2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS) | 978-1-7281-7002-2/20/$31.00 ©2020 IEEE | DOI: 10.1109/ICDCS47774.2020.00064

2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)

A Learning Approach with Programmable Data
Plane towards IoT Security

Qiaofeng Qin, Konstantinos Poularakis, and Leandros Tassiulas
Department of Electrical Engineering and Institute for Network Science, Yale University, USA

Abstract—Security threats arising in massively connected In-
ternet of Things (IoT) devices have attracted wide attention. It is
necessary to equip IoT gateways with firewalls to prevent hacked

jeab e) N
PRSI S

devices from infecting a larger amount of network nodes. The “1\(«,“\-\:;«‘“ Q - ~ \
match-and-action mechanism of Software Defined Networking o* e Tighee E—:—E@
(SDN) provides the means to differentiate malicious traffic flows 8 e \
from normal ones, which mirrors the past firewall mechanisms L 1 4 e @ ’ N
but with a new flexible and dynamically reconfigurable twist. Attacker © ¥ '\ » “'
However, vulnerabilities of IoT devices and heterogeneous pro- - loT Gateways
tocols coexisting in the same network challenge the extension @
of SDN into the IoT domain. To overcome these challenges,

Various Attack Dil ion: Heter Protocols

we leverage the high level of data plane programmability
brought by the P4 language and design a novel two-stage deep
learning method for attack detection tailored to that particular
language. Our method is able to generate flow rules that match
a small number of header fields from arbitrary protocols while
maintaining high performance of attack detection. Evaluations
using network traces of different IoT protocols show significant
benefits in accuracy, efficiency and universality over state-of-the-
art methods.

I. INTRODUCTION

Internet of Things (IoT) interconnects a multitude of devices
interfacing with the physical world as sensors and actuators,
facilitating their communication towards accomplishing as-
signed tasks. In such networks with massively interconnected
devices, security is a major concern. A large amount of
insecure [oT devices have become targets of botnet attacks [1],
leading to some of the most potent DDoS attacks in history.
IoT devices are vulnerable to more types of attacks compared
with other devices [2], such as network attacks in different
protocols (e.g., RFID, Zigbee, 6LoWPAN) and even physical
attacks. Therefore, it has been a big challenge to guarantee the
security of an IoT network.

Traditional methods to secure an IoT device require the
deployment of physical and application layer protection in it,
e.g., by strengthening the authentication and encryption during
data transmission. However, such approaches usually involve
firmware and even hardware modifications, taking a relatively
long time period. Devices in which security policies are not
updated in time will increase the risk of being hacked and
becoming sources of infection to other devices. To prevent
malware from spreading, network layer security approaches
are also necessary. For example, firewalls can be deployed
at IoT gateways, monitoring and separating malicious from
normal traffic, as depicted in Figure 1.

This publication was supported partly by the National Science Foundation
under Grant CNS 1815676, the Army Research Office under Agreement
Number W911NF-18-10-378, and the Office of Naval Research.

Figure 1. Firewalls deployed at IoT gateways targeting various types of attacks
in heterogeneous protocols.

Software Defined Networking (SDN) provides a flexible
framework for network management and is widely adopted
in IoT networks. This flexibility can be exploited for the
development and dynamic reconfiguration of network layer
security mechanisms. By separating control and data planes,
SDN protocols such as OpenFlow [3] make it possible to
develop such mechanisms in a logically centralized and pro-
grammable manner. OpenFlow-enabled switches process in-
coming packets through match-and-action flow rules received
from the controller checking specific header fields (e.g., MAC
and IP addresses, TCP port, etc.) and performing actions such
as forwarding or dropping accordingly.

A firewall can be developed by generating flow rules
through machine learning algorithms, which have been
demonstrated as a promising method for identifying attacks
from even unknown or encrypted traffic flows [4]. However,
this method presents several limitations. Specifically:

1) Limitations in Learning Models. The training features
used by the machine learning algorithm are often the
specific header fields of the packet. However, heteroge-
neous IoT protocols may have distinct packet header
structures, leading to a problem that the feature ex-
traction process and even the whole learning algorithm
should be specifically redesigned for every different
protocol. Besides, the manual feature extraction adds
difficulty to achieve optimal performance.

2) Limitations in OpenFlow. The match fields of OpenFlow
are predefined and fixed. Many IoT headers cannot be
parsed by it, e.g., compressed IPv6 headers in 6LoW-
PAN packets, or application layer protocols such as
MQTT and RESTful API. As a result, no proper flow

2575-8411/20/$31.00 ©2020 IEEE 410
DOI 10.1109/ICDCS47774.2020.00064

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

« Security Policy Learning Model with OpenFlow:

[\l> ‘ (Based

Manual Feature
Extraction

Flow Table
Limited Protocols

Packet Features
on Predefined Headers)

Captured Packets
(Raw Bytes)

ip_src=10.0.0.1 Drop
tep_port =1234 Output: Port 1

»

Learning Algorithm

* Security Policy Learning Model with Programmable Data Plane:

- § Fieldl IS Field2 I
"y Packet
Arbitrary Protocols P P oyres L2 1121314561718
> Packet Header Definition
Captured Packets |
(Raw Bytes) [Mateh ___action _|

<

(No Preprocessing Required)

Field1=...
Field2=...

Drop
Output: Port 1

Learning Algorithm Flow Table

Figure 2. The learning process based on OpenFlow method and P4 language.

rules can be created in these cases. Although OpenFlow
can be extended with user-defined headers by OpenFlow
Extensible Match (OXM), it has limited functionality
and hardware support in the above scenarios.

P4 language [5] provides possible solutions to the above
challenges. Unlike OpenFlow which focuses on the control
plane (i.e., the controller), P4 makes the data plane (i.e., the
switches) programmable as well. Specifically, the packet head-
ers are customizable by operators with the position and width
provided, and table lookup can be conducted on these newly
defined headers by the switches. This feature is especially
meaningful in IoT scenarios, where support of different IoT
protocols can be added by defining their headers [6].

Motivated by the above, we propose a new framework for
IoT security and a corresponding learning algorithm which
take advantage of the P4 language. Figure 2 illustrates its
differences compared with the existing OpenFlow-based meth-
ods. The proposed method operates in two stages. In Stage
1, a learning algorithm trains a dilated Convolutional Neural
Network (Dilated CNN) with raw packet bytes, skipping the
step of manual feature extraction. In Stage 2, a proper set
of header field definitions is inferred from the trained neu-
ral network, based on which flow rules for blocking traffic
(dropping packets) are generated and installed in the IoT
gateway (data plane switch). This method is applicable to
heterogeneous IoT protocols. Besides, it is designed to take the
constraints of switch memory cost and packet processing speed
into consideration, realizing a trade-off between accuracy and
efficiency.

