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Abstract

Modulation of neuronal thresholds is ubiquitous in the brain. Phenomena such as figure-ground
segmentation, motion detection, stimulus anticipation and shifts in attention all involve changes
in a neuron’s threshold based on signals from larger scales than its primary inputs. However, this
modulation reduces the accuracy with which neurons can represent their primary inputs, creating
a mystery as to why threshold modulation is so widespread in the brain. We find that modulation
is less detrimental than other forms of neuronal variability and that its negative effects can be
nearly completely eliminated if modulation is applied selectively to sparsely responding neurons
in a circuit by inhibitory neurons. We verify these predictions in the retina where we find that
inhibitory amacrine cells selectively deliver modulation signals to sparsely responding ganglion
cell types. Our findings elucidate the central role that inhibitory neurons play in maximizing
information transmission under modulation.
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1. Introduction1

The need to use efficient representations within the nervous system currently provides one of2

the leading frameworks for understanding neural computation. This framework accounts for a3

number of different properties of neural responses (Bialek, 2012, Atick and Redlich, 1992, Pitkow4

and Meister, 2012, Haft and van Hemmen, 1998, Borghuis et al., 2008, Liu et al., 2009, Doi et al.,5

2012, Zhaoping, 2006, Garrigan et al., 2010, Gjorgjieva et al., 2014, Balasubramanian and Sterling,6

2009, Ratliff et al., 2010, Laughlin, 1981, Kastner et al., 2015, Brinkman et al., 2016), including7

optimal ways for neural circuits to adapt to statistically consistent changes in the input statis-8

tics (Bialek, 2012, Fairhall et al., 2001a, Simmons et al., 2013, Brenner et al., 2000a). However,9

it is also important to consider the case where information transmission occurs in the presence of10

fluctuations in input statistics that might not be strong enough, or persist for long enough time,11

to trigger full-scale adaptation. These types of fluctuations are nevertheless important to take12

into account because they can evoke and/or represent modulatory influences from other circuits,13

as is ubiquitous in the brain. For example, modulatory influences include contextual or top-down14

signals about input properties on the scales larger than that of the neuron’s primary receptive15

field, which closely follows the neuron’s linear or the so-called classical receptive field (Vinje and16

Gallant, 2000). Such contextual effects underlie figure-ground segmentation, motion selectivity,17

motion reversal or anticipation and other predictive effects in the retina the retina (Gollisch and18

Meister, 2010, Kastner and Baccus, 2013, 2014). These effects are also prominent in the cortex19

where they include cross-orientation suppression (Morrone et al., 1982, Nishimoto et al., 2006) and20

other non-classical receptive field effects in visual (Roelfsema, 2006, Vinje and Gallant, 2000) and21

auditory (Bar-Yosef and Nelken, 2007) cortices. Threshold modulation can also result from the22

direct action of neuromodulatory circuits (Ashton-Jones and Cohen, 2005) that represent changes23

in arousal and attention (Kato et al., 2012, Luck et al., 1997, Goris et al., 2014). The ubiquity24

of modulatory signals makes it essential to consider how they may influence the properties of25

maximally informative neural circuits.26

It turns out that modulation has surprisingly non-trivial effects on information transmission.27

On one hand, for a sensory circuit, modulation of neuronal threshold that is independent of the28

primary sensory input is bound to decrease the information that this circuit can transmit about29

that primary input. On the other hand, we will show that modulation always decreases information30

less than an equivalent increase in the primary noise. We further show that the negative impacts31

of modulation can be nearly eliminated if it is directed to a subset of sparsely responding neurons32

in a coupled neural circuit. In this way, the neural circuit can take advantage of the flexibility33

afforded by modulation of its response properties without suffering a reduction in information34

transmission.35

We test predictions of this theory on responses of pairs of retinal ganglion cells (RGCs) that36

encode the same temporal fluctuations of light intensities but with different thresholds (Kastner37

and Baccus, 2011). These cells have been termed adapting and sensitizing based on their short term38

plasticity, but for the present analyses in steady-state conditions, the main differences between39

these cell types are that adapting cells have higher thresholds and larger noise levels than sensitizing40

cells. Previous maximally informative solutions for pairs of neurons accounted for many aspects41

of these neurons’ responses, including why these two separate cell types are observed among Off42

neurons but not among On neurons (Kastner et al., 2015). However, some noticeable quantitative43

differences between theory and experimental measurements were left unexplained (Kastner et al.,44

2015). Recent studies have pointed out that incorporating multiple noise sources could affect the45

predictions for threshold differences between cell types (Brinkman et al., 2016). Therefore, we set46
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out to determine whether modulatory effects on a cell’s threshold would influence the theoretical47

predictions, bringing them into better agreement with experimental measurements. After testing a48

number of scenarios, we found that a model where a secondary pathway modulated the threshold of49

the primary pathway for each cell type (Fig. 1) could quantitatively account for the measurements50

of threshold differences between cell types, across several different contrasts. We envision that51

this threshold modulation occurs even for a fixed contrast, and in the case of the retina derives52

from contextual modulation from inputs on scales larger than neuronal receptive field center, or53

for cortical neurons, the classical receptive field (Vinje and Gallant, 2002).54

Fitting the maximally informative model with threshold modulation to the retinal data also55

made it possible to separate the observed neural variability into the contributions due to threshold56

modulation and noise in the primary pathway. We found that higher noise levels of adapting cells57

can be fully explained by larger threshold modulation experienced by these neurons compared to58

those experienced by sensitizing cells; the primary pathway noise levels were similar for both cell59

types. Mechanistically, threshold modulation in adapting cells could be implemented as additional60

input from inhibitory amacrine cells. To confirm this prediction, we then directly recorded from61

and manipulated slow-off amacrine cells. These experiments revealed a more reliable distance-62

dependent input from amacrine cells to adapting cells compared to sensitizing cells, consistent63

with the scheme where amacrine cells modulate the thresholds of adapting cells.64

The theoretical results are obtained here using basic concepts of information theory. Therefore,65

they should apply not only in the retina, but also in the cortex and other neural circuits. The66

results highlight the importance of using inhibitory neurons to deliver modulatory signals into a67

circuit, which can provide a new framework for understanding the function of inhibitory neurons68

in the brain.69
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2. Results70

2.1. Impact of threshold modulation on information transmission71

To understand information transmission in the presence of threshold modulation, we modeled72

responses of individual neurons as binary, 1 or 0, corresponding to the presence or absence of a73

spike in a small time bin, respectively. Spiking probability is modeled as a threshold crossing event,74

with a threshold (µ) and a noise level (ν), which determines the variation in neural responses for75

a given input value. When parameter ν is small, there is only a small range of stimuli for which76

neuronal responses varies strongly from trial-to-trial with a probability ∼ 0.5. For inputs that77

are either much greater or smaller than the threshold µ, the spike probability is nearly certain,78

with values close to either 1 or 0, cf. Fig 1. When the parameter ν is large, the range of stimuli79

with uncertain neuronal responses is large. The increase in the uncertainty in neural responses80

with ν can be quantified using a quantity known as noise entropy (Brenner et al., 2000c), which81

represents the average uncertainty in the neural responses across different stimuli.82

This model of neural responses yields a saturating nonlinearity shown in Fig. 1 and described
by the following equation:

p (r = 1|x, µ, νeff) =
1

2

[
1 + erf

(
x− µ√

2νeff

)]
. (1)

In this equation, we write νeff instead of ν to emphasize the fact that the observed noise in
neural responses represents actually a joint effect of multiple different types of noise (Brinkman
et al., 2016). Here we will focus on two types of noise: the “primary” noise ν that arises in the
direct afferent circuitry for each cell, and the secondary source of variability that arises from the
modulation of the threshold µ of the primary pathway and acts on longer time scales. On short
time scales, similar to those of the spike generating process, the threshold value does not vary, and
variability in neural responses is described by ν only. On long time scales (∼ seconds) , which are
necessary to measure the neural input-output function, its width is described by

νeff =
√
ν2 + σ2

µ, (2)

We note that, in principle, noise ν in the primary pathway can itself also be subject to modulation,83

not just the threshold µ. This modulation would also increase νeff. However, in practice, we found84

that variation in ν was much weaker (Fig. 1B). Therefore, in what follows, we focus on the effect85

of modulation on changes in the threshold.86

To analyze the impact of threshold modulation on information transmission, we compute the
Shannon mutual information in two steps. In the first step, mutual information between stimuli
and neural responses is computed on short time scales, i.e. for a fixed threshold µ, as a difference
between the total response entropy S[p(r)] of neural responses and the “noise” entropy S[p(r|x)]
in the neural response:

