approaches by researchers or data repositories.

First, a project to harmonize quantitative individual plant-level trait
data from multiple heterogeneous sources such as taxonomic revisions
and ecological datasets is described (Lenters et al., 2021). The authors
developed a workflow that accepts as inputs Excel files with non-
standard formats and terminologies and a metadata form, filled out by
the data provider. The metadata form facilitates linking of terms in the
input dataset to standardized terms from ontologies such as the Plant
Trait Ontology. R scripts identify errors in the input files, validate the
metadata, integrate the input datasets, and generate four harmonized,
machine-readable output files with semantic links to existing ontologies.
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The workflow was successfully used to integrate 15 palm datasets with
nearly 140,000 individual plant trait measurements.

Second, Ely et al. (2021) describe development of a metadata and
data reporting format for leaf-level gas exchange data, which are widely
used in synthesis projects and for model parameterization. These data
require specialized expertise to collect, are output in different formats by
different instruments, and are rarely accompanied by metadata suffi-
cient for unambiguous data interpretation. This project undertook to
develop a unifying standard format for archiving these data to promote
discoverability and reuse. By engaging over eighty data providers and
data users, consensus was reached on a reporting format that includes
guidance for variable names and definitions, file structure, units and
metadata content. Archive of data consistent with this reporting format
will improve useability, lessening the burden of data integration of leaf-
level gas exchange data.

Third, Bond-Lamberty et al. (2021) describe a metadata and data
reporting format for observations of soil-to-atmosphere carbon dioxide
flux, or soil respiration. No centralized repository exists for these
chamber-level measurements, and the aim of this project is to facilitate
archiving the data in a machine actionable format that fosters data
synthesis across multiple data sources. With community input, the au-
thors selected standard variable names and definitions, and developed a
suite of templates to help data providers format their data per the
standard. The reporting standard is maintained in an open online github
repository and will evolve as community needs change.

Fourth, O’Donnell et al. (2021) describe their process for harmo-
nizing long-term greater sage-grouse monitoring data collected by state
agencies in nine states in the western United States. The authors detail
how they standardized the data across different sampling methodolo-
gies, terminologies, degrees of quality control and data file structures.
An open source software tool was generated to automate the integration
of the state datasets. The paper includes several figures and tables
illustrating analyses performed with the synthesized dataset.

Fifth, Huber et al. (2021) explore how machine actionability of data
and metadata varies across data repositories. Data synthesis would be
more efficient if data and metadata could be read directly into analytical
environments from persistent identifiers, without the need for inter-
vention by a human. The authors surveyed multiple research in-
frastructures (RIs), such as PANGAEA and NEON, and found that dataset
persistent identifiers resolve to human-accessible landing pages and do
not provide machine-actionable links to data objects. They also observed
that individual RIs develop specialized software libraries to allow con-
nections between their APIs and the many programming languages used
by scientists for data analysis. The landscape of tools used to access and
ingest RI data and metadata into analytical platforms is thus heteroge-
neous and not standardized. The authors argue for future coordination
among Rls to harmonize technologies and develop generic approaches
to loading data into analysis tools, regardless of the programming lan-
guage used. They offer a roadmap to reach this goal with specific
implementation suggestions.

Sixth, O’Brien et al. (2021) discuss how raw ecological community
data held in repositories can be processed by repository personnel into a
harmonized format to facilitate data integration. Community observa-
tion data frequently differ with respect to data collection protocols and
environmental sampling conditions, making them a challenge to syn-
thesize. Data managers from the Environmental Data Initiative (EDI)
repository and National Ecological Observatory Network (NEON)
cooperated to develop a data model that accommodates different types
of measurements, sampling designs, and taxonomic resolution. NEON
and EDI have transformed 530 datasets into this format, called eco-
comDP. Both infrastructures have developed workflows and an R code
library (Smith and Sokol, 2021) that will regenerate the harmonized
data products when the underlying raw data are updated. DwC-A files
can also be created. An advantage of this approach to providing
harmonized data is that it does not result in a separate database for the
harmonized data, but rather includes the transformed datasets in the
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repository that houses the raw data.

Finally, Agarwal et al. (2021) explore approaches for citing groups of
datasets from the perspective of both data producers, who want credit
for their data being used, and data users, who want a compact citation.
Ensuring that all datasets used in a data integration effort are appro-
priately cited may be problematic if the number of dataset citations
exceeds the space available for them in a paper. The authors discuss
three current approaches—data collections, dynamic data citations, and
data papers- for resolving citation and credit issues in the context of
different use cases from their experiences with earth and environmental
science data. They note that none of these methods solve all issues and
propose that a ‘container’ with a unique identifier could contain cita-
tions for anything from dynamic data citations to data papers to sup-
porting documentation about the resources in the ‘container’.

3. Conclusions

This special issue illustrates that progress is being made toward
making long-tail data less time-consuming and difficult to integrate.
Based on these papers, we can offer some recommendations to scientists
and data repositories whose goal is to make data more interoperable and
reusable:

1) Use of domain-specific standard terminologies by both data pro-
viders and repositories can significantly lessen the pre-analysis time
needed to harmonize datasets. When data providers do the work of
mapping their data to standardized resources containing concepts
and their definitions, they make the data easier to understand, sup-
port machine processing, and make the data more discoverable;
Employing a common data format for a given scientific domain,
whether the formatting is done by the data provider or by the re-
pository, facilitates machine actionability and reduces the need for
tedious pre-harmonization dataset transformations;

Data repositories should coordinate technology development to
provide a common set of tools to support data and metadata inges-
tion into arbitrary analytical platforms. This approach will allow
repositories to benefit from economies of scale, and researchers will
not have to develop different workflows for each data repository they
use; and

For situations where datasets are too numerous to cite individually in
a synthesis paper, the ecological informatics community needs to
provide clear citation advice to ensure that data providers receive
credit and data synthesizers have a succinct citation.
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