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Abstract

Modulation of neuronal thresholds is ubiquitous in the brain. Phenomena such as figure-ground
segmentation, motion detection, stimulus anticipation and shifts in attention all involve changes
in a neuron’s threshold based on signals from larger scales than its primary inputs. However, this
modulation reduces the accuracy with which neurons can represent their primary inputs, creating
a mystery as to why threshold modulation is so widespread in the brain. We find that modulation
is less detrimental than other forms of neuronal variability and that its negative effects can be
nearly completely eliminated if modulation is applied selectively to sparsely responding neurons
in a circuit by inhibitory neurons. We verify these predictions in the retina where we find that
inhibitory amacrine cells selectively deliver modulation signals to sparsely responding ganglion
cell types. Our findings elucidate the central role that inhibitory neurons play in maximizing
information transmission under modulation.
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1. Introduction

The need to use efficient representations within the nervous system currently provides one of
the leading frameworks for understanding neural computation. This framework accounts for a
number of different properties of neural responses (Bialek, 2012, Atick and Redlich, 1992, Pitkow
and Meister, 2012, Haft and van Hemmen, 1998, Borghuis et al., 2008, Liu et al., 2009, Doi et al.,
2012, Zhaoping, 2006, Garrigan et al., 2010, Gjorgjieva et al., 2014, Balasubramanian and Sterling,
2009, Ratliff et al., 2010, Laughlin, 1981, Kastner et al., 2015, Brinkman et al., 2016), including
optimal ways for neural circuits to adapt to statistically consistent changes in the input statis-
tics (Bialek, 2012, Fairhall et al., 2001a, Simmons et al., 2013, Brenner et al., 2000a). However,
it is also important to consider the case where information transmission occurs in the presence of
fluctuations in input statistics that might not be strong enough, or persist for long enough time,
to trigger full-scale adaptation. These types of fluctuations are nevertheless important to take
into account because they can evoke and/or represent modulatory influences from other circuits,
as is ubiquitous in the brain. For example, modulatory influences include contextual or top-down
signals about input properties on the scales larger than that of the neuron’s primary receptive
field, which closely follows the neuron’s linear or the so-called classical receptive field (Vinje and
Gallant, 2000). Such contextual effects underlie figure-ground segmentation, motion selectivity,
motion reversal or anticipation and other predictive effects in the retina the retina (Gollisch and
Meister, 2010, Kastner and Baccus, 2013, 2014). These effects are also prominent in the cortex
where they include cross-orientation suppression (Morrone et al., 1982, Nishimoto et al., 2006) and
other non-classical receptive field effects in visual (Roelfsema, 2006, Vinje and Gallant, 2000) and
auditory (Bar-Yosef and Nelken, 2007) cortices. Threshold modulation can also result from the
direct action of neuromodulatory circuits (Ashton-Jones and Cohen, 2005) that represent changes
in arousal and attention (Kato et al., 2012, Luck et al., 1997, Goris et al., 2014). The ubiquity
of modulatory signals makes it essential to consider how they may influence the properties of
maximally informative neural circuits.

It turns out that modulation has surprisingly non-trivial effects on information transmission.
On one hand, for a sensory circuit, modulation of neuronal threshold that is independent of the
primary sensory input is bound to decrease the information that this circuit can transmit about
that primary input. On the other hand, we will show that modulation always decreases information
less than an equivalent increase in the primary noise. We further show that the negative impacts
of modulation can be nearly eliminated if it is directed to a subset of sparsely responding neurons
in a coupled neural circuit. In this way, the neural circuit can take advantage of the flexibility
afforded by modulation of its response properties without suffering a reduction in information
transmission.

We test predictions of this theory on responses of pairs of retinal ganglion cells (RGCs) that
encode the same temporal fluctuations of light intensities but with different thresholds (Kastner
and Baccus, 2011). These cells have been termed adapting and sensitizing based on their short term
plasticity, but for the present analyses in steady-state conditions, the main differences between
these cell types are that adapting cells have higher thresholds and larger noise levels than sensitizing
cells. Previous maximally informative solutions for pairs of neurons accounted for many aspects
of these neurons’ responses, including why these two separate cell types are observed among Off
neurons but not among On neurons (Kastner et al., 2015). However, some noticeable quantitative
differences between theory and experimental measurements were left unexplained (Kastner et al.,
2015). Recent studies have pointed out that incorporating multiple noise sources could affect the
predictions for threshold differences between cell types (Brinkman et al., 2016). Therefore, we set
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out to determine whether modulatory effects on a cell’s threshold would influence the theoretical
predictions, bringing them into better agreement with experimental measurements. After testing a
number of scenarios, we found that a model where a secondary pathway modulated the threshold of
the primary pathway for each cell type (Fig. 1) could quantitatively account for the measurements
of threshold differences between cell types, across several different contrasts. We envision that
this threshold modulation occurs even for a fixed contrast, and in the case of the retina derives
from contextual modulation from inputs on scales larger than neuronal receptive field center, or
for cortical neurons, the classical receptive field (Vinje and Gallant, 2002).

Fitting the maximally informative model with threshold modulation to the retinal data also
made it possible to separate the observed neural variability into the contributions due to threshold
modulation and noise in the primary pathway. We found that higher noise levels of adapting cells
can be fully explained by larger threshold modulation experienced by these neurons compared to
those experienced by sensitizing cells; the primary pathway noise levels were similar for both cell
types. Mechanistically, threshold modulation in adapting cells could be implemented as additional
input from inhibitory amacrine cells. To confirm this prediction, we then directly recorded from
and manipulated slow-off amacrine cells. These experiments revealed a more reliable distance-
dependent input from amacrine cells to adapting cells compared to sensitizing cells, consistent
with the scheme where amacrine cells modulate the thresholds of adapting cells.

The theoretical results are obtained here using basic concepts of information theory. Therefore,
they should apply not only in the retina, but also in the cortex and other neural circuits. The
results highlight the importance of using inhibitory neurons to deliver modulatory signals into a
circuit, which can provide a new framework for understanding the function of inhibitory neurons
in the brain.
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2. Results

2.1. Impact of threshold modulation on information transmission

To understand information transmission in the presence of threshold modulation, we modeled
responses of individual neurons as binary, 1 or 0, corresponding to the presence or absence of a
spike in a small time bin, respectively. Spiking probability is modeled as a threshold crossing event,
with a threshold (u) and a noise level (v), which determines the variation in neural responses for
a given input value. When parameter v is small, there is only a small range of stimuli for which
neuronal responses varies strongly from trial-to-trial with a probability ~ 0.5. For inputs that
are either much greater or smaller than the threshold u, the spike probability is nearly certain,
with values close to either 1 or 0, cf. Fig 1. When the parameter v is large, the range of stimuli
with uncertain neuronal responses is large. The increase in the uncertainty in neural responses
with v can be quantified using a quantity known as noise entropy (Brenner et al., 2000c), which
represents the average uncertainty in the neural responses across different stimuli.

This model of neural responses yields a saturating nonlinearity shown in Fig. 1 and described
by the following equation:

p(r = Llepn ) = & [1 o f“)] 1)

In this equation, we write v.g instead of v to emphasize the fact that the observed noise in
neural responses represents actually a joint effect of multiple different types of noise (Brinkman
et al., 2016). Here we will focus on two types of noise: the “primary” noise v that arises in the
direct afferent circuitry for each cell, and the secondary source of variability that arises from the
modulation of the threshold p of the primary pathway and acts on longer time scales. On short
time scales, similar to those of the spike generating process, the threshold value does not vary, and
variability in neural responses is described by v only. On long time scales (~ seconds) , which are
necessary to measure the neural input-output function, its width is described by

Vet =/ V2 + 07, (2)

We note that, in principle, noise v in the primary pathway can itself also be subject to modulation,
not just the threshold p. This modulation would also increase v.g. However, in practice, we found
that variation in v was much weaker (Fig. 1B). Therefore, in what follows, we focus on the effect
of modulation on changes in the threshold.