The contributions of this work can be summarized as
follows:

o IoT Security Framework. We propose a new framework
for securing IoT networks and devices. Taking advantages
of the programmable data plane of P4 language, we aim
at developing a universal, highly accurate and efficient
solution to identify malicious traffic flows of multiple IoT
protocols.

o Learning Algorithm (Stage 1). We propose a learning
algorithm that trains a dilated Convolutional Neural Net-
work (CNN) with raw packet bytes to set up a traffic

411

classifier. This approach skips the step of manual feature
extraction of OpenFlow based methods and thus requires
minimum data preprocessing.

« Header Field Definition (Stage 2). We develop a method
for converting the abstract features learned in the trained
CNN into a particular set of header fields, so that a proper
set of flow rules can be installed at the IoT gateway.
This way, the classification can be realized as a switch
function at the IoT gateway for lower memory cost and
faster processing speed.

« Experimental Datasets. We conduct experiments to cre-
ate our own new datasets of IoT traffic and multiple
types of attacks. With them as well as publicly available
datasets, we evaluate the performance of the proposed
framework and algorithm in all aspects. The results show
that our method makes proper choices of header fields
achieving a better attack (intrusion) detection accuracy
level than state-of-the-art OpenFlow based methods (per-
formance) while being also able to handle heterogeneous
IoT protocols (universality). At the same time, the line
speed of packet processing is maintained (efficiency).

The rest of the paper is organized as follows. Section II
reviews our contribution compared to the related works while
Section IIT presents our IoT security framework. Sections IV
and V define and solve the header field definition problem
based on the constructed CNN. The experimentation results
are presented in Section VI, while we conclude our work in
Section VII.

II. RELATED WORK

Security problems of IoT devices have attracted wide at-
tention. [2] and [7] provide comprehensive surveys of IoT
attacks and classify them into various types. New types of
attacks different from traditional networks threat IoT security,
including a variety of attack methods in IoT protocols such
as Zigbee and 6LoWPAN [8], [9], [10], as well as phys-
ical attacks targeting the sensors and actuators [11], [12].
These works suggest adding authentication mechanisms to
the devices. However, a network-level security solution is
also necessary for preventing malware from spreading among
vulnerable IoT devices, such as botnets [13]. Our firewall
implementation at the IoT gateway complements the device-
level authentication for a more powerful security guarantee.

Network-level security approaches can be grouped into
two categories. The first category applies machine learning
methods on specific packet headers [14]. For example, [15]
applies learning on 6LoWPAN headers. Kalis [16] provides
knowledge-driven solution detecting IoT attacks, while DioT
[17] and IoT Sentinel [18] identify the IoT device types by
learning. Though these methods are effective, they usually
require pre-knowledge from protocol definitions or device
manufacturers. Due to the large diversity of IoT devices and
protocols, we explore another direction leading to a more
universal solution for heterogeneous IoT systems in case that
such pre-knowledge is not available.

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

Header Definitions
header ethernet_t { [Control Plane]
bit<48> dstAddr;
bit<48> srcAddr;
bit<16> etherType; P4 Program
} I
Tables & Actions

Modify Flow

table ipvé_lpm { Entries

key ={

hdr.ipv4.dstAddr: Ipm;}
actions = {

ipv4_forward;

drop;

NoAction;} [
size =1024;
default_action = drop();}

Data Plane Target J
BMv2, FPGA, ASIC...

Figure 3. The protocol independence and reconfigurability of P4 language.

The second category classifies packets based on raw packet
bytes rather than header fields. Machine learning methods,
especially neural networks are also widely applied for it, such
as [19], [4], [20]. These approaches have high accuracy and
are not limited to specific protocol or device types. However,
they can only be deployed in a remote server/host rather than a
switch (IoT gateway). Therefore, packets cannot be processed
at the line speed.

We aim at combining the merits of the two approaches
above, developing intrusion detection as a switch function
at the IoT gateway and at the same time not relying on
assumptions of device and protocol types. Benefiting from
their programmable, flexible and efficient packet processing
capabilities, recent developments in SDN make the imple-
mentation of such switch function possible. For example,
Sensor OpenFlow [21] and SDN-Wise [22] extend OpenFlow
protocol in this direction. Besides, the programmable data
plane brought by P4 [5] shows stronger capability in handling
heterogeneous IoT protocols and helps researchers to explore
further in this field. There is an increasing research interest in
deploying and managing P4 switches. [23] aims at aggregating
sensor data from multiple packets by P4 header operations. [6]
achieves multi-protocol switching of IoT services by deploying
P4-enabled switches. Our proposed IoT security framework
and corresponding learning algorithm are also based on P4,
which will be described in the next sections.

III. SECURITY FRAMEWORK

The proposed system has two components. The first part
is the control plane, an SDN controller which is a software
entity hosted in a node with sufficient computation capacity,
e.g., a conventional cloud server or an edge cloud node. The
second part is the data plane, which can be an IoT gateway.
We consider the case that the IoT gateway is programmable
by supporting the P4 language [5].

P4, or Programming Protocol-independent Packet Proces-
sors language is designed with reconfigurability and protocol
independence. More specifically, the control plane (controller)
is able to define how a data plane device (switch or gateway)
parses a packet in a programmable and automated way (recon-
figurability). First, one or more headers are defined as a list of
fields given their positions and widths in bits. Then, a parser

412

SDN Controller
Report Packet Classifier
Unknown
Samples lnstal Rules
jmmmmm——— | B R
i
]
]
]
]
]

Firewall ‘ Routing »
Match + Action Match + Action| 1
‘ Discard]

(©)
0o

Packet

-

IoT Devices IoT Gateway - Programmable Data Plane

Figure 4. The control and data planes of the proposed framework, both
programmable.

works as a state machine to extract headers, following a series
of match+action tables, which is similar to OpenFlow, except
that header fields are not predefined (protocol independence).
The whole workflow is depicted in Figure 3.

