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ABSTRACT

As intelligence is moving from data centers to the edges, intelli-
gent edge devices such as smartphones, drones, robots, and smart
IoT devices are equipped with the capability to altogether train
a deep learning model on the devices from the data collected by
themselves. Despite its considerable value, the key bottleneck of
making on-device distributed training practically useful in real-
world deployments is that they consume a significant amount of
training time under wireless networks with constrained bandwidth.
To tackle this critical bottleneck, we present Mercury, an impor-
tance sampling-based framework that enhances the training effi-
ciency of on-device distributed training without compromising the
accuracies of the trained models. The key idea behind the design
of Mercury is to focus on samples that provide more important
information in each training iteration. In doing this, the training
efficiency of each iteration is improved. As such, the total number of
iterations can be considerably reduced so as to speed up the overall
training process. We implemented Mercury and deployed it on a
self-developed testbed. We demonstrate its effectiveness and show
that Mercury consistently outperforms two status quo frameworks
on six commonly used datasets across tasks in image classification,
speech recognition, and natural language processing.
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1 INTRODUCTION

The recent past few years have witnessed the success of deep learn-
ing (DL) in a wide spectrum of areas including computer vision [6],
speech recognition [15], and natural language processing [34]. Part
of this success is attributed to the highly efficient distributed train-
ing frameworks [42, 44] that train deep neural networks (DNN) in
parallel machines inside data centers owned by large organizations
such as Facebook, Google, Amazon, and Microsoft.

As Al chipsets become pervasive, machine intelligence is mov-
ing from the data centers to the edges [45]. Edge devices such as
smartphones, drones, robots, autonomous vehicles, and smart IoT
devices at homes powered by DL models are able to not only per-
form on-device inferences for a variety of tasks [8, 9, 20, 43] but
also altogether train a DL model locally on the devices from the
data collected by themselves in a distributed manner.

There are a wide range of real-world applications that are built
upon on-device distributed training, where it could take far too
long for an individual edge device to learn by experiencing all the
scenario by itself but would quickly acquire new knowledge from
collectively learning from each other. For example, smart cameras
deployed at different locations of the smart home can collabora-
tively train DL models to detect dangerous individuals or events; a
swarm of drones can collaboratively learn to recognize important
terrain or city landmarks for navigation; and a team of robots can
collaboratively learn to assist human workers in a warehouse or
factory by recognizing daily objects or voice commands.

Status Quo and their Limitations. Despite its considerable value,
the key bottleneck of making on-device distributed training prac-
tically useful in real-world deployments is that they consume a
significant amount of training time. The root cause of such perfor-
mance bottleneck is the limited wireless network bandwidth: in data
centers, communication between parallel machines is conducted
via high-bandwidth network such as 50 Gbps Ethernet or 100 Gbps
InfiniBand [39]. In contrast, in on-device distributed training, com-
munication between participating edge devices is conducted via
wireless network such as Wi-Fi. The bandwidth of wireless network,
however, can be much more constrained than the bandwidth in
data centers. Such limited bandwidth considerably slows down the
communication and hence the overall training process.

The objective of this work is to tackle this critical bottleneck to
enhance the training efficiency of on-device distributed training while
retaining training correctness without compromising the training
quality (i.e., accuracies of the trained models). Although a number
of training acceleration methods have been proposed [2, 12, 17, 19,
27, 28], as we will discuss in §2.2, these methods either compromise
the training quality to gain training efficiency or are designed
for distributed training in data center setting where they achieve
limited training efficiency enhancement in on-device setting given
the significant gap in network bandwidth between the two settings.
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Overview of the Proposed Approach. The limitations of ex-
isting methods motivate us to rethink the on-device distributed
training framework design by taking a path that is different from
existing ones. To this end, we present Mercury, an importance
sampling-based framework that enables efficient on-device dis-
tributed training without compromising the training quality. In
existing approaches, each participating device in every training
iteration randomly samples a mini-batch from local data to com-
pute its local gradients. This random sampling strategy, at its core,
assumes that each sample in the local data is equally important to
model training. However, not all the samples contribute equally to
model training. Training on less important samples not only has
limited contribution to model accuracy but also slows down the
training process. Given that, instead of sampling data in a random
manner, Mercury focuses on samples that provide more important
information in each iteration. As such, the training efficiency of
each iteration is improved, and the total number of iterations can
be reduced so as to speed up the overall training process.

The design of Mercury involves three key challenges.

e Challenge#1: Importance sampling incurs computation cost.
and without careful design, could easily overshadow the benefit
it brings. Reducing the computation cost of importance sam-
pling without affecting its effectiveness and compromising the
training quality represents a significant challenge.

e Challenge#2: Since importance computation is performed on
the local data of each device, the importance only reflects the
local importance distribution within each device rather than
the global importance distribution across all the distributed
devices. As a result, a device may repeatedly learn globally
trivial samples, which lowers the training efficiency.

e Challenge#3: Even though the computation cost of importance
sampling can be reduced, the cost is still not zero. Moreover,
compared to Ethernet or InfiniBand used in the data center
setting, wireless network in the on-device setting is more sus-
ceptible to interference and thus its bandwidth could experience
variations over time in real-world deployments. The design of
Mercury should take bandwidth variation into account as well.

To address the first challenge, Mercury incorporates a group-wise
importance computation and sampling technique that cuts the com-
putation cost of importance sampling by only re-computing the
importance of a subset of samples within each iteration. Moreover,
by constructing the mini-batch based on the re-computed impor-
tance in a stochastic manner, the training correctness is guaranteed.

To address the second challenge, Mercury incorporates an import-
ance-aware data resharding technique that efficiently reshuffles
the data among devices to balance the importance distribution.
It achieves the same effect with much lower overhead compared to
importance-agnostic data resharding by prioritizing the transfer of
more important samples.

