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Abstract In this paper, we extend the adaptive partition-based approach for solving two-
stage stochastic programs with fixed recourse matrix and fixed cost vector to the multistage
stochastic programming setting where the stochastic process is assumed to be stage-wise
independent. The proposed algorithms integrate the adaptive partition-based strategy with a
popular approach for solving multistage stochastic programs, the stochastic dual dynamic
programming (SDDP) algorithm, according to two main strategies. These two strategies
are distinct from each other in the manner by which they refine the partitions during the
solution process. In particular, we propose a refinement outside SDDP strategy whereby we
iteratively solve a coarse scenario tree induced by the partitions, and refine the partitions in
a separate step outside of SDDP, only when necessary. We also propose a refinement within
SDDP strategy where the partitions are refined in conjunction with the machinery of the
SDDP algorithm. We then use, within the two different refinement schemes, different tree-
traversal strategies which allow us to have some control over the size of the partitions. We
performed numerical experiments on a hydro-thermal power generation planning problem.
Numerical results show the effectiveness of the proposed algorithms that use the refinement
outside SDDP strategy in comparison to the standard SDDP algorithm and algorithms that
use the refinement within SDDP strategy.

Keywords Stochastic optimization · Multistage stochastic linear programs · Partition-based
approach · SDDP algorithm

1 Introduction

Multistage stochastic programming is a well-recognized mathematical optimization model
for problems that require optimization under uncertainty over time. These problem arise in
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a variety of applications, such as energy [17,25,26,30,33,38], finance [4,11,14,15], trans-
portation [5,16,20] and sports [29], among others. In particular, in this paper, we consider
a class of multistage stochastic programming models which have applications in long-term
hydro-thermal power generation planning, in which one aims to construct an optimal oper-
ational strategy under the uncertainty of rainfall volume in order to minimize power gen-
eration cost to meet deterministic demand. The sequential nature in the decision-making
structure and the uncertainty in the problem data such as, future (water) inflows, demand,
fuel cost, etc., make the hydro-thermal power generation planning problem a classical prob-
lem in applications of multistage stochastic programming.

In the stochastic programming literature, there is a good deal of work on how to tackle
such problems in a computationally tractable fashion. One typical approach is to approxi-
mate the underlying stochastic process governing the uncertainty in the problem data using
scenario trees. The result of doing this is that, as the number of decision stages in the plan-
ning horizon increases, the increasing scenario tree size requires an exponential growth of
computational resources for solving the corresponding multistage stochastic program [7].
As such, it becomes necessary to use specialized algorithms which employ decomposition
techniques to solve the resulting large-scale mathematical programs.

In this paper we are concerned with the computational efficiency for solving multistage
stochastic programming problems based on enhancements to one of the most successful
decomposition algorithms for these problems, the Stochastic Dual Dynamic Programming
(SDDP) algorithm [31]. The proposed enhancements are based on the idea of employing
adaptive partition-based formulation [2,40], which gives a relaxation of the original mathe-
matical program obtained by aggregating variables and constraints according to a partition
over the set of scenarios. Using the dual information associated with each scenario, the
partition can be refined during the solution process until it yields an optimal solution to the
problem. Partition-based strategies have shown to be very effective in the two-stage stochas-
tic programming setting due to the reduced computational effort in generating cutting planes
that are adaptively refined in the solution process. The task of integrating adaptive partition-
based strategies to the SDDP algorithm poses the following questions:

1. How to choose the way for the SDDP algorithm to traverse the scenario tree with aggre-
gated variables and constraints according to the scenario partition in each stage?

2. For a given tree-traversal strategy, how accurate should the solution be during different
phases of the solution process?

3. How should we refine the scenario partition in each stage?

Using different strategies to traverse the scenario tree, refining the partition in an adaptive
partition-based SDDP algorithm can be done in many different ways. We investigate two
different strategies, namely refinement outside of the SDDP algorithm, and refinement within
the SDDP algorithm. Moreover, we develop a method which exploits the nature in problems
of optimal policies with special structures. This is done by incorporating partition-based
strategies only to a selected subset of stages in the planning horizon, while the standard
approach in SDDP is applied to other stages.

The rest of this paper is organized as follows: in Section 2 we introduce a general multi-
stage stochastic programming formulation and provide an overview of the theoretical back-
ground in adaptive partition-based strategies and the SDDP algorithm. In Section 3, we
demonstrate how the adaptive partition-based approach can be used in the multistage set-
ting, provide the ingredients of our proposed algorithms and show its finite convergence. In
Section 4 we describe in details three types of adaptive partition-based SDDP algorithms:
Refinement outside SDDP, Refinement within SDDP and Adaptive partition-based SDDP
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with structured policies cut generation. In Section 5 an extensive computational analysis is
presented, and the proposed approach is compared with alternative approaches in terms of
their computational performance. Finally, in Section 6 we conclude with some final remarks.

2 Preliminaries on Multistage Stochastic Linear Programs and Decomposition

Schemes

In stochastic programming (SP) models, the underlying data uncertainty involved in the
problem is characterized by a random vector x with known probability distribution. In its
most simple form, two-stage SP, two kinds of decisions are involved: first-stage decisions
x1 that are made prior to the realization of random vector x , and second-stage recourse
decisions x2 := x2(x ) that are made after observing the realization of random vector x . A
two-stage stochastic linear program (2SLP) can be formulated as follows

min
A1x1=b1

x12R
n1
+

c>1 x1 +Ex

2

64 min
B2x1+A2x2=b2

x22R
n2
+

c>2 x2

3

75 , (1)

where x = (c2,B2,A2,b2), and the expectation Ex [·] is taken with respect to the probability
measure of random vector x 2 X .

Multistage stochastic linear programs (MSLPs) provide an explicit framework which
generalizes the 2SLP for multiple stages of sequential decision making under uncertainty.
In a planning horizon of T stages, the dynamic realization of uncertainty is typically mod-
eled as a stochastic process (x1,x2, . . .xT ) such that, x1 is deterministic, and for each t =
2,3, . . . ,T , xt 2 Xt is random vector that will be realized in stage t. The history of this
stochastic process up to time t is denoted by x[t] := (x1, . . .xt). The nested form of an MSLP
can be expressed as:

min
A1x1=b1

x12R
n1
+

c>1 x1 +E|x[1]

2

664 min
B2x1+A2x2=b2

x22R
n2
+

c>2 x2 +E|x[2]

2

664· · ·+E|x[T�1]

2

664 min
BT xT�1+AT xT=bT

xT 2R
nT
+

c>T xT

3

775

3

775

3

775 ,

(2)
where some (or all) data xt = (ct ,Bt ,At ,bt) can be subject to uncertainty for t = 2, . . . ,T .
The expectation E|x[t] [·] on each stage t is taken with respect to the probability measure
of the future, conditional on the past. The sequence of decisions (x1,x2, . . . ,xt ) where xt =
xt(x[t]),8 t = 1,2, . . . ,T is referred to as a decision policy for problem (2). Such policy
provides a decision rule at every stage t based on the realization of the data process up to
time t. The aim of an MSLP is to find an optimal policy to (2).

The question of how to construct scenarios to induce a decision policy and measure its
quality is beyond the scope of this paper. In this paper, we assume that a scenario tree T

is given, where a finite number of realizations is available for each xt , 8 t = 2,3, . . . ,T . As
such, (1) and (2) can be written as large-scale linear programs, known as the deterministic
equivalent programs (DEP). This is, for instance, the case in which (2) is a sample average
approximation (SAA) of an original MSLP where the underlying random vector xt in each
stage t follows a continuous probability distribution. We refer the reader to [36] for a discus-
sion on the relationship between an SAA problem and the original MSLP with a continuous
distribution.
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For the remainder of the paper, considering the complex nature of notation in MSLP, we
shall reserve all the subscript notations to the standard notation for stages in MSLP, and all
the superscript notations for scenarios, sample paths and everything invoked by the usage of
partition-based strategies.

2.1 Preliminaries on Two-stage Stochastic Linear Programs and the Adaptive
Partition-based Approach

Consider solving the following DEP for the 2SLP (1) with a set of scenarios indexed by
N = {1,2, . . . |X |} and assume that each scenario k happens with probability pk, 8 k 2 N:

z⇤ = min c>1 x1 + Â
k2N

ck>
2 xk

2⇥ pk

s.t. A1x1 = b1
Bk

2x1 +Ak
2xk

2 = bk
2, 8 k 2 N

x1 2 Rn1
+ ,xk

2 2 Rn2
+ , 8 k 2 N.

(3)

It can be easily seen that, as the number of scenarios grows, the DEP (3) becomes computa-
tionally challenging to solve. Nevertheless, the DEP has a special structure that lends itself
to decomposition techniques developed to solve large-scale LPs. These include variants of
Benders decomposition (also called the L-shaped method [39]) for the two-stage setting,
which generalizes to nested Benders decomposition for MSLPs.

2.1.1 Benders decomposition and inexact oracles

Standard Benders decomposition consists of iteratively solving the so-called master prob-
lem (4)

min
x12R

n1
+

c>1 x1 + Q̌(x1)

s.t. A1x1 = b1,
(4)

where Q̌(x1) is a cutting-plane outer approximation to the second-stage expected cost func-
tion Q(x1) := Ex [Q(x1,x )] = Â

k2N
Q(x1,x k)⇥ pk, and for each k 2 N:

Q(x1,x k) = min
xk

22R
n2
+

n
ck>

2 xk
2 | Bk

2x1 +Ak
2xk

2 = bk
2

o
. (5)

An optimal solution to the master problem, denoted by x1, will be sent to the second stage
and evaluated by solving each of the k2N scenarios subproblem (5). The cutting plane outer
approximation Q̌(·) is then improved by adding optimality cuts generated using information
obtained from solving the subproblems (feasibility cuts are added when any subproblem is
infeasible). We refer the reader to [9] and [22] for a detailed discussion on the topic.

