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Abstract

A current challenge in the fields of evolutionary, ecological, and conservation genomics is
balancing production of large-scale datasets with additional training often required to handle
such datasets.Thus, there is an increasing need for conservation geneticists to continually learn
and train to stay up-to-date through avenues such as symposia, meetings, and workshops.The
ConGen meeting is a near-annual workshop that strives to guide participants in understanding
population genetics principles, study design, data processing, analysis, interpretation, and
applications to real-world conservation issues. Each year of ConGen gathers a diverse set of
instructors, students, and resulting lectures, hands-on sessions, and discussions. Here, we
summarize key lessons learned from the 2019 meeting and more recent updates to the field with
a focus on big data in conservation genomics. First, we highlight classical and contemporary
issues in study design that are especially relevant to working with big datasets, including the
intricacies of data filtering. We next emphasize the importance of building analytical skills and
simulating data, and how these skills have applications within and outside of conservation
genetics careers. We also highlight recent technological advances and novel applications to
conservation of wild populations. Finally, we provide data and recommendations to support
ongoing efforts by ConGen organizers and instructors—and beyond—to increase participation
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of underrepresented minorities in conservation and eco-evolutionary sciences. The future
success of conservation genetics requires both continual training in handling big data and a
diverse group of people and approaches to tackle key issues, including the global biodiversity-

loss crisis.

Subject area: Conservation Genomics and Biodiversity

Key words: population genetics theory, ecological genomics, biodiversity conservation, experimental design, big data filtering,

metabarcoding, bioinformatics, training workshops, career planning

When learning classic population genetics theory, we initially con-
sider a single locus with 2 alleles (e.g., Wright 1951). The challenge
and exciting promise of the field of conservation genomics is to scale
our efforts up to thousands or millions of loci and multiple whole-
genome sequences in order to address pressing issues of conserva-
tion concern. This escalation requires a set of analytical skills for
processing big data that are not as straightforward as those required
in decades past (e.g., Tanjo et al. 2020; McLeish et al. 2021). Thus,
these big data advances necessitate ongoing learning and training for
most conservation geneticists because the field is expanding so dy-
namically. Online courses, published literature, web forums, work-
shops, meetings, and seminars are all means to keep up to date.

The ConGen meeting (https://www.umt.edu/ces/conferences/
congen/default.php) is one way to address the aforementioned chal-
lenges and includes training sessions with lectures from experienced
instructors, hands-on exercises, and synergistic learning through dis-
cussions. From 2-7 September 2019, 36 students and 13 expert in-
structors gathered at the 11th ConGen meeting in Montana, United
States, to consider the latest conceptual and bioinformatic challenges
in conservation and population genomic studies. Many of these
topics have been presented and summarized in previous reviews of
ConGen meetings (Andrews and Luikart 2014; Benestan et al. 2016;
Hendricks et al. 2018a; Stahlke et al. 2020), and we refer interested
readers to those papers.

Here, we present advances in recent and ongoing issues identified
at the 2019 meeting and, beyond that, focus on a primary theme
of big data in conservation genetics. We guide readers through 5
topics that include 1) classical and modern considerations of study
design, 2) considerations and consequences of data filtering, 3) the
value of simulations, computational proficiency, and developing
transferable skills, and 4) novel applications of recent technological
advancements to conservation. In our fifth topic, we present data
collected over several years of ConGen meetings that describe trends
of gender representation and country-of-origin at the meeting itself,
with goals and actions for further improving the participation of
under-represented groups at future meetings and beyond.

Topic 1: Considering Study Design in the Era of
Big Data in Conservation Genetics

Population genetics theory and careful study design are fundamental
to conducting informative genomic studies (Allendorf 2017); even
the most cutting-edge genomic techniques cannot compensate for a
poor study design or deficient understanding of theory. Furthermore,
given that sequencing is still relatively expensive and samples in
conservation studies may be precious, researchers might only have
one opportunity to pursue a study, emphasizing the importance of
careful planning. Identifying the type and scale of genomic data to

collect will depend on numerous factors, including your question,
the project budget, the size and complexity of your study organism’s
genome, career goals, and the genomic and bioinformatic resources
available for your focal species or a closely related species (Figure
1; Allendorf et al. 2010; Hohenlohe et al. 2018). In this section, we
discuss both classic and contemporary issues related to devising a
study in conservation genetics, with some special considerations for
managing large, complex datasets.

A well-defined study question and hypothesis are critical to
choosing among the numerous options of genomic techniques
available in light of inherent trade-offs. In other words, given your
scientific question, which genomic technique should you use? Are
you interested in examining neutral or adaptive processes or some
combination of both? Assessing neutral processes such as historical
demography, admixture, migration, and/or current population struc-
ture might require only tens to hundreds of anonymous genome-
wide markers, while detecting processes such as local adaptation,
introgression, selective sweeps, and/or adaptive potential may re-
quire sequencing candidate adaptive loci, genotyping thousands of
markers genome-wide, or novel high-throughput sequencing ap-
proaches (HTS; e.g., Schweizer et al. 2016; Hohenlohe et al. 2018;
Luikart et al. 2018; Lim et al. 2021; Lovell et al. 2021).

Additional issues to consider include the desired density of
markers across the genome (which is influenced by population gen-
etic variation and research question), the number of individuals
versus populations available or required to address the question
(e.g., minimum sample sizes can vary dramatically by analytical
technique), the availability of previously ascertained genomic re-
sources, and access to computational resources, including bioinfor-
matics expertise (Hohenlohe et al. 2018). For example, the size and
complexity of the study organism’s genome, along with linkage
disequilibrium (LD: non-randomly associated loci) along chromo-
somes, will determine whether whole-genome sequencing (WGS) is
required or if reduced representation sequencing will suffice (e.g.,
RADseq, Andrews et al. 2016). Understanding which factors affect
genome complexity (e.g., repetitiveness, proportion coding/intronic)
will also help decide which genomic approach is best suited for the
target organism.

