
A Learning Approach with Programmable Data

Plane towards IoT Security

Qiaofeng Qin, Konstantinos Poularakis, and Leandros Tassiulas

Department of Electrical Engineering and Institute for Network Science, Yale University, USA

Abstract—Security threats arising in massively connected In-
ternet of Things (IoT) devices have attracted wide attention. It is
necessary to equip IoT gateways with firewalls to prevent hacked
devices from infecting a larger amount of network nodes. The
match-and-action mechanism of Software Defined Networking
(SDN) provides the means to differentiate malicious traffic flows
from normal ones, which mirrors the past firewall mechanisms
but with a new flexible and dynamically reconfigurable twist.
However, vulnerabilities of IoT devices and heterogeneous pro-
tocols coexisting in the same network challenge the extension
of SDN into the IoT domain. To overcome these challenges,
we leverage the high level of data plane programmability
brought by the P4 language and design a novel two-stage deep
learning method for attack detection tailored to that particular
language. Our method is able to generate flow rules that match
a small number of header fields from arbitrary protocols while
maintaining high performance of attack detection. Evaluations
using network traces of different IoT protocols show significant
benefits in accuracy, efficiency and universality over state-of-the-
art methods.

I. INTRODUCTION

Internet of Things (IoT) interconnects a multitude of devices

interfacing with the physical world as sensors and actuators,

facilitating their communication towards accomplishing as-

signed tasks. In such networks with massively interconnected

devices, security is a major concern. A large amount of

insecure IoT devices have become targets of botnet attacks [1],

leading to some of the most potent DDoS attacks in history.

IoT devices are vulnerable to more types of attacks compared

with other devices [2], such as network attacks in different

protocols (e.g., RFID, Zigbee, 6LoWPAN) and even physical

attacks. Therefore, it has been a big challenge to guarantee the

security of an IoT network.

Traditional methods to secure an IoT device require the

deployment of physical and application layer protection in it,

e.g., by strengthening the authentication and encryption during

data transmission. However, such approaches usually involve

firmware and even hardware modifications, taking a relatively

long time period. Devices in which security policies are not

updated in time will increase the risk of being hacked and

becoming sources of infection to other devices. To prevent

malware from spreading, network layer security approaches

are also necessary. For example, firewalls can be deployed

at IoT gateways, monitoring and separating malicious from

normal traffic, as depicted in Figure 1.

This publication was supported partly by the National Science Foundation
under Grant CNS 1815676, the Army Research Office under Agreement
Number W911NF-18-10-378, and the Office of Naval Research.

ZigBee

Botnet
Hijack

Figure 1. Firewalls deployed at IoT gateways targeting various types of attacks
in heterogeneous protocols.

Software Defined Networking (SDN) provides a flexible

framework for network management and is widely adopted

in IoT networks. This flexibility can be exploited for the

development and dynamic reconfiguration of network layer

security mechanisms. By separating control and data planes,

SDN protocols such as OpenFlow [3] make it possible to

develop such mechanisms in a logically centralized and pro-

grammable manner. OpenFlow-enabled switches process in-

coming packets through match-and-action flow rules received

from the controller checking specific header fields (e.g., MAC

and IP addresses, TCP port, etc.) and performing actions such

as forwarding or dropping accordingly.

A firewall can be developed by generating flow rules

through machine learning algorithms, which have been

demonstrated as a promising method for identifying attacks

from even unknown or encrypted traffic flows [4]. However,

this method presents several limitations. Specifically:

1) Limitations in Learning Models. The training features

used by the machine learning algorithm are often the

specific header fields of the packet. However, heteroge-

neous IoT protocols may have distinct packet header

structures, leading to a problem that the feature ex-

traction process and even the whole learning algorithm

should be specifically redesigned for every different

protocol. Besides, the manual feature extraction adds

difficulty to achieve optimal performance.

2) Limitations in OpenFlow. The match fields of OpenFlow

are predefined and fixed. Many IoT headers cannot be

parsed by it, e.g., compressed IPv6 headers in 6LoW-

PAN packets, or application layer protocols such as

MQTT and RESTful API. As a result, no proper flow

410

2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDCS47774.2020.00064

20
20

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s (
IC

D
C

S)
 |

97
8-

1-
72

81
-7

00
2-

2/
20

/$
31

.0
0

©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
C

S4
77

74
.2

02
0.

00
06

4

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

Security Policy Learning Model with OpenFlow:

Security Policy Learning Model with Programmable Data Plane:

Figure 2. The learning process based on OpenFlow method and P4 language.

rules can be created in these cases. Although OpenFlow

can be extended with user-defined headers by OpenFlow

Extensible Match (OXM), it has limited functionality

and hardware support in the above scenarios.

P4 language [5] provides possible solutions to the above

challenges. Unlike OpenFlow which focuses on the control

plane (i.e., the controller), P4 makes the data plane (i.e., the

switches) programmable as well. Specifically, the packet head-

ers are customizable by operators with the position and width

provided, and table lookup can be conducted on these newly

defined headers by the switches. This feature is especially

meaningful in IoT scenarios, where support of different IoT

protocols can be added by defining their headers [6].

Motivated by the above, we propose a new framework for

IoT security and a corresponding learning algorithm which

take advantage of the P4 language. Figure 2 illustrates its

differences compared with the existing OpenFlow-based meth-

ods. The proposed method operates in two stages. In Stage

1, a learning algorithm trains a dilated Convolutional Neural

Network (Dilated CNN) with raw packet bytes, skipping the

step of manual feature extraction. In Stage 2, a proper set

of header field definitions is inferred from the trained neu-

ral network, based on which flow rules for blocking traffic

(dropping packets) are generated and installed in the IoT

gateway (data plane switch). This method is applicable to

heterogeneous IoT protocols. Besides, it is designed to take the

constraints of switch memory cost and packet processing speed

into consideration, realizing a trade-off between accuracy and

efficiency.

The contributions of this work can be summarized as

follows:

• IoT Security Framework. We propose a new framework

for securing IoT networks and devices. Taking advantages

of the programmable data plane of P4 language, we aim

at developing a universal, highly accurate and efficient

solution to identify malicious traffic flows of multiple IoT

protocols.