Iwithout modulation = I (X;R|M = µ) = S[p(r)]− S[p(r|x)] (3)

=
∑
r

p(r) log2[p(r)]−
∑
r

∫
dxp (r, x) log2 p (r|x)

=
∑
r

∫
dx p (r, x) log2

p (r|x)

p (r)
, (4)
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where x is the filtered stimulus according to the spatiotemporal receptive field of the neuron, and
r ∈ {0, 1} represents the response of a single neuron before the incorporation of the modulation
in the secondary pathway (σµ = 0, νeff = ν). At this step, the mutual information quantifies the
impact of the primary noise (without the input from the modulatory pathway). In the second
step, we integrate this mutual information over threshold positions µ̃ to take into account the
impact of variability from the modulatory pathway:

Ilong−term =

∫
dµ̃ I (X;R|M = µ̃) p (µ̃) . (5)

Here, p (µ̃) describes the distribution of threshold values.87

The information in Eq. 5 is actually the so-called conditional mutual information (Cover and88

Thomas, 1991) I(X;R|M) between the input and the responses of the primary pathway, conditional89

of the signals µ from the modulatory pathway. As such, this information differs from the full90

information provided jointly by modulatory and primary pathways only by the term I(X; M):91

I(X;R|M) = I(X; {R,M}) − I(X; M), where I(X; M) represents information provided solely by92

the modulatory pathway. Because I(X; M) does not depend on the parameters of the nonlinearity93

of the primary pathway, it can be dropped when searching for the maximally informative properties94

of the primary pathway. Thus, one can find the maximally informative setting for the primary95

pathway and the optimal modulation by maximizing information from Eq. 5. These arguments96

generalize to the case of multiple neurons where one evaluates information between inputs X to97

the primary pathway of each neuron and the vector of responses across the neural population98

R = {ri}, ri ∈ {0, 1}.99

We start by considering the impact of threshold modulation on single neurons. Here, modu-100

lation always decreases information transmission (Fig. 2A). However, for an equivalent amount of101

variance, modulation decreases information less than does primary noise. Therefore, if the system102

has a choice between reducing the primary noise or reducing modulation, it is always preferable103

to reduce the primary noise first, cf. Fig 2B.104

The effect becomes more interesting in groups of neurons, starting with pairs of neurons. Here,105

we find that if modulation is directed to the neuron with the lowest firing rate in the group, then106

the negative effect of modulation is almost completely removed, cf. Fig. 3, panels A and B. In these107

calculations, the firing rates were assigned to maximize information while constraining the average108

spike rate across the neurons (Fig. S2). We find that one can apply much larger modulation to a109

single neuron than the modulation distributed to many neurons and still have less of a decrease110

in information. Selective application of modulation also maximized information in groups of three111

neurons (Fig. 3C, D). With three neurons, information was maximally preserved under modulation112

when it was applied to the neuron with the smallest spike rate. The most detrimental effects of113

modulation were observed when modulation was applied to the neuron with the largest spike rate.114

This was followed by progressively better results if modulation was applied equally to all neurons115

or to the neurons with the intermediate spiking rate. However, these intermediate cases still led116

to worse performances compared to the case where modulation is directed to the neuron with the117

lowest spike rate (Fig. 3D). The degree of protection from modulation-induced loss is higher for118

the three-neuron circuit compared with a two-neuron circuit (Fig. 3D). This suggests that the119

benefits of including a sparsely responding neurons can be larger in large groups of neurons.120

We also examined the case where neurons have the same thresholds and spike rates, as can be121

optimal for high values of the primary noise (Kastner et al., 2015). In this case we found that122

the optimal ways to apply modulation differed depending on whether same-threshold neurons had123
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small or large spike rates, cf. Fig. S3. In the case where neurons had small rates, it was optimal124

to apply modulation equally to both of them. In the case where neurons had large response rates,125

it was optimal to direct modulation to one of the neurons than split it equally to both neurons.126

The application of modulation lowered the spike rate in the target neurons. The implication from127

these results therefore is that if a large neural circuit contains neurons of the same type with small128

spike rates, such as for example the adapting cells in the retina, then modulation should be applied129

selectively to the class of neurons with sparse responses and equally within this class neurons.130

Why is it beneficial to direct modulation to the neuron with the lowest spike rate? An intuitive131

explanation for this phenomenon can be obtained by considering the shape of the information132

function for a single neuron with respect to its threshold (Fig. 4A). This function is concave for133

small thresholds and convex for large thresholds. This is important because concave functions134

decrease their value upon averaging of their inputs, as occurs as a result of threshold modulation,135

while convex functions increase their value. This means that neurons with small thresholds,136

i.e. high spike rates, will suffer a decrease in information transmission upon modulation, cf.137

Fig. 4B. In contrast, neurons with large thresholds, i.e. small spike rates, will increase information138

transmission upon threshold modulation. The lower the spike rate, the greater is the increase in139

the information transmission with modulation. This explains why directing modulation to the140

neuron with the lowest firing rate is more beneficial than directing modulation to neurons with141

higher firing rate. As a related points, one can also notice in Fig. 3B that the protection against142

modulation-induced loss in information transmission decreases with the average spike rate.143

At this point, it is important to clarify that this increase in information transmission with144

modulation is accompanied by an increase in the spike rate. Unlike information, the firing rate145

function is convex for all values of its argument (Fig. 4A). As a result, modulation always increase146

the spike rate (Fig. 4C). The increase in the information from modulation is less than it would147

have been if the rate was simply increased by lowering the threshold, without the modulation. As148

a result, the information vs. rate curve in the presence of modulation has the same shape as in149

the absence of modulation, just with reduced information for a given rate.Thus, these results are150

consistent with those in Fig. 2A showing modulation decreases information. It is just that the151

increase in information upon modulation can nearly completely match the increase that would152

have been observed if the firing rate was increased without modulation.153

The conclusions from the theoretical analyses of information transmission in the presence of154

threshold modulation indicate that modulation should not be equally distributed to all neurons155

in the target circuit. Instead, it should be directed to the neuron with the lowest spike rate156

with inhibitory signals. The use of inhibitory signals ensures that the rank-ordering of neurons157

does not change under modulation, and the neuron that receives modulation does not get its158

spike rate raised. They also illustrate the need to use neurons with diverse spike rates, because159

the average spike rate in the circuit sets the upper limit on the amount of information that this160

group of neurons can transmit, with or without modulation. To have the capability to transmit161

large amounts of information, the circuit has to include neurons with large spike rates. Including162

neurons with small response rates and directing modulation to them helps maintain information163

transmission near its maximal levels in the presence of modulation.164

2.2. Retinal input-output functions are maximally informative under threshold modulation165

We now test how these predictions using responses of pairs of cells in the retina that differ166

in their average spike rates. The adapting and sensitizing cells are two cell types that represent167

the same temporal pattern of light intensity modulation but have different thresholds. Our first168

analysis is to fit the maximally informative model with modulation to the responses of pairs169
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of adapting/sensitizing cells. The fit was made while requiring that the effective noise and the170

average spike rate for the pair matched experimental measurements (see Methods for details). The171

fit yields estimates for threshold modulation and primary noise for each neuron in the pair as well172

as an estimate for the difference in their thresholds. These estimates can then be compared to173

direct experimental measurements of these variables.174

We find that the inferred amount of noise in the primary pathway was similar for both adapting175

and sensitizing cells (Fig. 5A). However, the threshold modulation was substantial for adapting176

cells and very close to zero for the sensitizing cells (Fig. 5A). The fitting results were consistent177

across cell pairs (Table S1). Thus, the differences in the effective noise that are observed between178

these two cell types (Kastner and Baccus, 2011) are due to differences in threshold modulation. We179

also note that threshold modulation was small in sensitizing cell even relatively to their thresholds180

(the modulation was ∼ 100 times smaller for sensitizing cells compared to adapting cells, whereas181

their thresholds are only approximately half as small as those of adapting cells).182

