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Abstract

A current challenge in the fields of evolutionary, ecological, and conservation genomics is 

balancing production of large-scale datasets with additional training often required to handle 

such datasets. Thus, there is an increasing need for conservation geneticists to continually learn 

and train to stay up-to-date through avenues such as symposia, meetings, and workshops. The 

ConGen meeting is a near-annual workshop that strives to guide participants in understanding 

population genetics principles, study design, data processing, analysis, interpretation, and 

applications to real-world conservation issues. Each year of ConGen gathers a diverse set of 

instructors, students, and resulting lectures, hands-on sessions, and discussions. Here, we 

summarize key lessons learned from the 2019 meeting and more recent updates to the field with 

a focus on big data in conservation genomics. First, we highlight classical and contemporary 

issues in study design that are especially relevant to working with big datasets, including the 

intricacies of data filtering. We next emphasize the importance of building analytical skills and 

simulating data, and how these skills have applications within and outside of conservation 

genetics careers. We also highlight recent technological advances and novel applications to 

conservation of wild populations. Finally, we provide data and recommendations to support 

ongoing efforts by ConGen organizers and instructors—and beyond—to increase participation 
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of underrepresented minorities in conservation and eco-evolutionary sciences. The future 

success of conservation genetics requires both continual training in handling big data and a 

diverse group of people and approaches to tackle key issues, including the global biodiversity-

loss crisis.

Subject area: Conservation Genomics and Biodiversity

Key words:  population genetics theory, ecological genomics, biodiversity conservation, experimental design, big data filtering, 

metabarcoding, bioinformatics, training workshops, career planning

When learning classic population genetics theory, we initially con-

sider a single locus with 2 alleles (e.g., Wright 1951). The challenge 

and exciting promise of the field of conservation genomics is to scale 

our efforts up to thousands or millions of loci and multiple whole-

genome sequences in order to address pressing issues of conserva-

tion concern. This escalation requires a set of analytical skills for 

processing big data that are not as straightforward as those required 

in decades past (e.g., Tanjo et al. 2020; McLeish et al. 2021). Thus, 

these big data advances necessitate ongoing learning and training for 

most conservation geneticists because the field is expanding so dy-

namically. Online courses, published literature, web forums, work-

shops, meetings, and seminars are all means to keep up to date.

The ConGen meeting (https://www.umt.edu/ces/conferences/

congen/default.php) is one way to address the aforementioned chal-

lenges and includes training sessions with lectures from experienced 

instructors, hands-on exercises, and synergistic learning through dis-

cussions. From 2–7 September 2019, 36 students and 13 expert in-

structors gathered at the 11th ConGen meeting in Montana, United 

States, to consider the latest conceptual and bioinformatic challenges 

in conservation and population genomic studies. Many of these 

topics have been presented and summarized in previous reviews of 

ConGen meetings (Andrews and Luikart 2014; Benestan et al. 2016; 

Hendricks et al. 2018a; Stahlke et al. 2020), and we refer interested 

readers to those papers.

Here, we present advances in recent and ongoing issues identified 

at the 2019 meeting and, beyond that, focus on a primary theme 

of big data in conservation genetics. We guide readers through 5 

topics that include 1) classical and modern considerations of study 

design, 2) considerations and consequences of data filtering, 3) the 

value of simulations, computational proficiency, and developing 

transferable skills, and 4) novel applications of recent technological 

advancements to conservation. In our fifth topic, we present data 

collected over several years of ConGen meetings that describe trends 

of gender representation and country-of-origin at the meeting itself, 

with goals and actions for further improving the participation of 

under-represented groups at future meetings and beyond.

Topic 1: Considering Study Design in the Era of 

Big Data in Conservation Genetics

Population genetics theory and careful study design are fundamental 

to conducting informative genomic studies (Allendorf 2017); even 

the most cutting-edge genomic techniques cannot compensate for a 

poor study design or deficient understanding of theory. Furthermore, 

given that sequencing is still relatively expensive and samples in 

conservation studies may be precious, researchers might only have 

one opportunity to pursue a study, emphasizing the importance of 

careful planning. Identifying the type and scale of genomic data to 

collect will depend on numerous factors, including your question, 

the project budget, the size and complexity of your study organism’s 

genome, career goals, and the genomic and bioinformatic resources 

available for your focal species or a closely related species (Figure 

1; Allendorf et al. 2010; Hohenlohe et al. 2018). In this section, we 

discuss both classic and contemporary issues related to devising a 

study in conservation genetics, with some special considerations for 

managing large, complex datasets.

A well-defined study question and hypothesis are critical to 

choosing among the numerous options of genomic techniques 

available in light of inherent trade-offs. In other words, given your 

scientific question, which genomic technique should you use? Are 

you interested in examining neutral or adaptive processes or some 

combination of both? Assessing neutral processes such as historical 

demography, admixture, migration, and/or current population struc-

ture might require only tens to hundreds of anonymous genome-

wide markers, while detecting processes such as local adaptation, 

introgression, selective sweeps, and/or adaptive potential may re-

quire sequencing candidate adaptive loci, genotyping thousands of 

markers genome-wide, or novel high-throughput sequencing ap-

proaches (HTS; e.g., Schweizer et al. 2016; Hohenlohe et al. 2018; 

Luikart et al. 2018; Lim et al. 2021; Lovell et al. 2021).

Additional issues to consider include the desired density of 

markers across the genome (which is influenced by population gen-

etic variation and research question), the number of individuals 

versus populations available or required to address the question 

(e.g., minimum sample sizes can vary dramatically by analytical 

technique), the availability of previously ascertained genomic re-

sources, and access to computational resources, including bioinfor-

matics expertise (Hohenlohe et al. 2018). For example, the size and 

complexity of the study organism’s genome, along with linkage 

disequilibrium (LD: non-randomly associated loci)  along chromo-

somes, will determine whether whole-genome sequencing (WGS) is 

required or if reduced representation sequencing will suffice (e.g., 

RADseq, Andrews et al. 2016). Understanding which factors affect 

genome complexity (e.g., repetitiveness, proportion coding/intronic) 

will also help decide which genomic approach is best suited for the 

target organism.

Many considerations go into the choice of which genotyping tech-

nique to use for your study. If your study requires WGS (see Allendorf 

et  al. 2010; Hohenlohe et  al. 2018), do you have access to a refer-

ence genome for your species or a closely related species? If not, you 

could produce an annotated assembly, on your own or with a com-

mercial company such as Dovetail Genomics (https://dovetailgenomics.

com/). Once you have decided how many samples are necessary for 

your study, consider what depth of sequencing coverage is required. 