Many considerations go into the choice of which genotyping tech-
nique to use for your study. If your study requires WGS (see Allendorf
et al. 2010; Hohenlohe et al. 2018), do you have access to a refer-
ence genome for your species or a closely related species? If not, you
could produce an annotated assembly, on your own or with a com-
mercial company such as Dovetail Genomics (https:/dovetailgenomics.
com/). Once you have decided how many samples are necessary for
your study, consider what depth of sequencing coverage is required.
Long-term population monitoring efforts, or other studies which might
require consistent sequencing of the same loci across many individ-
uals, are still feasible with reduced representation sequencing through
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Figure 1. Factors and questions to ask oneself when designing a conservation genomics study. Researchers may have to balance cost, feasibility, genomic
information, computational resources, availability of collaborators, sequencing services (e.g., commercial companies), and characteristics of the target species’
life history while keeping the main goals of the study a priority. Genome characteristics to consider (if data are available) might include size, complexity,
nucleotide diversity, and extent of linkage disequilibrium along chromosomes. Goals of the study might include those relevant to the ecology and evolution of
a taxon, or even a goal to gain experience using high-throughput sequence data for more marketable skills.

an approach such as Rapture (Ali et al. 2016) or RADcap (Hoffberg
et al. 2016). Finally, do you have access to the bioinformatics resources
and expertise needed to process and analyze the resulting data? If not,
open-source, web-based platforms such as Galaxy (https:/usegalaxy.
org/) may be useful for some computing. You can learn bioinformatics
locally, take an online course, or collaborate with a bioinformatician.
There are many options for free online courses, such as those through
Coursera  (https://www.coursera.org/courses?query=bioinformatics),
edX (https://www.edx.org/learn/bioinformatics), or DataCamp (https:/
www.datacamp.com/).

There are multiple avenues for choice of sequencing tech-
nology (Table 1), data analysis, filtering, and more. Even at the
early stages of study design, it is important to consider how data
will be filtered and which computational methods will be used
for analyses, so that factors such as sequencing effort (e.g., read

depth), number of individuals, and expected number of filtered
SNPs can be included in cost estimates before project initiation.
Aspects such as data filtering are discussed in more detail in the
next section. We also recommend more specific references that
discuss study design in RAD-seq (Andrews et al. 2016), targeted
capture (Jones and Good 2016), RNA-seq (Todd et al. 2016), and
WGS (Ekblom and Wolf 2014). Newcomers to the field of con-
servation genomics may especially appreciate the efforts of these
authors to define common terms and jargon that may otherwise
cause confusion.

Topic 2: Navigating the Perils of Data Filtering

Gone are the days of hand-checking the quality of data; such
practices would be impossible across thousands or millions of
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Table 1. Summary of several approaches to obtaining genotypes, including what each method may measure, when it might be used, some
potential drawbacks, and a few references for further study

Genotyping approach What can best be measured? Why or when to use it? Key drawbacks Ref.
Restriction site- Genetic diversity metrics (F, 1) When first establishing genome Not as useful for measures of 1-9
associated DNA H ), individual inbreeding, resources for a species and/or large linkage disequilibrium (LD),
sequencing (RAD-seq) relatedness, hybridiza- genome size, Or NO Or PoOr genome local adaptation (if LD is low),
tion & introgression, DNA reference, 2) low budget but need or variation in coding regions.
methylation for epigenetic 1000s of loci, 3) to screen 1000s of Data filtering greatly influences
studies (BsRAD-seq). loci to identify 100-5k informative downstream population genetic
loci ideal for your question. inferences.
RAD capture Same as above but for targeted ~ For establishing longer term monitor- Expensive initial investment for 10-12
markers discovered from a ing programs or subsequent research marker discovery with array de-
RAD-seq experiment. where many individuals will be geno- sign and purchase (but pays off if
typed (e.g., annually for monitoring). genotyping thousands of individ-
uals with ~500-50 000 loci).
Targeted capture Individual-based genetic diver- For sequencing or re-sequencing can- Can be expensive to design 13-15
sity metrics, population- didate genes or other regions, when and generate probes (but see
level allele frequencies, coding high coverage for a subset of the ExCapSeq and EecSeq); need
region variants, etc. genome, or repeated use of markers a reference sequence for probe
is needed. design.
Whole-genome Population-level allele fre- When individual genotypes are Expensive when genome size is 16-21
sequencing- low depth quencies, with individuals not important, e.g., measuring large (e.g., >1.5 Gb), requires
of coverage (<10X), barcoded or not (Pool-Seq) population-level variation, genome- large sample sizes (30-50 at a
including Pool-Seq wide signatures of selection, minimum), Pool-Seq has no indi-
identifying runs of homozygosity and vidual barcodes or genotypes.
inversions.
Whole-genome Individual genotypes with high ~ Many uses, including building refer- Cost prohibitive when reference 22-23

sequencing—high depth
of coverage (>10X)

genome contiguity and fidelity.

ence genome, individual genotype-
level analyses, and characterization of
structural variants.

genome size is large (e.g., >1.5
Gb) or complicated to sequence
(e.g., highly repetitive, high het-
erozygosity).

Note that some methods (e.g., RNA-Seq, BsRAD-Seq, Methyl-Seq) are not discussed here. References: 1) Miller et al. 2007; 2) Baird et al. 2008; 3) Hohenlohe
et al. 2010; 4) Hoffman et al. 2014; 5) Andrews et al. 2016; 6) Kovach et al. 2016; 7) McKinney et al. 2017; 8) Shafer et al. 2017; 9) Marconi et al. 2019; 10) Ali
et al. 2016; 11) Hoffberg et al. 2016; 12) Kelson et al. 2020; 13) Jones & Good 2016; 14) Hendricks, et al. 2018b; 15) Puritz & Lotterhos 2018; 16) Ekblom &
Wolf 2014; 17) Therkildsen & Palumbi 2017; 18) Kofler et al. 20115 19) Schlétterer, et al. 2014; 20) Kardos et al. 2015; 21) Micheletti & Narum 2018; 22) Koepfli

et al. 2019; and 23) Wright et al. 2020.

SNPs. Thus, a major challenge of working with big data sets for
conservation genetics is deciding on adequate but not too strin-
gent filtering of SNPs. In this section, we discuss several aspects
of filtering data that should be carefully considered while plan-
ning an experiment, as well as during quality control and at the
analytical stages.

Why and How to Filter SNP Data?