• Learning Algorithm (Stage 1). We propose a learning

algorithm that trains a dilated Convolutional Neural Net-

work (CNN) with raw packet bytes to set up a traffic

classifier. This approach skips the step of manual feature

extraction of OpenFlow based methods and thus requires

minimum data preprocessing.

• Header Field Definition (Stage 2). We develop a method

for converting the abstract features learned in the trained

CNN into a particular set of header fields, so that a proper

set of flow rules can be installed at the IoT gateway.

This way, the classification can be realized as a switch

function at the IoT gateway for lower memory cost and

faster processing speed.

• Experimental Datasets. We conduct experiments to cre-

ate our own new datasets of IoT traffic and multiple

types of attacks. With them as well as publicly available

datasets, we evaluate the performance of the proposed

framework and algorithm in all aspects. The results show

that our method makes proper choices of header fields

achieving a better attack (intrusion) detection accuracy

level than state-of-the-art OpenFlow based methods (per-

formance) while being also able to handle heterogeneous

IoT protocols (universality). At the same time, the line

speed of packet processing is maintained (efficiency).

The rest of the paper is organized as follows. Section II

reviews our contribution compared to the related works while

Section III presents our IoT security framework. Sections IV

and V define and solve the header field definition problem

based on the constructed CNN. The experimentation results

are presented in Section VI, while we conclude our work in

Section VII.

II. RELATED WORK

Security problems of IoT devices have attracted wide at-

tention. [2] and [7] provide comprehensive surveys of IoT

attacks and classify them into various types. New types of

attacks different from traditional networks threat IoT security,

including a variety of attack methods in IoT protocols such

as Zigbee and 6LoWPAN [8], [9], [10], as well as phys-

ical attacks targeting the sensors and actuators [11], [12].

These works suggest adding authentication mechanisms to

the devices. However, a network-level security solution is

also necessary for preventing malware from spreading among

vulnerable IoT devices, such as botnets [13]. Our firewall

implementation at the IoT gateway complements the device-

level authentication for a more powerful security guarantee.

Network-level security approaches can be grouped into

two categories. The first category applies machine learning

methods on specific packet headers [14]. For example, [15]

applies learning on 6LoWPAN headers. Kalis [16] provides

knowledge-driven solution detecting IoT attacks, while DÏoT

[17] and IoT Sentinel [18] identify the IoT device types by

learning. Though these methods are effective, they usually

require pre-knowledge from protocol definitions or device

manufacturers. Due to the large diversity of IoT devices and

protocols, we explore another direction leading to a more

universal solution for heterogeneous IoT systems in case that

such pre-knowledge is not available.

411

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

Figure 3. The protocol independence and reconfigurability of P4 language.

The second category classifies packets based on raw packet

bytes rather than header fields. Machine learning methods,

especially neural networks are also widely applied for it, such

as [19], [4], [20]. These approaches have high accuracy and

are not limited to specific protocol or device types. However,

they can only be deployed in a remote server/host rather than a

switch (IoT gateway). Therefore, packets cannot be processed

at the line speed.

We aim at combining the merits of the two approaches

above, developing intrusion detection as a switch function

at the IoT gateway and at the same time not relying on

assumptions of device and protocol types. Benefiting from

their programmable, flexible and efficient packet processing

capabilities, recent developments in SDN make the imple-

mentation of such switch function possible. For example,

Sensor OpenFlow [21] and SDN-Wise [22] extend OpenFlow

protocol in this direction. Besides, the programmable data

plane brought by P4 [5] shows stronger capability in handling

heterogeneous IoT protocols and helps researchers to explore

further in this field. There is an increasing research interest in

deploying and managing P4 switches. [23] aims at aggregating

sensor data from multiple packets by P4 header operations. [6]

achieves multi-protocol switching of IoT services by deploying

P4-enabled switches. Our proposed IoT security framework

and corresponding learning algorithm are also based on P4,

which will be described in the next sections.

III. SECURITY FRAMEWORK

The proposed system has two components. The first part

is the control plane, an SDN controller which is a software

entity hosted in a node with sufficient computation capacity,

e.g., a conventional cloud server or an edge cloud node. The

second part is the data plane, which can be an IoT gateway.

We consider the case that the IoT gateway is programmable

by supporting the P4 language [5].

P4, or Programming Protocol-independent Packet Proces-

sors language is designed with reconfigurability and protocol

independence. More specifically, the control plane (controller)

is able to define how a data plane device (switch or gateway)

parses a packet in a programmable and automated way (recon-

figurability). First, one or more headers are defined as a list of

fields given their positions and widths in bits. Then, a parser

Figure 4. The control and data planes of the proposed framework, both
programmable.

works as a state machine to extract headers, following a series

of match+action tables, which is similar to OpenFlow, except

that header fields are not predefined (protocol independence).

The whole workflow is depicted in Figure 3.

As shown in [6], a P4-enabled gateway is capable of serving

IoT devices of heterogeneous network protocols. Our aim is

to use the IoT gateway to identify malicious incoming traffic

flows (e.g., from a hijacked IoT device) before they are routed

to other domains and devices. We program the IoT gateway

to execute a firewall function before the routing function. The

firewall keeps a match+action table recording the features of

known packets, which are the values of certain packet header

fields. These fields will be checked inside the incoming packets

and marked as normal or malicious based on the flow rules

installed in the table. Normal packets will be passed to the

routing function without modifications. On the other hand,

actions can be defined to handle the malicious packets, e.g.,

blocking them or forwarding them to a honeypot. The flow

rules are generated by the SDN controller, where a classifier

is deployed and responsible for judging whether a flow is

malicious or not. The controller is able to convert classification

results into header field definitions and flow rules to install

them in the firewall at the IoT gateway either reactively or

proactively. The whole architecture is depicted in Figure 4.

Two key problems are required to be solved in the proposed

system. First, we need to find algorithms for classifying

packets with high accuracy. Second, P4 match+action tables

should be generated, making classification a data plane func-

tion which achieves line-speed packet processing. Besides,

the solution we expect should be universal for heterogeneous

IoT protocols, i.e., neither algorithm redesign nor protocol-

dependent data preprocessing is required. In the next two

sections, we will formally propose a formulation and a two-

stage solution corresponding to the two key problems.