Long-term population monitoring efforts, or other studies which might 

require consistent sequencing of the same loci across many individ-

uals, are still feasible with reduced representation sequencing through 
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an approach such as Rapture (Ali et al. 2016) or RADcap (Hoffberg 

et al. 2016). Finally, do you have access to the bioinformatics resources 

and expertise needed to process and analyze the resulting data? If not, 

open-source, web-based platforms such as Galaxy (https://usegalaxy.

org/) may be useful for some computing. You can learn bioinformatics 

locally, take an online course, or collaborate with a bioinformatician. 

There are many options for free online courses, such as those through 

Coursera (https://www.coursera.org/courses?query=bioinformatics), 

edX (https://www.edx.org/learn/bioinformatics), or DataCamp (https://

www.datacamp.com/).

There are multiple avenues for choice of sequencing tech-

nology (Table 1), data analysis, filtering, and more. Even at the 

early stages of study design, it is important to consider how data 

will be filtered and which computational methods will be used 

for analyses, so that factors such as sequencing effort (e.g., read 

depth), number of individuals, and expected number of filtered 

SNPs can be included in cost estimates before project initiation. 

Aspects such as data filtering are discussed in more detail in the 

next section. We also recommend more specific references that 

discuss study design in RAD-seq (Andrews et al. 2016), targeted 

capture (Jones and Good 2016), RNA-seq (Todd et al. 2016), and 

WGS (Ekblom and Wolf 2014). Newcomers to the field of con-

servation genomics may especially appreciate the efforts of these 

authors to define common terms and jargon that may otherwise 

cause confusion.

Topic 2: Navigating the Perils of Data Filtering

Gone are the days of hand-checking the quality of data; such 

practices would be impossible across thousands or millions of 

Figure 1. Factors and questions to ask oneself when designing a conservation genomics study. Researchers may have to balance cost, feasibility, genomic 

information, computational resources, availability of collaborators, sequencing services (e.g., commercial companies), and characteristics of the target species’ 

life history while keeping the main goals of the study a priority. Genome characteristics to consider (if data are available) might include size, complexity, 

nucleotide diversity, and extent of linkage disequilibrium along chromosomes. Goals of the study might include those relevant to the ecology and evolution of 

a taxon, or even a goal to gain experience using high-throughput sequence data for more marketable skills.
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SNPs. Thus, a major challenge of working with big data sets for 

conservation genetics is deciding on adequate but not too strin-

gent filtering of SNPs. In this section, we discuss several aspects 

of filtering data that should be carefully considered while plan-

ning an experiment, as well as during quality control and at the 

analytical stages.

Why and How to Filter SNP Data?

Commonly, SNP data are filtered to achieve the following goals: 

1)  to improve reliability of genotype data, and 2)  to reduce cor-

relations of information content (lack of independence) across 

loci. There are technical solutions that help address some of these 

goals (Ali et  al. 2016; O’Leary et  al. 2018). For example, using 

Unique Molecular Identifiers (UMI) to remove PCR duplicates can 

help to improve accuracy of heterozygote calls (Aird et  al. 2011; 

Krehenwinkel et al. 2017; Euclide et al. 2020), randomizing samples 

among libraries and including technical replicates can minimize the 

effects of sequencing errors (O’Leary et al. 2018), and use of target 

enrichment (i.e., probes or biotinylated adaptors) can improve se-

quence quality (Souza et al. 2017; Rochette et al. 2019). However, 

technical solutions are constantly being updated and discussed in 

the literature (Aird et al. 2011; Krehenwinkel et al. 2017; Euclide 

et al. 2020), leaving an inevitably important role for data filtering 

in any population genomics project. Understanding the goals, pros, 

and cons of each filtering step can help one make up-to-date choices 

of appropriate filters.

Reliability

A major goal of data filtering is to avoid using data that do not re-

flect true genotypes. SNP genotypes, especially when well-validated, 

can be more repeatable and more easily standardized than microsat-

ellites or other methods (Morin et al. 2004). However, SNP calls are 

not infallible, notably when called from high-throughput sequencing 

data. There are at least 3 main sources of unreliable genotypes. 

First, the genetic locus might not follow Mendelian segregation or 

Hardy-Weinberg (HW) proportions if, for example, it is a restric-

tion or amplified fragment length polymorphism (e.g., where some 

individuals lack the restriction site or have allelic dropout), or if the 

locus represents one of multiple pseudogenes or repetitive elements 

(Vuylsteke et al. 2007). Waples (2015) covers the history of filtering 

to address this problem in his review of filtering for HW propor-

tions, and others have reviewed the applications and pitfalls of ap-

plying such a filter to large genomics-scale datasets (O’Leary et al. 

2018; Meisner and Albrechtsen 2019).

Second, preparation of DNA for high-throughput sequencing 

for SNP genotyping (e.g., RADseq, targeted DNA capture) intro-

duces sources of error such as inconsistent sequencing of loci, vari-

ance in coverage, null alleles, and PCR artifacts. The effects and their 

Table 1. Summary of several approaches to obtaining genotypes, including what each method may measure, when it might be used, some 

potential drawbacks, and a few references for further study

Genotyping approach What can best be measured? Why or when to use it? Key drawbacks Ref.

Restriction site-

associated DNA 

sequencing (RAD-seq)

Genetic diversity metrics (F
ST

, 

H
e
), individual inbreeding, 

relatedness, hybridiza-

tion & introgression, DNA 

methylation for epigenetic 

studies (BsRAD-seq).

1) When first establishing genome 

resources for a species and/or large 

genome size, or no or poor genome 

reference, 2) low budget but need 

1000s of loci, 3) to screen 1000s of 

loci to identify 100–5k informative 

loci ideal for your question.

Not as useful for measures of 

linkage disequilibrium (LD), 

local adaptation (if LD is low), 

or variation in coding regions. 

Data filtering greatly influences 

downstream population genetic 

inferences. 

1–9

RAD capture Same as above but for targeted 

markers discovered from a 

RAD-seq experiment.

For establishing longer term monitor-

ing programs or subsequent research 

where many individuals will be geno-

typed (e.g., annually for monitoring).

Expensive initial investment for 

marker discovery with array de-

sign and purchase (but pays off if 

genotyping thousands of individ-

uals with ~500–50 000 loci).