To address the third challenge, Mercury incorporates a bandwidth-
adaptive computation-communication scheduler which schedules
the execution of importance computation and data resharding
in a bandwidth-adaptive manner to further improve the training
speedup by completely masking out the costs of importance sam-
pling and data resharding.
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System Implementation and Evaluation Results. We have im-
plemented Mercury using TensorFlow and deployed it on a self-
developed testbed that consists of 12 NVIDIA Jetson TX1 as edge
devices. We evaluate Mercury on six commonly used datasets using
a diverse set of DL models across three important Al tasks includ-
ing image classification, speech recognition, and natural language
processing. We compare Mercury against two status quo baselines
TicTac [12] and AdaComm [36]. Our results show that Mercury
consistently outperforms the baselines in training efficiency, achiev-
ing 3.74X%, 3.21X, 4.08%, 2.21X, 2.74X%, and 1.85X training speedup
on the six datasets respectively. Moreover, Mercury is robust to
wireless bandwidth variations in real-world deployments, and is
able to maintain training speedup as the number of participating
devices scales up. Finally, federated learning can be regarded as a
constrained case of on-device distributed training where data in
each edge device cannot be exchanged with each other. Our results
show that Mercury is able to enhance the training efficiency of
federated learning under diverse non-IID distributions.

In summary, our work makes three major contributions:

e To the best of our knowledge, Mercury represents the first
on-device distributed training framework based on stochastic
importance sampling which achieves high training speedup
while retaining training correctness without compromising the
accuracies of the trained models.

e We provide a performance model of the proposed importance
sampling-based on-device distributed training framework. Guid-
ed by the performance model, we propose three novel tech-
niques: group-wise importance computation and sampling, impo-
rtance-aware data resharding, and bandwidth-adaptive computa-
tion-communication scheduling, which altogether fully exploit
the benefits brought by importance sampling. We also provide
a theoretical proof on the training correctness.

e We implemented Mercury and deployed it on a self-developed
testbed. We demonstrate its effectiveness and show that Mer-
cury consistently outperforms two status quo frameworks on
six datasets across three important Al tasks. We believe our
work represents a significant step towards making on-device
distributed training practically useful.

2 BACKGROUND AND MOTIVATION

In this section, we first provide a brief background on distributed
DNN training (§2.1). We then discuss the existing approaches for
enhancing the training efficiency and their limitations in the context
of on-device setting, which is the key motivation of this work (§2.2).

2.1 Distributed DNN Training

Distributed training uses Stochastic Gradient Descent (SGD) or
its variants to train the DL model in an iterative manner. In each
SGD iteration, each client randomly samples a mini-batch from its
local data to compute its local gradients. These local gradients are
then aggregated from the distributed clients to update the model
parameters w as follows:
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Figure 1: The multi-parameter server (multi-PS) architec-
ture adopted by Mercury for on-device distributed training.

Device 1

where gk = @ Yies, VI(xi, w') are the gradients at client k and
By is the mini-batch of client k.

Modern distributed training systems use parameter server (PS)
architecture for gradient aggregation. In PS [25, 38, 44], one or more
machines play the role of servers to aggregate computed gradients
from worker machines, update the model, and send the updated
model or aggregated gradients back to all workers.

As shown in Figure 1, Mercury adopts a multi-PS architecture
and treats each edge device as a parameter server too. By doing
this, the communication is not bottlenecked at a single device given
the low network bandwidth in the on-device setting.

2.2 Existing Approaches and Their Limitations

The total training time of distributed training T can be generally es-
timated as the total number of training iterations until convergence
E multiplies the sum of the time consumed by local computation
Tep (e.g., compute the gradients of the model parameters) and the
communication time consumed by transmitting the model gradients
between the parameter server and the client T, in each iteration
as follows:

T=E- (Tcp +Tem). (2

To reduce the total training time T, existing approaches can be in
general grouped into the following three categories.

Approach#1: Gradient Compression. To reduce T, one common
approach is to reduce the communication time in each iteration
Tem in Eq. (2) via gradient compression. This can be achieved by
quantizing gradients using smaller number of bits [2, 27, 39] or se-
lecting important gradients to transfer via sparsification [17, 28, 37].
However, communication in on-device setting is conducted through
wireless networks whose bandwidth is much more constrained than
Ethernet or InfiniBand used in data centers. Given such limited
bandwidth, the contribution of gradient compression to reducing
Tem in Eq. (2) is limited. Although many works adopt aggressive gra-
dient compression that is able to push the limit, they gain training
efficiency by compromising the training quality, which sacrifices
the accuracy of the trained model.

Approach#2: Local SGD. In distributed SGD, global synchroniza-
tion among clients is performed in each iteration for aggregating
gradients. Such synchronization, however, is expensive in terms of
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Figure 2: Communication-computation overlapping in high
bandwidth and low bandwidth settings.

communication under bandwidth-constrained networks. To reduce
the communication overhead, the approach named local SGD [7, 29,
36, 46] has been proposed where the idea is to allow each client to
perform multiple steps of SGD before each round of global synchro-
nization. Similar to gradient compression, although aggressively
performing local SGD enhances training efficiency by reducing the
rounds of communication, it also suffers from compromising the
accuracy of the trained model.