The threshold modulation values predicted by the maximally informative model with mod-183

ulation can be compared with direct experimental estimates of their threshold modulation. To184

compute the amount of threshold modulation that is observed experimentally, we estimated neu-185

ronal nonlinearities from shorter data sub-sets (1/4 to 1/6 compared to the full dataset). Each186

nonlinearity was fit with a logistic function to determine its threshold value. We find that the187

observed variation in thresholds for a given adapting cell matches those estimated using the maxi-188

mally informative model (Fig. 5B, paired non-parametric t-test p = 0.73). [This analysis was only189

carried out for adapting cells, because threshold modulation was negligible in sensitizing cells].190

Those adapting cells that had larger variance in thresholds across trials also had larger values of191

threshold modulation as indicated by fitting the maximally informative model to the full set of192

their response (the correlation was statistically significant, with p = 0.015, Fig. 5B). These anal-193

yses add credence to the use of the maximally informative model with modulation as a method194

for separating the noise component that is due to threshold modulation. They also indicate that195

the observed threshold modulation in adapting cells is maximally informative given their other196

parameters, such as the primary noise and firing rate.197

Another prediction that one can obtain from the maximally informative model with modulation198

pertains to the differences in the thresholds between adapting and sensitizing cells. Previous pre-199

dictions for the threshold differences obtained for pairs of neurons without taking modulation into200

account yielded values that were systematically larger than those observed experimentally (Kast-201

ner et al., 2015), replotted in Fig. 6 with black line. We find that the maximally informative model202

with modulation provided more accurate predictions for thresholds differences between pairs of203

neurons than the model with no modulation, cf. Fig. 6. Statistically, the threshold difference204

(in units of contrast) between adapting and sensitizing cells were consistent between the average205

values across contrasts for each cell pairs from the maximally informative model and experimen-206

tal measurements (paired non-parametric t-test p = 0.14). By comparison, the model with no207

modulation yielded systematically greater threshold differences that is observed experimentally208

(black line in Fig. 6). We note that experimental data points show larger residual variation across209

different contrasts than our model indicates. The reason for this is that, in the model, noise210

components and threshold modulation for adapting cells were constrained to change linearly with211

contrast (to reduce the number of fitted parameters, see Methods). Thus, the model was not212

meant to predict residual variation across contrasts that remains after rescaling inputs by their213

contrast. Other than this variability, the predictions of the maximally informative model with214

modulation for threshold differences between adapting and sensitizing cells are fully consistent215
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with experimental measurements (p > 0.14, Fig. 6B).216

2.3. Amacrine cells as a source of threshold modulation for adapting cells217

One of the key predictions of the theory is that modulation should be directed to neurons with218

low spike rates. However, as we have seen above, modulation increases the spike rate (Fig. 4C),219

albeit by moderate amounts. One way to minimize the risk of altering the rank-ordering of neurons220

in terms of their spike rate is to deliver it with inhibitory neurons. In this way the neuron that is221

undergoing modulation will automatically have its threshold raised and spike rate lowered. This is222

consistent with our observations in the retina where adapting neurons, which undergo modulation,223

also have larger thresholds and smaller spike rates. In the retina, inhibitory amacrine cells could224

be the source of that input (Fig. 7A). If amacrine cells provide stronger inputs to adapting cells225

than the sensitizing cells, then this would simultaneously explain why the thresholds of adapting226

cells are higher and more variable than those of sensitizing cells. The fact that both the mean227

threshold and its modulation varies approximately linearly with contrast is also consistent with228

this wiring scheme. Inputs to and from amacrine cells just need to be scaled by contrast just like229

inputs within the primary pathway for the adapting and sensitizing cells.230

We tested this hypothesis by performing a separate set of experiments to analyze how the231

hyperpolarization and depolarization of sustained Off-type amacrine cells by intracellular current232

injection affected responses of nearby adapting and sensitizing cells recorded simultaneously with233

a multielectrode array (see Methods and Fig. 7). The setup in these experiments was similar to our234

recent study (Kastner et al., 2019) that focused on the dynamics of sensitizing cells but included235

much larger steps in stimulus amplitude to probe responses of both adapting and sensitizing neu-236

rons. We analyzed the change in the mean threshold of adapting/sensitizing neurons between237

hyperpolarization and depolarization of the amacrine cell. When an amacrine cell is hyperpolar-238

ized (depolarized), this decreases (increases) its inhibition onto neurons it is directly connected239

to. Although we do not assume that there are direct connections between amacrine cells and the240

ganglion cells we recorded (the connection could be polysynaptic, through circuitry involving bipo-241

lar or other amacrine cells), this approach measures the functional effect of individual amacrine242

cells. We find that inputs from amacrine cells have a much stronger impact on the thresholds of243

nearby adapting cells compared to sensitizing cells (p = 0.04, for cells within 0.2 mm from the244

amacrine cell RF), cf. Fig. 7C. Here, we also plot the change in the threshold as a function of245

distance between the receptive fields (RFs) of the amacrine cell (that was subjected to hyperpo-246

larization/depolarization) and the adapting/sensitizing cell whose nonlinearity was measured to247

estimate its threshold. In the case of adapting cells, there was a clear and statistically significant248

dependence of the amount of threshold shift as a function of the distance to the amacrine cell249

RF center (p = 8 × 10−5 F-test compared with null hypothesis of no dependence on distance).250

The dependence was not statistically significant in the case of sensitizing cells (p = 0.9). Thus,251

these data support the hypothesis that amacrine cells exert stronger influence on the thresholds252

of adapting neurons than on the threshold of sensitizing neurons, and that the larger thresholds253

of adapting ganglion cells arise as a result of inhibition from the amacrine cells, and that this254

inhibition also brings with itself stronger threshold modulation.255

3. Discussion256

In this work we analyzed information transmission in the presence of threshold modulation.257

There are two main conclusions. The first conclusion is that modulation should not be equally258

applied to all neurons in the circuit. Instead it should be directed to select neurons, preferably259
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those with the low spike rates in the circuit. The second conclusion describes the central role that260

inhibitory neurons play in delivering modulatory signals into the circuit. These conclusions are261

obtained from basic analyses using information theory, and therefore should apply to all neural262

circuits. We now discuss the implications of these conclusions, with a focus on cortical circuits.263

The first conclusion highlights the need to form circuits using neurons with different spike264

rates. The large number of sparsely firing neurons in the cortex have long presented a puzzling265

observation (Olshausen and Field, 2005). The chief explanation offered so far is that sparse266

responses arise because of metabolic constraints (Laughlin et al., 1998). However, one could have267

hypothetically used a smaller number of neurons with higher spike rates, if metabolic constraints268

were the leading cause for the sparseness of neural responses. The information-theoretic analyses in269

the presence of modulation offer a different explanation. Neural circuits need to have neurons with270

both high and low firing rates in order to transmit large amounts of information in the presence271

of modulation. High firing neurons make it possible to transmit large amount of information,272

whereas neurons with small spike rates protect against loss of information transmission in the273

presence of modulation.274

The second conclusion describes a rather unexpected role for inhibitory neurons as intermedi-275

aries for delivering modulation signals. This set up helps to ensure that low-spiking neurons that276

receive modulation remain in this regime under varying modulation levels. We find support for277

this prediction in the retina where inhibitory amacrine cells send modulatory signals to sparsely278

spiking adapting cells. If modulation were delivered to adapting cells via excitatory pathway, then279

this would risk making their spike rate greater than that of sensitizing cells and losing protection280

against negative effects of threshold modulation on information transmission.281

The amacrine cells studied here were slow-off amacrine cells, which have been shown to be282

involved in various adaptive functions in the retinal circuit. They have been shown to act through283

disinhibition (Manu and Baccus, 2011), they contribute to the classical receptive field surround in284

ganglion cells (Manu et al., 2017), and adaptation of their transmission mediates the phenomenon285

of sensitization (Kastner et al., 2019). The same amacrine cells both establish the threshold of the286

nonlinearity of ganglion cells during steady state (Fig. 7) and their dynamics lead to the change287

in threshold that creates sensitization.288

The theory of modulation analyzed here can be implemented via both spiking and non-spiking289

neurons. The sustained off amacrine cells that we studied here experimentally are non-spiking, as290

are many amacrine cells in the salamander. However, elsewhere in the nervous system modula-291

tion is commonly delivered using spiking neurons. For example, most of the modulatory signals292

are delivered to cortical circuits via inhibitory neurons (Harris and Shepherd, 2015). This in-293

cludes inhibitory neurons expressing the vasoactive intestinal peptide that are major recipients294

of neuromodulatory and context-dependent inputs from higher-order cortical areas (Harris and295