To analyze the impact of threshold modulation on information transmission, we compute the
Shannon mutual information in two steps. In the first step, mutual information between stimuli
and neural responses is computed on short time scales, i.e. for a fixed threshold pu, as a difference
between the total response entropy S[p(r)] of neural responses and the “noise” entropy S[p(r|z)]
in the neural response:

]without modulation — (X R|M M) ) )} (3)

= Zp ) log,[p / z)log, p (r|z)
= Z/dxp rxloggp((|) (4)
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where x is the filtered stimulus according to the spatiotemporal receptive field of the neuron, and
r € {0, 1} represents the response of a single neuron before the incorporation of the modulation
in the secondary pathway (o, = 0,ves = v). At this step, the mutual information quantifies the
impact of the primary noise (without the input from the modulatory pathway). In the second
step, we integrate this mutual information over threshold positions i to take into account the
impact of variability from the modulatory pathway:

Ilongfterm = / dﬂj (X7 R’M = ﬁ)p (la) . (5)

Here, p (/1) describes the distribution of threshold values.

The information in Eq. 5 is actually the so-called conditional mutual information (Cover and
Thomas, 1991) I(X; R|M) between the input and the responses of the primary pathway, conditional
of the signals p from the modulatory pathway. As such, this information differs from the full
information provided jointly by modulatory and primary pathways only by the term I(X;M):
I(X;RIM) = I(X;{R,M}) — I(X; M), where I(X;M) represents information provided solely by
the modulatory pathway. Because I(X;M) does not depend on the parameters of the nonlinearity
of the primary pathway, it can be dropped when searching for the maximally informative properties
of the primary pathway. Thus, one can find the maximally informative setting for the primary
pathway and the optimal modulation by maximizing information from Eq. 5. These arguments
generalize to the case of multiple neurons where one evaluates information between inputs X to
the primary pathway of each neuron and the vector of responses across the neural population
R ={r;}, r € {0,1}.

We start by considering the impact of threshold modulation on single neurons. Here, modu-
lation always decreases information transmission (Fig. 2A). However, for an equivalent amount of
variance, modulation decreases information less than does primary noise. Therefore, if the system
has a choice between reducing the primary noise or reducing modulation, it is always preferable
to reduce the primary noise first, cf. Fig 2B.

The effect becomes more interesting in groups of neurons, starting with pairs of neurons. Here,
we find that if modulation is directed to the neuron with the lowest firing rate in the group, then
the negative effect of modulation is almost completely removed, cf. Fig. 3, panels A and B. In these
calculations, the firing rates were assigned to maximize information while constraining the average
spike rate across the neurons (Fig. S2). We find that one can apply much larger modulation to a
single neuron than the modulation distributed to many neurons and still have less of a decrease
in information. Selective application of modulation also maximized information in groups of three
neurons (Fig. 3C, D). With three neurons, information was maximally preserved under modulation
when it was applied to the neuron with the smallest spike rate. The most detrimental effects of
modulation were observed when modulation was applied to the neuron with the largest spike rate.
This was followed by progressively better results if modulation was applied equally to all neurons
or to the neurons with the intermediate spiking rate. However, these intermediate cases still led
to worse performances compared to the case where modulation is directed to the neuron with the
lowest spike rate (Fig. 3D). The degree of protection from modulation-induced loss is higher for
the three-neuron circuit compared with a two-neuron circuit (Fig. 3D). This suggests that the
benefits of including a sparsely responding neurons can be larger in large groups of neurons.

We also examined the case where neurons have the same thresholds and spike rates, as can be
optimal for high values of the primary noise (Kastner et al., 2015). In this case we found that
the optimal ways to apply modulation differed depending on whether same-threshold neurons had
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small or large spike rates, cf. Fig. S3. In the case where neurons had small rates, it was optimal
to apply modulation equally to both of them. In the case where neurons had large response rates,
it was optimal to direct modulation to one of the neurons than split it equally to both neurons.
The application of modulation lowered the spike rate in the target neurons. The implication from
these results therefore is that if a large neural circuit contains neurons of the same type with small
spike rates, such as for example the adapting cells in the retina, then modulation should be applied
selectively to the class of neurons with sparse responses and equally within this class neurons.

Why is it beneficial to direct modulation to the neuron with the lowest spike rate? An intuitive
explanation for this phenomenon can be obtained by considering the shape of the information
function for a single neuron with respect to its threshold (Fig. 4A). This function is concave for
small thresholds and convex for large thresholds. This is important because concave functions
decrease their value upon averaging of their inputs, as occurs as a result of threshold modulation,
while convex functions increase their value. This means that neurons with small thresholds,
i.e. high spike rates, will suffer a decrease in information transmission upon modulation, cf.
Fig. 4B. In contrast, neurons with large thresholds, i.e. small spike rates, will increase information
transmission upon threshold modulation. The lower the spike rate, the greater is the increase in
the information transmission with modulation. This explains why directing modulation to the
neuron with the lowest firing rate is more beneficial than directing modulation to neurons with
higher firing rate. As a related points, one can also notice in Fig. 3B that the protection against
modulation-induced loss in information transmission decreases with the average spike rate.

At this point, it is important to clarify that this increase in information transmission with
modulation is accompanied by an increase in the spike rate. Unlike information, the firing rate
function is convex for all values of its argument (Fig. 4A). As a result, modulation always increase
the spike rate (Fig. 4C). The increase in the information from modulation is less than it would
have been if the rate was simply increased by lowering the threshold, without the modulation. As
a result, the information vs. rate curve in the presence of modulation has the same shape as in
the absence of modulation, just with reduced information for a given rate.Thus, these results are
consistent with those in Fig. 2A showing modulation decreases information. It is just that the
increase in information upon modulation can nearly completely match the increase that would
have been observed if the firing rate was increased without modulation.

The conclusions from the theoretical analyses of information transmission in the presence of
threshold modulation indicate that modulation should not be equally distributed to all neurons
in the target circuit. Instead, it should be directed to the neuron with the lowest spike rate
with inhibitory signals. The use of inhibitory signals ensures that the rank-ordering of neurons
does not change under modulation, and the neuron that receives modulation does not get its
spike rate raised. They also illustrate the need to use neurons with diverse spike rates, because
the average spike rate in the circuit sets the upper limit on the amount of information that this
group of neurons can transmit, with or without modulation. To have the capability to transmit
large amounts of information, the circuit has to include neurons with large spike rates. Including
neurons with small response rates and directing modulation to them helps maintain information
transmission near its maximal levels in the presence of modulation.

2.2. Retinal input-output functions are maximally informative under threshold modulation

We now test how these predictions using responses of pairs of cells in the retina that differ
in their average spike rates. The adapting and sensitizing cells are two cell types that represent
the same temporal pattern of light intensity modulation but have different thresholds. Our first
analysis is to fit the maximally informative model with modulation to the responses of pairs
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of adapting/sensitizing cells. The fit was made while requiring that the effective noise and the
average spike rate for the pair matched experimental measurements (see Methods for details). The
fit yields estimates for threshold modulation and primary noise for each neuron in the pair as well
as an estimate for the difference in their thresholds. These estimates can then be compared to
direct experimental measurements of these variables.

We find that the inferred amount of noise in the primary pathway was similar for both adapting
and sensitizing cells (Fig. 5A). However, the threshold modulation was substantial for adapting
cells and very close to zero for the sensitizing cells (Fig. 5A). The fitting results were consistent
across cell pairs (Table S1). Thus, the differences in the effective noise that are observed between
these two cell types (Kastner and Baccus, 2011) are due to differences in threshold modulation. We
also note that threshold modulation was small in sensitizing cell even relatively to their thresholds
(the modulation was ~ 100 times smaller for sensitizing cells compared to adapting cells, whereas
their thresholds are only approximately half as small as those of adapting cells).