From an abstract viewpoint coming from nonsmooth optimization, such decomposition
schemes can be seen as variants of Kelley’s cutting plane method for solving convex pro-
grams [23]. In the terminology of convex programming, an oracle is referred to as a routine
that returns the function value information and the subgradient information at a given point
x1. If the information provided by the routine is accurate, we call the oracle an exact oracle.
Otherwise, the oracle is called inexact oracle. In the context of the 2SLP, oracles constructed
by solving the scenario subproblem (5) for each k 2 N correspond to exact oracles, yielding
exact function value Q(x1,x k) and subgradient information from the optimal dual solutions.
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It is intuitively clear that when the number of scenarios |X | is large, the exact oracle
could be computationally expensive. As such, it may be beneficial to use a relatively coarse
oracle at the beginning of the algorithm, which is just used to get the process "warm-started";
the exact oracle is used afterwards whenever it is necessary. Oliveira and Sagastizabal [28]
formalize this idea, and introduce the concept of inexact oracle with on-demand accuracy
for a generic (nonsmooth) convex optimization problem. Inexact oracles can be constructed
in many different ways, however, in the context of 2SLPs, van Ackooij, Oliveira, and Song
[2] study an inexact oracle defined by scenario partitions, which we explain in detail next.

2.1.2 Adaptive partition-based inexact oracles

Definition 1 A partition N = {P1,P2, . . . ,PL} of the scenario set N is a collection
of nonempty subsets of scenarios such that, P

1 [P
2 [ . . .PL = N, and P

` \P
`0 =

/0, 8 `,`0 2 {1,2, . . . ,L},` 6= `0. Each of these subsets is called a scenario cluster.

For a given partition N , the second-stage expected cost function Q(x1) can be alterna-
tively written as:

Q(x1) = Â
k2N

Q(x1,x k)⇥ pk =
L

Ầ
=1

Â
k2P`

Q(x1,x k)⇥ pk. (6)

As a mean to solve the problem faster, a very natural idea is to partition the scenario set
N into L clusters, such that N = [L

`=1P
`, and each cluster P

` is represented by a single
scenario x̄ ` which “aggregates” the information from all of the scenarios k 2P

`. These
representative scenarios are then used to approximate Q(·). The idea of using aggregations
has been well studied in the literature, see, e.g., [6,8,19,21,34,35,41,43,44,45]. Neverthe-
less, the aggregation method presented in [40] and further improved in [2] is distinct from
those existing in the literature in that, instead of applying the scenario clustering and reduc-
tion technique to the original scenario set N in a static manner, the scenario partitions are
updated dynamically during the iterative solution process and these updates (refinements)
of the partitions are guided by the intermediate solutions. Such adaptability makes compu-
tational effort spent on constructing the outer approximation of Q(·) adaptive to the quality
of the intermediate candidate solutions.

There are many ways in which one can choose the representative realization x̄ `. How-
ever, it is not clear whether this resulting partition-based approximation of the recourse
function, which we denote by Q̄(·), would overestimate or underestimate Q(·), and more
importantly, what is more desired. From an algorithmic point of view, since our goal is to
use the second-stage subproblems to construct a cutting-plane outer approximation for Q(·),
it is more reasonable to choose x̄ ` in such a way so that the resulting approximate recourse
function Q̄(·) underestimates the true function Q(·). One possible way to proceed is to de-
fine x̄ ` := E[x |x 2P

`] =Âk2P`
pk

p̄` ⇥ x k, for ` = 1,2, . . . ,L where p̄` = Âk2P` pk is the
weight associated with every cluster P

`, for ` = 1, . . . ,L. Nonetheless, this definition does
not suffice for Q̄(·) to be an underestimator of Q(·) and it rather hinges on the following
assumption which we maintain for the remainder of this work. Note that this assumption
was also presented in [40].

Assumption 1 Fixed recourse. We assume that the recourse matrix At and the cost vector
ct for t = 2, . . . ,T , are the same for all realizations of xt . Hence, the uncertainty in each
stage is characterized only by {x k

t = (Bk
t ,bk

t )}
|Xt |
k=1.
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Given a partition N , let us define x̄ ` = (B̄`
2, b̄

`
2) as the realization of the random vec-

tor x chosen to represent cluster P
`, where B̄`

2 = Âk2P`
pk

p̄` ⇥Bk
2 and b̄`2 = Âk2P`

pk

p̄` ⇥ bk
2.

Starting with an initial partition N (e.g., we typically start with a partition N where all
scenarios are aggregated in a single cluster, i.e., N = {{1,2, . . . , |X |}}), the method pro-
posed in [2] proceeds by solving the master problem (4) where the recourse function Q(·)
is approximated by:

Q̄(x1) =
L

Ầ
=1

Q(x1, x̄ `)⇥ p̄` (7)

and
Q(x1, x̄ `) := min

x22R
n2
+

n
c>2 x2 | B̄`

2x1 +A2x2 = b̄`2
o
. (8)

We make the distinction between (5) and (8) by referring to (5) as the scenario-based sub-
problem and (8) as the partition-based subproblem. To that end, since Q(x1, ·) is convex
(a consequence of Assumption 1), it follows from Jensen’s inequality that E[Q(x1,x )|x 2
P

`] � Q(x1,E[x |x 2P
`]). Hence, by multiplying both sides of this inequality by p` and

summing over ` we obtain that Q(x1)� Q̄(x1).

Definition 2 Let zN = minx12R
n1
+

�
c>1 x1 + Q̄(x1) | A1x1 = b1

 
be the optimal objective of

the 2SLP (4) when the recourse function Q(x1) is approximated by Q̄(x1) using the partition
N . A partition N is e-sufficient if zN � z⇤ � e , where e > 0 is a chosen parameter. In
particular, we say that N is completely sufficient when zN = z⇤, i.e., N is 0-sufficient [40].

Partition refinement. To demonstrate how the procedure of refining the partition works, it
is important to note that as a result of Assumption 1, the dual feasible region for both the
second-stage scenario-based subproblem (5) and partition-based subproblem (8) are the
same for every scenario k 2 N and every cluster P

` for ` = 1, . . . ,L, which is given by
P := {p 2Rm2 | A>2 p  c2}. This means that any dual solution that is feasible to (5) is also
feasible to (8) and vice versa. Moreover, by strong duality we have that

Q(x1,x k) := max
p2Rm2

n
(bk

2�Bk
2x1)

>p | p 2P
o
. (9)

As such, the inexactness of a partition-based oracle Q̄(x1) obtained by solving (9) for ev-
ery cluster P

` 2N is given by the gap between Q(x1) and Q̄(x1). This can be reduced
by the so-called partition refinement step. We define that N

0 is a refinement of N , if
L0 > L where L is the number of clusters in N and L0 is the number of clusters in N

0,
and 8P

0 2N
0, 9P 2N such that P

0 ✓P , i.e., P
0 is obtained by subdividing some

clusters (if any) of N . Song and Luedtke [40] propose a refinement strategy driven by the
optimal dual solutions where, whenever the refinement step is done, the gap between the
resulting (refined) partition-based oracle Q̄0(x1) and Q̄(x1) shrinks. In other words, after
the refinement step we have that Q(x1)� Q̄0(x1)> Q̄(x1). This refinement strategy and the
resulting conclusion is motivated by the following lemma:

Lemma 1 [40, Lemma 2.4] Let N = {P1,P2, . . .PL} be a partition of the scenario
set N, and define P ⇤(x1,x k) := argmaxpk2P{(bk

2�Bk
2x1)>pk} as the set of dual optimal

solutions to the subproblem (9) given x1 2 c1. If for every cluster P
` 2 N , there exists

an optimal dual solution p̄` 2 P ⇤(x1, x̄ `), such that p̄` 2 \k2P`P ⇤(x1,x k), then Q(x1) =
Q̄(x1). Otherwise, Q(x1)> Q̄(x1).
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The intuitive explanation to Lemma 1 is that, if by solving the dual problem (9) with
x̄ ` for every cluster P

` 2N one can get an optimal dual solution p̄` that is also optimal
for (9) with x k for k 2P

`, then Q(x1) = Q̄(x1). However, when such dual optimal solution
p̄` does not exist, a gap between Q(x1) and Q̄(x1) must be present. Therefore, given a
candidate solution x1 2 c1, whenever Q(x1) > Q̄(x1) a natural way to do the refinement
in any cluster P

` 2 N , 8 ` = 1, . . . ,L is to compare the dual optimal solution of every
scenario-based subproblem (9) k 2P

` so that after the refinement is done, scenarios within
the same cluster in the original partition which share the same optimal dual solution are kept
together in the same cluster in the refined partition, and those that do not share the same
optimal dual solution are split apart in different clusters in the refined partition. Please refer
to [2,40] for the complete proof of Lemma 1 and several refinement strategies that can be
derived from it.

Our refinement strategy and its computational complexity. In this paper we will adopt a
very simple refinement strategy by which every pair of scenarios within a cluster P

`, 8 `=
1,2, . . . ,L are separated whenever the Euclidean distance between the corresponding optimal
dual vectors is sufficiently large. This refinement strategy is referred to as the absolute rule
in [40]. To do this, first, a scenario-based subproblem (9) must be solved for every scenario
k 2P

` to obtain an optimal dual vector pk 2 P ⇤(x1,x k). Then, if there exists a scenario
k0 2P

` with an optimal dual vector pk0 such that kpk�pk0 k> ep where ep > 0 is a user-
specified tolerance parameter, then scenario k0 should be separated from k, i.e., they will not
be in the same cluster in the refined partition. Alternatively, to address the potential degen-
eracy in (9) (i.e., the situation where there exist multiple dual optimal solutions associated
with a scenario k), we��also compare the objective values given by Q(x1,x k) and Q(x1,x k0).
Given any user-specified parameter eQ > 0, if |Q(x1,x k)�Q(x1,x k0)| eQ, then scenario k
and k0 will stay in the same cluster after the refinement regardless of the Euclidean distance
between their optimal dual vectors.

After the partition refinement step is finished, ideally, one would hope to end up with
a refined cluster N

0 which its size L0 is as small as possible. However, this might be com-
putationally inefficient since this problem can in fact be formulated as the so-called max-
imum clique problem [10] which is NP-hard. Instead, we consider a simple fast heuristic
approach. Specifically, for any arbitrary cluster P 2N , let k be the first element in P , we
first create an initial cluster P

01 = {k} and let scenario k 2P represent this cluster with
pk 2 P ⇤(x1,x k) being its corresponding optimal dual vector. Then we compare the associ-
ated optimal dual vector pk0 of every scenario k0 2P with pk, and following the absolute
refinement rule, if kpk�pk0 k  ep , then scenario k0 is added to cluster P

01; otherwise, a
new cluster P

02 = {k0} is created with scenario k0 being the representative scenario and pk0

being the representative optimal dual vector. The process is then repeated with other scenar-
ios in P , with the scenarios now being compared to both P

01 and P
02. Repeat this process

until all of the scenarios in P are examined, and all the newly created clusters will be added
to the refined partition N

0 to replace P . See Algorithm 1 for a precise description of the
procedure, from which one clearly sees that the computational complexity of our refinement
strategy for refining a cluster P 2N is O(|P|2). The complexity of refining the entire
partition N is thus O(ÂP2N |P|2).