Shepherd, 2015). Similarly, somatostatin expressing inhibitory neurons use this neuropeptide as a296

co-transmitter with GABA to modulate the activity of local neurons (Liguz-Lecznar et al., 2016).297

The slow action of neuro-peptides, such as somatostatin, conforms with our modeling framework298

where modulation changes neuronal threshold on slower time scales than those on which the299

primary activation pathway operates. We note also that all of the other inhibitory neurons, in-300

cluding parvalbumin-positive inhibitory neurons, are directly responsive to neuromodulators such301

as acetylcholine and serotonin (Yi et al., 2016). Furthermore, even when neuromodulators, such302

as acetylcholine, act directly on excitatory neurons, they exert first an inhibitory response (Dasari303

et al., 2017) in their target neurons. In addition to these post-synaptic mechanisms of threshold304

modulation, there are several known mechanisms that operate pre-synaptically (Debanne et al.,305

2015) and are based on inactivating hyperpolarizing channels. This includes inactication of presy-306
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naptic K+ channels and modulation of G-protein coupled receptors that produce tonic inhibition307

of transmitter release (Debanne et al., 2015) and hyperpolarization induced recovery of Na chan-308

nels from inactivation (Rama et al., 2015). Our theoretical results suggest that there might be309

fundamental information-theoric reasons why all of these different forms of threshold modulation310

engage hyperpolarization and inhibitory mechanisms.311

Limitations of the Study312

Analysis of information transmission in the presence of modulation was based on the separation313

of time scales, with threshold modulation having a much slower dynamics than the response314

dynamics of the primary pathway and its noise characteristics.315

From a numerical perspective, computation of the mutual information in the presence of thresh-316

old modulation (Eq. 5) represents a multidimensional integral with a dimensionality equal to the317

number of cells. We can numerically compute this integral for arbitrary modulation strength318

only for pairs of neurons. For more than two neurons, we approximate the integral using the319

perturbation method for small modulation values. However, to compute the higher-dimensional320

integral without approximation, one might need other algorithms to carry it out (e.g., Monte Carlo321

methods), which was not performed here.322

Supplemental information323

Supplemntal information consists of an appendix with mathematical details and numerical324

methods for computating information, Table S1, and Figure S1 to S7.325

Acknowledgments326

This research was supported by AHA-Allen Initiative in Brain Health and Cognitive Im464327

pairment award made jointly through the American Heart Association and the Paul G. Allen328

Frontiers Group: 19PABH134610000, NSF grant IIS-1724421, NSF Next Generation Networks329

for Neuroscience Program (Award 2014217), and NIH grants U19NS112959 and P30AG068635,330

2016 Salk Women & Science Special Award, 2018-2019, Bert and Ethel Aginsky Research Scholar331

Award (W.M.H.); and NEI grants (S.A.B.). We thank to CNL-T members for many helpful332

discussions and advice.333

Author contributions334

Authors participated in the design of this study and writing of the manuscript. D.B.K. designed335

and performed the experiments; W.M.H. analyzed the data.336

Declaration of Interest337

The authors declare no competing interests.338

10



STAR ? METHODS339

RESOURCE AVAILABILITY340

Lead contact341

Further information and requests for resources and should be directed to and will be fulfilled342

by the Lead Contact, Tatyana Sharpee (sharpee@salk.edu).343

Materials Availability344

This study did not generate new unique reagents.345

Data and Code Availability346

Data is available upon request.347

METHOD DETAILS348

Experimental preparation349

We use a combination of new and previously published experimental data (Kastner and Baccus,350

2011). Full details of the experimental procedures for measuring neural nonlinearities are provided351

in (Kastner and Baccus, 2011). Briefly, uniform field stimuli were drawn from a Gaussian distri-352

bution with constant mean intensity, M , of 10 mW/m2. Contrast is defined as σ = W/M , where353

W is the SD of the intensity distribution. Neurons were probed with flashes of nine different354

contrast values from 12% to 36% in 3% intervals. The contrasts were randomly interleaved and355

repeated. Each contrast was presented, in total, for ≥ 600 s. For the calculation of the response356

functions, the first 10 s of data in each contrast were not used to allow for a better estimation of357

the steady state.358

Intracellular recording359

Simultaneous intracellular and multielectrode recordings from the isolated intact salamander360

retina were performed as described (Manu and Baccus, 2011) but using stimuli with larger steps in361

visual contrast to fully probe both adapting and sensitizing nonlinearities. Sustained amacrine cells362

were distinguished from horizontal cells by their flash response and their spatiotemporal receptive363

fields, with horizontal cells lacking an inhibitory surround and being greater than 300 µm in364

diameter. For the intracellular recordings the stimulus comprised of randomly drawn contrasts365

with contrast amplitudes that ranges from 0 to 40% Michelson contrast units, where Michelson366

contrast is defined as (Imax − Imin) / (Imax + Imin). The flash amplitude varied randomly every367

400 ms, the first 100 ms the flash was greater than the mean, from 100 to 200 ms the flash was368

lower than the mean, and for the last 200 ms the flash was at the mean luminance level (cf. inset369

in Fig. 7B). Changing the distribution of amplitudes slower than the integration time of ganglion370

cells allowed for a rapid measurement of the ganglion cell response function without having to371

also measure the ganglion cell temporal filter (Brenner et al., 2000b). Synchronized to the visual372

stimulus, we injected from 100 to 300 ms, randomly interleaved, hyperpolarizing (−500 pA) or373

depolarizing (+500 pA) current pulses into the amacrine cell. The ganglion cell response function374

was calculated at the firing rate of the ganglion cell from 100 to 400 ms of each contrast amplitude.375

This focused on the off response of the ganglion cell.376
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Maximally informative modulation model for two neurons377

Here we begin by reviewing the main features of maximally informative solutions for two
neurons obtained in the absence of threshold modulation (Kastner et al., 2015, McDonnell et al.,
2006). The most prominent feature of the mutual information is a bifurcation that occurs when
noise decreases below a certain, critical value (Fig. S1). In the case where both neurons have the
same noise levels ν1 = ν2, a single peak at zero threshold difference splits into two symmetric
peaks upon decreasing noise level. Each of these peaks represents equivalent solutions obtained
by exchanging neuronal indices. One of the peaks describes the case where µ1 > µ2 whereas the
other describes the case where µ1 < µ2. When neurons have different noise values ν1 and ν2, the
peak with µ1 < µ2 becomes suboptimal if ν1 > ν2. Thus, the lower threshold neurons should
have lower noise. This agrees with the intuition that a neuron which is more sensitive to small
input fluctuations should have smaller noise. From the measurements of the average spike rate for
the two neurons, one can predict the critical noise value (νc) below which one can expect to find
neurons with different thresholds encoding the same filtered stimulus x. The critical noise value
was indeed above the measured noise values for the adapting and sensitizing retinal ganglion cells
(RGCs) (Kastner et al., 2015). In addition, one can make detailed predictions for the expected
value µ1− µ2 based on the measurements of other parameters ν1, ν2 and pspike, where pspike is the
averaged total spiking probability

pspike =
N=2∑
i=1

p (ri = 1) , (6)

p (ri) =

∫ ∞
−∞

dx p (ri|x) p (x) .