The threshold modulation values predicted by the maximally informative model with mod-
ulation can be compared with direct experimental estimates of their threshold modulation. To
compute the amount of threshold modulation that is observed experimentally, we estimated neu-
ronal nonlinearities from shorter data sub-sets (1/4 to 1/6 compared to the full dataset). Each
nonlinearity was fit with a logistic function to determine its threshold value. We find that the
observed variation in thresholds for a given adapting cell matches those estimated using the maxi-
mally informative model (Fig. 5B, paired non-parametric t-test p = 0.73). [This analysis was only
carried out for adapting cells, because threshold modulation was negligible in sensitizing cells].
Those adapting cells that had larger variance in thresholds across trials also had larger values of
threshold modulation as indicated by fitting the maximally informative model to the full set of
their response (the correlation was statistically significant, with p = 0.015, Fig. 5B). These anal-
yses add credence to the use of the maximally informative model with modulation as a method
for separating the noise component that is due to threshold modulation. They also indicate that
the observed threshold modulation in adapting cells is maximally informative given their other
parameters, such as the primary noise and firing rate.

Another prediction that one can obtain from the maximally informative model with modulation
pertains to the differences in the thresholds between adapting and sensitizing cells. Previous pre-
dictions for the threshold differences obtained for pairs of neurons without taking modulation into
account yielded values that were systematically larger than those observed experimentally (Kast-
ner et al., 2015), replotted in Fig. 6 with black line. We find that the maximally informative model
with modulation provided more accurate predictions for thresholds differences between pairs of
neurons than the model with no modulation, cf. Fig. 6. Statistically, the threshold difference
(in units of contrast) between adapting and sensitizing cells were consistent between the average
values across contrasts for each cell pairs from the maximally informative model and experimen-
tal measurements (paired non-parametric t-test p = 0.14). By comparison, the model with no
modulation yielded systematically greater threshold differences that is observed experimentally
(black line in Fig. 6). We note that experimental data points show larger residual variation across
different contrasts than our model indicates. The reason for this is that, in the model, noise
components and threshold modulation for adapting cells were constrained to change linearly with
contrast (to reduce the number of fitted parameters, see Methods). Thus, the model was not
meant to predict residual variation across contrasts that remains after rescaling inputs by their
contrast. Other than this variability, the predictions of the maximally informative model with
modulation for threshold differences between adapting and sensitizing cells are fully consistent
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with experimental measurements (p > 0.14, Fig. 6B).

2.3. Amacrine cells as a source of threshold modulation for adapting cells

One of the key predictions of the theory is that modulation should be directed to neurons with
low spike rates. However, as we have seen above, modulation increases the spike rate (Fig. 4C),
albeit by moderate amounts. One way to minimize the risk of altering the rank-ordering of neurons
in terms of their spike rate is to deliver it with inhibitory neurons. In this way the neuron that is
undergoing modulation will automatically have its threshold raised and spike rate lowered. This is
consistent with our observations in the retina where adapting neurons, which undergo modulation,
also have larger thresholds and smaller spike rates. In the retina, inhibitory amacrine cells could
be the source of that input (Fig. 7A). If amacrine cells provide stronger inputs to adapting cells
than the sensitizing cells, then this would simultaneously explain why the thresholds of adapting
cells are higher and more variable than those of sensitizing cells. The fact that both the mean
threshold and its modulation varies approximately linearly with contrast is also consistent with
this wiring scheme. Inputs to and from amacrine cells just need to be scaled by contrast just like
inputs within the primary pathway for the adapting and sensitizing cells.

We tested this hypothesis by performing a separate set of experiments to analyze how the
hyperpolarization and depolarization of sustained Off-type amacrine cells by intracellular current
injection affected responses of nearby adapting and sensitizing cells recorded simultaneously with
a multielectrode array (see Methods and Fig. 7). The setup in these experiments was similar to our
recent study (Kastner et al., 2019) that focused on the dynamics of sensitizing cells but included
much larger steps in stimulus amplitude to probe responses of both adapting and sensitizing neu-
rons. We analyzed the change in the mean threshold of adapting/sensitizing neurons between
hyperpolarization and depolarization of the amacrine cell. When an amacrine cell is hyperpolar-
ized (depolarized), this decreases (increases) its inhibition onto neurons it is directly connected
to. Although we do not assume that there are direct connections between amacrine cells and the
ganglion cells we recorded (the connection could be polysynaptic, through circuitry involving bipo-
lar or other amacrine cells), this approach measures the functional effect of individual amacrine
cells. We find that inputs from amacrine cells have a much stronger impact on the thresholds of
nearby adapting cells compared to sensitizing cells (p = 0.04, for cells within 0.2 mm from the
amacrine cell RF), cf. Fig. 7C. Here, we also plot the change in the threshold as a function of
distance between the receptive fields (RFs) of the amacrine cell (that was subjected to hyperpo-
larization/depolarization) and the adapting/sensitizing cell whose nonlinearity was measured to
estimate its threshold. In the case of adapting cells, there was a clear and statistically significant
dependence of the amount of threshold shift as a function of the distance to the amacrine cell
RF center (p = 8 x 107° F-test compared with null hypothesis of no dependence on distance).
The dependence was not statistically significant in the case of sensitizing cells (p = 0.9). Thus,
these data support the hypothesis that amacrine cells exert stronger influence on the thresholds
of adapting neurons than on the threshold of sensitizing neurons, and that the larger thresholds
of adapting ganglion cells arise as a result of inhibition from the amacrine cells, and that this
inhibition also brings with itself stronger threshold modulation.

3. Discussion

In this work we analyzed information transmission in the presence of threshold modulation.
There are two main conclusions. The first conclusion is that modulation should not be equally
applied to all neurons in the circuit. Instead it should be directed to select neurons, preferably
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those with the low spike rates in the circuit. The second conclusion describes the central role that
inhibitory neurons play in delivering modulatory signals into the circuit. These conclusions are
obtained from basic analyses using information theory, and therefore should apply to all neural
circuits. We now discuss the implications of these conclusions, with a focus on cortical circuits.

The first conclusion highlights the need to form circuits using neurons with different spike
rates. The large number of sparsely firing neurons in the cortex have long presented a puzzling
observation (Olshausen and Field, 2005). The chief explanation offered so far is that sparse
responses arise because of metabolic constraints (Laughlin et al., 1998). However, one could have
hypothetically used a smaller number of neurons with higher spike rates, if metabolic constraints
were the leading cause for the sparseness of neural responses. The information-theoretic analyses in
the presence of modulation offer a different explanation. Neural circuits need to have neurons with
both high and low firing rates in order to transmit large amounts of information in the presence
of modulation. High firing neurons make it possible to transmit large amount of information,
whereas neurons with small spike rates protect against loss of information transmission in the
presence of modulation.

The second conclusion describes a rather unexpected role for inhibitory neurons as intermedi-
aries for delivering modulation signals. This set up helps to ensure that low-spiking neurons that
receive modulation remain in this regime under varying modulation levels. We find support for
this prediction in the retina where inhibitory amacrine cells send modulatory signals to sparsely
spiking adapting cells. If modulation were delivered to adapting cells via excitatory pathway, then
this would risk making their spike rate greater than that of sensitizing cells and losing protection
against negative effects of threshold modulation on information transmission.

The amacrine cells studied here were slow-off amacrine cells, which have been shown to be
involved in various adaptive functions in the retinal circuit. They have been shown to act through
disinhibition (Manu and Baccus, 2011), they contribute to the classical receptive field surround in
ganglion cells (Manu et al., 2017), and adaptation of their transmission mediates the phenomenon
of sensitization (Kastner et al., 2019). The same amacrine cells both establish the threshold of the
nonlinearity of ganglion cells during steady state (Fig. 7) and their dynamics lead to the change
in threshold that creates sensitization.