IV. PROBLEM MODELING

Assumptions. To model the two problems, we consider

a scenario of one IoT network domain equipped with one

gateway along with its SDN controller. This scenario can be

easily extended into a multi-domain or multi-gateway topology

by deploying the same solution in each domain. The gateway

412

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

is responsible for identifying attacks among all traffic flows

going through it, so that it can block current and future packets

of the attack flow to prevent it from spreading, e.g., a hijacked

device outside the domain infecting devices inside the domain,

and vice versa. We assume that the security of the gateway

itself and its SDN controller is not compromised.

Packet Classification. The features that can be used for

classifying network traffic can be divided into two types,

the packet-level features (e.g., IP address, TCP port, payload

length), and the flow statistics (e.g., packet count, duration).

The programmable data plane of P4 brings opportunities for

defining new packet-level features, not restricted to Open-

Flow’s pre-defined collection, which is particularly important

for the IoT network where heterogeneous protocols coexist.

Besides, previous studies like [19] claim several other merits

of learning directly from packet bytes, including the higher

accuracy and the ability to classify encrypted traffic. Therefore,

our work is focused on the packet-level features type of

classification.

We use the first N bytes of the packet as features for

classification. The packet can be thus represented by a vector

x = (x1, x2, ..., xN) where each element xi ∈ [0, 1] ∀i ≤ N

is a number converted from a byte. If the length of a packet

is less than N , zero padding is applied. A classifier in the

control plane should provide a function F (x) judging the

packet. We consider a binary output indicating whether the

packet belongs to a normal traffic flow (i.e., F (x) = 0) or a

malicious one (i.e., F (x) = 1). We can directly extend the

method for multiple output values where the gateway takes

different actions depending on the type of attack.

Header Fields Definition. While the control plane can

check the bytes inside the packet one-by-one (and therefore

compute the F (x) value), such fine-grained classification may

not be possible in the dataplane (IoT gateway) as this would

require to install a huge number of flow rules for all possible

combinations of the N bytes. This is not feasible since it would

lead to unrealistic memory cost and latency of lookup and

processing packets. Taking advantage of P4, any substring of

packet bytes can be regarded as a header field by the gateway,

based on which flow rules will be generated. Therefore, we

can effectively limit the number and length of flow rules, as

well as the associated packet processing latency, by carefully

defining a small number of packet byte substrings as header

fields at the gateway.

Formally, we define the Header Fields Definition H =
{hk, k = 1, 2, ...,K} which is a set of K substrings of bytes.

[24] investigates various P4-enabled devices to show that the

number of header fields has an impact on the performance.

Therefore, we require that K ≤ Kmax where Kmax << N so

that to ensure a maximum memory cost and packet processing

latency requirement is met. Each element hk = (ak, ak +Lk)
is a substring starting from the ak-th byte of the packet

and ending at the (ak + Lk − 1)-th byte, with its length

Lk. These substrings should not overlap with each other,

i.e., ak+1 ≥ ak + Lk for any k, to avoid wasting memory.

Unlike the traditional definition of header fields, each of which

contains a specific type of information (e.g., network address

or port number), we do not restrict that every substring defined

by our method corresponds to a clear entity. Instead, we

aim for an algorithm capable in learning the meaning and

importance of different substrings, so that it can minimize

the requirement of data preprocessing and be applicable to

heterogeneous IoT protocols.

Based on the Header Fields Definition H , the information

actually extracted from a packet x is xH = (xa1
, ..., xa1+L1−1,

..., xaK
, ..., xaK+LK−1). Therefore, the packet classification

executed at the gateway follows a different function from

F (x), which depends on the definition of header fields H . We

denote this function by FH(xH). Our goal is to find proper H

and FH(xH) functions which satisfy the constraints mentioned

above and are able to predict the packet classification at a high

accuracy.

V. METHODOLOGY

A. Overview

We solve the two problems specified in the previous section

in two stages as depicted in Figure 5. In Stage 1, we build

and train a neural network (NN) as the packet classifier. The

training is based on raw packet bytes without considering the

definition of header fields. This classifier will be deployed

at the control plane. In Stage 2, we calculate importance

scores for each possible substring of packet bytes using the

information from the trained NN (Neuron Weights), and then

select non-overlapping substrings with largest scores to be

included in the header field definition, which will be installed

at the gateway (data plane) along with a match+action flow

table.

Initially, the NN is trained offline with captured network

traces. The trained NN is then deployed at the controller as the

packet classifier. For the data plane, both proactive and reactive

operating modes are available according to different scenarios.

In the first mode, the controller installs both header field

definitions and corresponding flow rules from training data

proactively at the gateway. The gateway can therefore process

new incoming packets at the line speed without forwarding

them to the controller. In the second mode, the controller

can proactively install header field definitions only, and install

flow rules in a reactive way by replying to the gateway’s

queries. This mode incurs less memory cost in the gateway but

increases latency due to the controller-gateway communication

each time when the gateway receives unknown packets.

After the initial offline training, with the gateway sampling

new packets and sending them to the controller, the two-stage

process can be repeated in an online manner optionally, as long

as the labels of packets can be acquired by the controller as

well. The controller can also dynamically update the header

field definition by compiling a new P4 program. All these

operations are supported by the P4 specification.

B. Stage 1: Neural Network Structure

We apply methods of supervised learning for the packet

classification. In particular, trained with a labeled dataset (i.e.,

413

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

Figure 5. Illustration of the proposed two-stage learning approach. Packet
classification is realized by the SDN control plane in Stage 1, followed by
header field definition and implementation at the IoT gateway in Stage 2.

large amount of packets marked as either malicious or normal),

the classifier should be able to infer the expected output of a

new input (the function F (x)). A Neural Network (NN) [25]

is a computing system for supervised learning. It consists

of several hidden layers and an output layer. Each layer is

constructed by building blocks called neurons. For example, if

we arrange the neurons of each layer in an array with index n

(corresponding to the byte index of the packet), assign another

index i = 1, 2, ..., It for each layer t and take the packet byte

vector x as the input, the output of a neuron in the first hidden

layer is:

c1ni = f(w1;ni · x+ b1;ni) (1)

The output of each layer is the input of the next layer. For the

neuron in the t-th hidden layer (t > 1), the output is:

ctni = f(wt;ni · ct−1 + bt;ni) (2)

where wt;ni is a 2D vector of trainable weights, bt;ni is a

bias term, and f is a non-linear activation function.