Commonly, SNP data are filtered to achieve the following goals:
1) to improve reliability of genotype data, and 2) to reduce cor-
relations of information content (lack of independence) across
loci. There are technical solutions that help address some of these
goals (Ali et al. 2016; O’Leary et al. 2018). For example, using
Unique Molecular Identifiers (UMI) to remove PCR duplicates can
help to improve accuracy of heterozygote calls (Aird et al. 2011;
Krehenwinkel et al. 2017; Euclide et al. 2020), randomizing samples
among libraries and including technical replicates can minimize the
effects of sequencing errors (O’Leary et al. 2018), and use of target
enrichment (i.e., probes or biotinylated adaptors) can improve se-
quence quality (Souza et al. 2017; Rochette et al. 2019). However,
technical solutions are constantly being updated and discussed in
the literature (Aird et al. 2011; Krehenwinkel et al. 2017; Euclide
et al. 2020), leaving an inevitably important role for data filtering
in any population genomics project. Understanding the goals, pros,

and cons of each filtering step can help one make up-to-date choices
of appropriate filters.

Reliability

A major goal of data filtering is to avoid using data that do not re-
flect true genotypes. SNP genotypes, especially when well-validated,
can be more repeatable and more easily standardized than microsat-
ellites or other methods (Morin et al. 2004). However, SNP calls are
not infallible, notably when called from high-throughput sequencing
data. There are at least 3 main sources of unreliable genotypes.
First, the genetic locus might not follow Mendelian segregation or
Hardy-Weinberg (HW) proportions if, for example, it is a restric-
tion or amplified fragment length polymorphism (e.g., where some
individuals lack the restriction site or have allelic dropout), or if the
locus represents one of multiple pseudogenes or repetitive elements
(Vuylsteke et al. 2007). Waples (2015) covers the history of filtering
to address this problem in his review of filtering for HW propor-
tions, and others have reviewed the applications and pitfalls of ap-
plying such a filter to large genomics-scale datasets (O’Leary et al.
2018; Meisner and Albrechtsen 2019).

Second, preparation of DNA for high-throughput sequencing
for SNP genotyping (e.g., RADseq, targeted DNA capture) intro-
duces sources of error such as inconsistent sequencing of loci, vari-
ance in coverage, null alleles, and PCR artifacts. The effects and their
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severity may vary with each library preparation (Korneliussen et al.
2014; O’Leary et al. 2018).

Third, bioinformatics pipelines and filtering choices can intro-
duce biases and errors of their own, such as alignment clustering
errors that can cause artefactual contigs, which in turn influence
variant detection and genotyping (Shafer et al. 2017). For example,
bioinformatic approaches that do not identify and remove dupli-
cated sequences (i.e., reads from paralogs that are treated as the
same locus) can produce artefactual contigs, introducing error by
artificially increasing heterozygosity (McKinney et al. 2018). Such
filtering errors can lead to faulty conclusions. For example, Larson
et al. (2021) reanalyzed published data and found that incomplete
bioinformatic filtering could cause erroneous conclusions that the
harvesting of fish populations drove a rapid reduction in body size
of walleye.

Across software programs, there could be differences in variant
detection from the same sequence data due to variation in the
underlying methods that account for and correct sequencing errors
(Baes et al. 2014; Hwang et al. 2015; Mielczarek and Szyda 2016;
Wright et al. 2019), and to a lesser degree, differences in geno-
type calls (Bresadola et al. 2020). In some cases, it is possible to
assign probabilities to SNP calls, and these can be used as grounds
for filtering based on confidence in the true underlying genotype.
Alternatively, one can deal directly with the probabilities rather
than called genotypes, which allows one to incorporate and account
for statistical uncertainty in downstream analysis (e.g., ANGSD,
Korneliussen et al. 2014). This approach has merit, but can preclude
the use of software designed to handle “hard” genotype calls, so is
only useful when downstream analysis software is built to work with
genotype likelihoods.

Finally, single-occurrence alleles (singletons) are common and
can be the majority of the genotyped loci, but can also represent a
combination of genotyping and sequencing errors (Hotaling et al.
2018). Obviously, it is desirable to remove singletons that are a re-
sult of technical errors. However, true rare alleles can also provide
useful information on fine-scale gene flow, inference of demographic
history, and local adaptation (Gravel et al. 2011; O’Leary et al.
2018). Because it can be difficult to differentiate error from truth,
scientists often implement a minor allele frequency (MAF) or minor
allele count (MAC) filter. It is advised to test out multiple filtering
thresholds before settling on one or two for subsequent data ana-
lysis, depending on the specific study (Shafer et al. 2017; Hendricks
et al. 2018a).

Independence

Many genetic analyses assume that loci and individuals represent
independent samples of genetic information. However, statistical in-
dependence can be violated both by sampling of loci that are in LD
and by non-representative sampling of closely related individuals.
Loci that are physically close together on the same chromosome are
likely non-randomly associated and do not provide independent
information. Closely related individuals also may not provide ac-
curate and independent information about population-level genetic
processes such as demography, gene flow, or selection. A number of
tests and models assume that loci in close physical linkage or geno-
typic disequilibrium are removed from the dataset. For example,
the program LDNe assumes independent loci for calculation of ef-
fective population size (Waples and Do 2008), and GENECLASS
assumes independence of individuals for detection of first-generation
migrants (Piry et al. 2004). Characterizing linkage among loci can

also help identify genomic regions undergoing positive selection, so
whether the independence of loci and individuals becomes a problem
will depend on the goals of a particular study. A recent study from
Waples and colleagues (Waples et al. 2020, bioRxiv) quantified
pseudoreplication caused by LD in genomic-scale datasets. They
showed that the marginal benefits to precision of adding more loci
decline very quickly for estimating N, via the LDNe method, and
decline more slowly for estimating Fg.. In both cases, the true con-
fidence intervals for large datasets are often much wider than is
computed using current methods, which assume all loci (or pairs of
loci) are independent. Studies such as those of Waples et al. (2020,
bioRxiv) are useful for planning how many loci are needed when
designing a genomics project.