The theory of modulation analyzed here can be implemented via both spiking and non-spiking
neurons. The sustained off amacrine cells that we studied here experimentally are non-spiking, as
are many amacrine cells in the salamander. However, elsewhere in the nervous system modula-
tion is commonly delivered using spiking neurons. For example, most of the modulatory signals
are delivered to cortical circuits via inhibitory neurons (Harris and Shepherd, 2015). This in-
cludes inhibitory neurons expressing the vasoactive intestinal peptide that are major recipients
of neuromodulatory and context-dependent inputs from higher-order cortical areas (Harris and
Shepherd, 2015). Similarly, somatostatin expressing inhibitory neurons use this neuropeptide as a
co-transmitter with GABA to modulate the activity of local neurons (Liguz-Lecznar et al., 2016).
The slow action of neuro-peptides, such as somatostatin, conforms with our modeling framework
where modulation changes neuronal threshold on slower time scales than those on which the
primary activation pathway operates. We note also that all of the other inhibitory neurons, in-
cluding parvalbumin-positive inhibitory neurons, are directly responsive to neuromodulators such
as acetylcholine and serotonin (Yi et al., 2016). Furthermore, even when neuromodulators, such
as acetylcholine, act directly on excitatory neurons, they exert first an inhibitory response (Dasari
et al., 2017) in their target neurons. In addition to these post-synaptic mechanisms of threshold
modulation, there are several known mechanisms that operate pre-synaptically (Debanne et al.,
2015) and are based on inactivating hyperpolarizing channels. This includes inactication of presy-
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naptic K+ channels and modulation of G-protein coupled receptors that produce tonic inhibition
of transmitter release (Debanne et al., 2015) and hyperpolarization induced recovery of Na chan-
nels from inactivation (Rama et al., 2015). Our theoretical results suggest that there might be
fundamental information-theoric reasons why all of these different forms of threshold modulation
engage hyperpolarization and inhibitory mechanisms.

Limitations of the Study

Analysis of information transmission in the presence of modulation was based on the separation
of time scales, with threshold modulation having a much slower dynamics than the response
dynamics of the primary pathway and its noise characteristics.

From a numerical perspective, computation of the mutual information in the presence of thresh-
old modulation (Eq. 5) represents a multidimensional integral with a dimensionality equal to the
number of cells. We can numerically compute this integral for arbitrary modulation strength
only for pairs of neurons. For more than two neurons, we approximate the integral using the
perturbation method for small modulation values. However, to compute the higher-dimensional
integral without approximation, one might need other algorithms to carry it out (e.g., Monte Carlo
methods), which was not performed here.

Supplemental information
Supplemntal information consists of an appendix with mathematical details and numerical
methods for computating information, Table S1, and Figure S1 to S7.
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STAR x METHODS
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and should be directed to and will be fulfilled
by the Lead Contact, Tatyana Sharpee (sharpee@salk.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Data is available upon request.

METHOD DETAILS
Ezperimental preparation

We use a combination of new and previously published experimental data (Kastner and Baccus,
2011). Full details of the experimental procedures for measuring neural nonlinearities are provided
in (Kastner and Baccus, 2011). Briefly, uniform field stimuli were drawn from a Gaussian distri-
bution with constant mean intensity, M, of 10 mW/ m®. Contrast is defined as o = W/M, where
W is the SD of the intensity distribution. Neurons were probed with flashes of nine different
contrast values from 12% to 36% in 3% intervals. The contrasts were randomly interleaved and
repeated. Each contrast was presented, in total, for > 600 s. For the calculation of the response
functions, the first 10 s of data in each contrast were not used to allow for a better estimation of
the steady state.

Intracellular recording

Simultaneous intracellular and multielectrode recordings from the isolated intact salamander
retina were performed as described (Manu and Baccus, 2011) but using stimuli with larger steps in
visual contrast to fully probe both adapting and sensitizing nonlinearities. Sustained amacrine cells
were distinguished from horizontal cells by their flash response and their spatiotemporal receptive
fields, with horizontal cells lacking an inhibitory surround and being greater than 300 pm in
diameter. For the intracellular recordings the stimulus comprised of randomly drawn contrasts
with contrast amplitudes that ranges from 0 to 40% Michelson contrast units, where Michelson
contrast is defined as (Imax — Imin) / (Imax + Imin). The flash amplitude varied randomly every
400 ms, the first 100 ms the flash was greater than the mean, from 100 to 200 ms the flash was
lower than the mean, and for the last 200 ms the flash was at the mean luminance level (cf. inset
in Fig. 7B). Changing the distribution of amplitudes slower than the integration time of ganglion
cells allowed for a rapid measurement of the ganglion cell response function without having to
also measure the ganglion cell temporal filter (Brenner et al., 2000b). Synchronized to the visual
stimulus, we injected from 100 to 300 ms, randomly interleaved, hyperpolarizing (—500 pA) or
depolarizing (4500 pA) current pulses into the amacrine cell. The ganglion cell response function
was calculated at the firing rate of the ganglion cell from 100 to 400 ms of each contrast amplitude.
This focused on the off response of the ganglion cell.
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Mazximally informative modulation model for two neurons

Here we begin by reviewing the main features of maximally informative solutions for two
neurons obtained in the absence of threshold modulation (Kastner et al., 2015, McDonnell et al.,
2006). The most prominent feature of the mutual information is a bifurcation that occurs when
noise decreases below a certain, critical value (Fig. S1). In the case where both neurons have the
same noise levels 11 = 1y, a single peak at zero threshold difference splits into two symmetric
peaks upon decreasing noise level. Each of these peaks represents equivalent solutions obtained
by exchanging neuronal indices. One of the peaks describes the case where 1 > po whereas the
other describes the case where p; < ps. When neurons have different noise values v and vy, the
peak with p; < po becomes suboptimal if 14 > 5. Thus, the lower threshold neurons should
have lower noise. This agrees with the intuition that a neuron which is more sensitive to small
input fluctuations should have smaller noise. From the measurements of the average spike rate for
the two neurons, one can predict the critical noise value (v.) below which one can expect to find
neurons with different thresholds encoding the same filtered stimulus x. The critical noise value
was indeed above the measured noise values for the adapting and sensitizing retinal ganglion cells
(RGCs) (Kastner et al., 2015). In addition, one can make detailed predictions for the expected
value 11, — po based on the measurements of other parameters 14, vo and pgpike, Where pgpike is the
averaged total spiking probability

N=2
Pspike = ZP (Ti = 1) ) (6)
=1

p () = / " dep (o) p (@)

—00

Note that both the optimal threshold difference (u; — p2) and critical noise (v.) depend on the
average spike rate (pspike) for the cell pair. Therefore, to represent all retinal data (v, va, 1 — p2)
on one coordinate frame that is universal across different pgpie, we transformed the noise lev-
els to a set of basis (%, %) normalized by the the rate-dependent v.. Then, we rescaled
each observed p; — pe (y-axis) relative to its optimal prediction and spinodal point at (%VL”Z,
“22) (the black and the gray-dashed lines in Fig. 6A), similar to the rescaling method provided
in Ref. (Kastner et al., 2015). Here, theoretical predictions were in qualitative agreement with
experimental measurements, but quantitatively the observed threshold differences between the
adapting/sensitizing neuron pairs were systematically smaller than those predicted based on max-
imizing information (Fig. 6A). We now show that taking into account threshold modulation brings
theoretical predictions into agreement with experimental data.