2.2 Preliminaries on Multi-stage Stochastic Linear Programs and the SDDP Algorithm
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Algorithm 1 The refinement step.

1. Input:

– a partition N and a cluster P 2N to be refined
– a set of optimal dual vectors {pk}k2P
– a set of objective values {Q(x1,x k)}k2P

2. Initialize: Initialize
– cluster P

01 = {k1} with k1 being the first element of P , and pk1 being the dual vector to
represent P

01

– a collection of refined clusters C = {P 01}
3. Refinement procedure:

4. for k 2P \{k1} do

5. - set f lag = 0
6. for P

0 2 C do

7. - let k0 and p 0 be the representing scenario and the dual vector associated with P
0, respec-

tively
8. if kpk�p 0k  ep or |Q(x1,x k)�Q(x1,x k0 )| eQ

then

9. - append k to P
0, set f lag = 1, and break out of the inner loop

10. end if

11. end for

12. if f lag = 0
13. - initialize a new cluster P

00 = {k} with pk being the dual vector to represent P
00

14. - append P
00 to C

15. end for

16.
17. Output: return the refined partition N

0  N \P [C

The multistage stochastic programming (MSP) problem presented in (2) has a nested form.
As such, to facilitate a computationally tractable formulation, we make the following stage-
wise independence assumption:

Assumption 2 Stage-wise independence. We assume that the stochastic process {xt} is
stage-wise independent, i.e., xt is independent of the history of the stochastic process up
to time t�1, for t = 1,2, . . .T , which is given by x[t�1].

This stage-wise independence allows for problem (2) to be formulated using the following
dynamic programming equations:

Qt(xt�1,xt) :=

(
min

xt2Rnt
+

c>t xt +Qt+1(xt)

s.t. Atxt = bt �Btxt�1 ,
(10)

where Qt+1(xt) := E[Qt+1(xt ,xt+1)] for t = T �1, . . .1, and QT+1(xT ) := 0. The first-stage
problem becomes

(
min

x12R
n1
+

c>1 x1 +Q2(x1)

s.t. A1x1 = b1 .
(11)

and Qt+1(·) in (10) is referred to as the cost-to-go function. Note that, if the number of
scenarios per stage is finite, the cost-to-go functions are convex piecewise linear functions
[37, Chap. 3]. Before we discuss the solution approaches developed to solve problem (11),
it is important to address non-degeneracy and feasibility assumptions. Let ct := {xt 2 Rnt

+ |
Btxt�1 +Atxt = bt}, 8t = 2, . . . ,T .
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Non-degeneracy: The cost-to-go functions Qt+1(·)’s are defined as the optimal future cost
at stage t, for t = 1,2 . . . ,T �1. It may happen that for some feasible xt 2 ct and a scenario
xt 2 Xt , the stage-(t + 1) subproblem is unbounded from below, i.e., Qt+1(xt ,xt+1) = �•.
This is a somewhat pathological and unrealistic situation meaning that for such feasible xt ,
there exist a positive probability, by which one can reduce the future cost indefinitely. One
should make sure at the modeling phase that this does not happen.

Assumption 3 Non-degeneracy. We assume that the cost-to-go function Qt+1(·) at every
stage is finite valued. i.e., Qt+1(xt ,xt+1)>�•, 8xt+1 2 Xt+1, 8t = 1,2 . . . ,T �1.

Feasibility: If for some xt 2 ct and scenario xt 2 Xt problem (10) is infeasible, the stan-
dard practice is to set Qt+1(xt ,xt) = +• such that xt cannot be an optimal solution of the
stage-(t +1) subproblem. It is said that the problem has relatively complete recourse if such
infeasibility does not happen.

Assumption 4 Relatively complete recourse. We assume that 8 xt 2 ct and xt 2Xt , 9 xt+1 2
Rnt+1
+ such that, problem (10) is feasible.

2.2.1 Stochastic Dual Dynamic Programming (SDDP)

Perhaps one of the most popular algorithms for solving MSLPs, the SDDP algorithm [31]
draws influence from the backward recursion techniques developed in dynamic program-
ming [7]. More importantly, under Assumption 2, it provides an implementable policy not
only for the approximation problem, but also for the true problem through decision rules
induced by the approximate cost-to-go functions.

Leveraging the dynamic equations (10), the SDDP algorithm alternates between two
main steps: a forward simulation (forward pass) which evaluates the current policy obtained
by sequentially solving problem (10) in each stage t with the current approximation for
the cost-to-go functions Q̌t+1(·) to provide a sequence of decisions x̌t = x̌t(xt), for t =
1,2, . . . ,T , and a backward recursion (backward pass) to improve the approximate cost-to-
go functions Q̌t+1(·), for t = 1, . . .T . After the forward step, a statistical upper bound for
the optimal value of (11) can be computed, and after the backward step an improved lower
bound for the optimal value of (11) is obtained. We summarize the two main steps below
and refer the reader to [31] for a more detailed discussion on the topic.
Forward step. Consider taking a sample of S scenarios of the stochastic process, which
is denoted by {x s}s2S , with |S |⌧ |X1|⇥ |X2|⇥ · · ·⇥ |XT | and x s = (x s2

2 , . . . ,x sT
T ). Let

Q̌t+1(·) be the current approximation of the cost-to-go function Qt+1(·) at stage t. In order
to evaluate the quality of the decision policy induced by Q̌t+1(·) for t = 1,2, . . . ,T , trial
decisions x̌t = x̌t(xt), t = 1, . . . ,T , are computed recursively going forward with x̌1 being an
optimal solution of (11) with Q̌2(·), and x̌t being an optimal solution of

Qt(x̌t�1,x st
t ) :=

(
min

xt2Rnt
+

c>t xt + Q̌t+1(xt)

s.t. Atxt = bt �Bt x̌t�1

(12)

where Q̌T+1(·) := 0 and Qt(·) is a lower approximation for Qt(·). The value

z(x s) =
T

Â
t=1

c>t x̌t(x st
t ), 8 s 2S , (13)
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as well as
z̃ = 1

|S | Â
s2S

z(x s), 8 s 2S ,

s2 = 1
|S | Â

s2S
[z(x s)� z̃]2 , 8 s 2S ,

(14)

are computed, with z̃ and s2 being the sample average and sample variance of z(·), respec-
tively. Note that x̌t(x st

t ) is a feasible and implementable policy for problem (2).
The sample average z̃ provides an unbiased estimator for an upper bound of the optimal
value of (2), which is given by

ẑ = E
"

T

Â
t=1

c>t x̌t(xt).

#
(15)

Additionally, z̃+1.96s/
p

|S | provides a statistical upper bound for the optimal value of (2)
with 95% confidence level. These bounds can be used as a possible stopping criterion when-
ever z̃+ 1.96s/

p
|S |� z  e , for a given tolerance e > 0. We refer to [36, Sec.3] for a

discussion on this subject.
Backward step. Given the trial decisions x̌t = x̌t(xt) obtained in the forward step and an
approximation of the cost-to-go function Q̌t+1(·), for t = 1,2, . . . ,T ; exploiting the fact that
QT+1(·) := 0 at stage t = T , the following problem is solved for each xT 2 {(Bk

T ,b
k
T )}

|XT |
k=1

QT (x̌T�1,xT ) =

(
min

xT2R
nT
+

c>T xT

s.t. AT xT = bT �BT x̌T�1.
(16)

Let p̌T = p̌T (xT ) be an optimal dual solution of problem (16). Then define aT := E[b>T p̌T ]
and bT :=�E[B>T p̌T ] 2 ∂QT (x̌T�1) such that

qT (xT�1) := b>T xT�1 +aT = QT (x̌T�1)+ hbT ,xT�1� x̌T�1i ,

is a lower cutting-plane approximation for QT (xT�1) satisfying

QT (xT�1)� qT (xT�1) 8 xT�1 ,

with qT (·) being a supporting hyperplane for QT (·), i.e., QT (x̌T�1) = qT (x̌T�1). This linear
cutting-plane approximation is added to the collection of supporting hyperplanes of QT (·)
by letting the new approximation be max{Q̌T (xT�1),qT (xT�1)}. That is, the cutting-plane
approximation for Q̌T (·) is constructed from the maximum of a collection JT of cutting-
plane approximation:

Q̌T (xT�1) = max
j2JT

n
b>T, jxT�1 +aT, j

o
.

For t = T � 1,T � 2, . . . ,2, we update Q̌t(·) in the same spirit as Q̌T (·), and the following
problems are solved 8 xt 2 {(Bk

t ,bk
t )}

|Xt |
k=1

Qt(x̌t�1,xt)=

(
min

xt2Rnt
+

c>t xt + Q̌t+1(xt)

s.t. Atxt = bt �Bt x̌t�1

⌘

8
><

>:

min
(xt ,rt+1)2R

nt
+⇥R

c>t xt + rt+1

s.t. Atxt = bt �Bt x̌t�1
b>t+1, jxt +at+1, j  rt+1, j 2 Jt+1.