Striking a Balance Between Over- and Under-

Filtering Genomic Data

Understanding the goals for filtering and optimizing filtering ap-
proaches for a specific dataset or question are continually evolving
challenges of working with big data in conservation and eco-
evolutionary genomics. Once armed with an understanding of those
challenges, one attempts to maximize the reliability of the dataset,
that is, remove all erroneous data and retain all authentic data.
However, there are no infallible ways of distinguishing between the
two. For example, HW screening can be a useful way of detecting
data errors, but comes with the risk of removing a true biological
signal—including selection signals at outlier loci (Waples et al. 2015;
Meisner and Albrechtsen 2019). Similarly, the stringency of LD fil-
tering (e.g., the magnitude of correlation and/or window size used
when removing loci to determine which loci remain in downstream
analysis) can be somewhat subjective, and the method will always
accept some level of data loss in favor of removing redundant or
erroneous data. MAF or MAC filters represent a continuous spec-
trum of possible screening stringency, and appropriate criteria will
be case-specific (Hotaling et al. 2018; Linck and Battey 2019).

When measuring relatedness, it is not sufficient to identify all the
possible relationship categories; one also wants to know whether
close relatives appear in the sample more often than they would by
chance. Even for random samples, removing close relatives reduces
sample size and hence precision, so this has to be balanced against
potential reductions in bias from removing relatives. For example,
genetic indices of allele frequency, population differentiation, and
effective population size are less precise when siblings are removed
(Waples and Anderson 2017). Furthermore, filtering too conserva-
tively can reduce sample sizes to the point where they no longer an-
swer your questions because of low statistical power. This problem
can be assessed and mitigated by step-wise filtering, for example, of
missing data (Hotaling et al. 2018; O’Leary et al. 2018).

Striking a satisfactory balance between over- and under-filtering
can be so “freaking” difficult that filtering has been called the
“F-word” (Andrews and Luikart 2014; J. Seeb pers. comm.). Prior
to initiating a new HTS-based project, we recommend consideration
of potential filtering strategies since some steps of data filtering are
influenced by library preparation, number of samples, and sam-
pling design, while others can be avoided with technical modifica-
tions prior to sequencing (see beginning of Topic 2). For example,
increasing the amount of starting DNA or reducing the number of
PCR cycles may diminish the risk of sequencing (then having to re-
move) PCR duplicates. Likewise, any prior knowledge of relatedness
amongst individuals could be used to pick those that are least related,
if appropriate for the project goals. In sum, we advise designing your
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data collection efforts to minimize downstream biases and maximize
the potential to solve outstanding issues in conservation.

Topic 3: Building Your Skills and Hedging
Your Bets

Modern conservation genomics and big data analysis are aided by
competence in a variety of fields, including bioinformatics, popula-
tion genetics theory, and molecular biology. As we describe in this
section, building the skills to manage, simulate, and analyze large
data sets will be useful for applications in academia, applied man-
agement, and beyond.

The Value of Simulation Modeling in Conservation
Genetics

Among the most popular activities at each ConGen is Robin Waples’
simulation mini-project (Andrews and Luikart 2014). In small
groups, participants use the program EasyPop (Balloux 2001) to
simulate data and investigate the consequences of population sizes,
migration rates, bottlenecks, mating systems, and divergence time
on genetic diversity within populations and genetic differentiation
among populations. Research questions addressed with simula-
tion might include: How do precision and bias differ for micro-
satellites and SNPs when using a given estimator or software (e.g.,
STRUCTURE, LDNe, BayesAss)? What are the relative benefits of
sampling more individuals versus sampling more SNPs? How long
does it take before a change in population size (e.g., bottleneck) can
be detected with single-sample and temporal (2-sample) estimators
of effective population size?

Small groups simulate data, analyze them, and prepare presen-
tations on their results, all in less than 24 hours (Figure 2). These
intense, hands-on efforts not only allow participants to investigate
the complex effects of population demography on estimating genetic
diversity, but to also explore the power of relatively simple simula-
tions to address consequential questions in population and conserva-
tion genetics. Many groups learn how their questions can grow into
large, factorial simulation study designs that quickly expand beyond
the allotted time. This is an important primary lesson of simulation
modeling: choose clearly defined questions and specific parameters
of interest, because you will almost always have more questions that
you will want to address once you get started.

Authors Ackiss and Watsa, participants at ConGen 2019, stress
the value of both the hands-on analyses and the accompanying
thought exercise. Designing simulations requires careful consider-
ation of the parameters that can be manipulated (e.g., sex ratios,
mutation rate, migration model), which can be daunting when
attempting to model complex population dynamics. Although to
some degree simulations require oversimplifications of the natural
systems being modeled, the process of designing and interpreting
simulations also encourages deeper consideration of a study spe-
cies than often encountered in standard population genetics
analyses. For example, predicting the time it will take to see meas-
urable effects from a disturbance (e.g., population fragmentation,
bottleneck) requires an estimate of generation length and a clear
understanding of reproductive strategy, often gleaned from life
history studies of the target species in a natural setting. Even an
oversimplified model using discrete generations can provide an in-
formative comparison to empirical data from populations exhib-
iting overlapping generations when the effects of these differences
are considered (Waples et al. 2014).
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Figure 2. Results generated by ConGen 2019 participants in the simulation
exercises using EasyPop. Top (from the “Leopard” student group): Changes
in Fg, for 4 populations, each of N, = 100, that begin with identical allele
frequencies at generation 0 and then diverge with island-model migration
rates of 1% or 5% per generation. Notable results: 1) Equilibrium Fg, is
reached much faster at the higher migration rate. 2) Even when data
are averaged over 1000 diallelic (SNP) loci assayed for all individuals,
demographic stochasticity leads to considerable generation-to-generation
variance in F,,. Bottom (from the “Sparrow” group): Sensitivity of estimates
of N, (LDNe method) to detect a population bottleneck. At generation
100, a panmictic population of N, = 400 is fragmented into 4 isolated
subpopulations of N, = 100. In generations 101, 102, 104, 108, N, is estimated
for each subpopulation using data for 100 diallelic (SNP) loci assayed for all
100 individuals. A single generation after the bottleneck, harmonic mean N,
(117) is much closer to the reduced bottleneck size than the pre-bottleneck N,