As shown in [6], a P4-enabled gateway is capable of serving
IoT devices of heterogeneous network protocols. Our aim is
to use the IoT gateway to identify malicious incoming traffic
flows (e.g., from a hijacked IoT device) before they are routed
to other domains and devices. We program the [oT gateway
to execute a firewall function before the routing function. The
firewall keeps a match+action table recording the features of
known packets, which are the values of certain packet header
fields. These fields will be checked inside the incoming packets
and marked as normal or malicious based on the flow rules
installed in the table. Normal packets will be passed to the
routing function without modifications. On the other hand,
actions can be defined to handle the malicious packets, e.g.,
blocking them or forwarding them to a honeypot. The flow
rules are generated by the SDN controller, where a classifier
is deployed and responsible for judging whether a flow is
malicious or not. The controller is able to convert classification
results into header field definitions and flow rules to install
them in the firewall at the IoT gateway either reactively or
proactively. The whole architecture is depicted in Figure 4.

Two key problems are required to be solved in the proposed
system. First, we need to find algorithms for classifying
packets with high accuracy. Second, P4 match+action tables
should be generated, making classification a data plane func-
tion which achieves line-speed packet processing. Besides,
the solution we expect should be universal for heterogeneous
IoT protocols, i.e., neither algorithm redesign nor protocol-
dependent data preprocessing is required. In the next two
sections, we will formally propose a formulation and a two-
stage solution corresponding to the two key problems.

IV. PROBLEM MODELING

Assumptions. To model the two problems, we consider
a scenario of one IoT network domain equipped with one
gateway along with its SDN controller. This scenario can be
easily extended into a multi-domain or multi-gateway topology
by deploying the same solution in each domain. The gateway

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

is responsible for identifying attacks among all traffic flows
going through it, so that it can block current and future packets
of the attack flow to prevent it from spreading, e.g., a hijacked
device outside the domain infecting devices inside the domain,
and vice versa. We assume that the security of the gateway
itself and its SDN controller is not compromised.

Packet Classification. The features that can be used for
classifying network traffic can be divided into two types,
the packet-level features (e.g., IP address, TCP port, payload
length), and the flow statistics (e.g., packet count, duration).
The programmable data plane of P4 brings opportunities for
defining new packet-level features, not restricted to Open-
Flow’s pre-defined collection, which is particularly important
for the IoT network where heterogeneous protocols coexist.
Besides, previous studies like [19] claim several other merits
of learning directly from packet bytes, including the higher
accuracy and the ability to classify encrypted traffic. Therefore,
our work is focused on the packet-level features type of
classification.

We use the first N bytes of the packet as features for
classification. The packet can be thus represented by a vector
x = (21,22, ...,xN) Where each element x; € [0,1] Vi < N
is a number converted from a byte. If the length of a packet
is less than N, zero padding is applied. A classifier in the
control plane should provide a function F(x) judging the
packet. We consider a binary output indicating whether the
packet belongs to a normal traffic flow (i.e., F/(x) = 0) or a
malicious one (i.e., F/(x) = 1). We can directly extend the
method for multiple output values where the gateway takes
different actions depending on the type of attack.

Header Fields Definition. While the control plane can
check the bytes inside the packet one-by-one (and therefore
compute the F'(x) value), such fine-grained classification may
not be possible in the dataplane (IoT gateway) as this would
require to install a huge number of flow rules for all possible
combinations of the NV bytes. This is not feasible since it would
lead to unrealistic memory cost and latency of lookup and
processing packets. Taking advantage of P4, any substring of
packet bytes can be regarded as a header field by the gateway,
based on which flow rules will be generated. Therefore, we
can effectively limit the number and length of flow rules, as
well as the associated packet processing latency, by carefully
defining a small number of packet byte substrings as header
fields at the gateway.

Formally, we define the Header Fields Definition H
{hx,k =1,2,..., K} which is a set of K substrings of bytes.
[24] investigates various P4-enabled devices to show that the
number of header fields has an impact on the performance.
Therefore, we require that K < K4, where K., << N so
that to ensure a maximum memory cost and packet processing
latency requirement is met. Each element hy, = (ax, ax + L)
is a substring starting from the aj-th byte of the packet
and ending at the (ar + Li — 1)-th byte, with its length
Lyj,. These substrings should not overlap with each other,
ie., ax+1 > ap + Ly for any k, to avoid wasting memory.
Unlike the traditional definition of header fields, each of which

413

contains a specific type of information (e.g., network address
or port number), we do not restrict that every substring defined
by our method corresponds to a clear entity. Instead, we
aim for an algorithm capable in learning the meaning and
importance of different substrings, so that it can minimize
the requirement of data preprocessing and be applicable to
heterogeneous IoT protocols.

Based on the Header Fields Definition H, the information
actually extracted from a packet x is X = (24, , ..., Ta, 4L, 1,
ooy Tags s Tag+Lx—1)- Therefore, the packet classification
executed at the gateway follows a different function from
F(x), which depends on the definition of header fields H. We
denote this function by F# (x). Our goal is to find proper H
and F'7 (xH) functions which satisfy the constraints mentioned
above and are able to predict the packet classification at a high
accuracy.

V. METHODOLOGY
A. Overview

We solve the two problems specified in the previous section
in two stages as depicted in Figure 5. In Stage 1, we build
and train a neural network (NN) as the packet classifier. The
training is based on raw packet bytes without considering the
definition of header fields. This classifier will be deployed
at the control plane. In Stage 2, we calculate importance
scores for each possible substring of packet bytes using the
information from the trained NN (Neuron Weights), and then
select non-overlapping substrings with largest scores to be
included in the header field definition, which will be installed
at the gateway (data plane) along with a match+action flow
table.

Initially, the NN is trained offline with captured network
traces. The trained NN is then deployed at the controller as the
packet classifier. For the data plane, both proactive and reactive
operating modes are available according to different scenarios.
In the first mode, the controller installs both header field
definitions and corresponding flow rules from training data
proactively at the gateway. The gateway can therefore process
new incoming packets at the line speed without forwarding
them to the controller. In the second mode, the controller
can proactively install header field definitions only, and install
flow rules in a reactive way by replying to the gateway’s
queries. This mode incurs less memory cost in the gateway but
increases latency due to the controller-gateway communication
each time when the gateway receives unknown packets.

After the initial offline training, with the gateway sampling
new packets and sending them to the controller, the two-stage
process can be repeated in an online manner optionally, as long
as the labels of packets can be acquired by the controller as
well. The controller can also dynamically update the header
field definition by compiling a new P4 program. All these
operations are supported by the P4 specification.