(17)



Adaptive Partition SDDP for MSLP 11

Let p̌t = p̌t(xt) be the optimal dual vector associated with constraint Atxt = bt �Bt x̌t�1.
Then the cutting-plane approximation

qt(xt�1) := E[Qt(x̌t�1,xt)]+ hbt ,xt�1� x̌t�1i (18)

of Qt(·) is constructed with

bt :=�E[B>t p̌t ] 2 E[∂Qt(x̌t�1,xt)]

such that Qt(xt�1) � qt(xt�1) 8 xt�1. Note that the above inequality holds when t = T �1
since Q̌T (·) approximates QT (·) from below; then QT�1(x̌T�2,xT�1)  QT�1(x̌T�2,xT�1)

implying that qT�1(·) underestimates QT�1(·). The result for stage t follows by using a
backward induction argument from T,T � 1, . . . , t. Once the cutting-plane qT�1(xt�1) is
computed, then the current approximation Q̌t(xt�1) is updated at stage t by: Q̌t(xt�1) =
max{Q̌t(xt�1),qt(xt�1)} . It is worth noting that, unlike in stage T where the value of the
cost-to-go function is precisely known (QT+1 = 0), the linear approximation given (in early
iterations) by qt(·), 8t = T �1, . . . ,1, might be a strict under-estimator of Qt(·) for all feasi-
ble xt�1. In other words, qt(·) might only be a cutting plane but not necessarily a supporting
hyperplane. Finally, at t = 1, the following LP is solved

z =

8
<

:
min

x12R
n1
+

c>1 x1 + Q̌2(x1)

s.t. A1x1 = b1

⌘

8
><

>:

min
(x1,r2)2R

n1
+ ⇥R

c>1 x1 + r2

s.t. A1x1 = b1
b>2, jx1 +a2, j  r2, j 2 J2 .

(19)

The value z provides a lower bound for the optimal value of (2). The updated Q̌t(·) for
t = 2, . . . ,T , can be used to induce an implementable policy. The convergence analysis of
the method can be found in [12,24,32,36].

3 Adaptive Partition-based SDDP for Multistage Stochastic Linear Programs

In this section we discuss how the adaptive partition-based strategies discussed in Sec-
tion 2.1.2 can be extended to the multistage setting. We do this by first, showing the validity
of the cutting planes generated using the adaptive partition-based strategies to approximate
the cost-to-go functions Qt+1(·) in (10), present the ingredients of the different variants of
adaptive partition-based SDDP algorithm to be discussed in Section 4, and finally show the
finite convergence of the proposed method.

3.1 Adaptive Partition-based Cutting Planes for Multistage Stochastic Linear Programs

Let x̌t , t = 1,2, . . . ,T � 1 be the trial points (e.g., collected along a sample path during the
forward pass of the SDDP algorithm), and let {(Bk

t ,bk
t )}

|Xt |
k=1 be the set of realizations cor-

responding to the random vectors in each stage t = 2, . . . ,T . In the same way as defined in
Section 2.1.2, at every stage t we partition {(Bk

t ,bk
t )}

|Xt |
k=1 into Lt scenario clusters, such that

the stage-t partition is given by Nt = {P`
t }

Lt
`=1 and p̄`t is the weight associated with each

cluster P
`
t for `= 1, . . . ,Lt . At stage t = T , a scenario-based subproblem can be defined for

each realization x k
t = (Bk

T ,b
k
T ) 2 XT as follows:

QT (x̌T�1,x k
T ) := min

xT

n
c>T xT | AT xT = bk

T �Bk
T x̌T�1

o
, (20)
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where a partition-based subproblem can be defined similarly to (8) for each cluster P
`
T 2

NT as follows:

QT (x̌T�1, x̄ `
T ) := min

xT

n
c>T xT | AT xT = b̄`T � B̄`

T x̌T�1

o
, (21)

with b̄`T := Â
k2P`

T

bk
T ⇥

pk
T

p̄`T
and B̄`

T := Âk2P`
T

Bk
T ⇥

pk
T

p̄`T
and

ˇ̄QT (x̌T�1) :=
LT

Ầ
=1

p̄`T ⇥QT (x̌T�1, x̄ `
T ). (22)

Due to the fact that ˇ̄QT+1(·) := 0 for any feasible trial point x̌T , it can be easily seen that (21),
which is obtained by aggregating the constraints and variables of (20) for all scenarios k 2
P

`
T , has a similar structure to that of the two-stage setting given by (5) and (8), respectively.

Therefore,

QT (x̌T�1, x̄ `
T ) Â

k2P`
T

pk
T

p̄`T
⇥QT (x̌T�1,x k

T ) = Â
k2P`

T

pk
T

p̄`T
⇥QT (x̌T�1,x k

T ).

Treating each cluster P
`
T as a scenario, a coarse cut b̄>T, jxT�1 + āT, j  rT can also be gen-

erated in the same way that a standard Benders cut is generated (see the derivations af-
ter equation (16)), using the corresponding optimal dual solutions of (21) for each cluster
P

`
T 2NT . When the coarse cuts do not improve the representation of QT (·) at the trial point

x̌T�1 with respect to the current relaxation for the cost-to-go function, i.e., Q̌T (x̌T�1) �
b̄>T, j x̌T�1 + āT, j, the partition NT can be refined by solving the subproblem (20) for each
k = 1,2, . . . , |XT |, where the corresponding optimal dual vectors will guide the partition re-
finements (see Algorithm 1).

Now consider any other stage t 2 {2,3, . . . ,T � 1}, the scenario-based problem now
involves the cutting plane approximation for Qt+1(xt) which is given by

Q̌t+1(xt) = max
j2Jt+1

{at+1, j +bt+1, jxt} (see (17)� (18)).

Then the scenario-based subproblem for each realization x k
t = (Bk

t ,bk
t ) 2 Xt is given by:

Qt(x̌t�1,x k
t ) :=

8
<

:

min c>t xt + rt+1
s.t. Atxt = bk

t �Bk
t x̌t�1 (p̌k

t )
rt+1�b>t+1, jxt � at+1, j, j 2 Jt+1 ,

(23)

whereas the partition-based subproblem for each cluster P
`
t of the partition Nt , for ` =

1,2, . . . ,Lt , can be defined as follows:

Qt(x̌t�1, x̄ `
t ) =

8
<

:

min c>t xt + rt+1
s.t. Atxt = b̄`t, j� B̄`

t x̌t�1 (p̌`
t )

rt+1� b̄>t+1, jxt � āt+1, j, j 2 Jt+1 ,
(24)

which again can be obtained by aggregating variables and constraints of scenario-based
subproblems (23) for all k 2P

`
t such that

ˇ̄Qt(x̌t�1) :=
Lt

Ầ
=1

p̄`t ⇥Qt(x̌t�1, x̄ `
t ), 8t = 2, . . . ,T �1. (25)
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Similar to the case when t = T , the partition refinement is guided by the optimal dual
multiplies {p̌k

t }k2P`
t
, i.e., scenarios are put together in the same cluster if the corresponding

p̌k
t are identical (or close enough in Euclidean distance). It can be seen from [40, Theorem

2.5] that this partition refinement rule guarantees that, after refining Nt into N
0

t = {P`
t }L0

`=1,

ˇ̄Q0t(x̌t�1) =
L0t

Ầ
=1

p̄`t ⇥Qt(x̌t�1, x̄ `
t ) =

|Xt |

Â
k=1

pk
t ⇥Qt(x̌t�1,x k

t ) = Q̌t(x̌t�1).

Applying the idea of scenario partitions is likely to speed up the process of approximat-
ing the cost-to-go functions, particularly in the early stages, where exact information may
not be important for generating initial cutting-plane relaxations. This has been validated in
our experiment results shown in Section 5.

3.2 Ingredients of Adaptive Partition-based SDDP Algorithms

As thoroughly discussed in [2,40], the key reason for the efficiency of the adaptive partition-
based strategy in the context of the 2SLP is that, it makes the cut generation effort during
the solution procedure adaptive to the solution progress. To demonstrate this further, since
most decomposition algorithms used for solving SPs usually rely on sequences of candidate
solutions (trial points in the sequel) x̌1’s for generating cutting plane approximations to
Q2(·), it is intuitively clear that generating such approximations to Q2(·) with high precision
for early iterates, likely far from an optimal solution, is surely a wasteful use of computing
power — accuracy will need to be integrated adaptively as those candidate solutions x̌1’s
get close to being optimal. Ultimately, this procedure not only builds an approximation for
Q2(·) in a computationally efficient manner but also yields a sufficient partition N whose
size is (often) smaller than the original number of realizations |X |.

Therefore, it is very tempting to conclude that this reduction in the size of the problem
will naturally mitigate the computational burden of solving MSLP due to the large number
of stages in the planning horizon T , and the large number of realizations per stage |Xt |.
However, incorporating the idea of scenario partition for the 2SLP to the MSLP is not nec-
essarily straightforward. To see this, let T̄ (N ) be a coarse tree induced by the sequence
of partitions N = (N2, . . . ,NT ). Suppose we have a procedure by which we sample dif-
ferent sample paths x s = (x s2

2 , . . . ,x sT
T ) from the scenario tree T , and in the backward pass

we generate a valid cutting plane approximation for the stage t problem defined over x s,
8 t = 2, . . .T and s 2S and refine partition Nt if necessary. For a fixed sequence of trial
points x̌(x s) along sample path x s = (x s2

2 , . . . ,x sT
T ), one can obtain a sequence of partitions

N
s = (N s2

2 , . . . ,N sT
T ) which is locally sufficient with respect to x s and trial points x̌(x s).

It is not difficult to see that a locally sufficient partition to a given sample path s and its
associated trial points x̌(x s) is not necessarily sufficient for other sample paths (this is why
we call them “locally sufficient”). When we consider a new sample path x s0 , it is very likely
that we observe a new sequence of trial points in which case N

s is no longer sufficient for
x s0 and by extension, we would like to consider a new partition that is sufficient for both
x s and x s0 . To do so, we perform partition refinements on top of N

s to obtain the new
partition. We denote

�!
N

p
as the partition obtained via sequential partition refinements over

the sequence of p sample paths, and we call this partition
�!
N

p
a locally sufficient partition

if it is locally sufficient for every sample path x 2 {x s}p
s=1 and their associated trial points.

We use the
�!
N notation to denote the sequential nature of refining on top of the existing

partitions as we sample new sample paths.
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Hence, if one wishes to construct a globally sufficient partition, which means that it
is locally sufficient for all possible sample paths, the corresponding coarse tree is likely
to be identical to the full scenario tree, i.e., T̄ (

�!
N

p
)! T as p! S . Additionally, in

order to proclaim the sufficiency of N
s to x s we need to decouple problem (2) into a

sequence of (T �1) consecutive 2SLPs. This decoupling scheme, which we discuss in more
details in Subsection 3.2.2, was referred to in [1] and [42] for deterministic multistage linear
programs as cautious and shuffle, when the scenario tree is traversed forward and backward,
respectively. Consequently, and as we shall see, this raises not only the question of how we
can incorporate the adaptive partition-based strategy to the SDDP algorithm, but also the
question of what the best strategy is to traverse scenario tree.