Robin Waples® ConGen exercise illustrates why simulation
modeling is such a valuable skill to learn as a conservation or popu-
lation geneticist. However, diving into simulations for the first time
can be intimidating. Developing a familiarity with the available
program options is a good first step (see Hoban 2014, and the fre-
quently updated Genetic Simulation Resources catalog provided by
the National Institute of Health (https://popmodels.cancercontrol.
cancer.gov/gsr/). There is no one ideal simulation program, there
is only the program(s) best suited to address your question. Some
programs are simple and easy to learn, while others provide more so-
phisticated functionality, but have a steeper learning curve. Reading
papers, talking with colleagues, and honing your questions and hy-
potheses are all great ways to narrow down the options. The payoff
for investing time in becoming proficient with one or more simula-
tion programs is the ability to address myriad questions of conse-
quence in conservation genetics.
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For example, simulations can be used to test new and existing
population genetic methods, providing a valuable service to the com-
munity by evaluating best practices, settings, recommended uses, and
comparing different approaches (e.g., Evanno et al. 2005; Lotterhos
and Whitlock 2014, 2015; Waples et al. 2016; Zeller et al. 2016;
Forester et al. 2018; Linck and Battey 2019; Battey et al. 2020;
Waples et al. 2020, bioRxiv; Allendorf et al. 2022). Simulations are
also useful for designing appropriate sampling schemes in conser-
vation genetics research or monitoring and optimizing the value of
limited conservation research funds (e.g., Hoban et al. 2013; Smith
and Wang 2014; Blower et al. 2019; Selmoni et al. 2020; Luikart
etal.2021). For example, Waples and colleagues (Waples et al. 2020,
bioRxiv) used simulations to systematically quantify the effects of
non-independence amongst loci on overall information content.
They found that if you have X total loci, after accounting for linkage
you have the same information content as you would with Y com-
pletely independent loci (with the value of Y depending on covariates
such as genome size, true effective size, and number of individuals
sampled). So, if you simulate Y unlinked loci, it should approximate
the precision you can expect with X total loci, and provide insight
into how to design a useful sampling scheme.

Simulations can also be a powerful way to corroborate empir-
ical results and inform downstream management actions (Landguth
et al. 2017; Thatte et al. 2018; Grueber et al. 2019; Hoban 2019;
Rougemont et al. 2019, Ackiss et al. 2020; Antdo et al. 2020). In
addition, simulation data can be generated, analyzed, and written
up from the office or home, providing a great backup for field or
laboratory-based research that may be put on hold (e.g., due to the
COVID-19 pandemic). Finally, simulations can greatly advance our
understanding of a parameter’s behavior in certain biologically-
relevant scenarios, thereby allowing many biologists to improve
their work (Kardos and Luikart 2021).

Other Computational Skills to Increase Efficiency
andTransferability to Other Careers
Ever-increasing amounts of data, whether genome-scale sequencing
data or simulated data, necessitate a corresponding computa-
tional skillset. Computational skills, such as familiarity with shell
(https:/linuxcommand.org/lc3_learning_the_shell.php), R (https://
www.r-project.org/), Python (www.python.org) or another scripting
language, and the ability to move seamlessly between a Unix en-
vironment and Windows or Mac environment, facilitate the ease
with which data can be managed, parsed, and ultimately ana-
lyzed. Indeed, it has been argued that “all biology is computational
biology” (Markowetz 2017) and as datasets grow, this is increas-
ingly true. Moreover, as remote work becomes more common and
we make sense of the new normal that has occurred since the start of
the global COVID-19 pandemic, investing time in developing com-
putational skills will improve the speed, reproducibility, and utility
of scientific pursuits (Carey and Papin 2018). For example, tools
such as Rmarkdown (see below), which integrate across code blocks
and formatted annotations, can be used to improve the reproduci-
bility of your research by providing details of each analytical step,
from the raw data to figures in the paper. Furthermore, most sci-
entific software is now written in one of a few languages, most of
which are introduced at ConGen, so understanding and navigating
these languages will help within conservation genetics and beyond.
Another advantage of developing computational and reprodu-
cible research skills is that many careers outside of traditional science
paths recommend or require them. There are lucrative data scientist

positions in research and industry that biologists are well suited
for because we are trained to analyze and make sense of complex
datasets. Organizational skills that are the bedrock of reproducible
computation, such as maintaining an organized workspace and
keeping a corresponding computational notebook, demonstrate
important know-how to future employers. Computational note-
books often make use of a language called “Markdown,” and there
are well-maintained options for Python (Project Jupyter: https://
daringfireball.net/projects/markdown/; Google Collab: https://colab.
research.google.com) and R (RMarkdown: https://rmarkdown.
rstudio.com/index.html). One great resource for organizing compu-
tational biology projects is Noble (2009). Even if you are not yet
in a position to execute analyses yourself, knowledge of how and
why specific computational approaches are taken is essential for
communication among a team (Carey et al. 2019). Specific compu-
tational skills that may be beneficial and transferable to other car-
eers include: 1) data management and processing, 2) data analysis,
3) knowledge of a scripting language (e.g., Python), 4) version con-
trol (e.g., with github, https://github.com), 5) statistical computing
(e.g., R, MatLab, or SAS), 6) data visualization, and 7) communica-
tion (Hampton et al. 2017).

Consideration of Backup Plans, Both for Data

Analysis and Your Career

Backup plans for obtaining samples and analyzing data are crit-
ical parts of any initial study design. Even the best laid study plans
can be derailed by unforeseen circumstances, such as years of low
abundance for your study populations, an inability to get sampling
permissions or international import/export permits for tissues, or a
sudden loss of access to computing power, study populations or bio-
informatic expertise. Alternative sources of samples and data include
accessing museum specimens or tissue biobanks (Buerki and Baker
2016). Another source of data is the mining of publicly available
genetic sequences from curated sources such as NCBI’s Short Read
Archive (SRA; https://www.ncbi.nlm.nih.gov/sra), the Genomes
OnLine Database (https:/gold.jgi.doe.gov/), or EvolMarkers (Li
et al. 2012; http://bioinformatics.unl.edu/cli/evolmarkers/index.
html). As we detailed at the beginning of this section, conducting
a computer simulation study also provides an alternative source of
data for a dissertation chapter and influential publication to advance
your career and your discipline.