Among various NN structures, we adopt 1D Dilated Con-

volutional Neural Network (Dilated CNN) [26] as depicted in

Figure 6. In each hidden layer t, connections are local and

dilated with step size 2t−1. In other words, each neuron with

index i only takes two rows of neurons with indices i and

i + 2t−1 in its last layer as the inputs. Neurons in the same

layer share the same weight values. The output of the hidden

layer neurons can be represented in the following way:

c1ni = f(w1
α · xn + w1

β · xn+1 + b1) (3)

ctni = f(wt
α · c

t−1
n +wt

β · c
t−1

n+2t−1
+ bt), ∀t > 1 (4)

where wt
α and wt

β are two 1D vectors of trainable weights.

This structure brings two major benefits. First, for any

hidden layer neuron ctni, its inputs are limited in the range

between packet bytes xn and xn+2t−1, which means that we

can establish a correspondence between a neuron ctni and

a substring (n, n + 2t) following the denotation in the last

section. Second, the neuron receptive field is 2t, increasing

exponentially with the network depth. With T hidden layers,

we can find neurons corresponding to any potential header

Figure 6. Structure of the dilated convolutional neural network (Dilated CNN)
for packet classification.

field of length 2, 4, 8, ..., up to 2T bytes. In other words, with

a limited amount of layers, we are able to cover a wider range

of packet substrings. This is beneficial in both representing

the packet structure better and training the neural network

more efficiently. After convolutional layers, we have fully-

connected layers, the last of which has a single neuron taking

the weighted sum of the last hidden layer outputs as the final

result. This structure can be easily extended to multi-class

classification, as long as we set up more neurons in the output

layer.

C. Stage 2: Header Field Definition

In the next stage, we adopt a neural network pruning [27]

technique to the trained network. Pruning compresses the

neural network by reducing the number of neurons. With

smaller memory and calculating costs, pruning facilitates the

processing of NN in IoT scenarios [28], where the capacity

of devices may be limited. However, besides this benefit, our

main purpose is to deduct an optimal set of header field

definition based on the results of pruning, therefore enabling

the line-speed packet processing in a P4-enabled gateway.

Pruning leads to an importance score of each neuron.

Neurons with higher importance scores play a more crucial

role in the classification. According to [27], we apply the

Inf-FS [29] algorithm to calculate the importance scores of

neurons in the last hidden layer. Then, the importance scores

are calculated for the remaining layers in a backpropagation

manner.

Leveraging the one-to-one correspondence between neurons

and header fields in the proposed CNN structure, we extend

the notion of importance score from neurons to header fields.

Unlike [27] that suggests to greedily select neurons with high-

est importance scores, our problem has additional constraints,

e.g., that the header fields should not overlap with each other.

Therefore, we propose a new problem formulation.

The input of the problem includes the importance scores of

all neurons in each hidden layer t. We denote the importance

score of neuron ctni by stni. By summing these values, we de-

note the importance score of a potential header field (n, n+2t)
by Sn =

∑
i s

t
ni. Then, we obtain the following optimization

414

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

problem:

max
y

Nt∑

n=1

yn ∗ Sn (5)

s.t.

Nt∑

n=1

yn ≤ Kmax (6)

yn ∗ yn+j = 0, ∀n < N t, j < L (7)

L = 2t, N t = N − L+ 1 (8)

where y = (y1, y2, ..., yNt) is the vector of variables to

optimize, representing all possible substrings of length 2t in

the first N bytes of the packet. The binary element yn indicates

whether to select substring (n, n + 2t) in the header field

definition (yn = 1) or not (yn = 0).

To solve this problem, we propose to use Dynamic Program-

ming [30]. A Bellman equation can be easily defined based on

two states; K as the amount of selected header fields and n0

as the starting byte of the latest selected header field. We then

have the following equations:

V (1, n0) = Sn0
, ∀n0 ≤ N t

V (K,n0) = max
n+L≤n0

V (K − 1, n) + Sn0
, ∀n0 ≤ N t,K > 1

Based on the above equations, any V (K,n0) value can be

calculated by recursion. The maximum of our objective func-

tion is therefore maxn0≤Nt V (Kmax, n0). As described in

Algorithm 1, an optimal set of header fields H can be selected

with reasonable O(Kmax ∗N) time complexity.

The parameters Kmax (i.e., maximum number of header

fields) and L = 2t (i.e., length of one header field) can be

determined according to the capacity of different types of P4-

enabled devices [24]. In general, a tradeoff between accuracy

and cost can be achieved by adjusting these parameters. With

fewer or shorter header fields, some different traffic flows

may be regarded as the same one by the gateway, negatively

affecting the classification accuracy. With more or longer

header fields, however, it takes larger memory cost to store

flow rules, and may slow down the packet processing in some

implementations. In the next section, we will evaluate the exact

impact of these parameters on different performance metrics.

VI. EVALUATION RESULTS

To demonstrate the benefits of our P4-based IoT security

approach, we perform evaluations using various real traffic

datasets. We begin with presenting the datasets and algorithms

that will be later used to generate the evaluation results.

A. Datasets & Algorithms

First, we use the following two publicly-available datasets

of IoT network traffic:

• ISCX Botnet 2014 Dataset [31]. This is a collection of

botnet traffic traces from multiple well-known datasets.

The types of traffic are mainly HTTP, P2P and IRC. This

dataset is already divided into the training set and test

set. The test set has more diversity than the training set,

Algorithm 1: Optimal Header Fields Selection

Input: S1, S2, ..., SNt ,Kmax, L

1 for n0 ≤ N t do

2 V (1, n0) = Sn0
;

3 H(1, n0) = {(n0, n0 + L)};
4 end

5 for K = 2, 3, ...,Kmax do

6 for n0 ≤ N t do

7 n∗ = argmaxn+L≤n0
V (K − 1, n);

8 V (K,n0) = V (K − 1, n∗) + Sn0
;

9 H(K,n0) = H(K − 1, n∗) ∪ {(n0, n0 + L)};
10 end

11 end

12 n∗ = argmaxn≤Nt V (Kmax, n);
Output: H = H(Kmax, n

∗)

in order to evaluate the detection of unknown attacks.