B. Stage 1: Neural Network Structure

We apply methods of supervised learning for the packet
classification. In particular, trained with a labeled dataset (i.e.,

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

Neural Network

Neuron Weights

Importance Scores

e

Data Plane
Header Fields Definition

ot Samples for
Training

pack
offline

(N

{ SDN Controller] “

4

i Packet Samples for
Online Training

v
P4-enabled }
loT Gateway

Figure 5. Illustration of the proposed two-stage learning approach. Packet
classification is realized by the SDN control plane in Stage 1, followed by
header field definition and implementation at the IoT gateway in Stage 2.

large amount of packets marked as either malicious or normal),
the classifier should be able to infer the expected output of a
new input (the function F(x)). A Neural Network (NN) [25]
is a computing system for supervised learning. It consists
of several hidden layers and an output layer. Each layer is
constructed by building blocks called neurons. For example, if
we arrange the neurons of each layer in an array with index n
(corresponding to the byte index of the packet), assign another
index ¢ = 1,2, ..., I for each layer ¢ and take the packet byte
vector x as the input, the output of a neuron in the first hidden
layer is:

chi = J(whni g+ Bl

ey

The output of each layer is the input of the next layer. For the
neuron in the ¢-th hidden layer (¢ > 1), the output is:

Cfn‘ — f(,wt;ni . Ct_l + bt;ni)

@

where w?™* is a 2D vector of trainable weights, b%™ is a
bias term, and f is a non-linear activation function.

Among various NN structures, we adopt 1D Dilated Con-
volutional Neural Network (Dilated CNN) [26] as depicted in
Figure 6. In each hidden layer ¢, connections are local and
dilated with step size 2¢~!. In other words, each neuron with
index 7 only takes two rows of neurons with indices ¢ and
i+ 2'"1 in its last layer as the inputs. Neurons in the same
layer share the same weight values. The output of the hidden
layer neurons can be represented in the following way:

chi = Fwh T +wh - Ty +b') 3)
chy = flwh el rwh el B VE> 1 (@)

where w}, and w} are two 1D vectors of trainable weights.

This structure brings two major benefits. First, for any
hidden layer neuron cf,,, its inputs are limited in the range
between packet bytes x,, and x,,49¢_1, which means that we
can establish a correspondence between a neuron ¢!, and
a substring (n,n + 2¢) following the denotation in the last
section. Second, the neuron receptive field is 2%, increasing
exponentially with the network depth. With T hidden layers,
we can find neurons corresponding to any potential header

414

Output

Fully Connected
Layers

Hidden Layer 3

Hidden Layer 2

Hidden Layer 1

Packet Bytes

Figure 6. Structure of the dilated convolutional neural network (Dilated CNN)
for packet classification.

field of length 2,4, 8, ..., up to 27 bytes. In other words, with
a limited amount of layers, we are able to cover a wider range
of packet substrings. This is beneficial in both representing
the packet structure better and training the neural network
more efficiently. After convolutional layers, we have fully-
connected layers, the last of which has a single neuron taking
the weighted sum of the last hidden layer outputs as the final
result. This structure can be easily extended to multi-class
classification, as long as we set up more neurons in the output
layer.

C. Stage 2: Header Field Definition

In the next stage, we adopt a neural network pruning [27]
technique to the trained network. Pruning compresses the
neural network by reducing the number of neurons. With
smaller memory and calculating costs, pruning facilitates the
processing of NN in IoT scenarios [28], where the capacity
of devices may be limited. However, besides this benefit, our
main purpose is to deduct an optimal set of header field
definition based on the results of pruning, therefore enabling
the line-speed packet processing in a P4-enabled gateway.

Pruning leads to an importance score of each neuron.
Neurons with higher importance scores play a more crucial
role in the classification. According to [27], we apply the
Inf-FS [29] algorithm to calculate the importance scores of
neurons in the last hidden layer. Then, the importance scores
are calculated for the remaining layers in a backpropagation
manner.

Leveraging the one-to-one correspondence between neurons
and header fields in the proposed CNN structure, we extend
the notion of importance score from neurons to header fields.
Unlike [27] that suggests to greedily select neurons with high-
est importance scores, our problem has additional constraints,
e.g., that the header fields should not overlap with each other.
Therefore, we propose a new problem formulation.

The input of the problem includes the importance scores of
all neurons in each hidden layer ¢t. We denote the importance
score of neuron c!; by st .. By summing these values, we de-
note the importance score of a potential header field (n, n+2")
by S, =Y, st,. Then, we obtain the following optimization

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

problem:

Nt
mjxg Yn * Sp (5)
Nt
s.t. Z Yn < Knae (6)
n=1
Yn *Yntj =0, Vn< N j<L 7
L=2" N'=N-L+1 (®)
where y = (y1,92,...,ynt) is the vector of variables to

optimize, representing all possible substrings of length 2¢ in
the first NV bytes of the packet. The binary element y,, indicates
whether to select substring (n,n + 2!) in the header field
definition (y,, = 1) or not (y,, = 0).

To solve this problem, we propose to use Dynamic Program-
ming [30]. A Bellman equation can be easily defined based on
two states; K as the amount of selected header fields and ng
as the starting byte of the latest selected header field. We then
have the following equations:

V(l, Tlo) = S’I’L07

V(K7 77/0) = n-}—riaém V(K - 17”) + Snoa

\V/’flo SNt
VYng < N, K >1

Based on the above equations, any V (K, ng) value can be
calculated by recursion. The maximum of our objective func-
tion is therefore max,,<nt V(Kmaz,n0). As described in
Algorithm 1, an optimal set of header fields H can be selected
with reasonable O(K 4, * N) time complexity.

The parameters K,,,, (i.e., maximum number of header
fields) and L = 2! (i.e., length of one header field) can be
determined according to the capacity of different types of P4-
enabled devices [24]. In general, a tradeoff between accuracy
and cost can be achieved by adjusting these parameters. With
fewer or shorter header fields, some different traffic flows
may be regarded as the same one by the gateway, negatively
affecting the classification accuracy. With more or longer
header fields, however, it takes larger memory cost to store
flow rules, and may slow down the packet processing in some
implementations. In the next section, we will evaluate the exact
impact of these parameters on different performance metrics.

VI. EVALUATION RESULTS

To demonstrate the benefits of our P4-based IoT security
approach, we perform evaluations using various real traffic
datasets. We begin with presenting the datasets and algorithms
that will be later used to generate the evaluation results.