To understand how threshold modulation affects maximally informative threshold positions,
one may note that threshold modulation effectively smooths the information surface computed
over long time scales (Fig. S4). In the regime where the mutual information has two maxima, it
has the effect of bringing the maxima closer to each other. Another effect that proved necessary to
take into account is that noise in the primary pathway can be larger for the neuron that experiences
smaller threshold modulation, leading to a smaller overall effective noise value for that neuron.
In this case, the information transmitted matches the smaller (local) of the two maxima of the
information. In other words, the model allows for the possibility that coordination of neural
thresholds between neurons might not be able to keep up with changes in input statistics for the
circuit to match the properties of the global maximum of information. Instead, we observed that
in some cases neural response properties match a local maximum of the information that required
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smaller adjustments in thresholds following the change in input statistics.

Taking both of these effects — threshold modulation and the possibility of local optimality —
made it possible to account for the observed threshold differences between sensitizing and adapting
cells. Each cell pair was probed with flashes of nine different contrasts, producing four experimental
parameters of the neuronal nonlinearity (veg1, Vesr2, i1, f2) at each contrast. The maximally
informative model also has six parameters (fu1, fo, 1, V2, 0,1, 0,2). It can predict the difference
p1 — po given a set of values for pgpike, V1, V2, 0,1, 0,2; only three of these five parameters are
constrained by the measured input-output functions. Thus, the model is underconstrained for
one value of contrast. However, experiments indicate that once neurons are adapted to a given
value of contrast, parameters of experimentally measured nonlinearities increase approximately as
a linear function of contrast (Laughlin, 1981, Kastner and Baccus, 2011, Brenner et al., 2000a,
Fairhall et al., 2001b, Baccus and Meister, 2002). We use this observation to fit the maximally
informative model across contrasts. The resulting model has eight parameters altogether: the
linear and offset terms with respect to contrast for each of the four noise terms (1, vo, 0,1, 0,,2).
Because position of information maxima are affected by changes in any of these parameters, the
maximally informative model can therefore be used to predict 27 independent measurements across
contrasts (three values of 111 — fi2, Ver1, and veg o for each contrast). Supplemental Information
contains additional details related to the formalism of maximizing information transmission in
neural responses and the procedures for generating the figures.

Least-squared-fitting for parameters of the threshold modulation model from RGCs data

Base on the maximally informative modulation model, at a given pgpike the solution to threshold
difference between a pair of adapting and sensitizing cell, Apipoqel, 1S nonlinearly dependent on
the magnitude of each noise source (v;, 0,,;). This allows us to separately estimate the magnitude
of these noise components from the neural data.

The results of least-square fitting were also constrained to match the observed values for veg ;.
Seven pairs of adapting (index 1) and sensitizing cells (index 2) were probed by the nine different
full range of contrasts (o = 12% to 36% in 3% intervals (Kastner and Baccus, 2011)). The adaptive
dynamics of noise level has been experimentally observed in many sensory systems(Laughlin, 1981,
Kastner and Baccus, 2011, Brenner et al., 2000a, Fairhall et al., 2001b, Baccus and Meister,
2002). Typically, the width of the transition region of the nonlinearity changes linearly with
stimulus contrast (standard deviation). This adaptive process serves to optimize the information
processing(Brenner et al., 2000a). Here, we assume that both the primary (v;) and the secondary
(0,,i) noise sources are approximately linearly dependent on contrast (o),

vi(o,d) = of’o+af, (7)
oui(o,d) = ag)a + osz). (8)

The effective noise also depends on contrast,

Vettmodet (0, @) = \[V2 (0, @) + 02, (0, @), (9)

where 7 = 1,2 denotes adapting or sensitizing neuron, respectively.
The parameters a = {a§f)273,4 eRVi=1, 2} are to obtained by the least-squared-fitting for each

cell pair while requiring them to also be consistent with veg,; measurements from the shape of the
nonlinearity. This model has eight parameters. Although formally it can be fit to data points for
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each individual cell pair, we reduced the number of parameters in half by focusing on the dominant
term between the linear and contrast-independent terms for each type of noise. Initial fitting of
the model indicated very small values for oél), ag), afll), and &éz). The final fitting reported here
was obtained by setting these terms to zero, i.e., that noise in the primary pathway scales linearly
with contrast for both types of cells; threshold modulation was set to be linearly increasing with
contrast for adapting cells and to be contrast-independent for sensitizing cells.

The observed nonlinearities for a pair of adapting (index 1) and sensitizing cells (index 2)
determine the threshold separations (Ap = p11 — po) and the effective noise levels (Ve 1 or 2). For
each cell pair, we aim to dissect two contributions to their veg1(or 2): the one from the intrinsic
noise level (v) and that due to threshold modulation (¢,), via minimizing the squared-error be-
tween the retinal data and the model predictions across the nine contrasts (¢ = 12% to 36% in 3%

intervals). Given a contrast (o) a data point of a cell pair, 0] (o), consists of three components,
O (0) = (Ve 1 (0) , ver2 (0), A (), (10)

and so does our model £ (0,d),

—

E (07 62) = (Veff,l,model <U7 62) ) Veff,2,m0de1 (U; 62) ) A/Lmodel (07 O?)) . (11>

Here, Afimodel (0, @) is the predicted threshold separation from our model, dependent on the in-
trinsic ; and modulatory noise o, ; of each cell types,

A,umodel (0’7 0_2) - A,LLmodel (Vl (0’, 62) y V2 (07 O_Z) JO-H,l (Ua 62) 70-,u,2 (Ja 62)) . (12>

The predicted threshold differences (Apimoder) were firstly computed discretely in the grid space
(v1,v2,0,1,0,2) and interpolated with Mathematica build-in function to construct the solutions
between the grids. To avoid biasing the result by the component with largest error-bar, we

—

standardize the [6 (0) — E (0,d)| of each dimension with the inverse of its standard deviation.

That is, the rescaling factors (weights) were

w=1/(s.d. (Ver1) ,5.d. (Ve 2) ,5.d. (Ap)), (13)

or more specifically,

_1
L 1 o - .
W; = od. (Ol) = [N 1 ; (O,L (O') - <Ol>o) , for: =1 to 3. (14>
We defined the sum of weighted squared errors (or residuals) as
- - 2
(@ =3 |ge [0 - E@a)]|. 15)

where ® denotes component-wise multiplication. The parameter @ is the best-fit minimizing the
weighted least-squared-error,

& = argmin x* (@), (16)

a’
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which predicts how the intrinsic (1;) and the modulation noise (0, ;) depend on the stimulus
contrast (¢). To quantify the goodness of fit, we use the variance (or reduced x? )

2 2
Xied(a):dof :N_n7 (17>
where d.o.f. = the number of degrees of freedom = N —n; N is the number of observations (nine

contrasts in our case), and n is the number of fitted parameters. Note that by considering the
threshold modulation, the predictions for the minimal threshold differences between the two cell
types cannot go below the spinodal line. This makes it difficult to fit the data points adjacent to
or below the spinodal region with our model. Therefore, the fitting results for three cell pairs did
not adequately capture the trends (Fig. 6).

Finally, we also fit a single model across all cell pairs and contrasts. The resulting parameters
(provided in the last row of Table S1 were consistent with average values of parameters fitted to
individual cell pairs (Fig. 5).

Analysis of inhibition from amacrine cells versus RF's distance

To quantify the amount of inhibition from the amacrine cells to a ganglion adapting/sensitizing
cells (Fig. 7), we analyzed how the threshold of the ganglion cells changes when nearby amacrine
cells are depolarized or hyperpolarized. For each ganglion cell and amacrine cell condition, the
relation between firing rate and filtered input was recorded (c.f. Method of intracellular recording).
Fitting the two response curves with sigmoid functions yielded thresholds of a ganglion cell during
the hyperpolarizing (uy,) and the depolarizing (pq) current injection to the amacrine cell. The
difference in thresholds (uq — pn) reflects the impact of amacrine cell inputs on the response
properties of the ganglion cell. We analyzed these differences as a function of the receptive field
distance between the ganglion and amacrine cells. Overall, the analysis was based on current
injection to 40 different amacrine cells and recordings from 144 Off ganglion cells. We note
that an amacrine cell usually connects to multiple ganglion cells, and some of the ganglion cells
receive inputs from multiple amacrine cells. The red and blue points shown in Fig. 7 are obtained
by binning (according to RFs distance) results from 169 amacrine-to-adapting cell pairs and 32
amacrine-to-sensitizing pairs, respectively. The standard error in RFs distance (z-axis error) is
too small to be visible in the plot.