10–12

Targeted capture Individual-based genetic diver-

sity metrics, population- 

level allele frequencies, coding 

region variants, etc.

For sequencing or re-sequencing can-

didate genes or other regions, when 

high coverage for a subset of the 

genome, or repeated use of markers 

is needed. 

Can be expensive to design 

and generate probes (but see 

ExCapSeq and EecSeq); need 

a reference sequence for probe 

design. 

13–15

Whole-genome 

sequencing- low depth 

of coverage (<10X), 

including Pool-Seq

Population-level allele fre-

quencies, with individuals 

barcoded or not (Pool-Seq) 

When individual genotypes are 

not important, e.g., measuring 

population-level variation, genome- 

wide signatures of selection, 

identifying runs of homozygosity and 

inversions.

Expensive when genome size is 

large (e.g., >1.5 Gb), requires 

large sample sizes (30–50 at a 

minimum), Pool-Seq has no indi-

vidual barcodes or genotypes.

16–21

Whole-genome 

sequencing—high depth 

of coverage (>10X)

Individual genotypes with high 

genome contiguity and fidelity.

Many uses, including building refer-

ence genome, individual genotype- 

level analyses, and characterization of 

structural variants.

Cost prohibitive when reference 

genome size is large (e.g., >1.5 

Gb) or complicated to sequence 

(e.g., highly repetitive, high het-

erozygosity). 

22–23

Note that some methods (e.g., RNA-Seq, BsRAD-Seq, Methyl-Seq) are not discussed here. References: 1) Miller et al. 2007; 2) Baird et al. 2008; 3) Hohenlohe 

et al. 2010; 4) Hoffman et al. 2014; 5) Andrews et al. 2016; 6) Kovach et al. 2016; 7) McKinney et al. 2017; 8) Shafer et al. 2017; 9) Marconi et al. 2019; 10) Ali 

et al. 2016; 11) Hoffberg et al. 2016; 12) Kelson et al. 2020; 13) Jones & Good 2016; 14) Hendricks, et al. 2018b; 15) Puritz & Lotterhos 2018; 16) Ekblom & 

Wolf 2014; 17) Therkildsen & Palumbi 2017; 18) Kofler et al. 2011; 19) Schlötterer, et al. 2014; 20) Kardos et al. 2015; 21) Micheletti & Narum 2018; 22) Koepfli 

et al. 2019; and 23) Wright et al. 2020.
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severity may vary with each library preparation (Korneliussen et al. 

2014; O’Leary et al. 2018).

Third, bioinformatics pipelines and filtering choices can intro-

duce biases and errors of their own, such as alignment clustering 

errors that can cause artefactual contigs, which in turn influence 

variant detection and genotyping (Shafer et al. 2017). For example, 

bioinformatic approaches that do not identify and remove dupli-

cated sequences (i.e., reads from paralogs that are treated as the 

same locus) can produce artefactual contigs, introducing error by 

artificially increasing heterozygosity (McKinney et  al. 2018). Such 

filtering errors can lead to faulty conclusions. For example, Larson 

et al. (2021) reanalyzed published data and found that incomplete 

bioinformatic filtering could cause erroneous conclusions that the 

harvesting of fish populations drove a rapid reduction in body size 

of walleye.

Across software programs, there could be differences in variant 

detection from the same sequence data due to variation in the 

underlying methods that account for and correct sequencing errors 

(Baes et al. 2014; Hwang et al. 2015; Mielczarek and Szyda 2016; 

Wright et  al. 2019), and to a lesser degree, differences in geno-

type calls (Bresadola et  al. 2020). In some cases, it is possible to 

assign probabilities to SNP calls, and these can be used as grounds 

for filtering based on confidence in the true underlying genotype. 

Alternatively, one can deal directly with the probabilities rather 

than called genotypes, which allows one to incorporate and account 

for statistical uncertainty in downstream analysis (e.g., ANGSD, 

Korneliussen et al. 2014). This approach has merit, but can preclude 

the use of software designed to handle “hard” genotype calls, so is 

only useful when downstream analysis software is built to work with 

genotype likelihoods.

Finally, single-occurrence alleles (singletons) are common and 

can be the majority of the genotyped loci, but can also represent a 

combination of genotyping and sequencing errors (Hotaling et  al. 

2018). Obviously, it is desirable to remove singletons that are a re-

sult of technical errors. However, true rare alleles can also provide 

useful information on fine-scale gene flow, inference of demographic 

history, and local adaptation (Gravel et  al. 2011; O’Leary et  al. 

2018). Because it can be difficult to differentiate error from truth, 

scientists often implement a minor allele frequency (MAF) or minor 

allele count (MAC) filter. It is advised to test out multiple filtering 

thresholds before settling on one or two for subsequent data ana-

lysis, depending on the specific study (Shafer et al. 2017; Hendricks 

et al. 2018a).

Independence

Many genetic analyses assume that loci and individuals represent 

independent samples of genetic information. However, statistical in-

dependence can be violated both by sampling of loci that are in LD 

and by non-representative sampling of closely related individuals. 

Loci that are physically close together on the same chromosome are 

likely non-randomly associated and do not provide independent 

information. Closely related individuals also may not provide ac-

curate and independent information about population-level genetic 

processes such as demography, gene flow, or selection. A number of 

tests and models assume that loci in close physical linkage or geno-

typic disequilibrium are removed from the dataset. For example, 

the program LDNe assumes independent loci for calculation of ef-

fective population size (Waples and Do 2008), and GENECLASS 

assumes independence of individuals for detection of first-generation 

migrants (Piry et al. 2004). Characterizing linkage among loci can 

also help identify genomic regions undergoing positive selection, so 

whether the independence of loci and individuals becomes a problem 

will depend on the goals of a particular study. A recent study from 

Waples and colleagues (Waples et  al. 2020, bioRxiv) quantified 

pseudoreplication caused by LD in genomic-scale datasets. They 

showed that the marginal benefits to precision of adding more loci 

decline very quickly for estimating N
e
 via the LDNe method, and 

decline more slowly for estimating F
ST

. In both cases, the true con-

fidence intervals for large datasets are often much wider than is 

computed using current methods, which assume all loci (or pairs of 

loci) are independent. Studies such as those of Waples et al. (2020, 

bioRxiv) are useful for planning how many loci are needed when 

designing a genomics project.