A. Datasets & Algorithms

First, we use the following two publicly-available datasets

of IoT network traffic:

e ISCX Botnet 2014 Dataset [31]. This is a collection of
botnet traffic traces from multiple well-known datasets.
The types of traffic are mainly HTTP, P2P and IRC. This
dataset is already divided into the training set and test
set. The test set has more diversity than the training set,

415

Algorithm 1: Optimal Header Fields Selection
Input: 51,59, ..., Snt, Kiaz, L
1 for ng < Nt do

2 V(l,no) = Sno;

3 H(l,’no) = {(no,no + L)},

4 end

s for K =2,3,..., K4, do

6 for ng < N* do

7 n* = argmax,r<n, V(K — 1,n);

8 V(K,ng) =V (K —1,n") + Spys

9 H(K,ng)=H(K —1,n*)U{(no,n0+ L)};
10 end

11 end

12 n* = argmax, <yt V(Kmaz,n);
Output: H = H(Kmaz7 TL*)

in order to evaluate the detection of unknown attacks.
It is originally gathered for statistics-based classification
and contains a huge amount of packets, therefore we
sample 10% of the packets from each flow for packet-
level training. We also randomly modify the IP fields
because all malicious flows are remapped to fixed IP
addresses in the original data.

CICAAGM Android Dataset [32]. This publicly available
dataset captures the traffic of Android applications in
real smartphones, including 250 adware, 150 malware
and 1500 benign applications. Besides HTTP, there are
also massive HTTPS traces, a large portion of which is
SSL/TLS-encrypted. The raw packet bytes are available
through PCAP files. We sample 1000 successive packets
from each class of the trace for packet-level training and
testing.

We also make our own efforts to create two new datasets
using network simulators and real IoT devices we deploy, con-
taining unique threats to IoT devices. These datasets contain
protocols that OpenFlow cannot handle. On the contrary, we
will demonstrate that P4 and our algorithm work well on them.

e Cooja Network Simulator Dataset. [33], [10] analyze
different types of attacks in 6LoOWPAN networks through
the RPL routing protocol with the help of Contiki oper-
ating system and its Cooja simulator. Adopting similar
methods, we run simulations of 10-node IoT networks
with random topologies, and set up a malicious node
conducting Version Number Attack and Increased Rank
Attack. We collect packet bytes of both malicious and
normal traffic flows to generate our dataset.

Waspmote IoT Sensor Dataset. We also create a new
dataset with measurements on real IoT devices (not
simulator) we deploy. Specifically, we install temperature,
humidity and luminosity sensors on a Waspmote [34]
Smart Cities Pro sensor board. It periodically sends
802.15.4 frames to the gateway containing sensor data.
If the electrical connection from a sensor to the board
is impeded, the device will still send packets in the

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

same format but with the wrong values. This is indeed
categorized as a physical attack on sensors rather than
network attack. However, we will demonstrate that our
method is also effective in detecting such unconventional
attacks.

In each dataset except the first one, we randomly pick 80%
of the samples for training, and the remaining 20% for testing.
We implement several state-of-the-art algorithms and make
comparisons with our method. In particular:

1) Proposed P4-based Method. In Stage 1, we build the
deep neural network of the proposed structure with
4 convolutional layers each with 64 filters and the
ReLU activation function [35], followed by two fully-
connected layers with 100 and 50 neurons. At each
hidden layer, a 0.05 dropout rate is set to avoid over-
fitting. We keep the hyperameters unchanged when
training with different datasets. In Stage 2, we produce
the header field definition and install the corresponding
flow rules to the IoT gateway.

OpenFlow-based Methods. As a comparison, we con-
sider classification methods based on OpenFlow pro-
tocol, representing SDN without programmable data
plane. We limit the features of classification within the
predefined header fields of MAC, IP, TCP and UDP
protocols according to the OpenFlow specification. As
stated in [36], multiple machine learning techniques can
be applied to these features, among which we choose
two representative methods, Decision Tree (DT) and
Support Vector Machine (SVM).

1D Convolutional Neural Networks (1D-CNN). We also
consider other deep learning approaches for packet clas-
sification which (similar to our method) take packet
bytes rather than some specific header fields as the input.
We implement two 1D-CNN imitating the structures and
hyperameters in [19], [4], denoted by CNN-1 and CNN-
2. These CNNs provide the same type of output as
our Stage 1 output. However, they are not capable in
producing a header field definition as Stage 2 of our
method does. In other words, the classification cannot
be executed as a switch function for line-speed packet
processing.

We implement DT and SVM models using scikit-learn [37]
library, and implement NNs in TensorFlow [38]. To verify
the header field definition calculated by our algorithm, we
also conduct emulations with Mininet [39] and P4 behavioral
model software switch (BMv2) [40]. The experiments are
conducted on a desktop computer with Intel Core i7-7700
Processor, 16 GB RAM and GeForce GTX 1060 graphics
card. We make our algorithm implementation and new datasets
publicly available [41] for the benefit of research community.

2)

3)

B. Metrics

We evaluate the performance of the classification algorithms
using as metric not only accuracy, but also precision and
recall. We denote the number of correctly identified malicious

416

packets by TP and incorrectly identified ones by FP. We denote
the number of correctly identified normal packets by TN and
incorrectly identified ones by FN. The metrics are calculated
as follows:

B TP+ TN)
Y = TP Y TN + FP+ FN
i TP TP
precitsion = m, recall = m (10)

Considering that the datasets have uneven class distributions
(where malicious samples account for around 30% in each
dataset, except the Cooja dataset with around 10% malicious
samples), we also calculate the F1 score defined as the
harmonic mean of precision and recall:

precision x recall
F1 %

2 (11)

precision + recall

C. Classification (Stage 1) Performance

In this subsection, we evaluate Stage 1 of the proposed
method. We compare the classification performance of the
proposed dilated convolutional neural network with the two
other CNN structures as well as with the DT and SVM
OpenFlow-based methods.

Method ‘ Accuracy Precision Recall Fy
DT 0.790 0.694 0.659 0.676
SVM 0.773 0.706 0.544 0.615
CNN 1 0.907 0.897 0.816 0.854
CNN 2 0.909 0.903 0.816 0.857
Proposed 0.911 0.904 0.822 0.861
Table 1

PERFORMANCE METRICS ON ISCX DATASET.