Moreover, as we intend to employ the adaptive partition-based framework presented in
[2] which relies on different types of cutting-plane approximations to the cost-to-go func-
tions Qt+1(·) in their level of inexactness; another aspect to consider in our analysis is, for
a given tree traversal strategy, how coarse should the cutting-plane approximation be, such
that the computational savings acquired by adaptive partition-based strategies via efficient
cut generation effort, offsets the inaccuracy inherited in these inexact cuts during solution
process.

Finally, as a byproduct of this work we attempt to construct an algorithm which exploits
the structural nature of the underlying problem instance. This can be achieved by integrat-
ing this accuracy (inaccuracy) in the quality of cutting planes generated by the adaptive
partition-based framework to the SDDP algorithm, relative to how much additional informa-
tion we can gain from being accurate (as compared to being inaccurate) in different stages of
the planning horizon. Next, we characterize in details different ingredients of our proposed
algorithms.

3.2.1 Types of cutting planes

In accordance with the definitions introduced in [2], our analysis relies on three types of
cutting-plane approximations to the cost-to-go function Qt+1(·).

1. Fine cuts. Given an iterate x̌t = x̌t(xt), a cutting-plane approximation for Qt+1(·) is
generated by solving the scenario-based subproblem (23) for each scenario xt+1 2 Xt+1.

2. Coarse cuts. Given an iterate x̌t = x̌t(xt), a cutting-plane approximation for Qt+1(·) is
generated by solving the partition-based subproblem (24) for each cluster P

`
t+1 2Nt+1,

`= 1,2, . . . ,Lt+1.
3. Semi-coarse cuts. We define a semi-coarse cut as any hybrid between the Coarse and

Fine cuts. To demonstrate this further, let L
0

t+1 6= /0 and L
0

t+1 ⇢Lt+1 := {1, . . . ,Lt+1}.
Then given an iterate x̌t = x̌t(xt), a semi-coarse cutting-plane approximation for Qt+1(·)
is generated by solving a scenario-based subproblem (23) for each scenario xt+1 2
P

`
t+1 for ` 2 L

0
t+1 and a partition-based subproblem (24) for each cluster Pt+1 2

Nt+1\
S

`2L 0t+1
{P`

t+1}. This in turn puts forth the question of how the subset of clusters
S

`2L 0t+1
{P`

t+1} is chosen. In our implementation, we start by solving a scenario-based

subproblem for every scenario k in the cluster P
`0
t+1 which has the largest cardinality,

i.e., |P`0
t+1|� |P`

t+1|, 8` 6= `0, and a partition-based subproblem for all remaining clus-
ters. If this does not successfully yield a violated valid inequality, we move on to the
cluster which has the second largest cardinality and so on.

We refer the reader to [2] for a more thorough discussion on these concepts.
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3.2.2 Tree traversal strategies

We rely on two tree traversal strategies in different variants of the proposed algorithm. Those
stratigies were formally introduced in [1] and [42] for deterministic multistage linear pro-
grams, and further developed in [27] for MSLPs.

Quick pass (QP). Under this scheme, the policy (which is induced by the current approxi-
mation for the cost-to-go functions Qt+1(·)) evaluation process iteratively passes candidate
solution x̌t = x̌t(xt) down the scenario tree stage by stage (t = 1! t = 2! . . . t = T ) and
cuts (if any exists) are passed directly back up the tree (t = T ! t = T �1! . . . t = 1) with
no intermediate change of direction between any two consecutive stages t and t � 1 (see
Figure 1(a)). We care to mention that quick pass is in fact, the most commonly used strategy
in the SDDP algorithm. For example, in an MSP problem with T = 5 an iteration of QP
would be
• Forward pass: 1! 2! 3! 4! 5.
• Backward pass: 5!4! 3! 2! 1.

Cautious pass (CP). Under this scheme, the iterative policy evaluation process never goes
back up the tree unless all cuts that would be passed back from stage t + 1 to stage t, are
redundant, i.e., the evaluation process will maintain intermediate changes of directions be-
tween consecutive stages. Note that, an intermediate change of direction going forward en-
tails updating the candidate solution x̌t = x̌t(xt) (if possible) based on the updated cutting-
plane approximation Q̌0t+1(·). We refer to such intermediate changes of direction as, inner
forward step and inner backward step when the change of direction is forward and backward,
respectively (see Figure 1(b)). For example, in an MSP problem with T = 5 an iteration of
CP would be
• Forward pass: 1! 2! 3! 4! 5.
• Backward pass:

– 5! 4! 5! 4! · · ·! 5! 4.
– 4! 3! 4! 3! · · ·! 4! 3.
– 3! 2! 3! 2! · · ·! 3! 2.
– 2! 1! 2! 1! · · ·! 2! 1.

3.2.3 Refinements and sampling strategies

We propose several adaptive partition-based SDDP algorithms which depend on how the
refinement step is integrated with the standard SDDP algorithm and the realization of xt
sampled in the forward pass. Mainly, we propose the following two schemes:
1. Refinement within SDDP. Given the original scenario tree and a sequence of partitions

N = (N2, . . . ,NT ), sample from the original scenario tree T during the forward pass
and refine partitions Nt , 8 t = 2, . . .T while generating cuts during the backward pass
of the SDDP algorithm.

2. Refinement outside SDDP. Given a coarse tree T̄ (N ) induced by a sequence of parti-
tions N = (N2, . . . ,NT ), perform the SDDP algorithm on T̄ (N ), i.e., both sampling
and cut generation are from the coarse tree only, without any attempt to refine any parti-
tion Nt , 8 t = 2, . . .T . Then refine Nt in a separate refinement step where the refinement
is performed locally on sample path(s) x s = (x s2

2 , . . . ,x sT
T ) that is sampled from the orig-

inal scenario tree T .
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t = 1 t = 2 t = 3 t = 4 t = 5

(a) Quick pass.

t = 1 t = 2 t = 3 t = 4 t = 5

(b) Cautious pass.

Backward pass
Forward pass

Inner forward step
Inner backward step

Fig. 1 Tree traversal strategies.

The main feature of the Refinement within SDDP strategy is its flexibility to add cuts from
both the coarse tree T̄ (N ) and original tree T at each step of the SDDP algorithm dur-
ing the solution process. However, one concern with this approach is that, at any stage t
whenever the coarse cut q̄t(x̌t�1) (generated by aggregating the variables and constraints
according to Nt ) does not yield any violation to the current iterate, the process will al-
ways attempt to refine the partition Nt , 8 t = T, . . .2. Hence, the partition size can grow
very quickly as we step into different sample paths – which makes it difficult to effectively
exploit the reduction in the size of the problem.

On the other hand, while the Refinement outside SDDP strategy is more restricted in
the sense that it only generates cuts from the coarse tree during the execution of the SDDP
algorithm, and it capitalizes on the merits of the adaptive partition-based framework, since
the SDDP algorithm is now performed on a smaller scenario tree. Nonetheless, the main
concern with the Refinement outside SDDP strategy is the difficulty of identifying a criterion
by which we can claim the insufficiency of the current sequence of partitions N to be used
in generating cuts, which would suggest its refinement.

We finish this section by showing the finite convergence of a generic version of the
partition-based SDDP algorithm.

Proposition 1 Convergence of the partition-based SDDP algorithms. Suppose that Assump-
tions 1–4 hold, sampling is done with replacement in the SDDP algorithm, and the employed
partition refinement rule ensures that the number of clusters Lt of the refined partition
strictly increases whenever ˇ̄Qt(x̌t�1) 6= E[Qt(x̌t�1,xt)] (see definitions in equations (16),
(17), (22) and (25)) for any stage t unless Lt = Nt. Then w.p.1 after a finite number of
forward and backward steps, the algorithm yields an optimal policy for (2).
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Proof See Appendix B.

4 Implementation Details

In this section we describe in more detail the proposed integrated adaptive partition-based
SDDP algorithms. As previously noted, it is almost impossible to construct a globally suffi-
cient non-trivial partition (a trivial partition is the one which contains clusters with all single-
tons, i.e. Nt = {{k}k2Nt}) that accommodates all possible sample paths in the scenario tree.
However, depending on the refinement rule, one can easily have some control over the size
of the coarse tree T̄ (

�!
N

p
) obtained after p sample paths. This refinement rule can be driven

by the manner in which the scenario tree is traversed based on different strategies introduced
in Subsection 3.2.2. On one hand, employing a CP (recall that CP means “cautious-pass”) is
clearly a more rigorous strategy in refining the sequence of partitions

�!
N

p
, since it attempts

to create a sufficient sequence of partitions
�!
N

p⇤
by solving a sequence of T �1 2SLP prob-

lems (defined by 1st-stage = t and 2nd-stage = t +1, 8 t = 1,2, . . .T �1) to optimality. On
the other hand, a QP (recall that QP means “quick-pass”) is a more of a lenient strategy to
refine

�!
N

p
since it is only attempting to refine the partition

�!
N

p
without any intention to

achieve local sufficiency.
While it is instructive to construct locally sufficient sequence partitions

�!
N

p
from an

optimality point of view; as we shall see in Section 5, solving a sequence of T � 1 2SLP
problems up to optimality could be expensive, and perhaps not worth doing, especially at
early iterates when the candidate solution x̌t = x̌t(xt) is likely to be far from optimal. To that
end, as mentioned in Subsection 3.2.3 we consider two refinement schemes for integrating
the adaptive partition-based approach to the SDDP algorithm, namely Refinement within
SDDP, and Refinement outside SDDP, which will be described in details in the following
two subsections, respectively.

4.1 Refinement outside SDDP

The “high-level” idea of the refinement outside SDDP strategies is to implement standard
SDDP algorithm on a coarse tree induced by a partition N . Then, whenever implementing
the standard SDDP on this coarse tree does not give much progress to the lower bound, i.e.,
the problem induced by the coarse tree is “sufficiently solved”, we refine N to update the
scenario tree, and resolve the new (coarse) scenario tree induced by the refined partition
N
0. In other words, the refinement outside SDDP strategies can be thought of as looping

between the following two main steps:

1. Implement the standard SDDP on a coarse tree induced by partition N .
2. Refine N to update the (coarse) scenario tree and go to the first step.