Striking a Balance Between Over- and Under-

Filtering Genomic Data

Understanding the goals for filtering and optimizing filtering ap-

proaches for a specific dataset or question are continually evolving 

challenges of working with big data in conservation and eco-

evolutionary genomics. Once armed with an understanding of those 

challenges, one attempts to maximize the reliability of the dataset, 

that is, remove all erroneous data and retain all authentic data. 

However, there are no infallible ways of distinguishing between the 

two. For example, HW screening can be a useful way of detecting 

data errors, but comes with the risk of removing a true biological 

signal—including selection signals at outlier loci (Waples et al. 2015; 

Meisner and Albrechtsen 2019). Similarly, the stringency of LD fil-

tering (e.g., the magnitude of correlation and/or window size used 

when removing loci to determine which loci remain in downstream 

analysis) can be somewhat subjective, and the method will always 

accept some level of data loss in favor of removing redundant or 

erroneous data. MAF or MAC filters represent a continuous spec-

trum of possible screening stringency, and appropriate criteria will 

be case-specific (Hotaling et al. 2018; Linck and Battey 2019).

When measuring relatedness, it is not sufficient to identify all the 

possible relationship categories; one also wants to know whether 

close relatives appear in the sample more often than they would by 

chance. Even for random samples, removing close relatives reduces 

sample size and hence precision, so this has to be balanced against 

potential reductions in bias from removing relatives. For example, 

genetic indices of allele frequency, population differentiation, and 

effective population size are less precise when siblings are removed 

(Waples and Anderson 2017). Furthermore, filtering too conserva-

tively can reduce sample sizes to the point where they no longer an-

swer your questions because of low statistical power. This problem 

can be assessed and mitigated by step-wise filtering, for example, of 

missing data (Hotaling et al. 2018; O’Leary et al. 2018).

Striking a satisfactory balance between over- and under-filtering 

can be so “freaking” difficult that filtering has been called the 

“F-word” (Andrews and Luikart 2014; J. Seeb pers. comm.). Prior 

to initiating a new HTS-based project, we recommend consideration 

of potential filtering strategies since some steps of data filtering are 

influenced by library preparation, number of samples, and sam-

pling design, while others can be avoided with technical modifica-

tions prior to sequencing (see beginning of Topic 2). For example, 

increasing the amount of starting DNA or reducing the number of 

PCR cycles may diminish the risk of sequencing (then having to re-

move) PCR duplicates. Likewise, any prior knowledge of relatedness 

amongst individuals could be used to pick those that are least related, 

if appropriate for the project goals. In sum, we advise designing your 
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data collection efforts to minimize downstream biases and maximize 

the potential to solve outstanding issues in conservation.

Topic 3: Building Your Skills and Hedging 

Your Bets

Modern conservation genomics and big data analysis are aided by 

competence in a variety of fields, including bioinformatics, popula-

tion genetics theory, and molecular biology. As we describe in this 

section, building the skills to manage, simulate, and analyze large 

data sets will be useful for applications in academia, applied man-

agement, and beyond.

The Value of Simulation Modeling in Conservation 

Genetics

Among the most popular activities at each ConGen is Robin Waples’ 

simulation mini-project (Andrews and Luikart 2014). In small 

groups, participants use the program EasyPop (Balloux 2001) to 

simulate data and investigate the consequences of population sizes, 

migration rates, bottlenecks, mating systems, and divergence time 

on genetic diversity within populations and genetic differentiation 

among populations. Research questions addressed with simula-

tion might include: How do precision and bias differ for micro-

satellites and SNPs when using a given estimator or software (e.g., 

STRUCTURE, LDNe, BayesAss)? What are the relative benefits of 

sampling more individuals versus sampling more SNPs? How long 

does it take before a change in population size (e.g., bottleneck) can 

be detected with single-sample and temporal (2-sample) estimators 

of effective population size?

Small groups simulate data, analyze them, and prepare presen-

tations on their results, all in less than 24 hours (Figure 2). These 

intense, hands-on efforts not only allow participants to investigate 

the complex effects of population demography on estimating genetic 

diversity, but to also explore the power of relatively simple simula-

tions to address consequential questions in population and conserva-

tion genetics. Many groups learn how their questions can grow into 

large, factorial simulation study designs that quickly expand beyond 

the allotted time. This is an important primary lesson of simulation 

modeling: choose clearly defined questions and specific parameters 

of interest, because you will almost always have more questions that 

you will want to address once you get started.

Authors Ackiss and Watsa, participants at ConGen 2019, stress 

the value of both the hands-on analyses and the accompanying 

thought exercise. Designing simulations requires careful consider-

ation of the parameters that can be manipulated (e.g., sex ratios, 

mutation rate, migration model), which can be daunting when 

attempting to model complex population dynamics. Although to 

some degree simulations require oversimplifications of the natural 

systems being modeled, the process of designing and interpreting 

simulations also encourages deeper consideration of a study spe-

cies than often encountered in standard population genetics 

analyses. For example, predicting the time it will take to see meas-

urable effects from a disturbance (e.g., population fragmentation, 

bottleneck) requires an estimate of generation length and a clear 

understanding of reproductive strategy, often gleaned from life 

history studies of the target species in a natural setting. Even an 

oversimplified model using discrete generations can provide an in-

formative comparison to empirical data from populations exhib-

iting overlapping generations when the effects of these differences 

are considered (Waples et al. 2014).

Robin Waples’ ConGen exercise illustrates why simulation 

modeling is such a valuable skill to learn as a conservation or popu-

lation geneticist. However, diving into simulations for the first time 

can be intimidating. Developing a familiarity with the available 

program options is a good first step (see Hoban 2014, and the fre-

quently updated Genetic Simulation Resources catalog provided by 

the National Institute of Health (https://popmodels.cancercontrol.

cancer.gov/gsr/). There is no one ideal simulation program, there 

is only the program(s) best suited to address your question. Some 

programs are simple and easy to learn, while others provide more so-

phisticated functionality, but have a steeper learning curve. Reading 

papers, talking with colleagues, and honing your questions and hy-

potheses are all great ways to narrow down the options. The payoff 

for investing time in becoming proficient with one or more simula-

tion programs is the ability to address myriad questions of conse-

quence in conservation genetics.