Approach#3: Communication-Computation Overlapping. DL
models in general can be represented as directed acyclic graphs

(DAGsS). The structures of DAGs provide an opportunity to over-
lap gradient computation and gradient aggregation in a pipelined
fashion to mask out the communication cost. This overlapping tech-
nique can be seen as a mechanism to reduce the sum (Tcp + Tem)

in Eq. (2). Such reduction can be achieved by either identifying the

optimal gradient transfer order [5, 12, 19, 44] or using staled model

weights [26]. However, the limited bandwidth in on-device set-
ting makes the communication-to-computation ratio much higher
than the one in data center setting. As a result, the effectiveness

of such overlapping technique is significantly diminished since it

is no longer able to mask out the communication cost under such

high communication-to-computation ratio. To demonstrate this,
Figure 2 shows the cost breakdown of communication-computation

overlapping technique. As shown, although it provides significant

cost reduction (47%) under high bandwidth network in the data cen-
ter setting, the cost reduction is reduced to 15% in low bandwidth

network in the on-device setting.

3 MERCURY OVERVIEW

The limitations of existing approaches motivate us to design Mer-
cury by taking a different path. In this section, we first introduce the
underlying principle behind the design of Mercury (§3.1). We then
introduce a rudimentary framework designed upon the principle
and its performance model (§3.2). Lastly, we briefly overview the
techniques involved in Mercury which transform the rudimentary
framework into a highly efficient one for on-device distributed
training (§3.3).

3.1 Design Principle

The underlying principle behind the design of Mercury is to exploit
data efficiency to improve the efficiency of on-device distributed
training. In standard distributed training, in each SGD iteration,
each device randomly samples a mini-batch from its local data to
compute its local gradients. This random sampling strategy, at its
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Figure 3: Distributions of data importance as the number of iterations increases during training.

core, assumes that each data sample in the local data is equally
important during the overall model training process. In practice,
however, redundant information across data samples exist, and
not all the data samples contribute equally to model training: some
of them provide more information to the training and therefore
are more important, while the others provide less information and
are thus less important. As an example, Figure 3 illustrates the
importance distribution of the data in CIFAR-10 as the number
of iterations increases during training. As shown, as the training
process proceeds, more data samples become less important. In
particular, after 200 iterations, the importance distribution quickly
concentrates to a small portion of data samples and the rest have
limited contribution to the model training. This observation sheds
light on the low training efficiency of standard distributed training
where mini-batch is generated by random sampling.

Based on this insight, we propose to incorporate importance sam-
pling [48] to improve the training efficiency of each SGD iteration.
The key idea of importance sampling is that in each training itera-
tion, it focuses on samples that provide more important information
and contribute more to the model training.

Formally, let x denote a data sample in the mini-batch, p de-
note the uniform distribution adopted by random sampling, and ¢
denote a new distribution adopted by importance sampling. To en-
sure training correctness, the gradient VI(x) (here we leave model
weights w! out for simplicity) should be multiplied by p(x)/q(x)
when shifting from random sampling to importance sampling [1]:

p(x)
Ex~g |—=VI =Ex~p [VI 3
et |91 | = By (9100 o
if g(x) > 0 whenever p(x) > 0.
To ensure gradient variance reduction to accelerate the training
process, g(x) should be proportional to the sample’s gradient norm

Vi(x :
(VIO (1] 4() s V10| @

The above derivation implies that the gradient norm of the data
sample can be used as an indicator of its importance. In practice,
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# of Samples /
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(a) Random Sampling (b) Importance Sampling

Figure 4: Comparison between (a) random sampling and (b)
importance sampling.

the feed-forward loss is often used as a computation-efficient alter-
native to gradient norm [21]. We thus use feed-forward loss as the
metric to measure the importance of each data sample.

Figure 4 provides a conceptual comparison between random
sampling and importance sampling. The blue solid curve depicts
the distribution of the importance values of data samples. In ran-
dom sampling, each sample has the equal probability to be selected
regardless of its importance. As such, if there are more samples with
lower importance in a dataset, samples with lower importance have
higher likelihood to be selected (green dotted curve in Figure 4a). In
contrast, in importance sampling, samples with higher importance
have higher likelihood to be selected (green dotted curve in Fig-
ure 4b). As such, the mini-batch generated by importance sampling
carries more important information than random sampling. Such
advantage enhances the training efficiency within each training
iteration, which in turn reduces the total number of iterations and
speeds up the overall training process.

3.2 Performance Model

Inspired by the benefits brought by importance sampling, Figure 5a
illustrates a rudimentary importance sampling-based framework
for on-device distributed training. As shown, the framework is
built upon the standard distributed SGD. In each SGD iteration, the
importance sampling-based framework replaces random sampling
(i.e., randomly select samples to construct the mini-batch) in the
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standard distributed training with two new operations: 1) impor-
tance computation which computes the importance (i.e., gradient
norm) for every sample in the local dataset, and 2) importance sam-
pling which selects samples based on their computed importance
to construct the mini-batch.

The performance model of the importance sampling-based frame-
work can be formulated as follows: let T;s denote the increased
local computation cost in each SGD iteration caused by importance
sampling, and E;s denote the corresponding total number of it-
erations until convergence. The training speedup of importance
sampling-based framework over standard random sampling-based
distributed training can be derived as:

E-(Tep + Tem)
Eis - (Tep + Tem + Tis)

1
= (5)
Eis Tis
T+ )

Speedup =

As shown in Eq. (5), the rudimentary importance sampling-based
framework, however, could perform worse than the standard ran-
dom sampling-based distributed training (i.e., Speedup < 1) if the
computation cost incurred by importance sampling T;s overshad-
ows the benefit brought by the reduction of total training iterations
(i.e., Eis < E). As such, to ensure Speedup > 1, a better design is
needed.

