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Chiral amines can be made by insertion of a carbene into an N–H bond using two-catalyst systems 
that combine a transition metal-based carbene-transfer catalyst and a chiral proton-transfer 
catalyst to enforce stereocontrol. Haem proteins can effect carbene N–H insertion, but 
asymmetric protonation in an active site replete with proton sources is challenging. Here we 
describe engineered cytochrome P450 enzymes that catalyze carbene N–H insertion to prepare 
biologically relevant α-amino lactones with high activity and enantioselectivity (up to 32,100 total 
turnovers, >99% yield and 98% e.e.). These enzymes serve as dual-function catalysts, inducing 
carbene transfer and promoting the subsequent proton transfer with excellent stereoselectivity in 
a single active site. Computational studies uncover the detailed mechanism of this new-to-nature 
enzymatic reaction and explain how active-site residues accelerate this transformation and 
provide stereocontrol. 
 
Amines are ubiquitous in bioactive molecules and functional materials1,2, and the development of 
efficient and selective methods for C–N bond construction remains one of the central themes of modern 
organic chemistry and biochemistry3–7. Among the numerous ways to construct C–N bonds, carbene 
insertion into N–H bonds8–12 benefits from the high reactivity of carbene species and excellent 
functional group compatibility to rapidly build complex nitrogen-containing molecules. In the last 
several years, empowered by directed evolution, metallo-haem-dependent enzymes (cytochromes P450, 
cytochromes c and globins, for example) have exhibited an impressive ability to catalyze non-natural 
carbene- and nitrene-transfer reactions with high efficiency and selectivity. Specifically, haem proteins 
have been engineered to perform carbene N–H insertion reactions with catalytic efficiency far 
exceeding their small-molecule counterparts (up to thousands of total turnover numbers (TTN))13–16. 
However, compared to cyclopropanation17, C–H insertion18 and many other carbene transfer reactions 
also catalyzed by haem proteins19,20, N–H insertion reactions are still underdeveloped, especially with 
respect to high stereocontrol. 

In small-molecule catalysis, a common strategy for asymmetric N–H insertion is to employ a 
transition-metal catalyst for carbene transfer along with a separate chiral proton-transfer catalyst (PTC) 
for stereoinduction (Fig. 1a)21,22. The carbene precursor first reacts to form a metal carbene species, 
which can be trapped by the amine substrate through nucleophilic attack, generating an ylide 
intermediate. The asymmetric protonation of the ylide is then guided by a chiral PTC, such as a chiral 
phosphoric acid21 or amino-thiourea22; other proton sources need to be strictly avoided to ensure high 
asymmetric induction. Computational studies by Shaik and coworkers23 have revealed a similar 
mechanism for haem protein-catalyzed N–H insertion reactions. Thus, the challenge in achieving high 
enantioselectivity originates from the difficulty in precisely controlling the protonation of highly 
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reactive ylide intermediates in an environment where the enzyme as well as water molecules are 
potential proton sources. The sole biocatalytic system for asymmetric N–H insertion reported to date 
by Fasan15 used 2-diazopropanate benzyl esters and primary anilines with engineered myoglobins as 
the catalyst and achieved generally low to moderate enantiocontrol. By drawing an analogy to the dual-
catalyst strategy used in small-molecule catalysis, we envisioned that a highly enantioselective 
biocatalytic N–H insertion reaction would be possible if the enzyme can perform two distinct functions 
(Fig. 1b): 1) generate the carbene species, which triggers nucleophilic attack from amines, and 2) induce 
a selective proton-transfer event immediately after ylide formation in the enzyme active site.  
 

 
Fig. 1 | Asymmetric carbene N–H insertion using small-molecule catalysts and enzymes. a, The 
proposed reaction mechanism for asymmetric N–H insertion catalyzed by a transition-metal catalyst 
and a chiral PTC. b, Haem protein serves as a dual-function catalyst for enantioselective carbene N–H 
insertion. 
 