With regard to data analyses, there are numerous secure net-
works for high-performance computing available that allow move-
ment and processing of terabyte-scale data (Langmead and Nellore
2018) as well as commercial consultants (e.g., Duke Center for
Genomic and Computational Biology (https://genome.duke.edu/
cores-and-services/genomic-analysis-and-bioinformatics/), Taxa
Genomics (https://www.taxagenomics.com/), and Bioinformatics
Consultants (https://www.bioinformaticsconsultants.com/) that
can provide expert assistance. In addition to potentially saving
a lost field season or study, using these approaches and resources
can enhance your efficiency, skill set, and even your scientific and
professional networks.

Just as study designs need backup options, career plans do as
well; the curriculum at ConGen is designed for students to practice
transferrable skills and provide them with knowledge and resources
to be successful outside of their current focal research. Developing
teaching and scientific communication skills will increase your
work’s visibility and your employment options. For example, faculty
that can effectively teach introductory genomics and bioinformatics
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are in high demand (Campion et al. 2019; Goodman et al. 2020).
Adequately communicating the value, potential, and limitations of
genomics to resource managers and the public is also important. You
can gain these experiences by offering your skills to regional natural
resource managers and by volunteering to present your work to local
community groups, museums, zoos, or schools. You may learn that
you enjoy and have a talent for teaching and outreach, opening up
the possibility of working in conservation management or education.
In this section, we have suggested skills to learn and strengthen,
such as the ability to simulate data, work efficiently with large data
sets, and plan for backup research projects, data sources, and car-
eers. Students at ConGen practice these skills throughout the course,
and leave more suited to obtain their research and career potential.

Topic 4: Emerging Technologies and
Applications to Conservation Genetics

Certainly, a key driver of the challenges of working with big data in
conservation is the continual release of newer, more powerful, and
often cheaper technologies. In this section, we detail some recent
technological advances, with a focus on how those technologies have
been or could be used in conservation-specific applications.

Reference Genomes and Detection of Structural
Variants

Long-read sequencing platforms like Pacific Biosciences (PacBio) and
Oxford Nanopore Technology, along with long insert library preps
(Chicago and Dovetail Hi-C), are quickly improving the quality and
quantity of reference genomes available in conservation and popu-
lation genomics. Over about 10 years, PacBio sequencing platforms
have changed 3 times from the original PacBio RS I in 2011, to the
RS 11, to the Sequel 1 in 2015, and Sequel II in 2019 (https://www.
pacb.com/products-and-services/sequel-system/). The Sequel II has
decreased the costs of sequencing approximately 10-fold over the
RS II platform while dramatically increasing accuracy, opening the
way for conservation genomics research, which often lags behind
in funding support. Meanwhile, Oxford Nanopore sequencers have
increased the ability to sequence long strands of DNA outside of a
lab through development of pocket-size sequencing platforms like
the MinION in-the-field (reviewed in Krehenwinkel et al. 2019;
https://nanoporetech.com/products/minion). To take advantage of
long-read technologies, recent genome assembly algorithms (e.g.,
Flye: Kolmogorov et al. 2019; Redbean: Ruan and Li 2019) have
been designed specifically for these types of data and also focus on
rapid assembly compared to the most commonly used long-read as-
sembly programs (e.g., FALCON: Chin et al. 2016; CANU: Koren
etal. 2017).

Genome assembly has also received a further boost from
commercial-based genome assembly services that can perform all
steps—including sample preparation, sequencing, assembly, and
gene annotation—often producing highly contiguous assemblies
using long-read technologies (Armstrong et al. 2020; Nong et al.
2020). Cost for a chromosome-level assembly (including all bio-
informatics) is $15 000 to $20 000 for many bird or mammal species
with genome sizes of 1 to 3 Gb. Draft genomes can be produced for
less than $5000, or even less if one opts to do the assembly oneself
after purchasing a sequencer.

Although improvements in HTS technologies have many bene-
fits to conservation genomics, one major advantage of a higher
quality genome assembly is the potential to detect structural

variants that occur in the form of insertion/deletions, copy number
variants, and inversions (Hohenlohe et al. 2018). Studies that use
mainly low depth of coverage WGS (Table 1) can still benefit from
identifying structural variants that are likely to also be under selec-
tion (Wellenreuther et al. 2019), or infer haplotype information for
historical demography and selection (Leitwein et al. 2020). However,
accurate identification of structural variants is still a relatively new
practice in many species and requires careful consideration and pos-
sibly the application of multiple tools (Kuzniar et al. 2020). Despite
being a relatively new practice, many cutting-edge examples exist for
reference (e.g., Special Issue, Molecular Ecology, 2019; Tigano et al.
2020, bioRxiv).

Genomics for Informative Marker Sets

The use of low-cost genotyping methods such as GT-seq and Rapture
is continuing to revolutionize the field of conservation genomics
(Meek and Larson 2019). This is due to declining sequencing ex-
penses and creative, economical methods of preparing libraries and
targeting loci. As a result, conservation biologists can target thou-
sands of loci even without a reference genome and can use these
genotyping panels to assess a variety of fundamental and applied
questions (see Topic 1 and Allendorf et al. 2010).

Targeted amplicon panels such as GT-seq panels can incorp-
orate both previously-established genetic resources, including
microsatellite panels (Bradbury et al. 2018; Gruenthal and Larson
2021) and TagMan qPCR assays (McKinney et al. 2020), and
novel genomic data from RAD-seq, RNA-seq or low-coverage
WGS (e.g., Bootsma et al. 2020; Schmidt et al. 2020). This
asset allows conservation geneticists to continue long-term moni-
toring initiatives while leveraging the capabilities of recent gen-
omic advances to target the most informative loci for resource
management. These panels provide a cost-effective means to
survey taxa at the individual and population level (Campbell et al.
2015; Meek and Larson 2019), are effective on low-quality DNA
from non-invasive samples such as hair and feces (Natesh et al.
2019; Eriksson et al. 2020), and can be designed to supply the
most pertinent information for the system of interest, including
the presence of adaptive differences, sex determination, and stock
or ecotype identification. As new genomic resources are devel-
oped, it is relatively easy to incorporate new amplicon loci into
existing panels either directly or via pooling prior to sequencing.
Amplicon panels also offer the added benefit of microhaplotypes
(multiple SNPs at a locus treated as a single haplotype), which
can substantially increase the power of genetic stock identification
(McKinney et al. 2017; McKinney et al. 2020) and relationship
inference (Baetscher et al. 2018).