3.3 Overall Design

Figure 5b illustrates the overall design of Mercury. Guided by the
performance model in Eq. (5), Mercury incorporates three tech-
niques that effectively avoid the pitfalls of the rudimentary frame-
work. First, Mercury incorporates a group-wise importance com-
putation and sampling scheme that considerably reduces the com-
putation cost of importance sampling without compromising its
effectiveness and training quality (§4.1). Second, it incorporates an
importance-aware data resharding scheme for balancing importance
distribution among devices to further accelerate the training pro-
cess (§4.2). Lastly, it incorporates a bandwidth-adaptive computation-
communication scheduler that schedules the execution of impor-
tance computation and data resharding in parallel in a bandwidth-
adaptive manner such that their costs can be completely hidden
behind the standard distributed SGD Mercury is built upon (§4.3).

In the following, we describe the details of these three techniques
and provide a theoretical proof on Mercury’s training correctness.

4 DESIGN DETAILS

4.1 Group-wise Importance Computation and
Sampling

The first key technique in Mercury is group-wise importance com-
putation and sampling: a technique that considerably reduces the
computational cost of importance sampling without compromis-
ing its effectiveness and biasing convergence. In the rudimentary
importance sampling-based framework introduced in §3.2, in each
SGD iteration, the importance of all the local data are computed
to derive their importance distribution. The all-inclusiveness of
this approach naturally leads to costly computation. In contrast,
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our group-wise technique foregoes such all-inclusiveness to cut the
computational cost: during each SGD iteration, it only computes the
importance of a subset (i.e., group) of the local data. To guarantee
unbiased convergence, it adopts a stochastic approach to construct
the mini-batch based on the computed group-wise importance.

Our technique is inspired by an observation that the importance of
each sample of the local data does not change abruptly across multiple
SGD iterations. Figure 6 depicts the difference of importance ranks
between two iterations. About 50% of data samples change less
than 5% in importance ranking and about 70% of data samples
change less than 10% after one training iteration (Figure 6a). Even
after 10 iterations, about 65% of data samples change less than 10%
in importance ranking (Figure 6b). In other words, if one sample
is identified as important, it would possibly stay as an important
sample for the following multiple SGD iterations. Therefore, it is
not necessary to re-compute the importance of each sample in the
local training dataset for every SGD iteration. Instead, we can reuse
the importance computation results from previous iterations to
further cut the computation cost.

€03 £
o . e
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0 25 50 75 0 25 50 75

Rank Difference (%) Rank Difference (%)

(a) Distribution of importance (b) Distribution of importance
rank changes after 1iteration. rank changes after 10 iterations.

Figure 6: Distribution of importance rank changes across it-
erations.

Based on this observation, our group-wise importance compu-
tation and sampling technique consists of two steps as shown in
Figure 7.



SenSys’21, November 15-17, 2021, Coimbra, Portugal

O Low Importance @ Medium Importance @ High Importance

Groups D=4

Selected Groups d=2

Mini-Batch

Figure 7: Illustration of group-wise importance computa-
tion and sampling. Each dot represents one sample and the
darkness indicates its importance.

Step#1: Compute Group-wise Importance. In the first step, we
split the complete local dataset on each edge device into D non-
overlapping groups. At each SGD iteration, instead of re-computing
the importance for all the samples, only the importance of samples
in one of the D groups is re-computed. In doing so, the computa-
tional cost of importance sampling becomes 1/D of the all-inclusive
one per SGD iteration. The group is selected in a round-robin fash-
ion such that every group is selected once every D SGD iterations.
Since we only update the sample importance of one group in
each SGD iteration and reuse the previously computed importance
for the remaining D — 1 groups, there is a discrepancy between the
derived importance distribution and the importance distribution
derived by re-computing the importance of all the samples. This is
because as model parameters used to compute the sample impor-
tance are updated due to SGD, the sample importance computed in
different iterations do not belong to the same distribution.

Step#2: Construct Mini-Batch based on Group-wise Impor-
tance. To mitigate the effect caused by the discrepancy, in the
second step, we need to consider two levels of importance to con-
struct a mini-batch. The first is the inter-group level importance,
which reflects the relative freshness of a group compared to the
other groups. The second is the intra-group level importance, which
reflects the importance of samples within the same group.

To accommodate the inter-group level importance, we first select
d groups out of D groups, and assign the probability of selecting
group i as:

 exp(Bn)
"7 5D exp(Btn) ©

where t; is the relative step index when the importance of group i is
updated and > 0 is the amplifying factor. A larger f encourages
the selection of newer groups.

To accommodate the intra-group level importance, we select | B|x
M;
Sirs Mn
where M; is the size of group i. The probability of a sample being
selected is proportional to its feed-forward loss within its group. In
other words, instead of selecting samples randomly with uniform
distribution p; ; = 1/M;, the probability of selecting sample j in

group i is given by:

from each selected group i using importance sampling

qi,j = M 7)
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Figure 8: Comparison between (a) importance-agnostic data
resharding and (b) importance-aware data resharding.

where I; j is the importance of the sample j in group i. Finally,
the mini-batch is constructed by combining the selected samples
from the selected groups. To guarantee unbiased convergence, we
reweigh the computed gradients among samples by multiplying the
gradient with p; j/q; j to obtain the final unbiased gradient [22].

4.2 Importance-aware Data Resharding

The second key technique in Mercury is importance-aware data re-
sharding: a technique for balancing importance distribution among
edge devices to accelerate the training process. As importance up-
date is performed on the local dataset at each device, the local
importance rank within each device does not reflect the global im-
portance rank that accumulatively considers the importance of all
the samples from all the devices. As a consequence, an edge device
may repeatedly learn globally trivial samples, which lowers the
training efficiency. This problem is exacerbated when data distribu-
tion across edge devices is non-IID (identically and independently
distributed), which is common in distributed settings.