Results and discussion 
We commenced this investigation of enzymatic carbene N–H insertion by focusing on the reaction 
between lactone diazo 1 and N-methyl aniline 2a. This transformation is of particular interest as it is 
expected to afford a biologically relevant α-amino lactone product 3a24. In addition, lactone-based 
carbenes are usually associated with undesired β-hydride elimination processes, and no small-molecule 
catalysts have been shown to afford precise stereocontrol using this type of carbene25,26. Our previous 
work, however, showed that engineered haem proteins could dramatically accelerate the desired lactone 
carbene-transfer process while circumventing undesired side reactions27,28. We thus focused on 
discovering an enzyme that not only facilitates the transfer of the lactone-carbene species to amines but 
also imposes stereocontrol in the subsequent proton transfer step to deliver an enantio-enriched product. 

To this end, we screened a collection of 40 haem protein variants, previously evolved for different 
carbene and nitrene transformations, including those engineered for lactone carbene-transfer reactions 
(e.g., P411-G8S27 in well A9, P411-L728 in well C10 and Rma cyt c-BORLAC in well D1029), in the 
form of whole Escherichia coli (E. coli) cell catalysts (Fig. 2a) (See Supporting Information (SI) for 
details). While most of the variants only exhibited low levels of activity (<5% conversion), an FAD 



domain-truncated P411 variant, L7 (bearing 29 amino acid mutations relative to wild-type P450BM3, i.e., 
CYP102A1, including a cysteine-to-serine mutation at the axial heme-ligating residue30; well C10 in 
Fig. 2a), generated in previous engineering efforts for lactone carbene C–H insertion28, catalyzed this 
N–H insertion reaction with 81% yield and 94% enantiomeric excess (e.e.). Further evaluation of the 
enzyme lineage for lactone carbene C–H insertion showed that both L6 and L7 were superior 
biocatalysts for this amination reaction compared to other variants in the same lineage (L1–L5) (Fig. 
2b). Restoring L7 to a full-length P411 (L7_FL) by re-attaching its native P450 reductase domain 
further improved the catalytic performance of the enzyme, which generated product 3a in 92% yield 
and 95% e.e. The improvement may be due to the increased stability of the full-length protein31. 
 

 
Fig. 2 | Screen for enzymatic N–H insertion with a haem protein collection and identification of 
A264S as the key mutation for achieving high activity and selectivity. a, Initial screening was 
performed with 40 haem protein variants, which led to the discovery of L7 (in well C10), which 
originated from a previous lactone carbene C–H insertion project. Reactions were performed at room 
temperature under anaerobic conditions. b, Rescreening of the lactone carbene C–H insertion lineage. 
Variants with the A264S mutation were found to be excellent catalysts for N–H insertion. c, 
Mutagenesis studies showed that replacing S264 with other amino acids led to low selectivities and 
diminished yields. Residue A264 in the active site of P411 variant E10 (PDB ID:5UCW) is highlighted. 
L7_FL and L6_FL are L7 and L6 restored to their respective full-length P411 enzymes. 
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In going from L5 to L6, a single mutation A264S, had a dramatic impact on the N–H insertion 
reaction, especially with respect to enantioselectivity (from –21% to 92% e.e.) (Fig. 2b). This 
observation indicates that the amino acid residue at site 264, which is located above the haem cofactor, 
plays an important role in both promoting the lactone carbene-transfer process and exerting control over 
the enantio-determining step. We then prepared five variants based on the full-length version of L6, 
L6_FL, with different mutations at site 264 and evaluated their performance in the N–H insertion 
reaction (Fig. 2c). Interestingly, mutation of serine to smaller amino acids (A or G) led to comparable 
activity but much lower selectivity, suggesting that the hydrophilic side chain of serine may be involved 
in controlling the enantioselectivity. However, protic residues of larger size (D, T and C) at site 264 are 
detrimental to both the yield and stereocontrol.  