ISCX Botnet. We train and test all the algorithms on the
ISCX dataset. Table I shows the accuracy of each algorithm.
Compared with methods based on OpenFlow headers, the
CNNss (including our approach) that take raw bytes as the input
have significantly better performance. We also find that CNN-
based methods outperform other algorithms in both precision
and recall rates, leading to higher F1 score.

Method ‘ Accuracy Precision Recall FF
DT 0.890 0.833 0.771 0.801
SVM 0.895 0.933 0.646 0.780
CNN 1 0.882 0.833 0.738 0.782
CNN 2 0.898 0.870 0.760 0.811
Proposed 0.908 0.927 0.736 0.820
Table II

PERFORMANCE METRICS ON CICAAFM DATASET.

CICAAGM dataset. We perform similar training and test-
ing on the CICAAGM Android dataset, which contains a larger
diversity of traffic flows including SSL/TLS encrypted ones.
The results are depicted in Table II. Although the performance
difference is not as large as in the ISCX dataset, our algorithm
still achieves highest accuracy than the other algorithms. We
note that while the SVM OpenFlow-based method reaches

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

Dataset ‘ Cooja Waspmote
Method | Accuracy F1 | Accuracy P
CNN 1 0.998 0.991 0.995 0.993
CNN 2 0.994 0.971 0.998 0.996
Proposed 0.995 0.973 1.00 1.00
Table IIT

PERFORMANCE METRICS ON OTHER DATASETS.

0.9

0.8

0.7

Precision

0.6

0.5F
=== [SCX Dataset

CICAAGM Dataset
Cooja Dataset

0.7
Recall

0.5 0.6 0.8 0.9 1

Figure 7. The precision-recall curve on different datasets.

higher precision, it severely degrades the recall value, leading
to a lower F1 score.

Cooja dataset and Waspmote dataset. The Cooja and
Waspmote datasets are relatively simple, each with smaller
amount of samples and only two types of attacks. However, the
former contains compressed 6LoWPAN headers, and the latter
has abnormalities which can only be identified from the packet
payload rather than the headers. Therefore, the packets are not
readable and can no longer be classified by the OpenFlow-
based methods (i.e., DT and SVM).

As shown in Table III, all three CNNs are capable of
identifying the RPL routing attacks and sensor physical attacks
with accuracy higher than 99%. The performance metrics of
different methods are generally at the same level. Except
being slightly worse than the CNN-1 in the Cooja dataset,
our proposed network has superior performance in accuracy
and F1 score. Especially, it achieves perfect predictions in the
Waspmote dataset.

Performance Tradeoff. We are also interested in the trade-
off between the different performance metrics. In some sce-
narios, the false alarms must be controlled, otherwise system
failures can happen. To achieve this, we can apply a threshold
to the CNN output. We depict the respective precision-recall
curves for different thresholds in Figure 7 for all datasets
except the Waspmote dataset where perfect predictions have
been reached. We notice that in all datasets there is a space
to increase the precision further at a cost of the recall.

Main Takeaways. (1) P4-based learning methods with
packet bytes as the input can achieve better classification per-
formance compared with OpenFlow-based learning methods
that take as input predefined header fields. They can also
handle heterogeneous protocols and application layer contents

417

of packets, where OpenFlow-based methods are not applicable.
(2) Our proposed Dilated CNN structure achieves similar or
better performance than other state-of-the-art CNN approaches
that take the same input (packet bytes).

D. Header Field Definition (Stage 2) Performance

The classification performance benefits in the previous
subsection are important but not surprising. It was expected
that taking packet bytes rather than predefined headers as
input to the learning algorithm achieves superior classification
performance as the classifier design space is larger. Still, the
above results quantified the exact performance improvement
we can achieve and verified the suitability of our proposed
Dilated CNN structure compared to other CNN structures.

The main contribution of our work, however, lies on the im-
plementation of the intrusion detection function directly inside
the data plane (P4-enabled IoT gateway). This is important
because it enables line-speed packet processing that is not
available in the other learning methods like CNN-1 and CNN-
2. To achieve this, Stage 2 of our learning method uses the
trained Dilated CNN to define a particular set of packet byte
substrings as header fields that will be used by the gateway to
install flow rules. Therefore, matched packets will be directly
handled by the gateway without requiring to be forwarded
to the SDN controller or another remote firewall function. In
the sequel, we elaborate on the header field definition and
corresponding classification performance achieved by Stage 2
of our algorithm.

Profiles of Importance Scores. Following the procedure
described in Section V-C, we calculate the importance scores
for all substrings of length 1,2, 4, 8 and 16 in the first N = 128
byte positions. For example, Figure 8 depicts the results of
importance scores (after normalization) for every single byte.

The profiles of the datasets show different and complicated
tendencies. However, there are also some intuitive results:

o ISCX dataset (with IP addresses masked). The algorithm
highly scores both TCP/UDP fields and some positions
in the application layer.

CICAAGM Android dataset. The curve has three peaks in
the IP address field, the TCP port field and application
layer. This distribution implies that the classifier makes
predictions based on information from headers of mul-
tiple network layers, which is an advantage of adopting
SDN and P4. For example, in the case where the packet
payload is SSL/TLS encrypted, even if the classifier is
not able to parse application-layer information, it is able
to make predictions based on TCP/IP headers with a
high accuracy. On the other hand, the application-layer
headers reveal much information in those packets without
encryption.

Cooja dataset. High importance score is given to 97-th
byte. It is reasonable because all attacks occur through
DODAG Information Object (DIO) messages [33] of 96
bytes. The algorithm takes the packet length into account
when making classification.