Figure 2. Results generated by ConGen 2019 participants in the simulation 

exercises using EasyPop. Top (from the “Leopard” student group): Changes 

in F
ST

 for 4 populations, each of N
e
  =  100, that begin with identical allele 

frequencies at generation 0 and then diverge with island-model migration 

rates of 1% or 5% per generation. Notable results: 1)  Equilibrium F
ST

 is 

reached much faster at the higher migration rate. 2)  Even when data 

are averaged over 1000 diallelic (SNP) loci assayed for all individuals, 

demographic stochasticity leads to considerable generation-to-generation 

variance in F
ST

. Bottom (from the “Sparrow” group): Sensitivity of estimates 

of N
e
 (LDNe method) to detect a population bottleneck. At generation 

100, a panmictic population of N
e
  =  400 is fragmented into 4 isolated 

subpopulations of N
e
 = 100. In generations 101, 102, 104, 108, N

e
 is estimated 

for each subpopulation using data for 100 diallelic (SNP) loci assayed for all 

100 individuals. A single generation after the bottleneck, harmonic mean N
e
 

(117) is much closer to the reduced bottleneck size than the pre-bottleneck N
e
.
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For example, simulations can be used to test new and existing 

population genetic methods, providing a valuable service to the com-

munity by evaluating best practices, settings, recommended uses, and 

comparing different approaches (e.g., Evanno et al. 2005; Lotterhos 

and Whitlock 2014, 2015; Waples et  al. 2016; Zeller et  al. 2016; 

Forester et  al. 2018; Linck and Battey 2019; Battey et  al. 2020; 

Waples et al. 2020, bioRxiv; Allendorf et al. 2022). Simulations are 

also useful for designing appropriate sampling schemes in conser-

vation genetics research or monitoring and optimizing the value of 

limited conservation research funds (e.g., Hoban et al. 2013; Smith 

and Wang 2014; Blower et al. 2019; Selmoni et al. 2020; Luikart 

et al. 2021). For example, Waples and colleagues (Waples et al. 2020, 

bioRxiv) used simulations to systematically quantify the effects of 

non-independence amongst loci on overall information content. 

They found that if you have X total loci, after accounting for linkage 

you have the same information content as you would with Y com-

pletely independent loci (with the value of Y depending on covariates 

such as genome size, true effective size, and number of individuals 

sampled). So, if you simulate Y unlinked loci, it should approximate 

the precision you can expect with X total loci, and provide insight 

into how to design a useful sampling scheme.

Simulations can also be a powerful way to corroborate empir-

ical results and inform downstream management actions (Landguth 

et al. 2017; Thatte et al. 2018; Grueber et al. 2019; Hoban 2019; 

Rougemont et al. 2019, Ackiss et al. 2020; Antão et al. 2020). In 

addition, simulation data can be generated, analyzed, and written 

up from the office or home, providing a great backup for field or 

laboratory-based research that may be put on hold (e.g., due to the 

COVID-19 pandemic). Finally, simulations can greatly advance our 

understanding of a parameter’s behavior in certain biologically-

relevant scenarios, thereby allowing many biologists to improve 

their work (Kardos and Luikart 2021).

Other Computational Skills to Increase Efficiency 

and Transferability to Other Careers

Ever-increasing amounts of data, whether genome-scale sequencing 

data or simulated data, necessitate a corresponding computa-

tional skillset. Computational skills, such as familiarity with shell 

(https://linuxcommand.org/lc3_learning_the_shell.php), R (https://

www.r-project.org/), Python (www.python.org) or another scripting 

language, and the ability to move seamlessly between a Unix en-

vironment and Windows or Mac environment, facilitate the ease 

with which data can be managed, parsed, and ultimately ana-

lyzed. Indeed, it has been argued that “all biology is computational 

biology” (Markowetz 2017) and as datasets grow, this is increas-

ingly true. Moreover, as remote work becomes more common and 

we make sense of the new normal that has occurred since the start of 

the global COVID-19 pandemic, investing time in developing com-

putational skills will improve the speed, reproducibility, and utility 

of scientific pursuits (Carey and Papin 2018). For example, tools 

such as Rmarkdown (see below), which integrate across code blocks 

and formatted annotations, can be used to improve the reproduci-

bility of your research by providing details of each analytical step, 

from the raw data to figures in the paper. Furthermore, most sci-

entific software is now written in one of a few languages, most of 

which are introduced at ConGen, so understanding and navigating 

these languages will help within conservation genetics and beyond.

Another advantage of developing computational and reprodu-

cible research skills is that many careers outside of traditional science 

paths recommend or require them. There are lucrative data scientist 

positions in research and industry that biologists are well suited 

for because we are trained to analyze and make sense of complex 

datasets. Organizational skills that are the bedrock of reproducible 

computation, such as maintaining an organized workspace and 

keeping a corresponding computational notebook, demonstrate 

important know-how to future employers. Computational note-

books often make use of a language called “Markdown,” and there 

are well-maintained options for Python (Project Jupyter: https://

daringfireball.net/projects/markdown/; Google Collab: https://colab.

research.google.com) and R (RMarkdown: https://rmarkdown.

rstudio.com/index.html). One great resource for organizing compu-

tational biology projects is Noble (2009). Even if you are not yet 

in a position to execute analyses yourself, knowledge of how and 

why specific computational approaches are taken is essential for 

communication among a team (Carey et al. 2019). Specific compu-

tational skills that may be beneficial and transferable to other car-

eers include: 1) data management and processing, 2) data analysis, 

3) knowledge of a scripting language (e.g., Python), 4) version con-

trol (e.g., with github, https://github.com), 5) statistical computing 

(e.g., R, MatLab, or SAS), 6) data visualization, and 7) communica-

tion (Hampton et al. 2017).

Consideration of Backup Plans, Both for Data 

Analysis and Your Career

Backup plans for obtaining samples and analyzing data are crit-

ical parts of any initial study design. Even the best laid study plans 

can be derailed by unforeseen circumstances, such as years of low 

abundance for your study populations, an inability to get sampling 

permissions or international import/export permits for tissues, or a 

sudden loss of access to computing power, study populations or bio-

informatic expertise. Alternative sources of samples and data include 

accessing museum specimens or tissue biobanks (Buerki and Baker 

2016). Another source of data is the mining of publicly available 

genetic sequences from curated sources such as NCBI’s Short Read 

Archive (SRA; https://www.ncbi.nlm.nih.gov/sra), the Genomes 

OnLine Database (https://gold.jgi.doe.gov/), or EvolMarkers (Li 

et  al. 2012; http://bioinformatics.unl.edu/cli/evolmarkers/index.

html). As we detailed at the beginning of this section, conducting 

a computer simulation study also provides an alternative source of 

data for a dissertation chapter and influential publication to advance 

your career and your discipline.