Such problem can be resolved by data resharding, a technique
that redistributes samples among workers. In data centers, data
resharding is commonly applied and can be easily achieved due to
the availability of high-bandwidth network. However, in on-device
settings where the network bandwidth is much more constrained,
shuffling a large amount of data among edge devices could signifi-
cantly delay the training process.

To this end, we propose importance-aware data resharding that
only redistributes important samples. Instead of blindly shuffling
data among edge devices, we only select non-trivial samples to
shuffle to maximize data resharding efficiency with minimum com-
munication overhead. As shown in Figure 8, suppose after data
resharding is determined, a device with N samples and D groups
needs to swap Ny < N samples with other devices and the budget
only allows N, < Np samples to be transferred. For importance-
agnostic data resharding, it directly transfers N, samples without
taking the sample importance information into consideration. In
contrast, importance-aware data resharding selects N, % sam-

ples from each group i where the group size is M;. The probability
of a sample being selected is proportional to its importance within
its belonging group as in Eq. (7). As a result, we are able to select
important samples to be redistributed without change in group size
or local dataset size.
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4.3 BACC Scheduler

A naive way of incorporating importance sampling into the stan-
dard SGD pipeline is shown in Figure 9a. As shown, the importance
computation and data resharding is sequentially inserted in the
training process, incurring unnecessary blocking and overhead.
As shown in Figure 9b, Mercury incorporates a bandwidth-adaptive
computation-communication (BACC) scheduler which schedules the
execution of importance computation and data resharding in paral-
lel in a bandwidth-adaptive manner to further enhance the training
efficiency by completely masking out the costs of importance sam-
pling and data resharding. Specifically, since gradient aggregation
only uses network resource while gradient computation only uses
compute resource, the group-wise importance computation and
importance-aware data resharding can be overlapped with gradient
aggregation and gradient computation respectively and executed
in parallel. This can be achieved by creating two threads, one for
standard distributed SGD operations and the other for group-wise
importance computation and importance-aware data resharding.
In doing so, the overheads incurred by these two techniques can be
masked out and the training speedup can be further improved.
Given that both gradient aggregation and data resharding de-
pend on network bandwidth which could experience variations
over time in real-world deployments, achieving full overlapping
that completely masks out the costs of importance computation and
data resharding requires the scheduler to be bandwidth-adaptive.
We propose two modifications to adapt to the bandwidth varia-
tion. First, to fully overlap importance computation with gradient
aggregation, instead of using a fixed group size, Mercury adopts
varying group sizes such that computing the importance of the
samples in a group consumes the same amount of time as gradient
aggregation. To compensate for the reduction of importance vari-
ety in groups of small sizes and ensure unbiased convergence, the
importance of each data sample sampled from groups of different
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sizes will be reweighed using its group size. Second, to fully over-
lap data resharding with gradient computation, Mercury adopts a
breakpoint-resume technique: data resharding pauses when gradi-
ent aggregation begins and resumes when it ends. By doing these,
the costs of importance sampling can be completely hidden behind
the standard distributed SGD in a bandwidth-adaptive manner.

Figure 9b illustrates how our proposed BACC scheduler is able to
achieve full overlapping to completely mask out the costs of impor-
tance computation and data resharding. Specifically, after gradient
computation, Thread 1 yields its compute resource to Thread 2 to
perform importance computation. After gradient aggregation is
complete, Thread 2 yields the compute resources to Thread 1 to
perform gradient computation for the next iteration ¢ + 1. Simi-
larly, after gradient aggregation, Thread 1 yields network resource
to Thread 2 to perform data resharding. When gradient aggrega-
tion for the next iteration begins, Thread 2 pauses data resharding
and yields network resource back to Thread 1 to perform gradient
aggregation for the next iteration.

4.4 Proof of Training Correctness

Lastly, we provide the theoretical result showing that our proposed
importance sampling-based on-device distributed training is guar-
anteed to converge to the same solution as the standard distributed
SGD without bias. It should be noted that our proof does not require
the data distribution across edge devices to be IID, and hence our
proof is valid for both IID and non-IID data distributions.

Sketch of Proof: we first show that the stochastic gradient infor-
mation averaged at the server is unbiased. Then we show that its
variance is bounded.

1. The gradient averaged across all workers is unbiased. We use
Vi i,j to represent the gradient from the sample j in group i of
device k for the simplicity of notation. Using the proposed sampling
technique in §4.1, the expectation of aggregated gradient g is

Dy Mii

E(g )= K k_ Vlkt] = VI(W )-
N

i=1 j=
where M ; is the number of samples in group i at node k; Ni and
Dy, are the number of samples and the number of groups at node k.
It shows that the averaged gradient is unbiased.
2. The gradient averaged across all the devices has bounded vari-
ance. Note that the variance of g’ is

Var(g') = Z( )Var(gy).

2 ] N J
Since we only change the probablhty of choosing the samples,
the variance Var(gy) at each node k is still bounded. Therefore, the
variance of g’ is bounded. For simplicity, we use the same notation
V for this bound.
2. Convergence rate. Since the loss function [ has a Lipschitz con-
tinuous gradient with constant L, we have the following inequality:

l(wt) _ l(wt+l)
L
> (VI(wh), wt - witly - Enwt — w2,

Taking the expectation over all possible g’, summing this inequality
from t = 0 and taking the expectation over all possible {w’}, we
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Figure 10: System architecture of Mercury.
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The last inequality holds because we choose ; < 2/L. Therefore,
we obtain

2
1) = 1+ L, ey

min E|VI(w)|® < ~
ic{0.1,...t) o LL)
i=o (1= =
where [* is the minimum function value for [. If the learning rate is
1
t =n=—=th h
setasn =1 = =, then we have

% L
') -1+ b
Vil

T} E||VI(w!)|| < e after O(1/€?) itera-
tion, and the learning rate 7 is in the order of 2.

in  E|VI(w)]? <
min (IVI(wH* <

Thus, we have min;¢ (o

.....