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

Baseline 2 L=4

4-byte-long fields, the classification is almost as accurate as

1l R —— —— — 17 r
5 L \ | 15 L
15] 2 r
@ Bl » 7
3] 3 L
8 1 g UorF
b=] k=1 L
g 1 g 0.7¢
E 1 £
75 125 o 25 75 125
Byte Byte
(a) ISCX Dataset. (b) CICAAGM Dataset.
I S s s e s R s) e e e ey e s s s S
£ 05 \
‘fé 0.6F g
£ 04F R £
£ 02 b £
g 024
, -5 AN
0 25 50 75
Byte
(c) Cooja Dataset. (d) Waspmote Dataset.
Figure 8. Distributions of single-byte importance scores in different datasets.
‘ 0.85 ‘ 35k
0.9 / 0.8 30k
085 / 0.75 / § 25k r
R = —————4
g:e’ / 07 A E; 20k A A
g 0.8 * o6 % 15k v
o Field Length = 1 06 - FieldLengh=1| 1 2o /
0.75 ¥ e Ee}g pength =2 |) ' - E?e}g Length =2 o~ Ficld Length = 1
ield Length = ield Length = ield Length =2 |
o 053 L - Byte-by-bie‘] 3k 2 Pl
07 1 2 3 4 03 1 2 3 4 0 1 2 3‘ J;
Number of Header Fields Number of Header Fields Number of Header Fields
(a) Accuracy. (b) F1 score. (c) Memory cost.
Figure 9. Accuracy, precision and memory cost with different header fields selected in CICAAGM dataset.
80 l ‘ ‘ dataset as an example, Figure 9(a) and 9(b) show the accuracy
70 % T and F1 score as we increase the number of header fields we
60 match in the gateway node (K4, equal to 1, 2, 3 or 4) and for
£ 50 ’i‘ = x different header field lengths (L equal to 1, 2 or 4). The byte-
Ep to-byte approach corresponds to the packet classifier in Stage 1
§° 20 g 5 é é of our method described in the previous subsection. Intuitively,
£ %) § 5 ? the performance improves with the number of header fields.
i § I According to the results, it is not necessary to have a large
10 .
? ; % number of header fields. With three 2-byte-long fields or two
~ L=2
K=4

L
(Forwarding) K=2 K=2

Figure 10. Throughputs with different header field definitions.

o Waspmote dataset. The algorithm successfully assigns
highest importance scores to Byte 31, 32 and Byte 36,
37 in every 802.15.4 frame which store the the sensing
data in question.

These distributions demonstrate that the importance scores
calculated by our method successfully identify header fields
that are crucial in classifying packets.

Impact of Header Fields on Accuracy. The proposed
Dynamic Programming algorithm (Algorithm 1) will select
as header fields the substrings of the packet bytes that have
the highest importance scores. Taking the CICAAGM Android

418

the byte-to-byte approach. The difference is around 0.1% in
accuracy values.

Impact of Header Fields on Costs. Next, we examine the
costs associated with the header field definition, measured by
the number of flow rules stored in the gateway node. Since
more rules lead to a larger memory occupancy and more
queries to the control plane, we need to keep their number
as low as possible. Figure 9(c) shows that the number of rules
required for classification increases with both the length and
the number of header fields selected. Therefore, a tradeoff
exists between the accuracy and cost. The balance point can be
achieved by adjusting the values of K,,,, and L parameters in
our algorithm. Notice that although the number of all possible
values of a header field increases exponentially with its length,

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

the growth is not drastic in practice. From the evaluation
results, the tendency is closer to a linear growth.

We need to emphasize that the proposed intrusion detection
mechanism does not incur much additional costs in other
aspects such as the network latency and throughput, because
it only adds an one-time table lookup in the packet processing
procedure. To verify this intuition, we create a virtual network
with one BMv2 switch and two hosts using the Mininet
emulation platform. We implement several sets of header field
definitions and flow tables similar to the results in Figure 9. We
use this virtual network to measure the maximum throughput
achieved by our mechanism for different K and L choices
and compare it with the baseline L2 forwarding mechanism
that does not perform any intrusion detection. The results are
depicted in Figure 10. We notice that the maximum throughput
is reduced by less than 10% compared with the baseline, i.e.,
the line speed of packet processing is maintained. In the same
scenario, we have another approach that forces packets to go
through an application-layer single-thread analyzer based on
Scapy [42] before being forwarded, which represents the case
if adopting solutions similar as CNN-1 and CNN-2 in the last
subsection. In this case, no larger throughput than 1 Mbps is
achieved. Therefore, it is extremely beneficial to implement the
intrusion detection as a switch function inside the IoT gateway
with the help of the programmable data plane feature.

Method | Optimal Random
of Fields | Accuracy Fi | Accuracy R
1 0.740 0.597 0.689 0.325
2 0.876 0.757 0.765 0.490
3 0.907 0.818 0.775 0.557
4 0.907 0.818 0.802 0.639
Table IV

COMPARISONS BETWEEN THE PROPOSED ALGORITHM AND RANDOM
SELECTED HEADER FIELDS. (THE LENGTH OF EACH FIELD IS 2 BYTE IN
BOTH CASES.)

Optimal Selection of Header Fields. Last but not least, to
demonstrate that the importance scores are proper metrics for
the data plane definition, we compare the optimal selection
of header fields in our algorithm with random selections. As
shown in Table IV, with the same number of selected header
fields, the performance of our algorithm is significantly better,
with more than 10% accuracy and around 20% more F1 score
than the random selection.

Main Takeaways. A similar level of packet classification
accuracy as the byte-to-byte approach can be achieved by
merely matching a small number (two or three) of header fields
appropriately selected based on the importance scores in the
associated neural network. When implemented as a P4 switch
function at the IoT gateway, this approach requires low mem-
ory and latency cost and incurs small throughput loss for table
lookup (less than 10%, i.e., line speed is maintained), while
alternative application-layer intrusion detection mechanisms
would cause a multi-fold throughput reduction to achieve the
same level of functionality.

419

VII. CONCLUSION

In this paper, we studied new opportunities for enhancing
security in the IoT network brought by the programmable data
plane. Namely, we proposed a two-stage deep learning method
based on P4 language that first trains a neural network as
the packet classifier and in a later stage selects packet byte
substrings as header fields and installs appropriate flow rules to
realize intrusion detection functionality inside the IoT gateway.
Evaluation results on publicly available and newly devel-
oped datasets of IoT scenarios demonstrated the performance
benefits and universality of the proposed method compared
with state-of-the-art OpenFlow-based methods. Importantly,
the results verified that a more favorable tradeoff between
detection accuracy, memory cost, latency and throughput can
be achieved by the proposed method.

We believe that this paper opens exciting directions for fu-
ture work. First, flow statistics can be taken into consideration
along with the packet-level features to further enhance the
accuracy and precision of the intrusion detection mechanism.
Second, the classification decision in our model is based on
exact matching of the packet headers. Flow table compression,
that properly applies wildcard flow rules, constitutes another
promising approach for improving further the efficiency and
reducing the resource consumption costs. Last but not the
least, we also plan to perform implementations and evaluations
on different P4-enabled devices, such as hardware switches
and SmartNICs, where higher performance of throughput and
latency is expected.