This entire process (looping between steps 1 and 2) is continued until a certain termination
criterion, such as until the size of the coarse tree is considered to be “large enough” (i.e.,
close in size to that of the original scenario tree), or the lower bound does not improve
over a number of iterations. Specifically, we present two strategies of performing partition
refinement outside SDDP:
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• Adaptive partition-enabled preprocessing for SDDP (APEP-SDDP): in this strategy, the
adaptive partition-based approach is used only as a preprocessing step for the SDDP
algorithm. Once this preprocessing step is finished the standard SDDP algorithm is ap-
plied on the original scenario tree. A coarse scenario tree is iteratively refined during
the preprocessing step. Once the size of the coarse scenario tree is sufficiently large, the
preprocessing step is terminated and the SDDP algorithm will be used for the original
scenario tree for the rest of the procedure.

• SDDP on iteratively refined coarse scenario trees (ITER-SDDP): apply the SDDP algo-
rithm for each coarse scenario tree, which is iteratively refined throughout the solution
process.

In both strategies, we determine whether the sequence of partitions N needs to be
refined after applying j iterations of the standard SDDP algorithm on the coarse tree T̄ (N ),
by keeping track of the lower bound progress for the last n consecutive iterations (starting
from iteration n+1). If inner j� inner j�n  e , where e > 0 is a given tolerance, it indicates
that the lower bound does not improve by more than e over the last n iterations. Both APEP-
SDDP and ITER-SDDP will then refine the sequence of partitions N to N

0, and perform
the SDDP algorithm on the refined tree T̄ (N 0), except that if the coarse scenario tree after
the refinement is large enough, the APEP-SDDP algorithm will revert back to the original
scenario tree and perform the standard SDDP algorithm on it afterwards. Figure 2 illustrates
these two algorithms for Refinement outside SDDP.

4.1.1 The APEP-SDDP algorithm

The primary concern with the APEP-SDDP algorithm is the difficulty to identify an ade-
quate criterion for terminating the preprocessing step without jeopardizing the efficacy of
the algorithm. Our implementations adopt a heuristic criterion for terminating the prepro-
cessing step based on the size of the coarse tree T̄ (N ). More specifically, we define the
relative size of the coarse tree as |T̄ (N )|= ÂT

t=2 Lt/|Xt |
T�1 and let n 2 (0,1) be a user-specified

parameter for terminating the preprocessing step. When |T̄ (
�!
N

p
)| > n , we terminate the

preprocessing and revert to solving the original scenario tree T using the standard SDDP
algorithm afterwards. Alternatively, one might choose to define the termination criterion as
a fixed fraction of the computational budget (time-limit) and set n accordingly. Finally, we
use CP as the tree traversal strategy when refining N . The motivation of this choice is that,
using CP to traverse T is more likely to result in a larger |T̄ (N )|, making the preprocess-
ing step to be terminated more quickly. We have found that this choice along with setting
n  0.5 yielded improved performance in our numerical experiments.

4.1.2 The ITER-SDDP algorithm

As previously noted, the ITER-SDDP algorithm extends the APEP-SDDP algorithm in the
sense that, here, there is no threshold by which we stop generating cutting planes from the
coarse tree T̄ (

�!
N

p
) and revert back to using the standard SDDP algorithm on the original

scenario tree T . In other words, the ITER-SDDP algorithm will continuously attempt to
refine T̄ (

�!
N

p
), for every iteration p whenever the lower bound z does not make significant

progress. In this case, the cut generation from the coarse tree is no longer a “preprocessing”
step, but integrated into the entire solution procedure.
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The two aforementioned refinement outside SDDP algorithms are summarized in Algo-
rithm 2.

Algorithm 2 The refinement outside SDDP algorithms.
STEP 0: Initialization.

1. Let p = 0, zp :=�•, ˇ̄Qp
t (·) :=�•, 8 t = 2, . . . ,T .

2. Define an initial sequence of partitions
�!
N

p
= (
�!
N

p
2 , . . . ,

�!
N

p
T ) and the corresponding coarse tree

T̄ (
�!
N

p
).

3. Define a stability-test parameter n 2 Z+ and choose a tolerance e > 0
4. Choose a preprocessing termination parameter n and traversal strategy: n 2 (0,1) and CP for algorithm

APEP-SDDP; n = 1 and QP for algorithm ITER-SDDP.
STEP 1:

1. Increment p p+1.
2. If |T̄ (

�!
N

p
)| > n , go to STEP 3. Otherwise, define an MSLP on T̄ (

�!
N

p
) and the cutting plane ap-

proximations ˇ̄Qp
t (·) 8 t = 2, . . . ,T as follows:

(i) Initialize j = 0 and set inner j = zp and ˇ̄Q j
t (·) = ˇ̄Qp

t (·), 8 t = 2, . . .T .
(ii) while true do

a. Increment j j+1.
b. Apply the forward and backward step of the standard SDDP algorithm to improve the cut-

ting plane approximations and update ˇ̄Q j
t (·), 8 t = 2, . . . ,T and inner j .

c. if j > n
if inner j� inner j�n  e

set zp = inner j , and ˇ̄Qp
t (·) = ˇ̄Q j

t (·), 8 t = 2, . . .T ; BREAK.
end

end

end

STEP 2:

1. Choose a sample path x p = (x p2
2 , . . . ,x pT

T ).
2. Refine

�!
N

p
by the traversal strategy TS and the adaptive partition-based approach [2,40] over the

sample path x p to construct T̄ (
�!
N

p+1
).

3. Update zp and ˇ̄Qp
t (·).

4. Go to STEP 1.
STEP 3:

1. Define an MSLP on T and initialize the approximate cost-to-go functions using ˇ̄Qp
t (·).

2. Solve it using the standard SDDP algorithm and stop upon a termination criterion (such as a time
limit).

4.2 Refinement within SDDP

Unlike the Refinement outside SDDP strategy introduced in Section 4.1, where the partition
refinement is performed separately from the SDDP algorithm, whenever the lower bound
progress is not significant during the SDDP algorithm, the Refinement within SDDP strat-
egy is one in which the partition refinement is attempted at every backward pass of the
SDDP algorithm if necessary, irrespective of the progress in the lower bound. Here, both the
partition refinement and the SDDP algorithm are performed based on sample paths gener-
ated from the original scenario tree T . In our implementations we consider two variants of
the Refinement within SDDP strategy, which will be described in more details next.
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t = 1 t = 2 t = 3 t = 4 t = 5

(a) Coarse tree refinement procedure for the APEP-SDDP algorithm.

t = 1 t = 2 t = 3 t = 4 t = 5

(b) Coarse tree refinement procedure for the ITER-SDDP algorithm.

t = 1 t = 2 t = 3 t = 4 t = 5t = 1 t = 2 t = 3 t = 4 t = 5

(c) The standard SDDP algorithm (QP-SDDP) on the coarse tree T̄ (N ).

t Stage t in the original scenario tree T

Stage t in the coarse tree T̄ (N )

Fine cut
Forward pass
Coarse cut
Semi-coarse cut

Inner forward pass
Inner coarse cut

Inner semi-coarse cut

Fig. 2 Illustration of tree traversal strategies and various types of cutting planes used in the Refinement
outside SDDP algorithms.

4.2.1 The adaptive partition-based SDDP algorithm with quick cut generation
(AP-QP-SDDP)

This algorithm can be seen as the most natural extension of integrating the adaptive partition-
based strategies to the backward pass of the standard SDDP algorithm. In the backward pass,
at every stage t = T, . . . ,2, the AP-QP-SDDP algorithm starts by attempting to generate
a coarse cut, and if it succeeds in doing so, the process immediately moves on to stage
t � 1; otherwise, it attempts to generate a semi-coarse cut by sequentially going through
different clusters P

`
t 2
�!
N

p
t , and as soon as this process succeeds in generating a violated

cut, it updates ˇ̄Qp
t (·), refines

�!
N

p
t and moves on to stage t�1. In other words, any violated
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cut, regardless of its quality, is a sufficient criterion for moving back to stage t � 1. See
Figure 3(a).

4.2.2 The adaptive partition-based SDDP algorithm with cautious cut generation
(AP-CP-SDDP)

Instead of using the existence of any cut violation regardless of its quality as the criterion
for moving back to the previous stage, as what is used in AP-QP-SDDP, the AP-CP-SDDP
algorithm attempts to generate all possible cuts of various types by employing inner forward
and backward steps just as CP-SDDP. See Figure 3(b).
The two aforementioned refinement within SDDP algorithms are summarized in Algo-
rithm 3.

Remark 1 As previously noted, in the coarse tree refinement step of the APEP algorithm,
we use a CP as the tree traversal strategy. This explains why Figures 2(a) and 3(b) are the
same. In other words, the coarse tree refinement step of the APEP algorithm is equivalent to
a single iteration of the AP-CP-SDDP.

Algorithm 3 The refinement within SDDP algorithms.
STEP 0: Initialization.

1. Let p = 0, ˇ̄Qp
t (·) :=�•, e � 0.

2. Define an initial sequence of partitions
�!
N

p
= (
�!
N

p
2 , . . . ,

�!
N

p
T ), the corresponding coarse tree

T̄ (
�!
N

p
).

3. Define a tree-traversal strategy QP for AP-QP-SDDP and CP for AP-CP-SDDP
4. Initialize the corresponding necessary parameters of the SDDP algorithm.

STEP 1: Increment p p+1 and choose a sample path x p = (x p2
2 , . . . ,x pT

T ).
STEP 2: Implement the SDDP forward step over x p to obtain x̌t = x̌t(x pt

t ), 8t = 1, . . .T �1.
STEP 3: Implement the adaptive partition-based SDDP Backward-step as follows:

For t = T �1, . . . ,1
(a) Solve the partition-based subproblem (24) for each cluster P

`
t+1 2

�!
N

p
t+1, ` = 1,2, . . . ,Lt+1 to

improve the cutting plane approximation for Q̌t+1(x̌t).
(b) If

ˇ̄Qt+1(x̌t)� ˇ̄Qp
t+1(x̌t) e , go to (c). Else, update ˇ̄Qt+1(xt) and

• If the tree-travesal strategy is QP, go to t�1.
• If the tree-travesal strategy is CP, solve the scenario-based subproblem (23) to update x̌t =

x̌t(x p
t ) and go to (a)

(c) Compute a semi-coarse cut as described in 3.2.1 and refine
�!
N

p
t+1

(d) If
ˇ̄Qt+1(x̌t)� ˇ̄Qp

t+1(x̌t) e go to t�1. Else

• If TS = QP, go to t�1.
• If TS = CP, solve the scenario-based subproblem (23) to update x̌t = x̌t(x p

t ) and go to (a)
STEP 4: If termination criterion is achieved, STOP. Else, go to STEP 1.