The utility of microhaplotypes was briefly highlighted in the
ConGen 2017 summary (Hendricks et al. 2018a), and since then
an increasing number of studies have incorporated the analysis of
multi-SNP loci. For example, Baetscher et al. (2019) used parentage
analysis with 96 microhaplotype markers to examine the dispersal
of rockfish offspring within and around marine reserves and con-
servation areas. Additionally, Reid et al. (2020) used a panel of 114
microhaplotype loci to assign ecotype ancestry and examine hy-
bridization in a previously landlocked population of alewife after
new fish passages restored access to the ocean after 300 years of
isolation. Finally, Morin et al. (2021) illustrated the value of small
numbers of microhaplotypes derived from degraded tissue samples
in identifying population and stock structure in the North Pacific
harbor porpoise, a nearshore species of conservation concern that is
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difficult to sample in the wild (see also Batz et al. 2020; McKinney
et al. 2020; Bootsma et al. 2021).

Pool-Seq, a cost-efficient approach to low-coverage WGS
(Table 1), is also a tool of increasing use by the conservation gen-
omics community and supported by community-built bioinfor-
matic tools tailored to this type of data (e.g., PoolParty, Micheletti
and Narum 2018; poolfstat, Hivert et al. 2018). Careful con-
sideration of sampling design is important when undertaking a
pooled-sequencing project because, once pooled, individual-level
genotype data are lost. It is essential to use replicate pools and
sufficient sample sizes per pooled population (at least 30-50 in-
dividuals) for accurate estimation of allele frequencies (Futschik
and Schlotterer 2010; Gautier et al. 2013; Lynch et al. 2014;
Schlotterer et al. 2014), in addition to following standard recom-
mended sampling protocols for low-coverage WGS data such as
maintaining equal sex ratios within populations (Benestan et al.
2017). When these factors are accounted for, this approach is
a cost-efficient method to identify selective sweeps across the
genome for multiple populations and to identify the genetic basis
of important phenotypes and life-history traits (Narum et al.
2018; Chen and Narum 2021; Horn et al. 2020).

Conservation Epigenetics

Epigenetics, and particularly DNA methylation studies, are a rela-
tively underexplored aspect of conservation biology, yet may serve as
a direct measure of an organism’s response to its environment (Rey
etal.2019). Epigenetic markers can provide information on past and
present stress caused by the environment, including current physio-
logical condition (Rey et al. 2019). Additionally, epigenetic mechan-
isms can translate environmental selection pressures into heritable
changes in phenotype (Mukherjee et al. 2019). However, assessing
DNA methylation has previously required a high-quality genome
and/or only surveying a subset of an organism’s methylation profile
via CG methylation (Marconi et al. 2019).

An exciting new approach is that of MCSeEd (Methylation
Content Sensitive Enzyme ddRAD), which does not require a ref-
erence genome but surveys whole-genome methylation patterns in a
cost-effective manner (Marconi et al. 2019). This type of approach
could, for example, enhance previous studies examining the role of
epigenetic mechanisms in rapid adaptation to new environments in
species of conservation concern, such as Chinook salmon (Venney
et al. 2020) and Darwin’s finches (McNew et al. 2017).

There is also evidence that epigenetic mechanisms may be im-
portant in rapid evolutionary changes such as those involved in
host-parasite coevolution (Mukherjee et al. 2019), and could pro-
vide solutions to managing wildlife diseases such as transmissible
cancer in marsupials (Ingles and Deakin 2015). Finally, reduced sets
of epigenetic markers are being developed to determine biological
age clocks (reviewed in Horvath and Raj 2018). These tools may
be invaluable in long-term monitoring of mammals for whom age
cannot be easily determined.

High-Throughput Approaches to Assess

Wildlife Health

Wildlife health intersects with human health in many ways, brought
into startling focus by the COVID-19 pandemic. Coronavirus, like
many human pathogens, is thought to have emerged via a zoo-
notic spillover event (Ye et al. 2020). Yet, broad genomic screening
for multiple wildlife diseases occurs less frequently (Watsa et al.
2020) than targeted approaches that track specific pathogens (e.g.,

Batrachochytrium pathogen in amphibians; Farrer et al. 2017).
Metagenomic approaches have advantages of screening for multiple
pathogens in less-studied or newly-identified systems. For instance,
viral community diversity in vampire bats across the Americas varied
not with colony size or inter-colony distance, but instead with ele-
vational gradient and availability of anthropogenic food resources
(Bergner et al. 2020). High-throughput sequencing can identify
human-wildlife interfaces with increased contact, identify hotspots
for pathogen transmission, and finally, assist in vector surveillance
via DNA derived from invertebrate parasites (iDNA; Kocher et al.
2017) to screen diseases in hosts (Titcomb et al. 2019). Another
relatively new tool for conservation biologists is VirScan. This
system combines microarray-based immunoprecipitation with high-
throughput sequencing to screen for large numbers of antibodies in
very small quantities of blood (Burbelo et al. 2019), and is highly
customizable for specific pathogen or host groups.

Metabarcoding and metagenomic approaches also provide
exciting, powerful approaches to wildlife health. For example,
metagenomics can be used to detect effects of stress, malnutrition,
or starvation using noninvasively-collected fecal samples from wild-
life (Moustafa et al. 2021; Yan et al. 2021). Combined with creative
uses of technology, such as unmanned aerial vehicles, metagenomic
sampling can even be used to sample respiratory microbiomes
(Centelleghe et al. 2020). We expect the continued application of
cutting-edge approaches of technology, HTS, and big data to revolu-
tionize studies of wildlife health.