Methods S1
Related to STAR » METHODS. Appendix on information calculations.
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Figure 1: Two-pathway model of information transmission with threshold modulation. (A) The
experimentally observed neural nonlinearity reflects two noise sources (purple line): the intrinsic noise v in the
primary pathway (blue), threshold modulation that occurs on longer time scales with variance o, (red). Over time,
the observed nonlinearity is an average over different threshold positions p (r|z) = [ dap(r|z, i, v)p(f1) and has an

effective width veg = 4 /2 + a‘ﬁ. (B) Threshold variation over time is much stronger than variation in the primary

noise.

Figure 2: Impact of threshold modulation on information transmission. (A) The difference in information
before and after adding different types of variability: either modulation (blue lines) or primary noise (black lines).
Both of types of variability decrease information, but modulation (blue lines) decreases information much less
than the primary noise (black lines). We note that both the primary noise and the modulation also increase the
spike rate. Therefore the baseline information (without modulation) is computed for the higher rate that matches
the rate in the presence of modulation. (B) The stronger detrimental effects of primary noise on information
transmission compared with modulation are shown here for the case where primary noise and modulatory variance

are constrained to sum veg = y/v? + 07 = 0.3. In this case, the smaller the primary noise (bottom z-axis), the

larger the information (y-axis), despite the corresponding increases in modulatory variance (top z-axis).

Figure 3: Modulation directed to sparsely responding neurons protects against modulation-induced
information loss. (A) The information loss is smallest when only the lowest-spiking neuron (red line) receives
modulation, compared to modulating all neurons (gray line) or the highest-spiking one (blue line). Black line shows
information in the absence of modulation. The primary noise v = 0.2 for all cases, lines with modulation have
the same averaged effective noise vog = 0.4 after modulation. Arrows describe how points on the unmodulated
curve change in terms of information and spike rate upon adding the same amount of overall modulation. The
red and blue arrows have different final values for spike rate because the modulation-induced increase in the spike
rate depends on the initial spike rate values and is different for the lowest and highest spiking neuron in the pair.
The averaged effective noises after modulation are veg = 0.3 for all curves. The spike rates were optimized to
yield maximal information for a given average spike rate. The corresponding rates are shown in Fig. S2. (B) is
same as (A) but shows the results on an expanded scale in terms of percentage of information loss (relative to
the black line in (A), i.e. fioss = 1 — Tiong-term/Jwithout modulation from Egs. (3),(4)). (C, D) Same as (A) and (B)
but for three neurons. In (D) results from (B) pertaining to pairs of neurons are re-plotted using dashed lines
for comparison. Green lines shows the case where modulation is directed to the neurons with intermediate spike
rates, other colors are the same as for pairs of neurons. Directing modulation to the most sparse neurons yields
the smallest information loss from modulation. Modulation can be more fully compensated in three-neuron groups
compared to two neurons, for smaller spike rates. Further details for the plots are provided in the Supporting
Information.

Figure 4: Modulation induced transition in information transmitted as a function of spike rate. (A)
Spike probability, computed according to Eq. (1), is a convex function of threshold position (black line). In contrast,
information (red line) changes convexity as a function of threshold. When a function has positive convexity (solid
segments of the curve) the average of its two values at points a and b is always larger than the function value at
(a+b)/2. In this regime, fluctuations increase information transmission. The opposite is true for regions of negative
convexity (dashed-curve). As a result, fluctuations in threshold decrease information when thresholds are low and
increase information when threshold are high, i.e. when neurons respond sparsely. (B) Threshold modulation
increases mutual information from Eq. (4) when spike rates are small (filled dots) but decreases it when spike rates
exceed a certain transitional value (open dots). Shaded pink region denotes the value where modulation increases
information transmission. Thick solid lines show information in the absence of threshold modulation (0’3 =0), for
two noise levels 11 o = 0 (black) and 0.2 (light-blue). Thin solid lines and the eight series of color-dots on them
show how curves shift upon introduction of threshold modulation. Each series of color-dots evolves from the same

intrinsic noise (v) and threshold (p). Color denotes the resulting effective noise veg = (/v +02. (Inset) The

transitional value in response rate is plotted as a function of the intrinsic noise. (C) Modulation increases response
rate.
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Figure 5: Experimentally observed threshold variation matches maximally informative values. (A)
Intrinsic neural noise and threshold modulation inferred using the maximally informative model with modulation
from retinal data, cf. Eq. (8) in Method Details. Both neural types have comparable amounts of intrinsic neural
noise (v;) but distinct levels of threshold modulation (o, ;). All noise types varied linearly with the stimulus
contrast, except for modulatory noise in the sensitizing cells, which was small and contrast-independent. (B) The
experimentally observed threshold variation (from Fig. 1B) is positively correlated across adapting cells (r = 0.3,
p = 0.015) with threshold modulation inferred from the maximally informative model from Eq. (8). Both axes are in
units of contrast. Colors denote different neurons. Data points for the same neuron/color represent measurements
from different input contrasts.

Figure 6: Maximally informative model with modulation accounts for threshold differences between
adapting and sensitizing cells. Threshold differences between adapting and sensitizing cells are plotted in
normalized coordinates relative to their optimal values in the absence of modulation (black lines in top row), see
Methods. Top row (A, B) shows normalized threshold differences as a function of average effective noise of the
adapting/sensitizing cell pair. Bottom row (C, D) shows normalized threshold differences as a function of difference
in the effective noise between the two neurons. Columns show data (left), maximally informative predictions with
modulation (right). Different colors denote different cell pairs. Open circles represent data for a given contrast,
filled circles show the average across contrasts. Black lines show predictions for threshold differences without
threshold modulation. Gray dashed lines denote spinodal lines that separate regions where information has two
maxima vs. a single maximum. Points close to the spinodal lines (e.g. blue, light blue, and light green) are more
difficult to fit because they mark the region where one of the maxima ceases to exist. This pushes the interpolated
solutions away from the spinodal line (c.f. Fig. S1). Despite these technical issues, the overall distribution of mean
threshold values normalized across contrasts was not statistically different between fitted and experimental values,
p=0.14.

Figure 7: Distance dependent inputs from amacrine to adapting cells. (A) Inferred model of the presy-
naptic circuitry of the two types of Off retinal ganglion cells based on observed differences in the strength of the
modulatory pathway. (B) The nonlinearity of Off ganglion cells during the depolarizing (dot) and hyperpolarizing
(triangle) current injection into the amacrine cell. Inset shows the unit of the visual stimulus that consisted of
100 ms steps up/down in contrast followed by 200 ms of mean contrast. The solid and dashed curves show the fit
with sigmoid function. The distance between the receptive field (RF) of the amacrine cell to that of the adapting
cell was 0.090 mm, 0.101 mm to the RF of the sensitizing cell. (C) The amount of inhibitory input from amacrine
cells to the adapting cell decreases with distance significantly (p x 1078, f-test). [Inhibition may be direct or
polysynaptic, through circuitry involving bipolar cells or other amacrine cells.] The dependence on distance was
not statistically significant for sensitizing cells (p = 0.9). Solid lines show the exponential fits with distance.
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Schematic of the two pathway model with modulation
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Methods S1 for
“How inhibitory neurons increase information
transmission under threshold modulation”

Wei-Mien M. Hsu, David B. Kastner, Stephen A. Baccus, Tatyana O. Sharpee

Appendix on information calculations

Here we provide additional details for computing the mutual information, the total spiking probabilities for
either single or a group of (binary) neurons, and descriptions for generating the main text figures.