Note that both the optimal threshold difference (µ1 − µ2) and critical noise (νc) depend on the378

average spike rate (pspike) for the cell pair. Therefore, to represent all retinal data (ν1, ν2, µ1 − µ2)379

on one coordinate frame that is universal across different pspike, we transformed the noise lev-380

els to a set of basis ( ν1+ν2
2νc

, ν1−ν2
νc

) normalized by the the rate-dependent νc. Then, we rescaled381

each observed µ1 − µ2 (y-axis) relative to its optimal prediction and spinodal point at ( ν1+ν2
2νc

,382

ν1−ν2
νc

) (the black and the gray-dashed lines in Fig. 6A), similar to the rescaling method provided383

in Ref. (Kastner et al., 2015). Here, theoretical predictions were in qualitative agreement with384

experimental measurements, but quantitatively the observed threshold differences between the385

adapting/sensitizing neuron pairs were systematically smaller than those predicted based on max-386

imizing information (Fig. 6A). We now show that taking into account threshold modulation brings387

theoretical predictions into agreement with experimental data.388

To understand how threshold modulation affects maximally informative threshold positions,389

one may note that threshold modulation effectively smooths the information surface computed390

over long time scales (Fig. S4). In the regime where the mutual information has two maxima, it391

has the effect of bringing the maxima closer to each other. Another effect that proved necessary to392

take into account is that noise in the primary pathway can be larger for the neuron that experiences393

smaller threshold modulation, leading to a smaller overall effective noise value for that neuron.394

In this case, the information transmitted matches the smaller (local) of the two maxima of the395

information. In other words, the model allows for the possibility that coordination of neural396

thresholds between neurons might not be able to keep up with changes in input statistics for the397

circuit to match the properties of the global maximum of information. Instead, we observed that398

in some cases neural response properties match a local maximum of the information that required399

12



smaller adjustments in thresholds following the change in input statistics.400

Taking both of these effects – threshold modulation and the possibility of local optimality –401

made it possible to account for the observed threshold differences between sensitizing and adapting402

cells. Each cell pair was probed with flashes of nine different contrasts, producing four experimental403

parameters of the neuronal nonlinearity (νeff,1, νeff,2, µ1, µ2) at each contrast. The maximally404

informative model also has six parameters (µ1, µ2, ν1, ν2, σµ,1, σµ,2). It can predict the difference405

µ1 − µ2 given a set of values for pspike, ν1, ν2, σµ,1, σµ,2; only three of these five parameters are406

constrained by the measured input-output functions. Thus, the model is underconstrained for407

one value of contrast. However, experiments indicate that once neurons are adapted to a given408

value of contrast, parameters of experimentally measured nonlinearities increase approximately as409

a linear function of contrast (Laughlin, 1981, Kastner and Baccus, 2011, Brenner et al., 2000a,410

Fairhall et al., 2001b, Baccus and Meister, 2002). We use this observation to fit the maximally411

informative model across contrasts. The resulting model has eight parameters altogether: the412

linear and offset terms with respect to contrast for each of the four noise terms (ν1, ν2, σµ,1, σµ,2).413

Because position of information maxima are affected by changes in any of these parameters, the414

maximally informative model can therefore be used to predict 27 independent measurements across415

contrasts (three values of µ1−µ2, νeff,1, and νeff,2 for each contrast). Supplemental Information416

contains additional details related to the formalism of maximizing information transmission in417

neural responses and the procedures for generating the figures.418

Least-squared-fitting for parameters of the threshold modulation model from RGCs data419

Base on the maximally informative modulation model, at a given pspike the solution to threshold420

difference between a pair of adapting and sensitizing cell, ∆µmodel, is nonlinearly dependent on421

the magnitude of each noise source (νi, σµ,i). This allows us to separately estimate the magnitude422

of these noise components from the neural data.423

The results of least-square fitting were also constrained to match the observed values for νeff,i.
Seven pairs of adapting (index 1) and sensitizing cells (index 2) were probed by the nine different
full range of contrasts (σ = 12% to 36% in 3% intervals (Kastner and Baccus, 2011)). The adaptive
dynamics of noise level has been experimentally observed in many sensory systems(Laughlin, 1981,
Kastner and Baccus, 2011, Brenner et al., 2000a, Fairhall et al., 2001b, Baccus and Meister,
2002). Typically, the width of the transition region of the nonlinearity changes linearly with
stimulus contrast (standard deviation). This adaptive process serves to optimize the information
processing(Brenner et al., 2000a). Here, we assume that both the primary (νi) and the secondary
(σµ,i) noise sources are approximately linearly dependent on contrast (σ),

νi (σ, ~α) = α
(i)
1 σ + α

(i)
2 , (7)

σµ,i (σ, ~α) = α
(i)
3 σ + α

(i)
4 . (8)

The effective noise also depends on contrast,

νeff,i,model (σ, ~α) =
√
ν2
i (σ, ~α) + σ2

µ,i (σ, ~α), (9)

where i = 1, 2 denotes adapting or sensitizing neuron, respectively.424

The parameters ~α =
{
α

(i)
1,2,3,4 ∈ R, ∀ i = 1, 2

}
are to obtained by the least-squared-fitting for each425

cell pair while requiring them to also be consistent with νeff,i measurements from the shape of the426

nonlinearity. This model has eight parameters. Although formally it can be fit to data points for427
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each individual cell pair, we reduced the number of parameters in half by focusing on the dominant428

term between the linear and contrast-independent terms for each type of noise. Initial fitting of429

the model indicated very small values for α
(1)
2 , α

(2)
2 , α

(1)
4 , and α

(2)
3 . The final fitting reported here430

was obtained by setting these terms to zero, i.e., that noise in the primary pathway scales linearly431

with contrast for both types of cells; threshold modulation was set to be linearly increasing with432

contrast for adapting cells and to be contrast-independent for sensitizing cells.433

The observed nonlinearities for a pair of adapting (index 1) and sensitizing cells (index 2)
determine the threshold separations (∆µ = µ1 − µ2) and the effective noise levels (νeff,1 or 2). For
each cell pair, we aim to dissect two contributions to their νeff,1(or 2): the one from the intrinsic
noise level (ν) and that due to threshold modulation (σµ), via minimizing the squared-error be-
tween the retinal data and the model predictions across the nine contrasts (σ = 12% to 36% in 3%

intervals). Given a contrast (σ) a data point of a cell pair, ~O (σ), consists of three components,

~O (σ) = (νeff,1 (σ) , νeff,2 (σ) ,∆µ (σ)) , (10)

and so does our model ~E (σ, ~α),

~E (σ, ~α) = (νeff,1,model (σ, ~α) , νeff,2,model (σ, ~α) ,∆µmodel (σ, ~α)) . (11)

Here, ∆µmodel (σ, ~α) is the predicted threshold separation from our model, dependent on the in-
trinsic νi and modulatory noise σµ,i of each cell types,

∆µmodel (σ, ~α) = ∆µmodel (ν1 (σ, ~α) , ν2 (σ, ~α) , σµ,1 (σ, ~α) , σµ,2 (σ, ~α)) . (12)

The predicted threshold differences (∆µmodel) were firstly computed discretely in the grid space
(ν1, ν2, σµ,1, σµ,2) and interpolated with Mathematica build-in function to construct the solutions
between the grids. To avoid biasing the result by the component with largest error-bar, we

standardize the
[
~O (σ)− ~E (σ, ~α)

]
of each dimension with the inverse of its standard deviation.

That is, the rescaling factors (weights) were

~w = 1/ (s.d. (νeff,1) , s.d. (νeff,2) , s.d. (∆µ)) , (13)

or more specifically,

wi =
1

s.d. (Oi)
=

[
1

N − 1

∑
σ

(Oi (σ)− 〈Oi〉σ)2

]− 1
2

, for i = 1 to 3. (14)

We defined the sum of weighted squared errors (or residuals) as

χ2 (~α) =
∑
σ

∣∣∣~w � [ ~O (σ)− ~E (σ, ~α)
]∣∣∣2 , (15)

where � denotes component-wise multiplication. The parameter ~α is the best-fit minimizing the
weighted least-squared-error,

~α = arg min
~α′
χ2 (~α′) , (16)
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which predicts how the intrinsic (νi) and the modulation noise (σµ,i) depend on the stimulus
contrast (σ). To quantify the goodness of fit, we use the variance (or reduced χ2 )

χ2

red (~α) =
χ2

d.o.f.
=

χ2

N − n
, (17)

where d.o.f. = the number of degrees of freedom = N −n; N is the number of observations (nine434

contrasts in our case), and n is the number of fitted parameters. Note that by considering the435

threshold modulation, the predictions for the minimal threshold differences between the two cell436

types cannot go below the spinodal line. This makes it difficult to fit the data points adjacent to437

or below the spinodal region with our model. Therefore, the fitting results for three cell pairs did438

not adequately capture the trends (Fig. 6).439

Finally, we also fit a single model across all cell pairs and contrasts. The resulting parameters440

(provided in the last row of Table S1 were consistent with average values of parameters fitted to441

individual cell pairs (Fig. 5).442

Analysis of inhibition from amacrine cells versus RFs distance443

To quantify the amount of inhibition from the amacrine cells to a ganglion adapting/sensitizing444

cells (Fig. 7), we analyzed how the threshold of the ganglion cells changes when nearby amacrine445

cells are depolarized or hyperpolarized. For each ganglion cell and amacrine cell condition, the446

relation between firing rate and filtered input was recorded (c.f. Method of intracellular recording).447