We performed computational studies to understand the molecular basis of this enzymatic 
transformation and elucidate the role of S264 in promoting asymmetric carbene N–H insertion. 
Extensive molecular dynamics (MD) simulations considering the haem domain of variant L6 with the 
lactone-carbene bound showed that the lactone mainly explores a single orientation in the active site of 
L6. This is stabilized by the S264 side chain that establishes persistent H-bonding interactions with the 
lactone ester group (Fig. 3a). Within this orientation, only one face of the electrophilic carbene can be 
attacked by the nucleophilic amine substrate, enantioselectively yielding a reactive ylide intermediate 
(see Fig. S14 for the complete reaction mechanism studied by density functional theory (DFT) model 
calculations). Simulations performed with variant L7 describe similar behavior, whereas equivalent 
modelling for L5 variant show that, in the absence of S264, the lactone explores multiple conformations 
(see Fig. S5). Furthermore, H-bonding interactions involving the carbonyl group of the carbene were 
found to enhance its electrophilicity (Fig. S15), in line with what was disclosed in previous work32,33. 
Consequently, in addition to controlling the carbene orientation, S264 also contributes to increasing the 
reactivity of the carbene species. 

We then modelled the approach of amine substrate 2a to the carbene and the subsequent formation 
of the ylide intermediate in the active site of L6. Amine substrate binding in a near-attack conformation 
for the N-nucleophilic addition to the lactone carbene is stabilized by hydrophobic interactions between 
the substrate aromatic ring and active site hydrophobic residues (L75, V328, L437, P329), as observed 
from MD trajectories (see Fig. 3b, Fig. S6 and S7). The simulations also show that the H-bond between 
the lactone ester group and S264 is maintained when the ylide is formed. In addition, according to the 
simulations, only a few water molecules are present in the active site pocket, which are precisely 
funneled through two water channels, one formed by Y263 and T438 from the top face of the ylide 
lactone ring and the other one guided by the anionic haem carboxylates34 near the ylide amine group 
(Fig. 3c, Fig. S8 and S9). DFT calculations show that, once dissociated from the iron, the ylide 
intermediate can rapidly react with these water molecules to achieve the stereoselective proton 
rearrangement in the enzyme active site prior to product release: a water molecule protonates the ylide 
at the C position from the top face (pro-S face) of the lactone ring while a second water deprotonates 
the amine group (Fig. 3d and Fig. S18). The low activation barriers calculated indicate that this proton 
transfer step can take place immediately once the ylide dissociates from the iron. Collectively, the 
enantioselective formation of the ylide and the precise placement of water molecules in the active site 
for proton transfer enable the enzyme to control the selectivity of this N–H insertion reaction. 
 



 
Fig. 3 | Computational modelling elucidates the origins of enantioselectivity of carbene transfer 
into N H bonds catalyzed by P411-L6. a, Representative snapshot from MD simulations describing 
the conformations explored by the lactone carbene in P411-L6. The (N–Fe–C1–C2) dihedral angle 
measured along the MD trajectory describes the relative orientation explored by the carbene (see SI for 
additional replicas). b, Overlay of three representative snapshots obtained from constrained-MD 
simulations exploring near attack conformations for the N-nucleophilic attack of 2a to the lactone 
carbene in L6. c, Overlay of three representative snapshots from constrained-MD simulations exploring 
L6 active site arrangement when ylide 2a is formed. Displayed water molecules are drawn from 25 
random structures across the 100 ns MD trajectory. d, DFT-optimized model transition states (TS) for 
stereoselective ylide proton transfer. These models were built based on the arrangement of water 
molecules around the ylide intermediate in the L6 active site observed from MD simulations (see SI for 
details). Key distances are given in Å. 
 

We envisioned that the dual-function catalytic cavity of L7_FL could promote lactone-carbene 
transfer to other amine substrates with stereocontrol. Indeed, using lactone diazo compound 1 as the 
carbene precursor, a variety of amine nucleophiles could undergo the desired N–H insertion reaction 
under our standard whole-cell reaction conditions (OD600 = 30 in M9-N buffer), as summarized in Fig. 
4. Secondary anilines bearing an N-alkyl group (3b–g) were well tolerated in this transformation, giving 
good yields and excellent enantioselectivities. N-heterocycles such as indoline (3f) and 
tetrahydroquinoline (3g), which are structural motifs commonly found in bioactive molecules, also 
served as competent substrates. Steric hindrance from nitrogen substituents did not significantly 
interfere with enzyme performance, giving >70% yields and 98% e.e. (3b and 3c). L7_FL also 



displayed high activity toward primary anilines (3h–m) bearing various substitution patterns on the 
aromatic ring, including a sterically hindered substrate with two ortho-substituents (3m). Arguably, 
aliphatic amines are significantly more challenging than anilines for asymmetric N–H insertion 
reactions due to their increased Lewis basicity at the nitrogen atom16,22. To our delight, L7_FL was able 
to accept these amines, primary (3n–p) or secondary (3q), for the desired transformations, furnishing 
the corresponding α-amino lactone products with good activities and enantioselectivities. 