4.3 Adaptive partition-based SDDP with structured policies cut generation

In the previous two subsections, 4.1 and 4.2, we provide algorithms in which the same type
of cut generation strategies are implemented uniformly across all stages t = 2, . . . ,T . In this
subsection, we investigate a framework which incorporates different types of cut generation
strategies in different stages. To that end, we classify different stages in the planning horizon
into two different categories:



22 Murwan Siddig, Yongjia Song

1. Stages of “less-importance”, where we use coarse and semi-coarse cuts.
2. Stages of “more-importance”, where we use fine cuts only.

The motivation for associating coarse and semi-coarse cuts with stages considered to be
less important and fine cuts with stages considered to be more important is as follows. In
the MSLP setting, even if we simply attempt to generate fine cuts without any aggregation,
the cutting hyperplane qt(xt�1) := b>t xt�1 + at generated in stages t = T � 1, . . . ,2 still
might not be a supporting hyperplane to Qt(·), since the approximation error propagates
as t = T �1! t = 2. Hence, using aggregated information with respect to a partition N

p
t

might hinder the performance of the algorithm by adding another layer of inaccuracy. In
certain situations, we may not be able to afford this additional layer of inaccuracy in stages
where we need to be more accurate, in which case we have to use fine cuts. On the other
hand, in stages where we believe there is little extra information to be gained from fine cuts
compared to coarse cuts, we can save some computational effort by utilizing cutting-plane
approximations of any quality (coarse and semi-coarse cuts). We refer to this algorithm as
the SPAP-SDDP algorithm, summarize it in Algorithm 4 and illustrate it in Figure 3(c).

Algorithm 4 The adaptive partition-based SDDP algorithm with structured policies cut gen-
eration (SPAP-SDDP).

STEP 0: Initialization.
1. Let p = 0, ˇ̄Qp

t (·) :=�•, e � 0, Z 2 R
2. Classify every stage t = 2, . . . ,T such that t is “more-important” if t 2MI := {t 2 R+|z̄t Z } and t

is “less-important” if t 2 LI := {t 2 R+|z̄t > Z }.
3. Define an initial sequence of partitions

�!
N

p
= (
�!
N

p
1 , . . . ,

�!
N

p
T ), the corresponding coarse tree

T̄ (
�!
N

p
), 8 t 2 LI

4. Initialize the corresponding necessary parameters of the SDDP algorithm.
STEP 1: Increment p p+1 and choose a sample path x p = (x p2

2 , . . . ,x pT
T ).

STEP 2: Implement the SDDP forward step over x p to obtain x̌t = x̌t(x pt
t ), 8t = 1, . . .T �1.

STEP 3: Implement the backward step as follows:
1. For t = T �1, . . . ,1

(a) If t 2 MI compute a fine cut by solving the scenario-based subproblem (23) for each scenario
xt 2 Xt . Else, go to (b).

(b) solve the partition-based subproblem (24) for each cluster P
`
t+1 2

�!
N

p
t+1, ` = 1,2, . . . ,Lt+1 to

compute a coarse cut for ˇ̄Qt+1(x̌t).
(c) If ˇ̄Qt+1(x̌t)� ˇ̄Qp

t+1(x̌t)> e , update ˇ̄Qt+1(xt) and go to t�1. Else, go to (d).
(d) compute a semi-coarse cut as described in (3.2.1) and ˇ̄Qt+1(xt).

STEP 4: If termination criterion is achieved, STOP. Else, go to STEP 1.

Perhaps the most crucial question to this framework is how we can classify different
stages into “more-important” and “less-important”. The answer to this question is clearly
non-trivial, problem specific, and perhaps one that deserves a separate in-depth study by
itself. Nonetheless, in our numerical experiments (see Section 5) we consider a heuristic
approach of classification that we justify below.

We preface this by revisiting the hydro-thermal power generation planning problem that
is considered in our numerical experiments. Readers are referred to, e.g., [3,25], for a more
thorough discussion on the problem. In this problem, the decision maker aims to minimize
the expected total cost which consists of: the power generation expenses and the penalty for
the shortage in satisfying the demand. The stochasticity aspect of the problem arises due to
the uncertainty about the amount of rainfall in the future – which the decision maker can use
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to generate power via the interconnected network of hydro plants. As such, from a stochastic
programming point of view, the amount of rain available at every stage t = 1, . . . ,T is what
defines the valuable information that the decision maker will utilize in order to construct an
optimal policy. In our implementation, we classify the stages as following:

1. “Dry season” stage, which we label as “less important”.
2. “Wet season” stage, which we label as “more important”.

The motivation for considering stages in the wet seasons to be of more importance and
stages in the dry seasons to be of less importance is that, from an optimization point of view,
the decision policy plays a more important role when it has more valuable resources at its
disposal compared to when it does not. To put this into perspective, given the nature of the
problem being a resource allocation/planning problem, an optimal policy is characterized by
how balanced the availabilities of various types of resources are at times of abundance with
their amounts at times of deficit. In dry seasons there is less of a decision to be made about
resource allocation and more of a cost to be paid as a recourse action; whereas during the
wet seasons the decision maker has to achieve a balance by allocating some of the available
resources for generating power to meet the immediate demand while reserving some for
hedging against the potential deficit in the future.

In our implementation, we classify the dry and wet season stages by doing the following
for every stage t = 2, . . . ,T :

1. First, in order to differentiate between the different stages solely based on the inflow of
rain, we equalize for everything by setting the water level carried over from the previous
stage at every reservoir to be zero. That is, we assume that every reservoir is empty. This
step is done by setting the state variable xt�1 = 0.

2. Next, we optimize myopically with respect to stage t by solving the stage t subproblem
for every realization of random vector xt 2 Xt .

3. Let z⇤(t,xt) be the optimal objective value corresponding to every respective problem
solved in the previous step.

4. Define z̄t = Â|Xt |
k=1 z⇤(t,x k

t ) be the “worst-case” immediate cost at stage t, and let Z be a
user pre-specified parameter.

5. If z̄t Z , then stage t is a “wet-stage”. Otherwise, t is a “dry-stage”.

Below is a summary of all the variants of the adaptive partition-based SDDP algorithm being
considered in our implementations. All the acronyms are also provided in Table 1.

1. APEP-SDDP: perform the SDDP algorithm iteratively on a coarse tree and refine the
tree using a cautious pass whenever the tree is not providing “significant” progress. This
is used as a preprocessing step for the standard SDDP.

2. ITER-SDDP: perform the SDDP algorithm iteratively on a coarse tree and refine the
tree using a quick pass whenever the tree is not providing significant progress. This
process is repeated until the termination criterion (e.g., time) is met.

3. AP-SDDP-QP: sample from the original scenario tree going forward and attempt to
generate cuts (and refine) going backward using a quick pass.

4. AP-SDDP-CP: sample from the original scenario tree going forward and attempt to
generate cuts (and refine) going backward using a cautious pass.

5. SPAP-SDDP: sample from the original scenario tree going forward and attempt to gen-
erate, fine cuts in “more-important” stages and (semi) coarse cuts in “less-important”
stages when going backward.
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Acronyms Description
1. APEP-SDDP Adaptive partition-enabled preprocessing for SDDP
2. ITER-SDDP SDDP on iteratively refined coarse scenario trees
3. AP-SDDP-QP Adaptive partition-based SDDP with quick cut generation
4. AP-SDDP-CP Adaptive partition-based SDDP with cautious cut generation
5. SPAP-SDDP Adaptive partition-based SDDP with structured policies cut generation

Table 1 Acronyms of different variants of the adaptive-partition based SDDP aelgorithms.

t = 1 t = 2 t = 3 t = 4 t = 5

(a) The adaptive partition-based SDDP algorithm with quick cut generation (AP-QP-SDDP).

t = 1 t = 2 t = 3 t = 4 t = 5

(b) The adaptive partition-based SDDP algorithm with cautious cut generation (AP-CP-SDDP).

t = 1 t = 2 t = 3 t = 4 t = 5

(c) The adaptive partition-based SDDP with structured policies cut generation (SPAP-SDDP).

t Stage t

t Stage of “less-importance”: stage in a dry season

t Stage of “more-importance”: stage in a wet season

Stage t in the coarse tree T̄ (N )

Fine cut
Forward pass
Coarse cut
Semi-coarse cut

Inner forward pass
Inner coarse cut

Inner semi-coarse cut

Fig. 3 Illustration of tree traversal strategies and various types of cutting planes used in the Refinement within
SDDP algorithms and the SPAP-SDDP.
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5 Numerical Results

In this section we report and analyze our numerical experiment results to show the empiri-
cal performances of the proposed algorithms. We first present the test instances and give an
overview of different algorithms tested in the numerical experiments. Specifically, in Sub-
section 5.2 we compare the Refinement outside SDDP algorithms with the standard SDDP
algorithm. In Subsection 5.3 we compare the Refinement within SDDP algorithms with the
corresponding SDDP algorithms with different tree traversal strategies. Finally, in Subsec-
tion 5.4 we compare the adaptive partition-based SDDP with structured policies cut gener-
ation with the standard SDDP algorithm and different adaptive partition-based strategies.

We implemented all algorithms in Julia 0.6.2, using package JuMP 0.18.4 [13], with
commercial solver Gurobi, version 8.1.1 [18]. All the tests are conducted on Clemson Uni-
versity’s primary high-performance computing cluster, the Palmetto cluster, where we used
an R830 Dell Intel Xeon compute node with 2.60GHz and 1.0 TB memory. The number of
cores is set to be 24.