With regard to data analyses, there are numerous secure net-

works for high-performance computing available that allow move-

ment and processing of terabyte-scale data (Langmead and Nellore 

2018) as well as commercial consultants (e.g., Duke Center for 

Genomic and Computational Biology (https://genome.duke.edu/

cores-and-services/genomic-analysis-and-bioinformatics/), Taxa 

Genomics (https://www.taxagenomics.com/), and Bioinformatics 

Consultants (https://www.bioinformaticsconsultants.com/) that 

can provide expert assistance. In addition to potentially saving 

a lost field season or study, using these approaches and resources 

can enhance your efficiency, skill set, and even your scientific and 

professional networks.

Just as study designs need backup options, career plans do as 

well; the curriculum at ConGen is designed for students to practice 

transferrable skills and provide them with knowledge and resources 

to be successful outside of their current focal research. Developing 

teaching and scientific communication skills will increase your 

work’s visibility and your employment options. For example, faculty 

that can effectively teach introductory genomics and bioinformatics 
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are in high demand (Campion et al. 2019; Goodman et al. 2020). 

Adequately communicating the value, potential, and limitations of 

genomics to resource managers and the public is also important. You 

can gain these experiences by offering your skills to regional natural 

resource managers and by volunteering to present your work to local 

community groups, museums, zoos, or schools. You may learn that 

you enjoy and have a talent for teaching and outreach, opening up 

the possibility of working in conservation management or education.

In this section, we have suggested skills to learn and strengthen, 

such as the ability to simulate data, work efficiently with large data 

sets, and plan for backup research projects, data sources, and car-

eers. Students at ConGen practice these skills throughout the course, 

and leave more suited to obtain their research and career potential.

Topic 4: Emerging Technologies and 

Applications to Conservation Genetics

Certainly, a key driver of the challenges of working with big data in 

conservation is the continual release of newer, more powerful, and 

often cheaper technologies. In this section, we detail some recent 

technological advances, with a focus on how those technologies have 

been or could be used in conservation-specific applications.

Reference Genomes and Detection of Structural 

Variants

Long-read sequencing platforms like Pacific Biosciences (PacBio) and 

Oxford Nanopore Technology, along with long insert library preps 

(Chicago and Dovetail Hi-C), are quickly improving the quality and 

quantity of reference genomes available in conservation and popu-

lation genomics. Over about 10 years, PacBio sequencing platforms 

have changed 3 times from the original PacBio RS I in 2011, to the 

RS II, to the Sequel 1 in 2015, and Sequel II in 2019 (https://www.

pacb.com/products-and-services/sequel-system/). The Sequel II has 

decreased the costs of sequencing approximately 10-fold over the 

RS II platform while dramatically increasing accuracy, opening the 

way for conservation genomics research, which often lags behind 

in funding support. Meanwhile, Oxford Nanopore sequencers have 

increased the ability to sequence long strands of DNA outside of a 

lab through development of pocket-size sequencing platforms like 

the MinION in-the-field (reviewed in Krehenwinkel et  al. 2019; 

https://nanoporetech.com/products/minion). To take advantage of 

long-read technologies, recent genome assembly algorithms (e.g., 

Flye: Kolmogorov et  al. 2019; Redbean: Ruan and Li 2019) have 

been designed specifically for these types of data and also focus on 

rapid assembly compared to the most commonly used long-read as-

sembly programs (e.g., FALCON: Chin et al. 2016; CANU: Koren 

et al. 2017).

Genome assembly has also received a further boost from 

commercial-based genome assembly services that can perform all 

steps—including sample preparation, sequencing, assembly, and 

gene annotation—often producing highly contiguous assemblies 

using long-read technologies (Armstrong et  al. 2020; Nong et  al. 

2020). Cost for a chromosome-level assembly (including all bio-

informatics) is $15 000 to $20 000 for many bird or mammal species 

with genome sizes of 1 to 3 Gb. Draft genomes can be produced for 

less than $5000, or even less if one opts to do the assembly oneself 

after purchasing a sequencer.

Although improvements in HTS technologies have many bene-

fits to conservation genomics, one major advantage of a higher 

quality genome assembly is the potential to detect structural 

variants that occur in the form of insertion/deletions, copy number 

variants, and inversions (Hohenlohe et  al. 2018). Studies that use 

mainly low depth of coverage WGS (Table 1) can still benefit from 

identifying structural variants that are likely to also be under selec-

tion (Wellenreuther et al. 2019), or infer haplotype information for 

historical demography and selection (Leitwein et al. 2020). However, 

accurate identification of structural variants is still a relatively new 

practice in many species and requires careful consideration and pos-

sibly the application of multiple tools (Kuzniar et al. 2020). Despite 

being a relatively new practice, many cutting-edge examples exist for 

reference (e.g., Special Issue, Molecular Ecology, 2019; Tigano et al. 

2020, bioRxiv).

Genomics for Informative Marker Sets

The use of low-cost genotyping methods such as GT-seq and Rapture 

is continuing to revolutionize the field of conservation genomics 

(Meek and Larson 2019). This is due to declining sequencing ex-

penses and creative, economical methods of preparing libraries and 

targeting loci. As a result, conservation biologists can target thou-

sands of loci even without a reference genome and can use these 

genotyping panels to assess a variety of fundamental and applied 

questions (see Topic 1 and Allendorf et al. 2010).

Targeted amplicon panels such as GT-seq panels can incorp-

orate both previously-established genetic resources, including 

microsatellite panels (Bradbury et al. 2018; Gruenthal and Larson 

2021) and TaqMan qPCR  assays (McKinney et  al. 2020), and 

novel genomic data from RAD-seq, RNA-seq or low-coverage 

WGS (e.g., Bootsma et  al. 2020; Schmidt et  al. 2020). This 

asset allows conservation geneticists to continue long-term moni-

toring initiatives while leveraging the capabilities of recent gen-

omic advances to target the most informative loci for resource 

management. These panels provide a cost-effective means to 

survey taxa at the individual and population level (Campbell et al. 

2015; Meek and Larson 2019), are effective on low-quality DNA 

from non-invasive samples such as hair and feces (Natesh et al. 