Fitting the two response curves with sigmoid functions yielded thresholds of a ganglion cell during448

the hyperpolarizing (µh) and the depolarizing (µd) current injection to the amacrine cell. The449

difference in thresholds (µd − µh) reflects the impact of amacrine cell inputs on the response450

properties of the ganglion cell. We analyzed these differences as a function of the receptive field451

distance between the ganglion and amacrine cells. Overall, the analysis was based on current452

injection to 40 different amacrine cells and recordings from 144 Off ganglion cells. We note453

that an amacrine cell usually connects to multiple ganglion cells, and some of the ganglion cells454

receive inputs from multiple amacrine cells. The red and blue points shown in Fig. 7 are obtained455

by binning (according to RFs distance) results from 169 amacrine-to-adapting cell pairs and 32456

amacrine-to-sensitizing pairs, respectively. The standard error in RFs distance (x-axis error) is457

too small to be visible in the plot.458

Methods S1459

Related to STAR ? METHODS. Appendix on information calculations.460
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Figure 1: Two-pathway model of information transmission with threshold modulation. (A) The
experimentally observed neural nonlinearity reflects two noise sources (purple line): the intrinsic noise ν in the
primary pathway (blue), threshold modulation that occurs on longer time scales with variance σµ (red). Over time,
the observed nonlinearity is an average over different threshold positions p (r|x) =

∫
dµ̃p(r|x, µ̃, ν)p(µ̃) and has an

effective width νeff =
√
ν2 + σ2

µ. (B) Threshold variation over time is much stronger than variation in the primary

noise.

Figure 2: Impact of threshold modulation on information transmission. (A) The difference in information
before and after adding different types of variability: either modulation (blue lines) or primary noise (black lines).
Both of types of variability decrease information, but modulation (blue lines) decreases information much less
than the primary noise (black lines). We note that both the primary noise and the modulation also increase the
spike rate. Therefore the baseline information (without modulation) is computed for the higher rate that matches
the rate in the presence of modulation. (B) The stronger detrimental effects of primary noise on information
transmission compared with modulation are shown here for the case where primary noise and modulatory variance

are constrained to sum νeff =
√
ν2 + σ2

µ = 0.3. In this case, the smaller the primary noise (bottom x-axis), the

larger the information (y-axis), despite the corresponding increases in modulatory variance (top x-axis).

Figure 3: Modulation directed to sparsely responding neurons protects against modulation-induced
information loss. (A) The information loss is smallest when only the lowest-spiking neuron (red line) receives
modulation, compared to modulating all neurons (gray line) or the highest-spiking one (blue line). Black line shows
information in the absence of modulation. The primary noise ν = 0.2 for all cases, lines with modulation have
the same averaged effective noise νeff = 0.4 after modulation. Arrows describe how points on the unmodulated
curve change in terms of information and spike rate upon adding the same amount of overall modulation. The
red and blue arrows have different final values for spike rate because the modulation-induced increase in the spike
rate depends on the initial spike rate values and is different for the lowest and highest spiking neuron in the pair.
The averaged effective noises after modulation are νeff = 0.3 for all curves. The spike rates were optimized to
yield maximal information for a given average spike rate. The corresponding rates are shown in Fig. S2. (B) is
same as (A) but shows the results on an expanded scale in terms of percentage of information loss (relative to
the black line in (A), i.e. Iloss = 1 − Ilong-term/Iwithout modulation from Eqs. (3),(4)). (C, D) Same as (A) and (B)
but for three neurons. In (D) results from (B) pertaining to pairs of neurons are re-plotted using dashed lines
for comparison. Green lines shows the case where modulation is directed to the neurons with intermediate spike
rates, other colors are the same as for pairs of neurons. Directing modulation to the most sparse neurons yields
the smallest information loss from modulation. Modulation can be more fully compensated in three-neuron groups
compared to two neurons, for smaller spike rates. Further details for the plots are provided in the Supporting
Information.

Figure 4: Modulation induced transition in information transmitted as a function of spike rate. (A)
Spike probability, computed according to Eq. (1), is a convex function of threshold position (black line). In contrast,
information (red line) changes convexity as a function of threshold. When a function has positive convexity (solid
segments of the curve) the average of its two values at points a and b is always larger than the function value at
(a+b)/2. In this regime, fluctuations increase information transmission. The opposite is true for regions of negative
convexity (dashed-curve). As a result, fluctuations in threshold decrease information when thresholds are low and
increase information when threshold are high, i.e. when neurons respond sparsely. (B) Threshold modulation
increases mutual information from Eq. (4) when spike rates are small (filled dots) but decreases it when spike rates
exceed a certain transitional value (open dots). Shaded pink region denotes the value where modulation increases
information transmission. Thick solid lines show information in the absence of threshold modulation (σ2

µ = 0), for
two noise levels ν1,2 = 0 (black) and 0.2 (light-blue). Thin solid lines and the eight series of color-dots on them
show how curves shift upon introduction of threshold modulation. Each series of color-dots evolves from the same

intrinsic noise (ν) and threshold (µ). Color denotes the resulting effective noise νeff =
√
ν2 + σ2

µ. (Inset) The

transitional value in response rate is plotted as a function of the intrinsic noise. (C) Modulation increases response
rate.
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Figure 5: Experimentally observed threshold variation matches maximally informative values. (A)
Intrinsic neural noise and threshold modulation inferred using the maximally informative model with modulation
from retinal data, cf. Eq. (8) in Method Details. Both neural types have comparable amounts of intrinsic neural
noise (νi) but distinct levels of threshold modulation (σµ,i). All noise types varied linearly with the stimulus
contrast, except for modulatory noise in the sensitizing cells, which was small and contrast-independent. (B) The
experimentally observed threshold variation (from Fig. 1B) is positively correlated across adapting cells (r = 0.3,
p = 0.015) with threshold modulation inferred from the maximally informative model from Eq. (8). Both axes are in
units of contrast. Colors denote different neurons. Data points for the same neuron/color represent measurements
from different input contrasts.

Figure 6: Maximally informative model with modulation accounts for threshold differences between
adapting and sensitizing cells. Threshold differences between adapting and sensitizing cells are plotted in
normalized coordinates relative to their optimal values in the absence of modulation (black lines in top row), see
Methods. Top row (A, B) shows normalized threshold differences as a function of average effective noise of the
adapting/sensitizing cell pair. Bottom row (C, D) shows normalized threshold differences as a function of difference
in the effective noise between the two neurons. Columns show data (left), maximally informative predictions with
modulation (right). Different colors denote different cell pairs. Open circles represent data for a given contrast,
filled circles show the average across contrasts. Black lines show predictions for threshold differences without
threshold modulation. Gray dashed lines denote spinodal lines that separate regions where information has two
maxima vs. a single maximum. Points close to the spinodal lines (e.g. blue, light blue, and light green) are more
difficult to fit because they mark the region where one of the maxima ceases to exist. This pushes the interpolated
solutions away from the spinodal line (c.f. Fig. S1). Despite these technical issues, the overall distribution of mean
threshold values normalized across contrasts was not statistically different between fitted and experimental values,
p = 0.14.

Figure 7: Distance dependent inputs from amacrine to adapting cells. (A) Inferred model of the presy-
naptic circuitry of the two types of Off retinal ganglion cells based on observed differences in the strength of the
modulatory pathway. (B) The nonlinearity of Off ganglion cells during the depolarizing (dot) and hyperpolarizing
(triangle) current injection into the amacrine cell. Inset shows the unit of the visual stimulus that consisted of
100 ms steps up/down in contrast followed by 200 ms of mean contrast. The solid and dashed curves show the fit
with sigmoid function. The distance between the receptive field (RF) of the amacrine cell to that of the adapting
cell was 0.090 mm, 0.101 mm to the RF of the sensitizing cell. (C) The amount of inhibitory input from amacrine
cells to the adapting cell decreases with distance significantly (p × 10−8, f-test). [Inhibition may be direct or
polysynaptic, through circuitry involving bipolar cells or other amacrine cells.] The dependence on distance was
not statistically significant for sensitizing cells (p = 0.9). Solid lines show the exponential fits with distance.
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Methods S1 for
“How inhibitory neurons increase information
transmission under threshold modulation”

Wei-Mien M. Hsu, David B. Kastner, Stephen A. Baccus, Tatyana O. Sharpee

Appendix on information calculations
Here we provide additional details for computing the mutual information, the total spiking probabilities for
either single or a group of (binary) neurons, and descriptions for generating the main text figures.