5 IMPLEMENTATION

Testbed. We designed and developed our own testbed due to the
lack of off-the-shelf ones. Specifically, we use 12 NVIDIA Jetson
TX1 as the edge devices. Each TX1 has an integrated small form
factor mobile GPU that is designed for next-generation intelligent
edge devices to execute DL-powered tasks onboard. For wireless
networking, we use Netgear Nighthawk X6S AC4000 Tri-band Wi-
Fi routers to connect all the TX1, and use Linux tc, gdisc, and iptables
to control the network bandwidth to conduct our experiments.

System Implementation. We have implemented Mercury using
TensorFlow v1.12.0. Figure 10 shows the system architecture of
Mercury. Specifically, Mercury is implemented as a distributed
training framework that spans across edge devices. In each training
iteration, the Importance Sampler first constructs a mini-batch from
on-device data using group-wise importance sampling (1)) based

on the importance distribution of local data stored in Importance
Cache. The mini-batch is then fed into the Model Trainer to compute
the local gradients ((2)). The local gradients from all the participat-
ing edge devices are aggregated, and the aggregated gradients are
sent to the Model Trainer to update the model ((3)). Meanwhile, the
Importance Updater re-computes the data importance and updates
the Importance Cache (4)) while the edge device is performing gra-
dient aggregation. Finally, the Reshard Executor identifies important
data samples from Importance Cache ((5)) and communicates with
other devices to perform importance-aware data resharding ((6))
while the device is performing gradient computation. The execu-
tions of Reshard Executor and Importance Updater are triggered and
scheduled by the BACC Scheduler at runtime.

6 EVALUATION

In this section, we evaluate the performance of Mercury with the
aim to answer the following questions:

e Q1 (§6.2): Does Mercury outperform status quo? If so, what are
the reasons?

e Q2 (§6.3): How effective is each core technique incorporated in
the design of Mercury?

e Q3 (§6.4): Can Mercury adapt to wireless network bandwidth
variation well?

® Q4 (§6.5): Does Mercury scale well when the number of edge
devices increases?

® Q5 (§6.6): Can Mercury improve the training efficiency of feder-
ated learning (FL) where each edge device’s data is stored locally
and not exchanged or transferred?

6.1 Experimental Methodology

Tasks, Datasets, and DL Models. To demonstrate the generality
of Mercury across tasks, datasets, and DL models, we evaluate
Mercury on six public datasets that are commonly used for bench-
marking using a diverse set of DL models across three important
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Figure 11: Overall performance comparison between Mercury, TicTac and AdaComm. Each bar represents the training speedup
over standard distributed SGD in total training time.

tasks: image classification, speech recognition, and natural lan- 120, 000 training and 7, 600 testing samples. Each sample con-
guage processing. These tasks, datasets, and models are selected sists of a couple of sentences and is labeled as one of the four
for the on-device training settings for edge devices. classes: world, sports, business and sci/tech. We use a two-layer
e Image Classification. For the task of image classification, we LSTM with attention [3, 16] to train on this dataset.
use four datasets. Specifically, we select CIFAR-10 [24], CIFAR- Baselines. The goal of Mercury is to enhance the training effi-
100 [24], and SVHN [40] since they are three of the most com- ciency of on-device distributed training while retaining algorithm
monly used datasets for image classification. Both CIFAR-10 and correctness guarantees without compromising the accuracies of the
CIFAR-100 consist of 50, 000 training images and 10, 000 test im- trained models. For fair comparison, we compare Mercury against
age in 10 classes. SVHN consists of 73, 257 training and 26, 032 two status quo frameworks which share the same goal!.

test images. We use ResNet-18 [14] to train on CIFAR-10 and
SVHN, and ResNet-50 [14] to train on CIFAR-100. In addition,
we select AID [41] as our fourth image classification dataset.
AID is a large-scale aerial image dataset collected from Google
Earth. It has 10, 000 images in 30 classes including airport, moun-
tain, desert, forest, etc. We randomly select 80% images for

e TicTac [12]. TicTac is a status quo distributed training frame-
work for training acceleration. It re-orders parameter transfer
nodes in a computational graph to increase the overlapping
between computation and communication, and outperforms
TensorFlow by 1.19X in terms of training efficiency.

training and the remaining 20% images for testing. We select e AdaComm [36]. AdaComm is another status quo efficient dis-
this dataset to emulate the application of on-device distributed tributed training framework. AdaComm reduces the total train-
training across a swarm of drones. We use MobileNetV2 [31] to ing time by allowing each worker to perform multiple local SGD
train on this dataset. before communication and adaptively balancing the number of

. o local SGD i i ication.
e Speech Recognition. For the task of speech recognition, we ocal SGD iterations and communication

select Tensorflow Speech Command [33] as our dataset. This Evaluation Metrics. We use two metrics to evaluate the perfor-
dataset consists of 105, 829 audio utterances of 35 short words, mance of Mercury and the baselines.

recorded by a variety of different people. The recorded audio
clips are intended for simple speech instructions such as go,
stop, yes, no, etc. The training set has 84, 843 samples and the
test set has 11,005 samples. We extract the 2-D spectrograms
from the raw audio clips, and use VGG-13 [32] as the model.

e Total Training Time. We use total training time as our first
metric. Total training time is defined as the wall-clock time from
the start to the convergence of the training process. This metric
jointly considers the number of iterations until convergence as
well as the training time per iteration.

e Natural Language Processing. For the task of natural lan-
guage processing, we select AG News Corpus [47] as our dataset.