2019; Eriksson et  al. 2020), and can be designed to supply the 

most pertinent information for the system of interest, including 

the presence of adaptive differences, sex determination, and stock 

or ecotype identification. As new genomic resources are devel-

oped, it is relatively easy to incorporate new amplicon loci into 

existing panels either directly or via pooling prior to sequencing. 

Amplicon panels also offer the added benefit of microhaplotypes 

(multiple SNPs at a locus treated as a single haplotype), which 

can substantially increase the power of genetic stock identification 

(McKinney et  al. 2017; McKinney et  al. 2020) and relationship 

inference (Baetscher et al. 2018).

The utility of microhaplotypes was briefly highlighted in the 

ConGen 2017 summary (Hendricks et  al. 2018a), and since then 

an increasing number of studies have incorporated the analysis of 

multi-SNP loci. For example, Baetscher et al. (2019) used parentage 

analysis with 96 microhaplotype markers to examine the dispersal 

of rockfish offspring within and around marine reserves and con-

servation areas. Additionally, Reid et al. (2020) used a panel of 114 

microhaplotype loci to assign ecotype ancestry and examine hy-

bridization in a previously landlocked population of alewife after 

new fish passages restored access to the ocean after 300  years of 

isolation. Finally, Morin et al. (2021) illustrated the value of small 

numbers of microhaplotypes derived from degraded tissue samples 

in identifying population and stock structure in the North Pacific 

harbor porpoise, a nearshore species of conservation concern that is 
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difficult to sample in the wild (see also Batz et al. 2020; McKinney 

et al. 2020; Bootsma et al. 2021).

Pool-Seq, a cost-efficient approach to low-coverage WGS 

(Table 1), is also a tool of increasing use by the conservation gen-

omics community and supported by community-built bioinfor-

matic tools tailored to this type of data (e.g., PoolParty, Micheletti 

and Narum 2018; poolfstat, Hivert et  al. 2018). Careful con-

sideration of sampling design is important when undertaking a 

pooled-sequencing project because, once pooled, individual-level 

genotype data are lost. It is essential to use replicate pools and 

sufficient sample sizes per pooled population (at least 30–50 in-

dividuals) for accurate estimation of allele frequencies (Futschik 

and Schlötterer 2010; Gautier et  al. 2013; Lynch et  al. 2014; 

Schlötterer et al. 2014), in addition to following standard recom-

mended sampling protocols for low-coverage WGS data such as 

maintaining equal sex ratios within populations (Benestan et al. 

2017). When these factors are accounted for, this approach is 

a cost-efficient method to identify selective sweeps across the 

genome for multiple populations and to identify the genetic basis 

of important phenotypes and life-history traits (Narum et  al. 

2018; Chen and Narum 2021; Horn et al. 2020).

Conservation Epigenetics

Epigenetics, and particularly DNA methylation studies, are a rela-

tively underexplored aspect of conservation biology, yet may serve as 

a direct measure of an organism’s response to its environment (Rey 

et al. 2019). Epigenetic markers can provide information on past and 

present stress caused by the environment, including current physio-

logical condition (Rey et al. 2019). Additionally, epigenetic mechan-

isms can translate environmental selection pressures into heritable 

changes in phenotype (Mukherjee et al. 2019). However, assessing 

DNA methylation has previously required a high-quality genome 

and/or only surveying a subset of an organism’s methylation profile 

via CG methylation (Marconi et al. 2019).

An exciting new approach is that of MCSeEd (Methylation 

Content Sensitive Enzyme ddRAD), which does not require a ref-

erence genome but surveys whole-genome methylation patterns in a 

cost-effective manner (Marconi et al. 2019). This type of approach 

could, for example, enhance previous studies examining the role of 

epigenetic mechanisms in rapid adaptation to new environments in 

species of conservation concern, such as Chinook salmon (Venney 

et al. 2020) and Darwin’s finches (McNew et al. 2017).

There is also evidence that epigenetic mechanisms may be im-

portant in rapid evolutionary changes such as those involved in 

host-parasite coevolution (Mukherjee et al. 2019), and could pro-

vide solutions to managing wildlife diseases such as transmissible 

cancer in marsupials (Ingles and Deakin 2015). Finally, reduced sets 

of epigenetic markers are being developed to determine biological 

age clocks (reviewed in Horvath and Raj 2018). These tools may 

be invaluable in long-term monitoring of mammals for whom age 

cannot be easily determined.

High-Throughput Approaches to Assess 

Wildlife Health

Wildlife health intersects with human health in many ways, brought 

into startling focus by the COVID-19 pandemic. Coronavirus, like 

many human pathogens, is thought to have emerged via a zoo-

notic spillover event (Ye et al. 2020). Yet, broad genomic screening 

for multiple wildlife diseases occurs less frequently (Watsa et  al. 

2020) than targeted approaches that track specific pathogens (e.g., 

Batrachochytrium pathogen in amphibians; Farrer et  al. 2017). 

Metagenomic approaches have advantages of screening for multiple 

pathogens in less-studied or newly-identified systems. For instance, 

viral community diversity in vampire bats across the Americas varied 

not with colony size or inter-colony distance, but instead with ele-

vational gradient and availability of anthropogenic food resources 

(Bergner et  al. 2020). High-throughput sequencing can identify 

human-wildlife interfaces with increased contact, identify hotspots 

for pathogen transmission, and finally, assist in vector surveillance 

via DNA derived from invertebrate parasites (iDNA; Kocher et al. 

2017) to screen diseases in hosts (Titcomb et  al. 2019). Another 

relatively new tool for conservation biologists is VirScan. This 

system combines microarray-based immunoprecipitation with high-

throughput sequencing to screen for large numbers of antibodies in 

very small quantities of blood (Burbelo et al. 2019), and is highly 

customizable for specific pathogen or host groups.

Metabarcoding and metagenomic approaches also provide 

exciting, powerful approaches to wildlife health. For example, 

metagenomics can be used to detect effects of stress, malnutrition, 

or starvation using noninvasively-collected fecal samples from wild-

life (Moustafa et al. 2021; Yan et al. 2021). Combined with creative 

uses of technology, such as unmanned aerial vehicles, metagenomic 

sampling can even be used to sample respiratory microbiomes 

(Centelleghe et  al. 2020). We expect the continued application of 

cutting-edge approaches of technology, HTS, and big data to revolu-

tionize studies of wildlife health.