It is originally gathered for statistics-based classification

and contains a huge amount of packets, therefore we

sample 10% of the packets from each flow for packet-

level training. We also randomly modify the IP fields

because all malicious flows are remapped to fixed IP

addresses in the original data.

• CICAAGM Android Dataset [32]. This publicly available

dataset captures the traffic of Android applications in

real smartphones, including 250 adware, 150 malware

and 1500 benign applications. Besides HTTP, there are

also massive HTTPS traces, a large portion of which is

SSL/TLS-encrypted. The raw packet bytes are available

through PCAP files. We sample 1000 successive packets

from each class of the trace for packet-level training and

testing.

We also make our own efforts to create two new datasets

using network simulators and real IoT devices we deploy, con-

taining unique threats to IoT devices. These datasets contain

protocols that OpenFlow cannot handle. On the contrary, we

will demonstrate that P4 and our algorithm work well on them.

• Cooja Network Simulator Dataset. [33], [10] analyze

different types of attacks in 6LoWPAN networks through

the RPL routing protocol with the help of Contiki oper-

ating system and its Cooja simulator. Adopting similar

methods, we run simulations of 10-node IoT networks

with random topologies, and set up a malicious node

conducting Version Number Attack and Increased Rank

Attack. We collect packet bytes of both malicious and

normal traffic flows to generate our dataset.

• Waspmote IoT Sensor Dataset. We also create a new

dataset with measurements on real IoT devices (not

simulator) we deploy. Specifically, we install temperature,

humidity and luminosity sensors on a Waspmote [34]

Smart Cities Pro sensor board. It periodically sends

802.15.4 frames to the gateway containing sensor data.

If the electrical connection from a sensor to the board

is impeded, the device will still send packets in the

415

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

same format but with the wrong values. This is indeed

categorized as a physical attack on sensors rather than

network attack. However, we will demonstrate that our

method is also effective in detecting such unconventional

attacks.

In each dataset except the first one, we randomly pick 80%

of the samples for training, and the remaining 20% for testing.

We implement several state-of-the-art algorithms and make

comparisons with our method. In particular:

1) Proposed P4-based Method. In Stage 1, we build the

deep neural network of the proposed structure with

4 convolutional layers each with 64 filters and the

ReLU activation function [35], followed by two fully-

connected layers with 100 and 50 neurons. At each

hidden layer, a 0.05 dropout rate is set to avoid over-

fitting. We keep the hyperameters unchanged when

training with different datasets. In Stage 2, we produce

the header field definition and install the corresponding

flow rules to the IoT gateway.

2) OpenFlow-based Methods. As a comparison, we con-

sider classification methods based on OpenFlow pro-

tocol, representing SDN without programmable data

plane. We limit the features of classification within the

predefined header fields of MAC, IP, TCP and UDP

protocols according to the OpenFlow specification. As

stated in [36], multiple machine learning techniques can

be applied to these features, among which we choose

two representative methods, Decision Tree (DT) and

Support Vector Machine (SVM).

3) 1D Convolutional Neural Networks (1D-CNN). We also

consider other deep learning approaches for packet clas-

sification which (similar to our method) take packet

bytes rather than some specific header fields as the input.

We implement two 1D-CNN imitating the structures and

hyperameters in [19], [4], denoted by CNN-1 and CNN-

2. These CNNs provide the same type of output as

our Stage 1 output. However, they are not capable in

producing a header field definition as Stage 2 of our

method does. In other words, the classification cannot

be executed as a switch function for line-speed packet

processing.

We implement DT and SVM models using scikit-learn [37]

library, and implement NNs in TensorFlow [38]. To verify

the header field definition calculated by our algorithm, we

also conduct emulations with Mininet [39] and P4 behavioral

model software switch (BMv2) [40]. The experiments are

conducted on a desktop computer with Intel Core i7-7700

Processor, 16 GB RAM and GeForce GTX 1060 graphics

card. We make our algorithm implementation and new datasets

publicly available [41] for the benefit of research community.

B. Metrics

We evaluate the performance of the classification algorithms

using as metric not only accuracy, but also precision and

recall. We denote the number of correctly identified malicious

packets by TP and incorrectly identified ones by FP. We denote

the number of correctly identified normal packets by TN and

incorrectly identified ones by FN. The metrics are calculated

as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(9)

precision =
TP

TP + FP
, recall =

TP

TP + FN
(10)

Considering that the datasets have uneven class distributions

(where malicious samples account for around 30% in each

dataset, except the Cooja dataset with around 10% malicious

samples), we also calculate the F1 score defined as the

harmonic mean of precision and recall:

F1 = 2 ∗
precision ∗ recall

precision+ recall
(11)

C. Classification (Stage 1) Performance

In this subsection, we evaluate Stage 1 of the proposed

method. We compare the classification performance of the

proposed dilated convolutional neural network with the two

other CNN structures as well as with the DT and SVM

OpenFlow-based methods.

Method Accuracy Precision Recall F1

DT 0.790 0.694 0.659 0.676
SVM 0.773 0.706 0.544 0.615

CNN 1 0.907 0.897 0.816 0.854
CNN 2 0.909 0.903 0.816 0.857

Proposed 0.911 0.904 0.822 0.861

Table I
PERFORMANCE METRICS ON ISCX DATASET.

ISCX Botnet. We train and test all the algorithms on the

ISCX dataset. Table I shows the accuracy of each algorithm.

Compared with methods based on OpenFlow headers, the

CNNs (including our approach) that take raw bytes as the input

have significantly better performance. We also find that CNN-

based methods outperform other algorithms in both precision

and recall rates, leading to higher F1 score.

Method Accuracy Precision Recall F1

DT 0.890 0.833 0.771 0.801
SVM 0.895 0.933 0.646 0.780

CNN 1 0.882 0.833 0.738 0.782
CNN 2 0.898 0.870 0.760 0.811

Proposed 0.908 0.927 0.736 0.820

Table II
PERFORMANCE METRICS ON CICAAFM DATASET.