A1l Neural responses and mutual information

This section focus on the mathematical formalism for the neural encoding model and information transmis-
sion. Firstly, we defined the model of neural response for one or a group of neurons (N > 1) that jointly
encode the same stimulus (Sec. A1.1). Our choice of the modeling framework was motivated in part by the
experimental setup that used full-field temporally varying stimuli to probe responses of the retinal ganglion
cells (RGCs) (Kastner and Baccus, 2011). Specifically, we were interested in characterizing how multiple
fast-Off neuronal types jointly encode the temporal fluctuations in light intensity.

Given the neural response that depends on the neural threshold (u;) and noise level (v;) of each cell, we
then defined the total spiking probability (Sec. A1.2) and mutual information (Sec. A1.3) as a function of
(i, vi), either without or with threshold modulation.

A1l.1 Joint response of for a group of neurons

If we consider a group of N binary neurons jointly encoding the same filtered stimulus (x € X), given
the assumption that their responses are “conditionally independent” without significant correlations, the
probability of yielding the joint response r for a given filtered stimulus x is

N
p(ele) = [[p(rla). (A1)

where the vector r = (r1, 72, ..., 7y ) denotes N-neurons’ responses with r; = {0, 1}, and p (73| ) = p (7] @, s, v;)
is the response function of individual neuron ¢ (main text Eq. (4)),

p(rs = 1]2) :% {lﬁ-erf(x\/_ﬁ:i)} , (A2)

p(r;i =0x)=1—p(r; =1|x). (A3)




For a binary neuron, its response function is modeled as the probability of threshold crossing event, with
a threshold (1) and a noise level (v). The neural response above illustrate the nonlinearity of the primary
pathway (without threshold modulation) as it considers the “primary” noise v;. Yet, by replacing the noise
value v; with v; o (c.f. main text Eq. (5)), we get the neural response joint affected via both primary and
secondary/modulatory pathway.

A1.2 Averaged neural responses and total spiking probability

The joint neural response p (r|z) averaged across the stimulus distribution p (x) gives the averaged probability
of neural response r,

p(r) = / dzp () p(rlz), (A1)
N

:/dxp(x)Hp(TﬂI). (A5)

i=1
where p () is the probability density function of filtered stimulus (z). The averaged total spiking probability

Dspike Of N neurons is to sum over the 2V possible responses (r € R) as follows,

N

Pspike = Y lxllyp(r) =D _p(ri=1), (A6)

rcR =1
N

efly = 7,
=1

where p(r; =1) = [0 dzp(r; = 1|z) p(z) is the spiking probability of i-th neuron. Note that the above
equation is a general form whose noise level has not been explicitly specified. By plugging in the value
of noise level, either v; o5 or v;, Eq. (A6) can be the total spiking probability with or without threshold
modulation.

Examples Taking N = 1 and 2 as examples, all the possible response r € R and the total spiking
probability are summarized as follows:
’ N ‘ r ‘ R ‘ DPspike ‘
1 r {1,0} p(ri=1)
2 | (ri,r2) [ {(1,1),(1,0),(0,1),(0,0)} [ p(ri=1)+p(ra =1)

For N = 2, the total spiking probability is the linear sum of individual

Pspike = Z ||I'||1p(l‘),

reR
=Y l(r1,72)lly p(ra,12)

recR
=2p(1,1) +p(1,0) +p(0,1),
=[p,1)+p(,0]+[p(,1)+p(0,1)],
=p(ri=1)+p(r2=1).

This applies to arbitrary number of N, as given by Eq. (A6).



A1.3 Mutual information

For the two-pathway model, we compute the mutual information in two steps (c.f. main text Fig. 1 and
Sec. A4). Here, we want to emphasize that the information for each step has a different dependence on (u;,
Vi, 0p.:), as described below.

A) Information without modulation For N neurons (r € R) joint encoding the same filtered stimulus,
mutual information between their responses (r € R) and the stimulus values (z € X) at a set of fixed
thresholds p = {u;} is given by (Cover and Thomas, 1991):

rx
Iwithout modulation = 1 (X§ R|M = /_1,) = /dxp (x) Z p (I‘|$) 10g2 pp( (I|')) ) (A7)
recR

where p (r|z) is given by Eq. (Al) and p () is the probability density function of filtered stimulus. Given
the neural response p (r|z) that depends on the neural threshold (;) and primary noise (v;) of each cell, one
can compute the total spiking probability (pspike) and Iwithout modulation S a function of (u;, v;).

B) Long-term information On longer time scales, we average the mutual information over the varying
threshold ji:

Tiongtorm = / I (X;RM = i) p (i), (AS)

:/déHI(X;R|M:u+6,L)p(6,L), (A9)

Here, p () describes the multivariate normal distribution with mean p = {y;} and s.d. o, = {0,;}. The
total spiking probability with modulation (pspike, off) and long-term information (liong-term) are functions of

(.Uiy Vi, U,m)-

A2 Information transmission of a single neuron

A2.1 Information without modulation

Given the neural response function (Eq. A2) and that the stimulus p(z) is a Gaussian distribution with
mean zg and standard deviation o,, we can compute the mutual information, Iyithout modulation, P€tween the
stimulus and the neural responses (Eq. A7) and the average spike probability, pspike (Eq. A6) (Fig. S5 (A)(B)).
Note that both Iyithout modulation @1d Pspike shown in Fig. S5 are straightforwardly represented in the space
of the neural threshold (u) and primary noise level (v), both of which are parameters of the neural response
(Eq. A2). To better illustrate how the information depends on neural noise and average spike probability, we
remap the information from the space of (u,v) to that of (pspike, ¥) (Fig. S6 (A)) based on Fig. S5 (A)(B).

Figure S6 (A) to (C) summarize two main observations: (1) the average spike probability (pspike) con-
sidered by itself increases information until pgpike reaches the half of its maximal value (Fig. S6 (B)); (2)
similarly, the noise (v) when considered separately from other parameters decreases information transmission
(Fig. S6 (C)). Both of these effects are well established in the literature (Brenner et al., 2000c).

A2.2 Long-term information

Information (Iiong-term) and total spiking probability (pspike, eff) With threshold modulation depend on (u, v)
and the modulation strength (o,,) (Eq. A14, A6). Each series of colored dots (filled/open) shown in Fig. 4(B)
(main text) are computed with a fixed set of (y, ) but with different values of o,.



Figure 2 (A) shows the percentage changes in information (AI/Iy = I/Iy—1) relative to Iy = Iyithout modu. (¥ = 0.2)

when the variability increases in either modulation (blue lines), I = liong-term (¥ = 0.2,0, = V/ Var), or the

primary noise (black lines), I = Iyithout modu. (1/ =+/0.22 + Var).
Figure 2 (B) shows mutual information fiongterm (¥, 0,) given that the primary and modulatory noises

are constrained to the sum veg = /v% + 02 = 0.3.

Figure 4 (C) presents the percentage change in total spiking probability, Apspike/Pspike = Dspike, eff/Pspike —
1, where pgpike Of each curve corresponds to a set of fixed (u, v = 0.2).

A3 Information transmission for a pair neurons

A3.1 Information without modulation

For the case of a group neurons (N > 1), both mutual information and total spiking probability depend
on 4N parameters, i.e., the neural threshold (u;) and the neural noise (v;) of each cell. Via maximizing
information transmission, one can find the optimal thresholds (u;) subject to the given constraints: the
neural noises (v;) and the spiking probabilities (pspike). This optimization problem can be formulated as
follows,

{N?ptl} = arg r{nai{ Iwithout modu. ({Vi} ) {Mz}) (AlO)
Hi
subject to : pspike ({i}, {1i}) < Pipikes

const.