Staying Up to Date

Sequencing technologies, assembly algorithms, and genotyping 

software continue to change at a rapid pace, and it can be difficult 
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Figure 3. Data on participation of self-identifying females at 9  years of 

ConGen workshops. A) Percent female instructors over time. B) Percent 

female student participants over time. ConGen was not held in 2010, 2012, or 

2014. Data are not available for some years when ConGen was held (A—2006, 

2009, 2011 and 2015, B—2009, 2011).
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to keep abreast of new developments. Luckily, there are several 

peer-reviewed resources for learning about these topics, such as 

Annual Review of Genomics and Human Genetics, Nature Reviews 

Genetics, Biotechnology Advances, and other journals (e.g., Hess 

et al. 2020; Schloss et al. 2020). Non-peer-reviewed options include 

development platforms such as GitHub (https://github.com/), forums 

such as SEQanswers (http://seqanswers.com/), and genomics-specific 

news outlets such as GenomeWeb (https://www.genomeweb.com/

sequencing). Additionally, many annual conferences have sessions 

or booths that feature representatives from sequencing companies 

that may provide information on upcoming technological develop-

ments, such as the Plant and Animal Genome conference or ConGen 

workshop. Equipped with these resources, scientists will continue to 

tackle pressing questions of conservation with cutting-edge big data 

approaches.

Topic 5: Trends Towards Increasing Participant 

Diversity in Conservation Genomics

Scientists from different backgrounds offer an array of experi-

ences, opinions, and insights, all of which result in increased 

performance (e.g., Hong and Page 2004) and increased repre-

sentation of role models in the sciences (Jimenez et  al. 2019). 

However, the fields of ecology and evolution continue to suffer 

Figure 4. International representation of participants from 9 years of ConGen workshops. A) Countries shaded according to total number of participants. B) 

Total number of countries represented by student participants over time. ConGen was not held in 2010, 2012, or 2014. Data are not available for ConGen 2011. 

Note that in 2006, ConGen was held in Porto, Portugal, and participants’ country of origin, not place of current employment, was recorded, and so had a larger 

number of countries represented than in other years when ConGen was held in Montana, United States. Country of student-participant origin is the country of 

current residence/employment. Many students residing in the United States are citizens of other countries, which may further diversify the number of countries 

beyond what is represented here.
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from gender, ethnic, racial, and socioeconomic inequalities in aca-

demic and federal government positions (Arismendi and Penaluna 

2016; Jimenez et  al. 2019). Hendricks et  al. (2018a) reviewed 

gender bias in the conservation genetics and population gen-

omics fields, focusing on overcoming systematic biases against 

women, and others have highlighted key strategies to support 

Black, Indigenous, and people of color in the field (Tseng et  al. 

2020). Here we present data from ConGen workshops to investi-

gate trends in gender identity of instructors and students, as well 

the diversity of participants in career level and representation of 

students worldwide.

We gathered available information on participants and in-

structors from 9 years of ConGen courses held from 2006 to 2019. 

The participation of female instructors has increased during the 

13 years of ConGen courses, rising from less than 10% represen-

tation in 2007 to almost 50% in 2018 and 2019 (Figure 3A). In 

contrast, self-identifying male and female students have been rep-

resented in roughly equal numbers since the beginning of ConGen 

(37–74% female, Figure 3B), and the overall mean is approxi-

mately 55% female. Students from 38 different countries have at-

tended ConGen courses since 2006, with 5 to 26 countries being 

represented in any given year (from the 9 years with available data, 

Figures 3C and 4). Career level data for 2013–2019 show that the 

majority of ConGen participants are graduate students and post-

docs (Figure 5). A  recent increase in participants from state and 

federal agencies and non-profit organizations may reflect ConGen’s 

emphasis on genomics methods and bioinformatics, which draws in 

career professionals who learned population genetics before the gen-

omics revolution.

The faculty, researchers, and government agency employees who 

participate further increase the reach and impact of ConGen by 

sharing what they have learned with their students and colleagues. 

As one example, after teaching at ConGen in 2019, author Ramstad 

used the ConGen course as a model for a new undergraduate course 

in Population Genomics for the Biology and Geology department at 

University of South Carolina Aiken. USC Aiken has a highly diverse 

student body (30% underrepresented minorities, 65% female), with 

a large number of first-generation college students (at least 21%) 

and a high proportion of students (at least 24%) from low-income 

families. This new course at USC Aiken is a tangible outcome of how 

instructors of ConGen may over time increase underrepresented mi-

norities in conservation genomics.

While the trends for instructors and students at ConGen have im-

proved, there is still room for improvement. For example, the ability 

of ConGen organizers to assess progress is limited by the data col-

lected; there is still a lack of data on ethnicity, age, socioeconomic 

status, and disability status. Other areas of improvement include 

more targeted advertisement, outreach, and scholarships, which 

could diversify participation in future ConGen workshops, and 

other related courses.

Conclusions and Outlook

The challenge in conservation genetics of scaling efforts from a 

few loci to millions of loci can require additional training in com-

puter sciences, statistics, and population genetics theory. Symposia, 

meetings, and workshops are educational resources that may help 

fill this training gap. Here, we have summarized key updates to the 

field of conservation genomics and the necessary tasks for dealing 

with big data. We highlighted classical and contemporary issues in 

how study design should be carefully considered to align with re-

search questions, and how to strike a balance between over- and 

under-filtering high-throughput sequencing data. Furthermore, 

we presented several key suggestions for building one’s skills as a 

conservation genomicist, including learning how to simulate data, 

how to improve efficiency in multiple stages of the workflow using 

computational skills, and how to continually consider backup plans 

for data analysis and career. We presented updates on sequencing 

technologies, highlighting their applications to conservation biology, 

as well as how to stay informed on technological and methodo-

logical changes. Finally, we presented data collected during 9 years 

of ConGen courses, which show an increase in female participation 

at the instructor level that may reflect and reinforce the retention of 

women in conservation genetics. Looking forward, we hope that the 

ConGen workshop and others will continue to strive for excellence 

in training of the next generation of conservation biologists in con-

ceptual and practical aspects of data analysis, while also ensuring 

those participants and their instructors represent a diverse array of 

backgrounds and perspectives which is increasingly needed to help 

curb the global conservation crisis.

Figure 5. Participants by career level, including graduate students, postdocs, researchers (principal investigators), faculty, and government agency/non-profit 

professionals. ConGen was not held in 2010, 2012, or 2014, and career level data are not available prior to 2013.
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