Staying Up to Date
Sequencing technologies, assembly algorithms, and genotyping
software continue to change at a rapid pace, and it can be difficult
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Figure 3. Data on participation of self-identifying females at 9 years of
ConGen workshops. A) Percent female instructors over time. B) Percent
female student participants over time. ConGen was not held in 2010, 2012, or
2014. Data are not available for some years when ConGen was held (A—20086,
2009, 2011 and 2015, B—2009, 2011).
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to keep abreast of new developments. Luckily, there are several
peer-reviewed resources for learning about these topics, such as
Annual Review of Genomics and Human Genetics, Nature Reviews
Genetics, Biotechnology Advances, and other journals (e.g., Hess
et al. 2020; Schloss et al. 2020). Non-peer-reviewed options include
development platforms such as GitHub (https://github.com/), forums
such as SEQanswers (http://seqanswers.com/), and genomics-specific
news outlets such as GenomeWeb (https://www.genomeweb.com/
sequencing). Additionally, many annual conferences have sessions
or booths that feature representatives from sequencing companies
that may provide information on upcoming technological develop-
ments, such as the Plant and Animal Genome conference or ConGen
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workshop. Equipped with these resources, scientists will continue to
tackle pressing questions of conservation with cutting-edge big data
approaches.

Topic 5: Trends Towards Increasing Participant
Diversity in Conservation Genomics

Scientists from different backgrounds offer an array of experi-
ences, opinions, and insights, all of which result in increased
performance (e.g., Hong and Page 2004) and increased repre-
sentation of role models in the sciences (Jimenez et al. 2019).
However, the fields of ecology and evolution continue to suffer

- W
1 20 143

2006 2007 2008 2013 2015 2016 2017 2018 2019

Figure 4. International representation of participants from 9 years of ConGen workshops. A) Countries shaded according to total number of participants. B)
Total number of countries represented by student participants over time. ConGen was not held in 2010, 2012, or 2014. Data are not available for ConGen 2011.
Note that in 2006, ConGen was held in Porto, Portugal, and participants’ country of origin, not place of current employment, was recorded, and so had a larger
number of countries represented than in other years when ConGen was held in Montana, United States. Country of student-participant origin is the country of
current residence/employment. Many students residing in the United States are citizens of other countries, which may further diversify the number of countries

beyond what is represented here.
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from gender, ethnic, racial, and socioeconomic inequalities in aca-
demic and federal government positions (Arismendi and Penaluna
2016; Jimenez et al. 2019). Hendricks et al. (2018a) reviewed
gender bias in the conservation genetics and population gen-
omics fields, focusing on overcoming systematic biases against
women, and others have highlighted key strategies to support
Black, Indigenous, and people of color in the field (Tseng et al.
2020). Here we present data from ConGen workshops to investi-
gate trends in gender identity of instructors and students, as well
the diversity of participants in career level and representation of
students worldwide.

We gathered available information on participants and in-
structors from 9 years of ConGen courses held from 2006 to 2019.
The participation of female instructors has increased during the
13 years of ConGen courses, rising from less than 10% represen-
tation in 2007 to almost 50% in 2018 and 2019 (Figure 3A). In
contrast, self-identifying male and female students have been rep-
resented in roughly equal numbers since the beginning of ConGen
(37-74% female, Figure 3B), and the overall mean is approxi-
mately 55% female. Students from 38 different countries have at-
tended ConGen courses since 2006, with 5 to 26 countries being
represented in any given year (from the 9 years with available data,
Figures 3C and 4). Career level data for 2013-2019 show that the
majority of ConGen participants are graduate students and post-
docs (Figure 5). A recent increase in participants from state and
federal agencies and non-profit organizations may reflect ConGen’s
emphasis on genomics methods and bioinformatics, which draws in
career professionals who learned population genetics before the gen-
omics revolution.

The faculty, researchers, and government agency employees who
participate further increase the reach and impact of ConGen by
sharing what they have learned with their students and colleagues.
As one example, after teaching at ConGen in 2019, author Ramstad
used the ConGen course as a model for a new undergraduate course
in Population Genomics for the Biology and Geology department at
University of South Carolina Aiken. USC Aiken has a highly diverse
student body (30% underrepresented minorities, 65% female), with
a large number of first-generation college students (at least 21%)
and a high proportion of students (at least 24%) from low-income
families. This new course at USC Aiken is a tangible outcome of how
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instructors of ConGen may over time increase underrepresented mi-
norities in conservation genomics.

While the trends for instructors and students at ConGen have im-
proved, there is still room for improvement. For example, the ability
of ConGen organizers to assess progress is limited by the data col-
lected; there is still a lack of data on ethnicity, age, socioeconomic
status, and disability status. Other areas of improvement include
more targeted advertisement, outreach, and scholarships, which
could diversify participation in future ConGen workshops, and
other related courses.

Conclusions and Outlook

The challenge in conservation genetics of scaling efforts from a
few loci to millions of loci can require additional training in com-
puter sciences, statistics, and population genetics theory. Symposia,
meetings, and workshops are educational resources that may help
fill this training gap. Here, we have summarized key updates to the
field of conservation genomics and the necessary tasks for dealing
with big data. We highlighted classical and contemporary issues in
how study design should be carefully considered to align with re-
search questions, and how to strike a balance between over- and
under-filtering high-throughput sequencing data. Furthermore,
we presented several key suggestions for building one’s skills as a
conservation genomicist, including learning how to simulate data,
how to improve efficiency in multiple stages of the workflow using
computational skills, and how to continually consider backup plans
for data analysis and career. We presented updates on sequencing
technologies, highlighting their applications to conservation biology,
as well as how to stay informed on technological and methodo-
logical changes. Finally, we presented data collected during 9 years
of ConGen courses, which show an increase in female participation
at the instructor level that may reflect and reinforce the retention of
women in conservation genetics. Looking forward, we hope that the
ConGen workshop and others will continue to strive for excellence
in training of the next generation of conservation biologists in con-
ceptual and practical aspects of data analysis, while also ensuring
those participants and their instructors represent a diverse array of
backgrounds and perspectives which is increasingly needed to help
curb the global conservation crisis.

m Government agency/

15
10
5
0
2013 2015 2016 2017
Year

2018 2019

Figure 5. Participants by career level, including graduate students, postdocs, researchers (principal investigators), faculty, and government agency/non-profit
professionals. ConGen was not held in 2010, 2012, or 2014, and career level data are not available prior to 2013.
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