Vi:Z

Figure S7 shows the examples of optimal thresholds and the individual spiking probability for the two
and three neurons cases. The black line in Fig. 3 (A)(C) shows the information versus the constrained total
spiking probability (pfrl)?lfe) when their thresholds are set to the optimal values. In the main text, we also
recapped the result (McDonnell et al., 2006; Kastner et al., 2015) that the mean noise level of a cell pair
(N = 2) controls their optimal thresholds and that it becomes optimal to encode stimulus with different

thresholds when the mean noise level is lower than a critical value (Fig. S1).

A3.2 Long-term information

The optimization for finding the optimal thresholds does not change much when it comes to include the
threshold modulation (o),

{ui™"} = avgmarx hong.verm ({vi} s {1i}  {.}) (A11)
subject to : pspike ({vi}, {:i}) < Pliike,
const.

2 2 _
vi +U/,L,i = Vieft

The constraint on the total spiking probability is independent of the modulation because of our assumption
that the primary pathway sets the ideal total spike rate (pspike) in the absence of modulation. In contrast,
the secondary pathway perturbs the thresholds independent of the primary one and brings the actual spike
rate to a higher value, pspike, o- Besides, the primary and modulatory noises are constrained to match the
given effective noise level (Eq. (5)).

Each colored curve in Fig. 3 (A)(C) shows DNong-term VErsus Pepike, off at the optimal thresholds solved
with Eq. (A11) but under different modulation combinations (o, ;). Figure 3 (B)(D) shows the percentage
change in information, AI/Iwithout modu. = Ilong—term/lwithout modu. — 1-



A4 Summary of two-pathway model

Two-pathway model of information transmission with threshold modulation

The experimentally observed neural nonlinearity reflects two noise sources (Fig. 1A):

e the intrinsic noise v in the primary pathway

threshold modulation that occurs on longer time scales with variance o,.

Over time, the observed nonlinearity is an average over different threshold positions p (r|x) =

J diip(r|z, 1, v)p(ji) and has an effective width v = /12 + 02,

e Threshold variation over time is much stronger than variation in the primary noise (Fig. 1B).

The mutual information is computed in two steps:

1) On short time scales, mutual information between stimuli and neural responses is computed for
a fixed threshold u as a difference between the total response entropy S[p(r)] of neural responses
and the “noise” entropy S[p(r|z)] in the neural response:

Iwithout modulation — 1 (Xa R|M = ,U,) = S[P(T)] - S[P(T|$)] (A12)
— 3 b lorslo(r)] — 3 [dap (r. ) og, p (r]o)

- / dop (r, ) logy L2 (A13)

p(r)

where z is the filtered stimulus according to the spatiotemporal receptive field of the neuron, and
r € {0, 1} represents the response of a single neuron before the incorporation of the modulation
in the secondary pathway (o, = 0, veg = V).

2) On longer time scales, we average the mutual information over the varying threshold value fi:
Hong—tarm = [ i1 (X3 RIM = D) (3). (A14)

Here, p (i) describes the distribution of threshold values.

The information in Eq. (A14) is actually the so-called conditional mutual information (Cover and
Thomas, 1991) I(X; R|M) between the input and the responses of the primary pathway, conditional of
the signals p from the modulatory pathway. As such, this information differs from the full information
provided jointly by modulatory and primary pathways only by the term I(X;M): I(X;RM) =
I(X;{R,M}) — I(X; M), where I(X;M) represents information provided solely by the modulatory
pathway. Because I(X;M) does not depend on the parameters of the nonlinearity of the primary
pathway, it can be dropped when searching for the maximally informative properties of the primary
pathway. Thus, one can find the maximally informative setting for the primary pathway and the
optimal modulation by maximizing information from Eq. (A14). These arguments generalize to the
case of multiple neurons where one evaluates information between inputs X to the primary pathway
of each neuron and the vector of responses across the neural population R = {r;}, r; € {0,1}.
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Supplemental table

Table S1: Estimated noise components in the primary v and modulatory ¢, pathways for each
cell pair. Related to Results and STAR Methods. The dependence of noise components upon the
contrast are fitted by cell pair, across the nine contrasts (o = 12% to 36% in 3% intervals). All the fitting
parameters are in the unit of critical noise value, v..

. Adapting Sensitizing
Cellpalr # ) (0) our(0) 1 (o) ous (@)
A 0.8190 0.281c 0.7840 0.0
B 0.671c 0.5460 0.7490 0.049
C 0.7130 0.448c 0.8010 0.025
D 0.4130 0.618c 0.5450 0.051
E 0.670c 0.598c 0.7580 0.010
F 0.6040 0.5280 0.6220 0.033
G 0.4820 0.751c 0.5940 0.013

Combined fit 0.597c 0.563c  0.6850 0.033




Supplemental figures
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Figure S1: Information predicts the optimal thresholds for a pair of neurons given the values of
noise level. Related to Figure 6 and STAR Methods. (A) and (B) shows the information transmitted
by a pair of neurons at different values of noise and thresholds. The noise level is the same for the two neurons
in (A) and different in (B), Av/v. = —0.02, between neurons. Black and dark-green dots mark global and
local information maxima, respectively. Local maxima appear when noise levels differ across neurons (B);
otherwise the maxima are equivalent as in (A). Gray dots mark the inflection points, the so-called spinodal
lines that delineate the regions where local maxima can be found.
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Figure S2: The maximally informative spike rates among neurons were similar for models with
and without threshold modulation. Related to Figure 3. The results shown here correspond to the
analyses of the impact of threshold modulation shown in Fig. 3.
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Figure S3: Optimal ways to apply modulation for neurons with identical spike rates depend
on their rates. Related to STAR Methods. For neurons with low spike rates, the negative impact
of threshold modulation is minimized when modulation is applied equally to both neurons (gray line). For
neuron with large response rates, selective application of modulation to one of the neurons is preferred. The
neuron receiving modulation shifts its threshold to decrease its response rate (red line). Curves are shown as
dashed in the regimes when they become sub-optimal in terms of information transmission in the presence
of threshold modulation.
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Figure S4: Long-term information surface. Related to STAR Methods. The threshold modulation
effectively smooths the information surface (thin lines, gray dots mark maxima) to give rise to the long-term
information surface (thick lines, red dots mark maxima).
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Figure S5: Mutual information and the averaged spiking probability of a single neuron. Related
to STAR Methods (Methods S1). (A) Information contours (bits) as a function of threshold (x) and
neural noise level (v). Here, the threshold (v) is relative to the mean of the filtered input and both v and
w are in the unit of stimulus standard deviation. (B) Information always peaks at u = 0 where spiking
probability (pspike) is 0.5 for any constant noise levels (v). (C) The global maximum of information is at
v = 0 for a given threshold (u). (D) The spiking probability contours with the same axes as (A). (E) Spiking
probability is asymptotic to one (zero) as the threshold (x) moves further below (above) the input mean.
(F) Spiking probability increases (decreases) with neural noise (v) when the threshold (u) is below (above)
the mean of the input, and stays as constant 0.5 as the threshold equals to the input mean (u = zo = 0).
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Figure S6: Mutual information without modulation for single cell. Related to STAR Methods

(Methods S1). (A) Information (Iyithout modulation) contours as a function of primary noise level (v) and
spiking probability (pspike). (B) Information as a function of pgpike for various constant v. The first two lines
(v = 0,0.2) corresponds to the thick solid lines shown in the Fig. 3 in the main text. (C) Primary noise

decreases information for any constant Pspike-
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Figure S7: Maximally informative solutions for a groups of neurons. Related to STAR Methods
(Methods S1). (A) The distribution of thresholds are plotted as a function of noise level (v = v; = 1),
but subject to a constant total spiking probability (pspike = 0.2), for the two (solid-line) and three neurons
(dashed-line). (B) is the same as (A) but shown as a function of total spiking probability (pspike) subject
to constant neural noise (v; = 0.2). (C, D) are similar to (A, B) but shows the distribution of individual
spiking probability in groups of neurons.
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