Fig. 4 | Enantioselective carbene N–H insertion of secondary, primary anilines and aliphatic 
amines. The experiments were performed using E. coli (OD600 = 30) that expressed the L7_FL enzyme 
with 10 mM diazo 1 and 10 mM amine (2b–q) at room temperature under anaerobic conditions. See SI 
for details. 
 

To demonstrate the utility of this biocatalytic platform, we pushed the limit of the enzyme’s catalytic 
capability by using much lower enzyme loadings. Under the standard conditions using whole-cell 
catalysts at OD600 = 30, the TTNs of the reactions are typically in the range of 1,000–2,000 (Fig. 4). 
Gratifyingly, lowering the amount of whole-cell catalyst did not result in a substantial drop in product 
formation, giving TTNs of 9,640 (OD600 = 5) and 32,100 (OD600 = 1) and showing that the enzymatic 
platform is particularly robust for this asymmetric amination chemistry (Fig. 5a). In addition, the 
enzymatic reactions are readily scalable (Fig. 5b). Using N-methyl-p-toluidine (2d) as the amine source, 
the N–H insertion reaction was performed at gram scale, delivering product 3d in 97% isolated yield 
and 96% e.e. Products 3e and 3l were prepared at 1-mmol scale, with crystal structures determined by 
X-ray crystallography. Finally, this enzymatic amination strategy was applied to the formal synthesis 



of the (S)-enantiomer of a fungicide, ofurace35,36. Key intermediate 3m was prepared via enzymatic N–
H insertion with 72% isolated yield and 91% e.e. 

 
Fig. 5 | Investigation of the catalytic efficiency of L7_FL and scale-up of asymmetric N–H 
insertion reactions. a, Excellent TTNs (up to 32,100) were achieved with L7_FL when performing 
the enzymatic reaction with 2l at low OD600. b, Preparative-scale reactions were carried out with 2l, 2d, 
2e and 2m. The X-ray crystal structures of 3l and 3e were obtained, and their absolute stereochemistry 
is consistent with the computational studies. 
 
Summary and Conclusion 
In summary, we developed an enzymatic platform for highly enantioselective carbene N–H insertion 
reactions to furnish a set of biologically relevant α-amino lactone products. The engineered P411 
enzyme L7_FL acted as a dual-function biocatalyst that promoted the transfer of the lactone carbene to 
amines and exerted excellent stereocontrol in the subsequent protonation step. Computational studies 
elucidated the detailed mechanism of this fascinating process, explaining the critical role of the serine 
residue at position 264 for achieving high activity and selectivity. The engineered active site controls 
the conformation of the lactone carbene, yielding to an enantioselective N-nucleophilic attack for the 
ylide formation; it also precisely positions water molecules for rapid and stereoselective proton 
rearrangement before product release.  Furthermore, we demonstrated that this enzymatic system can 
accept a broad range of amines for the desired amination reactions with high activity and 
enantioselectivity (up to >99% yield and 98% e.e.). The enzyme was shown to be robust, achieving 
high turnover numbers (e.g., 32,100 TTN with 2l) and catalyzing these reactions in preparative scale, 
including preparation of a key intermediate for synthesis of (S)-ofurace. We envision that this highly 
efficient system can be applied to the preparation of bioactive chiral amines for synthetic chemistry and 
drug discovery. 
 
Data availability 
All data necessary to support the paper’s conclusions are available in the main text and the Supporting 
Information. X-ray crystal structures of 3e (CCDC 2065484) and 3l (CCDC 2065489) are available free 
of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 
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Plasmids encoding the enzymes reported in this study are available for research purposes from F.H.A. 
under a material transfer agreement with the California Institute of Technology. 
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