A1 Neural responses and mutual information

This section focus on the mathematical formalism for the neural encoding model and information transmis-
sion. Firstly, we defined the model of neural response for one or a group of neurons (N � 1) that jointly
encode the same stimulus (Sec. A1.1). Our choice of the modeling framework was motivated in part by the
experimental setup that used full-field temporally varying stimuli to probe responses of the retinal ganglion
cells (RGCs) (Kastner and Baccus, 2011). Specifically, we were interested in characterizing how multiple
fast-O↵ neuronal types jointly encode the temporal fluctuations in light intensity.

Given the neural response that depends on the neural threshold (µi) and noise level (⌫i) of each cell, we
then defined the total spiking probability (Sec. A1.2) and mutual information (Sec. A1.3) as a function of
(µi, ⌫i), either without or with threshold modulation.

A1.1 Joint response of for a group of neurons

If we consider a group of N binary neurons jointly encoding the same filtered stimulus (x 2 X), given
the assumption that their responses are “conditionally independent” without significant correlations, the
probability of yielding the joint response r for a given filtered stimulus x is

p (r|x) =
NY

i=1

p (ri|x) , (A1)

where the vector r = (r1, r2, ..., rN ) denotesN -neurons’ responses with ri = {0, 1}, and p (ri|x) = p (ri|x, µi, ⌫i)
is the response function of individual neuron i (main text Eq. (4)),

p (ri = 1|x) = 1

2


1 + erf

✓
x� µip

2⌫i

◆�
, (A2)

p (ri = 0|x) = 1� p (ri = 1|x) . (A3)



For a binary neuron, its response function is modeled as the probability of threshold crossing event, with
a threshold (µ) and a noise level (⌫). The neural response above illustrate the nonlinearity of the primary
pathway (without threshold modulation) as it considers the “primary” noise ⌫i. Yet, by replacing the noise
value ⌫i with ⌫i,e↵ (c.f. main text Eq. (5)), we get the neural response joint a↵ected via both primary and
secondary/modulatory pathway.

A1.2 Averaged neural responses and total spiking probability

The joint neural response p (r|x) averaged across the stimulus distribution p (x) gives the averaged probability
of neural response r,

p (r) =

Z
dx p (x) p (r|x) , (A4)

=

Z
dx p (x)

NY

i=1

p (ri|x) . (A5)

where p (x) is the probability density function of filtered stimulus (x). The averaged total spiking probability
pspike of N neurons is to sum over the 2N possible responses (r 2 R) as follows,

pspike =
X

r2R

krk1 p (r) =
NX

i=1

p (ri = 1) , (A6)

krk1 =
NX

i=1

ri,

where p (ri = 1) =
R1
�1 dx p (ri = 1|x) p (x) is the spiking probability of i-th neuron. Note that the above

equation is a general form whose noise level has not been explicitly specified. By plugging in the value
of noise level, either ⌫i,e↵ or ⌫i, Eq. (A6) can be the total spiking probability with or without threshold
modulation.

Examples Taking N = 1 and 2 as examples, all the possible response r 2 R and the total spiking
probability are summarized as follows:

N r R pspike

1 r1 {1, 0} p (r1 = 1)
2 (r1, r2) {(1, 1) , (1, 0) , (0, 1) , (0, 0)} p (r1 = 1) + p (r2 = 1)

For N = 2, the total spiking probability is the linear sum of individual

pspike =
X

r2R

krk1 p (r) ,

=
X

r2R

k(r1, r2)k1 p (r1, r2)

= 2p (1, 1) + p (1, 0) + p (0, 1) ,

= [p (1, 1) + p (1, 0)] + [p (1, 1) + p (0, 1)] ,

= p (r1 = 1) + p (r2 = 1) .

This applies to arbitrary number of N , as given by Eq. (A6).



A1.3 Mutual information

For the two-pathway model, we compute the mutual information in two steps (c.f. main text Fig. 1 and
Sec. A4). Here, we want to emphasize that the information for each step has a di↵erent dependence on (µi,
⌫i, �µ,i), as described below.

A) Information without modulation For N neurons (r 2 R) joint encoding the same filtered stimulus,
mutual information between their responses (r 2 R) and the stimulus values (x 2 X) at a set of fixed
thresholds µ = {µi} is given by (Cover and Thomas, 1991):

Iwithout modulation = I (X;R|M = µ) =

Z
dx p (x)

X

r2R

p (r|x) log2
p (r|x)
p (r)

, (A7)

where p (r|x) is given by Eq. (A1) and p (x) is the probability density function of filtered stimulus. Given
the neural response p (r|x) that depends on the neural threshold (µi) and primary noise (⌫i) of each cell, one
can compute the total spiking probability (pspike) and Iwithout modulation as a function of (µi, ⌫i).

B) Long-term information On longer time scales, we average the mutual information over the varying
threshold µ̃:

Ilong-term =

Z
dµ̃ I (X;R|M = µ̃) p (µ̃) , (A8)

=

Z
d�µ I (X;R|M = µ+ �µ) p (�µ) , (A9)

Here, p (µ̃) describes the multivariate normal distribution with mean µ = {µi} and s.d. �µ = {�µ,i}. The
total spiking probability with modulation (pspike, e↵) and long-term information (Ilong-term) are functions of
(µi, ⌫i, �µ,i).

A2 Information transmission of a single neuron

A2.1 Information without modulation

Given the neural response function (Eq. A2) and that the stimulus p (x) is a Gaussian distribution with
mean x0 and standard deviation �x, we can compute the mutual information, Iwithout modulation, between the
stimulus and the neural responses (Eq. A7) and the average spike probability, pspike (Eq. A6) (Fig. S5 (A)(B)).
Note that both Iwithout modulation and pspike shown in Fig. S5 are straightforwardly represented in the space
of the neural threshold (µ) and primary noise level (⌫), both of which are parameters of the neural response
(Eq. A2). To better illustrate how the information depends on neural noise and average spike probability, we
remap the information from the space of (µ, ⌫) to that of (pspike, ⌫) (Fig. S6 (A)) based on Fig. S5 (A)(B).

Figure S6 (A) to (C) summarize two main observations: (1) the average spike probability (pspike) con-
sidered by itself increases information until pspike reaches the half of its maximal value (Fig. S6 (B)); (2)
similarly, the noise (⌫) when considered separately from other parameters decreases information transmission
(Fig. S6 (C)). Both of these e↵ects are well established in the literature (Brenner et al., 2000c).

A2.2 Long-term information

Information (Ilong-term) and total spiking probability (pspike, e↵) with threshold modulation depend on (µ, ⌫)
and the modulation strength (�µ) (Eq. A14, A6). Each series of colored dots (filled/open) shown in Fig. 4(B)
(main text) are computed with a fixed set of (µ, ⌫) but with di↵erent values of �µ.



Figure 2 (A) shows the percentage changes in information (�I/I0 = I/I0�1) relative to I0 = Iwithout modu. (⌫ = 0.2)

when the variability increases in either modulation (blue lines), I = Ilong-term
⇣
⌫ = 0.2,�µ =

p
Var

⌘
, or the

primary noise (black lines), I = Iwithout modu.

�
⌫ =

p
0.22 +Var

�
.

Figure 2 (B) shows mutual information Ilong-term (⌫,�µ) given that the primary and modulatory noises

are constrained to the sum ⌫e↵ =
q
⌫2 + �2

µ = 0.3.

Figure 4 (C) presents the percentage change in total spiking probability, �pspike/pspike = pspike, e↵/pspike�
1, where pspike of each curve corresponds to a set of fixed (µ, ⌫ = 0.2).

A3 Information transmission for a pair neurons

A3.1 Information without modulation

For the case of a group neurons (N > 1), both mutual information and total spiking probability depend
on 4N parameters, i.e., the neural threshold (µi) and the neural noise (⌫i) of each cell. Via maximizing
information transmission, one can find the optimal thresholds (µi) subject to the given constraints: the
neural noises (⌫i) and the spiking probabilities (pspike). This optimization problem can be formulated as
follows,

�
µopt.
i

 
= argmax

{µi}
Iwithout modu. ({⌫i} , {µi}) (A10)

subject to : pspike ({⌫i} , {µi})  pmax
spike,

⌫i = ⌫const.i .