This dataset contains news articles from the AG’s corpus. It has !Gaia [17] is the status quo communication-efficient distributed training framework
based on gradient compression. However, Gaia obtains training efficiency by compro-
mising the accuracies of the trained models. Thus, we did not include it as a baseline.
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e Training Quality. The second metric is training quality. We
use the Top-1 test accuracy of the trained DL model to measure
the training quality.

Training Details. For all the experiments, we use Adam as the
optimizer with 1 = 0.9 and fi2 = 0.999. We use local batch size
of 32 for CIFAR-10, CIFAR-100, SVHN and AID. For Tensorflow
Speech Command and AG News, we use local batch size of 64. For
model update, the learning rate is set to 0.004.

6.2 Overall Performance

We begin with comparing the overall performance of Mercury with
TicTac and AdaComm. To do so, we run training experiments on
four edge devices, and measure their total training time speedups
over standard distributed SGD on the six datasets. To provide a
comprehensive evaluation, we did our experiments under various
network bandwidths ranging from 10 Mbps to 200 Mbps, emulating
scenarios with different wireless network bandwidth availability.

Figure 11 shows the results. Overall, we observe that Mercury sig-
nificantly outperforms TicTac and AdaComm on all the six datasets
across all the network bandwidths. Specifically, Mercury achieves
up to 3.74X, 3.21X, 4.08X, 2.21X, 2.74x and 1.85X speedups over
standard distributed SGD on six datasets respectively. In contrast,
TicTac achieves a training speedup from 1.01X to 1.21x while Ada-
Comm achieves a training speedup from 1.21X to 1.88X.

We also observe that Mercury achieves higher training speedups
as the network bandwidth becomes more constrained. Specifically,
across all six datasets, Mercury achieves the highest performance
gain under 10 Mbps, the lowest bandwidth in our experiment. This
is because under more constrained bandwidth, the communication
time is longer and Mercury can thus spend more time on computing
the latest importance rank. This result demonstrates that the more
constrained the bandwidth is, the more superiority Mercury has.

Why Mercury Outperforms TicTac and AdaComm? To under-
stand why Mercury is able to achieve higher training speedups com-
pared to TicTac and AdaComm, we use CIFAR-10 as an example,
and show the test accuracy curves of Mercury (blue), TicTac (or-
ange) and AdaComm (green) during the complete training process
in Figure 12. We have two observations.

First, Mercury outperforms TicTac by a large margin from the
beginning to the convergence. Specifically, compared to TicTac,
Mercury uses 2.7X and 2.4X less communication rounds on CIFAR-
10 and 2.7x less communication rounds on Tensorflow Speech
Command to converge. This is because under wireless network
setting where bandwidth is limited, the communication time domi-
nates the overall training timing, making overlapping computation
with communication not effective anymore (Figure 2). Therefore,
TicTac provides little runtime reduction in each iteration. In con-
trast, Mercury aims at improving the training efficiency per iteration
to reduce the total number of iterations (communication rounds)
without additional overhead.

Second, although AdaComm converges faster than Mercury in
early stage when the number of communications is smaller than
10 x 103 (Figure 12a), AdaComm begins to lose effect and con-
verges slower than Mercury. This is because although AdaComm
can also reduce communication rounds, it achieves such reduction
by performing local training steps in early stage of training. To
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Figure 12: Test accuracy curves during the complete train-
ing process in terms of (a) the number of communication
rounds and (b) wall-clock time comparison between Mer-
cury, TicTac and AdaComm.
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Figure 13: Test accuracy curves in terms of (a) the number
of iterations and (b) wall-clock time comparison between
group-wise (Groupwise-IS) and all-inclusive (All-IS) impor-
tance computation and sampling,.

guarantee the training quality, AdaComm has to perform less lo-
cal steps and the acceleration of AdaComm begins to slow down
after the early stage. In addition, performing multiple local steps
increase the computation time in each round. In contrast, with the
training correctness guarantee, Mercury is able to increase training
efficiency throughout the entire training process without additional
overheads. Therefore, even though AdaComm achieves faster con-
vergence during early stage of training, Mercury eventually out-
performs AdaComm in terms of both number of communications
and total training time.

6.3 Component-wise Analysis

Next, we evaluate the effectiveness of each of the three key tech-
niques incorporated in Mercury. The experimental setup is the
same as in §6.2. We use CIFAR-10 to conduct our experiments. The
results altogether show that with the three proposed techniques,
Mercury can achieve higher performance gain compared to the
rudimentary importance sampling-based framework.

Component#1 Analysis: Group-wise vs. All-inclusive Impor-
tance Computation and Sampling. We evaluate the effective-
ness of the proposed group-wise importance computation and sam-
pling technique described in §4.1. To do so, we compare it against
the all-inclusive importance computation and sampling strategy,
which re-computes the importance of every sample in the local
dataset at each SGD iteration. The results are shown in Figure 13.
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tial pipeline.

As we can see, while group-wise importance computation and
sampling uses 20% more iterations to converge to the same test
accuracy as the all-inclusive importance computation and sampling
scheme (Figure 13a), group-wise is 4.2X faster than the all-inclusive
when translated into total training time (Figure 13b). This is be-
cause even though re-computing the importance of every sample
indeed improves the training quality per iteration, the significant
computation cost it incurs significantly prolongs the training time
per iteration. In contrast, by sacrificing marginal training quality
per iteration, group-wise computation and importance sampling is
able to considerably cut the training time per iteration, leading to a
much reduced total training time.

Component#2 Analysis: Importance-aware vs. Importance-
agnostic Data Resharding. Next, we evaluate the effectiveness
of the proposed importance-aware data resharding technique de-
scribed in §4.2. To do so, we compare it against the importance-
agnostic data resharding strategy. Different from importance-aware
resharding which selects the important samples during resharding,
importance-agnostic treats every sample equally and randomly
reshuffles the samples across edge devices. Figure 14 shows the
results. We have two observations.