REFERENCES
[1] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80-84, 2017.
I. Andrea, C. Chrysostomou, and G. Hadjichristofi, “Internet of things:
Security vulnerabilities and challenges,” in 2015 IEEE Symposium on
Computers and Communication (ISCC). IEEE, 2015, pp. 180-187.
N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, pp. 69-74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746
M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” Soft Computing, pp. 1-14, 2017.
P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.
M. Uddin, S. Mukherjee, H. Chang, and T. Lakshman, “Sdn-based multi-
protocol edge switching for iot service automation,” IEEE Journal on
Selected Areas in Communications, vol. 36, no. 12, pp. 2775-2786,
2018.
F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, “Internet of
things security: A survey,” Journal of Network and Computer Applica-
tions, vol. 88, pp. 10-28, 2017.
X. Cao, D. M. Shila, Y. Cheng, Z. Yang, Y. Zhou, and J. Chen, “Ghost-
in-zigbee: Energy depletion attack on zigbee-based wireless networks,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 816-829, 2016.
P. Pongle and G. Chavan, “A survey: Attacks on rpl and 6lowpan in
iot,” in 2015 International Conference on Pervasive Computing (ICPC).
IEEE, 2015, pp. 1-6.
A. Mayzaud, R. Badonnel, and I. Chrisment, “A taxonomy of attacks in
rpl-based internet of things,” International Journal of Network Security,
vol. 18, no. 3, pp. 459-473, 2016.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

K. Fu and W. Xu, “Risks of trusting the physics of sensors,” Commu-
nications of the ACM, vol. 61, no. 2, pp. 20-23, 2018.

Y. Shoukry, P. Martin, Y. Yona, S. Diggavi, and M. Srivastava, “Pycra:
Physical challenge-response authentication for active sensors under
spoofing attacks,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2015, pp. 1004—
1015.

M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 1093-1110.

C. Li, Y. Wu, X. Yuan, Z. Sun, W. Wang, X. Li, and L. Gong, “Detection
and defense of ddos attack—based on deep learning in openflow-based
sdn,” International Journal of Communication Systems, vol. 31, no. 5,
p. €3497, 2018.

M. N. Napiah, M. Y. I. B. Idris, R. Ramli, and I. Ahmedy, “Compres-
sion header analyzer intrusion detection system (cha-ids) for 6lowpan
communication protocol,” IEEE Access, vol. 6, pp. 16 623—-16 638, 2018.
D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, “Kalis—a system
for knowledge-driven adaptable intrusion detection for the internet of
things,” in 2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS). 1EEE, 2017, pp. 656—666.

T. D. Nguyen, S. Marchal, M. Miettinen, M. H. Dang, N. Asokan, and
A. Sadeghi, “Diot: A crowdsourced self-learning approach for detecting
compromised iot devices,” CoRR, vol. abs/1804.07474, 2018. [Online].
Available: http://arxiv.org/abs/1804.07474

M. Miettinen, S. Marchal, 1. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for se-
curity enforcement in iot,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS). 1EEE, 2017, pp. 2177-
2184.

W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end
encrypted traffic classification with one-dimensional convolution neural
networks,” in 2017 IEEE International Conference on Intelligence and
Security Informatics (ISI). 1EEE, 2017, pp. 43-48.

Z. Wang, “The applications of deep learning on traffic identification,”
BlackHat USA, vol. 24, 2015.

T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” IEEE Communications let-
ters, vol. 16, no. 11, pp. 1896-1899, 2012.

L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “Sdn-wise:
Design, prototyping and experimentation of a stateful sdn solution for
wireless sensor networks,” in 2015 IEEE Conference on Computer
Communications (INFOCOM). 1EEE, 2015, pp. 513-521.

Y.-B. Lin, S.-Y. Wang, C.-C. Huang, and C.-M. Wu, “The sdn approach
for the aggregation/disaggregation of sensor data,” Sensors, vol. 18,
no. 7, p. 2025, 2018.

H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford,
R. Soulé, and H. Weatherspoon, “Whippersnapper: A p4 language
benchmark suite,” in Proceedings of the Symposium on SDN Research.
ACM, 2017, pp. 95-101.

S. Haykin, Neural networks: a comprehensive foundation.
Hall PTR, 1994.

A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio.” SSW, vol. 125, 2016.
R. Yu, A. Li, C.-E. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 9194-9203.

M. Verhelst and B. Moons, “Embedded deep neural network processing:
Algorithmic and processor techniques bring deep learning to iot and edge
devices,” IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 55-65,
2017.

G. Roffo, S. Melzi, and M. Cristani, “Infinite feature selection,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 4202-4210.

D. P. Bertsekas, Dynamic programming and optimal control.
scientific Belmont, MA, 1995, vol. 1, no. 2.

E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani, “Towards
effective feature selection in machine learning-based botnet detection
approaches,” in 2014 IEEE Conference on Communications and Network
Security. 1EEE, 2014, pp. 247-255.

Prentice

Athena

420

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

A. H. Lashkari, A. F. A. Kadir, H. Gonzalez, K. F. Mbah, and A. A.
Ghorbani, “Towards a network-based framework for android malware
detection and characterization,” in 2017 15th Annual Conference on
Privacy, Security and Trust (PST). 1EEE, 2017, pp. 233-23 309.

A. Le, J. Loo, Y. Luo, and A. Lasebae, “The impacts of internal threats
towards routing protocol for low power and lossy network performance,”
in 2013 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2013, pp. 000 789-000 794.

Libelium. (n.d.) Waspmote.
http://www.libelium.com/products/waspmote/
V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International
Conference on International Conference on Machine Learning, ser.
ICML’10. USA: Omnipress, 2010, pp. 807-814. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3104322.3104425

S. Nanda, F. Zafari, C. DeCusatis, E. Wedaa, and B. Yang, “Predicting
network attack patterns in sdn using machine learning approach,” in
2016 IEEE Conference on Network Function Virtualization and Software
Defined Networks (NFV-SDN). 1EEE, 2016, pp. 167-172.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, ““Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265-283.
B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-1X.
New York, NY, USA: ACM, 2010, pp. 19:1-19:6. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868466

P. L. Consortium et al., “Behavioral model (bmv2),” 2018.
“Source codes and datasets,” 2020. [Online].
https://github.com/vxxx03/ICDCS2020

P. Biondi et al., “Scapy,” 2011. [Online]. Available: https://scapy.net/

[Online]. Available:

Available:

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