Figure S7 shows the examples of optimal thresholds and the individual spiking probability for the two
and three neurons cases. The black line in Fig. 3 (A)(C) shows the information versus the constrained total
spiking probability (pmax

spike) when their thresholds are set to the optimal values. In the main text, we also
recapped the result (McDonnell et al., 2006; Kastner et al., 2015) that the mean noise level of a cell pair
(N = 2) controls their optimal thresholds and that it becomes optimal to encode stimulus with di↵erent
thresholds when the mean noise level is lower than a critical value (Fig. S1).

A3.2 Long-term information

The optimization for finding the optimal thresholds does not change much when it comes to include the
threshold modulation (�µ),

�
µopt.
i

 
= argmax

{µi}
Ilong-term ({⌫i} , {µi} , {�µ,i}) (A11)

subject to : pspike ({⌫i} , {µi})  pmax
spike,q

⌫2i + �2
µ,i = ⌫const.i,e↵ .

The constraint on the total spiking probability is independent of the modulation because of our assumption
that the primary pathway sets the ideal total spike rate (pspike) in the absence of modulation. In contrast,
the secondary pathway perturbs the thresholds independent of the primary one and brings the actual spike
rate to a higher value, pspike, e↵. Besides, the primary and modulatory noises are constrained to match the
given e↵ective noise level (Eq. (5)).

Each colored curve in Fig. 3 (A)(C) shows Ilong-term versus pspike, e↵ at the optimal thresholds solved
with Eq. (A11) but under di↵erent modulation combinations (�µ,i). Figure 3 (B)(D) shows the percentage
change in information, �I/Iwithout modu. = Ilong-term/Iwithout modu. � 1.



A4 Summary of two-pathway model

Two-pathway model of information transmission with threshold modulation

The experimentally observed neural nonlinearity reflects two noise sources (Fig. 1A):

• the intrinsic noise ⌫ in the primary pathway

• threshold modulation that occurs on longer time scales with variance �µ.

• Over time, the observed nonlinearity is an average over di↵erent threshold positions p (r|x) =
R
dµ̃p(r|x, µ̃, ⌫)p(µ̃) and has an e↵ective width ⌫e↵ =

q
⌫2 + �2

µ.

• Threshold variation over time is much stronger than variation in the primary noise (Fig. 1B).

The mutual information is computed in two steps:

1) On short time scales, mutual information between stimuli and neural responses is computed for
a fixed threshold µ as a di↵erence between the total response entropy S[p(r)] of neural responses
and the “noise” entropy S[p(r|x)] in the neural response:

Iwithout modulation = I (X;R|M = µ) = S[p(r)]� S[p(r|x)] (A12)

=
X

r

p(r) log2[p(r)]�
X

r

Z
dxp (r, x) log2 p (r|x)

=
X

r

Z
dx p (r, x) log2

p (r|x)
p (r)

, (A13)

where x is the filtered stimulus according to the spatiotemporal receptive field of the neuron, and
r 2 {0, 1} represents the response of a single neuron before the incorporation of the modulation
in the secondary pathway (�µ = 0, ⌫e↵ = ⌫).

2) On longer time scales, we average the mutual information over the varying threshold value µ̃:

Ilong�term =

Z
dµ̃ I (X;R|M = µ̃) p (µ̃) . (A14)

Here, p (µ̃) describes the distribution of threshold values.

The information in Eq. (A14) is actually the so-called conditional mutual information (Cover and
Thomas, 1991) I(X;R|M) between the input and the responses of the primary pathway, conditional of
the signals µ from the modulatory pathway. As such, this information di↵ers from the full information
provided jointly by modulatory and primary pathways only by the term I(X;M): I(X;R|M) =
I(X; {R,M}) � I(X;M), where I(X;M) represents information provided solely by the modulatory
pathway. Because I(X;M) does not depend on the parameters of the nonlinearity of the primary
pathway, it can be dropped when searching for the maximally informative properties of the primary
pathway. Thus, one can find the maximally informative setting for the primary pathway and the
optimal modulation by maximizing information from Eq. (A14). These arguments generalize to the
case of multiple neurons where one evaluates information between inputs X to the primary pathway
of each neuron and the vector of responses across the neural population R = {ri}, ri 2 {0, 1}.
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Supplemental table

Table S1: Estimated noise components in the primary ⌫ and modulatory �µ pathways for each

cell pair. Related to Results and STAR Methods. The dependence of noise components upon the
contrast are fitted by cell pair, across the nine contrasts (� = 12% to 36% in 3% intervals). All the fitting
parameters are in the unit of critical noise value, ⌫c.

Cell pair #
Adapting Sensitizing

⌫1 (�) �µ,1 (�) ⌫2 (�) �µ,2 (�)

A 0.819� 0.281� 0.784� 0.0
B 0.671� 0.546� 0.749� 0.049
C 0.713� 0.448� 0.801� 0.025
D 0.413� 0.618� 0.545� 0.051
E 0.670� 0.598� 0.758� 0.010
F 0.604� 0.528� 0.622� 0.033
G 0.482� 0.751� 0.594� 0.013

Combined fit 0.597� 0.563� 0.685� 0.033



Supplemental figures

Figure S1: Information predicts the optimal thresholds for a pair of neurons given the values of

noise level. Related to Figure 6 and STAR Methods. (A) and (B) shows the information transmitted
by a pair of neurons at di↵erent values of noise and thresholds. The noise level is the same for the two neurons
in (A) and di↵erent in (B), �⌫/⌫c = �0.02, between neurons. Black and dark-green dots mark global and
local information maxima, respectively. Local maxima appear when noise levels di↵er across neurons (B);
otherwise the maxima are equivalent as in (A). Gray dots mark the inflection points, the so-called spinodal
lines that delineate the regions where local maxima can be found.
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Figure S2: The maximally informative spike rates among neurons were similar for models with

and without threshold modulation. Related to Figure 3. The results shown here correspond to the
analyses of the impact of threshold modulation shown in Fig. 3.
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on their rates. Related to STAR Methods. For neurons with low spike rates, the negative impact
of threshold modulation is minimized when modulation is applied equally to both neurons (gray line). For
neuron with large response rates, selective application of modulation to one of the neurons is preferred. The
neuron receiving modulation shifts its threshold to decrease its response rate (red line). Curves are shown as
dashed in the regimes when they become sub-optimal in terms of information transmission in the presence
of threshold modulation.
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Figure S5: Mutual information and the averaged spiking probability of a single neuron. Related

to STAR Methods (Methods S1). (A) Information contours (bits) as a function of threshold (µ) and
neural noise level (⌫). Here, the threshold (⌫) is relative to the mean of the filtered input and both ⌫ and
µ are in the unit of stimulus standard deviation. (B) Information always peaks at µ = 0 where spiking
probability (pspike) is 0.5 for any constant noise levels (⌫). (C) The global maximum of information is at
⌫ = 0 for a given threshold (µ). (D) The spiking probability contours with the same axes as (A). (E) Spiking
probability is asymptotic to one (zero) as the threshold (µ) moves further below (above) the input mean.
(F) Spiking probability increases (decreases) with neural noise (⌫) when the threshold (µ) is below (above)
the mean of the input, and stays as constant 0.5 as the threshold equals to the input mean (µ = x0 = 0).
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Figure S6: Mutual information without modulation for single cell. Related to STAR Methods

(Methods S1). (A) Information (Iwithout modulation) contours as a function of primary noise level (⌫) and
spiking probability (pspike). (B) Information as a function of pspike for various constant ⌫. The first two lines
(⌫ = 0, 0.2) corresponds to the thick solid lines shown in the Fig. 3 in the main text. (C) Primary noise
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Figure S7: Maximally informative solutions for a groups of neurons. Related to STAR Methods

(Methods S1). (A) The distribution of thresholds are plotted as a function of noise level (⌫ = ⌫1 = ⌫2),
but subject to a constant total spiking probability (pspike = 0.2), for the two (solid-line) and three neurons
(dashed-line). (B) is the same as (A) but shown as a function of total spiking probability (pspike) subject
to constant neural noise (⌫i = 0.2). (C, D) are similar to (A, B) but shows the distribution of individual
spiking probability in groups of neurons.
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