CICAAGM dataset. We perform similar training and test-

ing on the CICAAGM Android dataset, which contains a larger

diversity of traffic flows including SSL/TLS encrypted ones.

The results are depicted in Table II. Although the performance

difference is not as large as in the ISCX dataset, our algorithm

still achieves highest accuracy than the other algorithms. We

note that while the SVM OpenFlow-based method reaches

416

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

Dataset Cooja Waspmote

Method Accuracy F1 Accuracy F1

CNN 1 0.998 0.991 0.995 0.993
CNN 2 0.994 0.971 0.998 0.996

Proposed 0.995 0.973 1.00 1.00

Table III
PERFORMANCE METRICS ON OTHER DATASETS.

Figure 7. The precision-recall curve on different datasets.

higher precision, it severely degrades the recall value, leading

to a lower F1 score.

Cooja dataset and Waspmote dataset. The Cooja and

Waspmote datasets are relatively simple, each with smaller

amount of samples and only two types of attacks. However, the

former contains compressed 6LoWPAN headers, and the latter

has abnormalities which can only be identified from the packet

payload rather than the headers. Therefore, the packets are not

readable and can no longer be classified by the OpenFlow-

based methods (i.e., DT and SVM).

As shown in Table III, all three CNNs are capable of

identifying the RPL routing attacks and sensor physical attacks

with accuracy higher than 99%. The performance metrics of

different methods are generally at the same level. Except

being slightly worse than the CNN-1 in the Cooja dataset,

our proposed network has superior performance in accuracy

and F1 score. Especially, it achieves perfect predictions in the

Waspmote dataset.

Performance Tradeoff. We are also interested in the trade-

off between the different performance metrics. In some sce-

narios, the false alarms must be controlled, otherwise system

failures can happen. To achieve this, we can apply a threshold

to the CNN output. We depict the respective precision-recall

curves for different thresholds in Figure 7 for all datasets

except the Waspmote dataset where perfect predictions have

been reached. We notice that in all datasets there is a space

to increase the precision further at a cost of the recall.

Main Takeaways. (1) P4-based learning methods with

packet bytes as the input can achieve better classification per-

formance compared with OpenFlow-based learning methods

that take as input predefined header fields. They can also

handle heterogeneous protocols and application layer contents

of packets, where OpenFlow-based methods are not applicable.

(2) Our proposed Dilated CNN structure achieves similar or

better performance than other state-of-the-art CNN approaches

that take the same input (packet bytes).

D. Header Field Definition (Stage 2) Performance

The classification performance benefits in the previous

subsection are important but not surprising. It was expected

that taking packet bytes rather than predefined headers as

input to the learning algorithm achieves superior classification

performance as the classifier design space is larger. Still, the

above results quantified the exact performance improvement

we can achieve and verified the suitability of our proposed

Dilated CNN structure compared to other CNN structures.

The main contribution of our work, however, lies on the im-

plementation of the intrusion detection function directly inside

the data plane (P4-enabled IoT gateway). This is important

because it enables line-speed packet processing that is not

available in the other learning methods like CNN-1 and CNN-

2. To achieve this, Stage 2 of our learning method uses the

trained Dilated CNN to define a particular set of packet byte

substrings as header fields that will be used by the gateway to

install flow rules. Therefore, matched packets will be directly

handled by the gateway without requiring to be forwarded

to the SDN controller or another remote firewall function. In

the sequel, we elaborate on the header field definition and

corresponding classification performance achieved by Stage 2

of our algorithm.

Profiles of Importance Scores. Following the procedure

described in Section V-C, we calculate the importance scores

for all substrings of length 1, 2, 4, 8 and 16 in the first N = 128
byte positions. For example, Figure 8 depicts the results of

importance scores (after normalization) for every single byte.

The profiles of the datasets show different and complicated

tendencies. However, there are also some intuitive results:

• ISCX dataset (with IP addresses masked). The algorithm

highly scores both TCP/UDP fields and some positions

in the application layer.

• CICAAGM Android dataset. The curve has three peaks in

the IP address field, the TCP port field and application

layer. This distribution implies that the classifier makes

predictions based on information from headers of mul-

tiple network layers, which is an advantage of adopting

SDN and P4. For example, in the case where the packet

payload is SSL/TLS encrypted, even if the classifier is

not able to parse application-layer information, it is able

to make predictions based on TCP/IP headers with a

high accuracy. On the other hand, the application-layer

headers reveal much information in those packets without

encryption.

• Cooja dataset. High importance score is given to 97-th

byte. It is reasonable because all attacks occur through

DODAG Information Object (DIO) messages [33] of 96

bytes. The algorithm takes the packet length into account

when making classification.

417

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

(a) ISCX Dataset. (b) CICAAGM Dataset.

(c) Cooja Dataset. (d) Waspmote Dataset.

Figure 8. Distributions of single-byte importance scores in different datasets.

(a) Accuracy. (b) F1 score. (c) Memory cost.

Figure 9. Accuracy, precision and memory cost with different header fields selected in CICAAGM dataset.

Figure 10. Throughputs with different header field definitions.

• Waspmote dataset. The algorithm successfully assigns

highest importance scores to Byte 31, 32 and Byte 36,

37 in every 802.15.4 frame which store the the sensing

data in question.

These distributions demonstrate that the importance scores

calculated by our method successfully identify header fields

that are crucial in classifying packets.

Impact of Header Fields on Accuracy. The proposed

Dynamic Programming algorithm (Algorithm 1) will select

as header fields the substrings of the packet bytes that have

the highest importance scores. Taking the CICAAGM Android

dataset as an example, Figure 9(a) and 9(b) show the accuracy

and F1 score as we increase the number of header fields we

match in the gateway node (Kmax equal to 1, 2, 3 or 4) and for

different header field lengths (L equal to 1, 2 or 4). The byte-

to-byte approach corresponds to the packet classifier in Stage 1

of our method described in the previous subsection. Intuitively,

the performance improves with the number of header fields.