First, similar to the findings from many other works [10, 11,
30], we observe that compared to non-resharding, data resharding
helps boost the test accuracy, and in our case can increase the test
accuracy up by 1.84%.

Second, compared to importance-agnostic data resharding, the
proposed importance-aware strategy is able to converge to the same
test accuracy, but with only 50% of its data transfer amount. This
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Figure 16: Adaptation to bandwidth variations.

is because importance-aware resharding prioritizes shuffling more
important samples, which considerably improves the resharding
efficiency and reducing the network traffic for data resharding.

Component#3 Analysis: BACC Scheduler vs. Sequential Pip-
eline. To evaluate the effectiveness of the proposed BACC sched-
uler described in §4.3, we compare it against the sequential pipeline,
which performs data resharding, group-wise importance computa-
tion and sampling, gradient computation and gradient aggregation
sequentially. As shown in Figure 15, although BACC uses 5% more
iterations to converge (Figure 15a), when translated into total train-
ing time, it is 2.2X faster than the sequential pipeline (Figure 15b).

6.4 Adaptation to Bandwidth Variations

We also take a closer look at the bandwidth adaptation performance
of the BACC scheduler proposed in Mercury. When deploying
our testbed in the real-world settings, we observed that the band-
width variations across different bandwidths are 10% on average
(Figure 16a shows a snapshot). To examine the bandwidth adapta-
tion performance of the BACC scheduler, we compare it against
a bandwidth-agnostic solution where fixed group sizes and fixed-
time data resharding are adopted. Figure 16b shows the speedup
comparison across four bandwidths. As shown, without bandwidth
adaptation, the training speedup drops from 3.74X, 3.64X, 3.62X,
3.48X to 3.43%, 3.38%, 3.33X, 3.25X, which validates the effective-
ness of Mercury in adapting to bandwidth variations.
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Figure 17: Scaling performance of Mercury on 4, 8, 12 edge
devices under different network bandwidths.

6.5 Scaling Performance

To evaluate the scaling performance of Mercury, we use CIFAR-10
as the example and examine the training speedups of Mercury un-
der different network bandwidths as Mercury scales up its number
of edge devices from 4 to 8 and 12. Figure 17 illustrates the scaling
performance of Mercury. As shown, Mercury is able to maintain
its training speedup over standard distributed SGD under various
network bandwidths as the number of edge devices increases.

6.6 Application to Federated Learning

Federated learning can be regarded as a constrained case of on-
device distributed training where each edge device’s data is stored
locally and not exchanged or transferred. To examine whether
Mercury can improve the training efficiency of federated learning,
we retain group-wise importance sampling while disabling data
resharding and BACC in Mercury, and evaluate its performance un-
der different non-IID data distributions. Specifically, we generated
three non-IID CIFAR-10 datasets using Dirichlet distribution [18]
with three different concentration parameters: = 10.0 (low non-
IID), & = 1.0 (medium non-IID) and & = 0.5 (high non-1ID). We train
ResNet-18 with group-wise importance sampling (Groupwise-IS)
and without importance sampling (Non-IS) using 12 edge devices.
As shown in Figure 18, our results show that Mercury is able to en-
hance the training efficiency of federated learning, achieving 2.75x,
2.5% and 2.41x training speedups over non importance sampling
counterpart when a = 10.0, « = 1.0 and « = 0.5.

7 RELATED WORK

Distributed Training in Data Centers. The design of Mercury
was inspired by distributed training frameworks in data center
settings. The work that is most similar to Mercury is AdaComm
[36] and TicTac [12]. Specifically, AdaComm adaptively adjusts
the number of local SGD iterations to reduce communication cost,
and TicTac overlaps gradient computation with communication
to reduce per-iteration overhead. Although techniques proposed
in these work are effective in accelerating the training process,
they are designed for distributed training in the data center setting.
However, there is limited performance gain when directly applying
these techniques to the on-device setting given the significant gap
in network bandwidth between these two settings. Such limited
performance gain motivates us to rethink the distributed training
framework design for the on-device setting and to take a path that
is different from existing ones.
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non-IID data distributions.

On-Device Distributed Training and Federated Learning. Fed-
erated learning [13, 23, 29, 35] can be regarded as a constrained case
of on-device distributed training. In federated learning, data privacy
is strictly enforced: during training, participating devices do not
share their local data with each other. As we have demonstrated
in §6.6, with the proposed group-wise importance computation
and sampling technique, Mercury is able to enhance the training
efficiency of federated learning under diverse non-IID distributions.

Importance Sampling and Curriculum Learning. Importance
sampling shares similarities with curriculum learning [4] in terms
of selecting important data to generate mini-batch for training.
However, Mercury uses stochastic importance sampling which
ensures that the training converges to the same solution as the
standard distributed SGD without bias, while curriculum learning
does not provide such guarantee.

8 CONCLUSION AND FUTURE WORK

In this paper, we present the design, implementation, and evalua-
tion of Mercury, an importance sampling-based framework that
enables efficient on-device distributed training without compromis-
ing the accuracies of the trained models. Mercury addresses the key
bottleneck of on-device distributed training, and contributes novel
techniques that take a different path from existing approaches. We
implemented Mercury and conducted a rich set of experiments with
a self-developed testbed on six commonly used datasets across tasks
in image classification, speech recognition, and natural language
processing. Our results show that Mercury consistently outper-
forms the status quo. Therefore, we believe Mercury represents a
significant contribution to making on-device distributed training
practically useful in real-world deployments. As our future work,
we plan to extend Mercury to supporting more Al tasks such as
object detection and scene understanding.
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