According to the results, it is not necessary to have a large

number of header fields. With three 2-byte-long fields or two

4-byte-long fields, the classification is almost as accurate as

the byte-to-byte approach. The difference is around 0.1% in

accuracy values.

Impact of Header Fields on Costs. Next, we examine the

costs associated with the header field definition, measured by

the number of flow rules stored in the gateway node. Since

more rules lead to a larger memory occupancy and more

queries to the control plane, we need to keep their number

as low as possible. Figure 9(c) shows that the number of rules

required for classification increases with both the length and

the number of header fields selected. Therefore, a tradeoff

exists between the accuracy and cost. The balance point can be

achieved by adjusting the values of Kmax and L parameters in

our algorithm. Notice that although the number of all possible

values of a header field increases exponentially with its length,

418

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

the growth is not drastic in practice. From the evaluation

results, the tendency is closer to a linear growth.

We need to emphasize that the proposed intrusion detection

mechanism does not incur much additional costs in other

aspects such as the network latency and throughput, because

it only adds an one-time table lookup in the packet processing

procedure. To verify this intuition, we create a virtual network

with one BMv2 switch and two hosts using the Mininet

emulation platform. We implement several sets of header field

definitions and flow tables similar to the results in Figure 9. We

use this virtual network to measure the maximum throughput

achieved by our mechanism for different K and L choices

and compare it with the baseline L2 forwarding mechanism

that does not perform any intrusion detection. The results are

depicted in Figure 10. We notice that the maximum throughput

is reduced by less than 10% compared with the baseline, i.e.,

the line speed of packet processing is maintained. In the same

scenario, we have another approach that forces packets to go

through an application-layer single-thread analyzer based on

Scapy [42] before being forwarded, which represents the case

if adopting solutions similar as CNN-1 and CNN-2 in the last

subsection. In this case, no larger throughput than 1 Mbps is

achieved. Therefore, it is extremely beneficial to implement the

intrusion detection as a switch function inside the IoT gateway

with the help of the programmable data plane feature.

Method Optimal Random

of Fields Accuracy F1 Accuracy F1

1 0.740 0.597 0.689 0.325
2 0.876 0.757 0.765 0.490
3 0.907 0.818 0.775 0.557
4 0.907 0.818 0.802 0.639

Table IV
COMPARISONS BETWEEN THE PROPOSED ALGORITHM AND RANDOM

SELECTED HEADER FIELDS. (THE LENGTH OF EACH FIELD IS 2 BYTE IN

BOTH CASES.)

Optimal Selection of Header Fields. Last but not least, to

demonstrate that the importance scores are proper metrics for

the data plane definition, we compare the optimal selection

of header fields in our algorithm with random selections. As

shown in Table IV, with the same number of selected header

fields, the performance of our algorithm is significantly better,

with more than 10% accuracy and around 20% more F1 score

than the random selection.

Main Takeaways. A similar level of packet classification

accuracy as the byte-to-byte approach can be achieved by

merely matching a small number (two or three) of header fields

appropriately selected based on the importance scores in the

associated neural network. When implemented as a P4 switch

function at the IoT gateway, this approach requires low mem-

ory and latency cost and incurs small throughput loss for table

lookup (less than 10%, i.e., line speed is maintained), while

alternative application-layer intrusion detection mechanisms

would cause a multi-fold throughput reduction to achieve the

same level of functionality.

VII. CONCLUSION

In this paper, we studied new opportunities for enhancing

security in the IoT network brought by the programmable data

plane. Namely, we proposed a two-stage deep learning method

based on P4 language that first trains a neural network as

the packet classifier and in a later stage selects packet byte

substrings as header fields and installs appropriate flow rules to

realize intrusion detection functionality inside the IoT gateway.

Evaluation results on publicly available and newly devel-

oped datasets of IoT scenarios demonstrated the performance

benefits and universality of the proposed method compared

with state-of-the-art OpenFlow-based methods. Importantly,

the results verified that a more favorable tradeoff between

detection accuracy, memory cost, latency and throughput can

be achieved by the proposed method.

We believe that this paper opens exciting directions for fu-

ture work. First, flow statistics can be taken into consideration

along with the packet-level features to further enhance the

accuracy and precision of the intrusion detection mechanism.

Second, the classification decision in our model is based on

exact matching of the packet headers. Flow table compression,

that properly applies wildcard flow rules, constitutes another

promising approach for improving further the efficiency and

reducing the resource consumption costs. Last but not the

least, we also plan to perform implementations and evaluations

on different P4-enabled devices, such as hardware switches

and SmartNICs, where higher performance of throughput and

latency is expected.

REFERENCES

[1] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[2] I. Andrea, C. Chrysostomou, and G. Hadjichristofi, “Internet of things:
Security vulnerabilities and challenges,” in 2015 IEEE Symposium on

Computers and Communication (ISCC). IEEE, 2015, pp. 180–187.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling
innovation in campus networks,” SIGCOMM Comput. Commun.

Rev., vol. 38, no. 2, pp. 69–74, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1355734.1355746

[4] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” Soft Computing, pp. 1–14, 2017.

[5] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM

Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[6] M. Uddin, S. Mukherjee, H. Chang, and T. Lakshman, “Sdn-based multi-
protocol edge switching for iot service automation,” IEEE Journal on

Selected Areas in Communications, vol. 36, no. 12, pp. 2775–2786,
2018.

[7] F. A. Alaba, M. Othman, I. A. T. Hashem, and F. Alotaibi, “Internet of
things security: A survey,” Journal of Network and Computer Applica-

tions, vol. 88, pp. 10–28, 2017.

[8] X. Cao, D. M. Shila, Y. Cheng, Z. Yang, Y. Zhou, and J. Chen, “Ghost-
in-zigbee: Energy depletion attack on zigbee-based wireless networks,”
IEEE Internet of Things Journal, vol. 3, no. 5, pp. 816–829, 2016.

[9] P. Pongle and G. Chavan, “A survey: Attacks on rpl and 6lowpan in
iot,” in 2015 International Conference on Pervasive Computing (ICPC).
IEEE, 2015, pp. 1–6.

[10] A. Mayzaud, R. Badonnel, and I. Chrisment, “A taxonomy of attacks in
rpl-based internet of things,” International Journal of Network Security,
vol. 18, no. 3, pp. 459–473, 2016.

419

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

[11] K. Fu and W. Xu, “Risks of trusting the physics of sensors,” Commu-

nications of the ACM, vol. 61, no. 2, pp. 20–23, 2018.

[12] Y. Shoukry, P. Martin, Y. Yona, S. Diggavi, and M. Srivastava, “Pycra:
Physical challenge-response authentication for active sensors under
spoofing attacks,” in Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security. ACM, 2015, pp. 1004–
1015.

[13] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in 26th {USENIX} Security

Symposium ({USENIX} Security 17), 2017, pp. 1093–1110.

[14] C. Li, Y. Wu, X. Yuan, Z. Sun, W. Wang, X. Li, and L. Gong, “Detection
and defense of ddos attack–based on deep learning in openflow-based
sdn,” International Journal of Communication Systems, vol. 31, no. 5,
p. e3497, 2018.

[15] M. N. Napiah, M. Y. I. B. Idris, R. Ramli, and I. Ahmedy, “Compres-
sion header analyzer intrusion detection system (cha-ids) for 6lowpan
communication protocol,” IEEE Access, vol. 6, pp. 16 623–16 638, 2018.

[16] D. Midi, A. Rullo, A. Mudgerikar, and E. Bertino, “Kalis—a system
for knowledge-driven adaptable intrusion detection for the internet of
things,” in 2017 IEEE 37th International Conference on Distributed

Computing Systems (ICDCS). IEEE, 2017, pp. 656–666.

[17] T. D. Nguyen, S. Marchal, M. Miettinen, M. H. Dang, N. Asokan, and
A. Sadeghi, “Dı̈ot: A crowdsourced self-learning approach for detecting
compromised iot devices,” CoRR, vol. abs/1804.07474, 2018. [Online].
Available: http://arxiv.org/abs/1804.07474

[18] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A.-R. Sadeghi, and
S. Tarkoma, “Iot sentinel: Automated device-type identification for se-
curity enforcement in iot,” in 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS). IEEE, 2017, pp. 2177–
2184.

[19] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang, “End-to-end
encrypted traffic classification with one-dimensional convolution neural
networks,” in 2017 IEEE International Conference on Intelligence and

Security Informatics (ISI). IEEE, 2017, pp. 43–48.

[20] Z. Wang, “The applications of deep learning on traffic identification,”
BlackHat USA, vol. 24, 2015.

[21] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” IEEE Communications let-

ters, vol. 16, no. 11, pp. 1896–1899, 2012.

[22] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “Sdn-wise:
Design, prototyping and experimentation of a stateful sdn solution for
wireless sensor networks,” in 2015 IEEE Conference on Computer

Communications (INFOCOM). IEEE, 2015, pp. 513–521.

[23] Y.-B. Lin, S.-Y. Wang, C.-C. Huang, and C.-M. Wu, “The sdn approach
for the aggregation/disaggregation of sensor data,” Sensors, vol. 18,
no. 7, p. 2025, 2018.

[24] H. T. Dang, H. Wang, T. Jepsen, G. Brebner, C. Kim, J. Rexford,
R. Soulé, and H. Weatherspoon, “Whippersnapper: A p4 language
benchmark suite,” in Proceedings of the Symposium on SDN Research.
ACM, 2017, pp. 95–101.

[25] S. Haykin, Neural networks: a comprehensive foundation. Prentice
Hall PTR, 1994.

[26] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio.” SSW, vol. 125, 2016.

[27] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao, C.-Y.
Lin, and L. S. Davis, “Nisp: Pruning networks using neuron importance
score propagation,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 9194–9203.

[28] M. Verhelst and B. Moons, “Embedded deep neural network processing:
Algorithmic and processor techniques bring deep learning to iot and edge
devices,” IEEE Solid-State Circuits Magazine, vol. 9, no. 4, pp. 55–65,
2017.

[29] G. Roffo, S. Melzi, and M. Cristani, “Infinite feature selection,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 4202–4210.

[30] D. P. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 1995, vol. 1, no. 2.

[31] E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghorbani, “Towards
effective feature selection in machine learning-based botnet detection
approaches,” in 2014 IEEE Conference on Communications and Network

Security. IEEE, 2014, pp. 247–255.

[32] A. H. Lashkari, A. F. A. Kadir, H. Gonzalez, K. F. Mbah, and A. A.
Ghorbani, “Towards a network-based framework for android malware
detection and characterization,” in 2017 15th Annual Conference on

Privacy, Security and Trust (PST). IEEE, 2017, pp. 233–23 309.
[33] A. Le, J. Loo, Y. Luo, and A. Lasebae, “The impacts of internal threats

towards routing protocol for low power and lossy network performance,”
in 2013 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2013, pp. 000 789–000 794.

[34] Libelium. (n.d.) Waspmote. [Online]. Available:
http://www.libelium.com/products/waspmote/

[35] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International

Conference on International Conference on Machine Learning, ser.
ICML’10. USA: Omnipress, 2010, pp. 807–814. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3104322.3104425

[36] S. Nanda, F. Zafari, C. DeCusatis, E. Wedaa, and B. Yang, “Predicting
network attack patterns in sdn using machine learning approach,” in
2016 IEEE Conference on Network Function Virtualization and Software

Defined Networks (NFV-SDN). IEEE, 2016, pp. 167–172.
[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine

Learning Research, vol. 12, pp. 2825–2830, 2011.
[38] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating

Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.
[39] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: Rapid

prototyping for software-defined networks,” in Proceedings of the 9th

ACM SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
New York, NY, USA: ACM, 2010, pp. 19:1–19:6. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868466

[40] P. L. Consortium et al., “Behavioral model (bmv2),” 2018.
[41] “Source codes and datasets,” 2020. [Online]. Available:

https://github.com/vxxx03/ICDCS2020
[42] P. Biondi et al., “Scapy,” 2011. [Online]. Available: https://scapy.net/

420

Authorized licensed use limited to: University of Exeter. Downloaded on June 01,2021 at 09:01:38 UTC from IEEE Xplore. Restrictions apply.