5.1 Test Instances and Algorithms

As previously noted, we consider the multistage hydro-thermal power generation planning
problem described in [25,3]. We also use the same problem instance provided by E. Finardi
and F. Beltrán, which models the Brazilian hydro-thermal power system. From the original
data set, in order to create a variety of instances, we consider different planning horizons
T 2 {24,60,96,120} and sample sizes |Xt |2 {50,200,1000} of the random vector xt , 8 t =
2, . . .T . In particular, the original data set contains 200 scenarios per stage, which are directly
used in our instances; for instances with |Xt | = 50, we simply pick the first 50 scenarios in
the data set; for instances with |Xt |= 1000, we first fit a Gamma distribution for every stage
and for each hydro plant in the network around the 200 scenarios of that stage, and then
use this Gamma distribution to generate a sample of 1000 scenarios for the instance. We let
the number of realizations to be the same at every stage. For example, when T = 120 and
|Xt |= 1000, we will have |X2|⇥ |X3|⇥ . . . |X120|= 1000119 scenarios (sample paths).

Additionally, following on from the descriptions of different tree traversal strategies in
Subsection 3.2.2 we implement two different variants of the SDDP algorithm:

1. SDDP with quick pass (QP-SDDP): adopt a quick pass strategy in traversing the scenario
tree. We emphasize that QP-SDDP is the most commonly used variant of the SDDP al-
gorithm and we also refer to it as the standard SDDP algorithm.

2. SDDP with cautious pass (CP-SDDP): adopt a cautious pass strategy in traversing the
scenario tree.

To get an initial lower bound for the cost-to-go function ˇ̄Qt(·), 8 t = 1,2, . . .T � 1, we
solve the mean value problem with respect to the (t + 1)-th stage problem by taking the
expectation of the random vector xt and treating x̄t in (11) as decision variables. To measure
the performances of different algorithms we mainly report two statistics: (i) the lower bound
z value (which is an important metric when solving MSLP problems); and (ii) the upper
bound (Monte Carlo) estimates z̃ after one, three and six hours (3600, 10800 and 21600
seconds, respectively) of processing. To construct these upper bound estimates, we generate
a random sample with sample size |S | = 10000 at each evaluation points. One important



26 Murwan Siddig, Yongjia Song

thing to note here is that, since constructing the upper bound estimates requires a significant
number of scenarios (|S |= 10000 in this case), a common approach in practice is to use a
different number of sample paths which is smaller, in every forward-backward pass iteration
of the SDDP algorithm to construct the cuts. In our experiments, we considered varying the
values of this different (smaller) number of sample paths and we have found that using a
single sample path per forward-backward step (one scenario per iteration) to work best.
This was the case in all algorithms that we tested.

To that end, we analyze the performance results by focusing on the following three
factors:

1. The total number of stages in the planning horizon T .
2. The number of realizations per stage |Xt |.
3. The processing time limit.

5.2 Numerical Results for the Refinement outside SDDP Strategy

We report and analyze the results of the two variants of the Refinement outside SDDP strat-
egy presented in Subsection 4.1, namely APEP-SDDP and ITER-SDDP, and compare them
to those obtained by the standard SDDP algorithm, i.e., QP-SDDP. We report the numerical
results in Tables 2, 3 and a few selected instances in Figure 4, from which we observe the
following:

1. Performance with respect to T :
• The overall performances of both APEP-SDDP and ITER-SDDP compared to that

of the standard SDDP algorithm is consistently improving as the number of stages
T increases. Specifically, except for the case when T = 24, both APEP-SDDP and
ITER-SDDP outperform QP-SDDP for all processing time limits. Specifically, av-
eraged across all instances with different |Xt | and different time limits, for instances
where T = 24, QP-SDDP outperformed APEP-SDDP and ITER-SDDP by 3% and
6%, respectively. Whereas, for instances where T = 60,T = 96, and T = 120, APEP-
SDDP outperformed QP-SDDP by 13%, 35%, and 45%, respectively; and ITER-
SDDP outperformed QP-SDDP by 14%, 35%, and 46%, respectively.

2. Performance with respect to |Xt |:
• The overall performances of both APEP-SDDP and ITER-SDDP (averaged across

different values of T ) compared to that of the standard SDDP algorithm is consis-
tently improving as |Xt | increases.

• At its peak, when |Xt |= 1000 and T = 120, the improvements over QP-SDDP reach
to about 125% and 126% after one hour, and 73% and 77% after six hours, for
APEP-SDDP and ITER-SDDP, respectively, and 107% for both after three hours.

3. Performance with respect to the processing time limit:
• The overall performances of the two algorithms APEP-SDDP and ITER-SDDP have

the following trend under different processing time limits: as the processing time
limit increases, the relative gap between the lower bounds of Refinement outside
SDDP algorithms and the SDDP algorithm, either deteriorates if it was superior or
improves if it was inferior.

• For number of stages T and realizations per stage |Xt | at the smaller end of our
instances set, the Refinement outside SDDP algorithms yield inferior performance
compared to the SDDP algorithm and start to improve as processing time limit in-
creases; whereas for larger instances, during earlier periods of processing time, Re-
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finement outside SDDP algorithms inherit a significant lead over the SDDP algo-
rithm in its lower bound progress, but this lead steadily shrinks as the processing
time increases.

• The advantage of the Refinement outside SDDP algorithms over the SDDP algo-
rithm is most apparent after one hour of processing time limit, yielding a better
performance in 9 out of 12 instances for both the APEP-SDDP and ITER-SDDP
algorithms.

• Convergence behaviour: we can see that
– for smaller instances e.g., T = 24 and |Xt | = 50: all different algorithms show

significant progress in closing the optimality gap after the first hour.
– for the the medium instances e.g., T 2 {60,96} and |Xt | = 200: all different

algorithms show some progress in closing the optimality gap at the end of the
sixth hour.

– for the the large instances e.g., T = 120 and |Xt |= 1000: none of the algorithms
shows much progress in closing the optimality gap even after six hours.

• In the smaller set of instance e.g., T 2 {24,60} and |Xt | 2 {50,200} we can see
that the lower bound value in both the refinement outside SDDP strategies and the
QP-SDDP algorithm grows immediately. However, for the larger set of instance
e.g., T 2 {96,120} and |Xt | 2 {200,1000} we can see that the lower bound value
obtained by the QP-SDDP algorithm (especially when T = 120 and |Xt | = 1000)
takes very long to grow above zero. This is not necessarily the case for the APEP-
SDDP and ITER-SDDP algorithms, although relatively slower compare to smaller
instances. This is not difficult to postulate since in early iterations of such large
instances when using the QP-SDDP algorithm one would have to solve a scenario
subproblem for every realization in every stage during the backward pass. Whereas,
the refinement outside SDDP strategies could benefit tremendously from the coarse
cuts added using aggregated scenarios. This time saving during the backward pass
allows for more iterations and hence more sample paths to be visited, which in turn
allows for more exploration of the state space.

We attribute the aforementioned observations to the following:

• It should come as no surprise that, the larger the instance in terms of T and |Xt |, the better
the performance of Refinement outside SDDP algorithms should be. This advantage for
the APEP-SDDP and ITER-SDDP algorithms over the standard SDDP algorithm, is a
natural consequence due to the merits of adaptive partition-based strategies in making
the cut generation effort adaptive to the solution progress.

• The aforementioned advantage does not hold for smaller instances, such as when T = 24
and |Xt | = 50. This is because the computational savings provided by this framework
via faster cut generation effort from coarse scenario trees do not offset the significant in-
accuracy inherited in these coarse cuts on these instances. This incompetence, however,
steadily vanishes as the processing time limit increases when the coarse tree gets more
and more refined.

• This explains the aforementioned observations regarding the performance with respect
to the processing time limit:

– In smaller instances, the larger the processing time limit is, the more the algorithm
is able to compensate for the inaccuracy compromised during the early phase of the
solution process.
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– In larger instances, the larger the processing time limit is, the bigger that the size
of the coarse tree gets, making the cut generation effort in the Refinement outside
SDDP algorithms similar to that of the standard SDDP algorithm.

• Finally, comparing between the two Refinement outside SDDP algorithms, we see that
their performances are comparable, with ITER-SDDP prevailing in all instances except
for a few instances, e.g., (T = 24, |Xt | = 50), and (T = 24, |Xt | = 1000). We attribute
these two cases to the heuristically chosen parameters n used in Algorithm 3 as a crite-
rion to perform partition refinement on

�!
N

p
.

We conclude this subsection by emphasizing that, our work is an attempt to provide a frame-
work which mitigates the computational burden of solving MSLPs brought by the large
number of stages T and large number of realizations per stage |Xt |. This, if anything, can
only testify to the competitive nature of adaptive partition-based strategies in solving large-
scale problems.

5.3 Numerical Results for the Refinement within SDDP Strategy

In this subsection, we compare different Refinement within SDDP algorithms described in
Subsection 4.2 and the corresponding SDDP algorithms (where no adaptive partition is em-
ployed) under different tree traversal strategies. We report the numerical results in Tables 4
and 5 as well as a few selected instances in Figure 5, from which we observe the following.

1. Performance with respect to T :
• Similar to the observations made in Subsection 5.2, the performance (averaged

across different values of |Xt | and different time-limits) of the AP-QP-SDDP al-
gorithm compared to the QP-SDDP algorithm improves as T increases. Whereas
the performance of the AP-CP-SDDP algorithm compared with that of CP-SDDP
gets worse as T increases.

• Except for a few instances the Refinement within SDDP algorithms are consistently
outperformed by the SDDP algorithm with the corresponding tree traversal strategy.

2. Performance with respect to |Xt |:
• Averaged across different values of T , the performance for the AP-QP-SDDP com-

pared to QP-SDDP improves as |Xt | increases. Whereas the performance for the
AP-CP-SDDP compared to CP-SDDP deteriorates as |Xt | increases. This behaviour
is consistent for different time limits.

3. Performance with respect to the processing time limit:
• Unlike the observation made in Subsection 5.2, the overall performances of the two

Refinement within SDDP algorithms do not seem to have a consistent pattern for
different time limits.

We attribute the aforementioned observations to the following:

• As one might expect, allocating a significant cut generation effort to a small number
of sample paths, is surely a waste of computational budget. This perhaps justifies the
overall disappointing results of any algorithm with a tree traversal strategy that has some
cautiousness aspects to it, since a cautious tree traversal strategy usually results in a
decision policy that is overfitting to the subset of sample path(s) visited so far in the
solution process.

• This overfitting in the decision policy could also explain the absence for any clear pat-
tern in the performance of AP-CP-SDDP compared to that of CP-SDDP in different
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Instances time limit (hrs) %z z z̃ ±1.96s̃/|S |T |Xt |

24

50
1 0% 1268.8 1578.2 260.0
3 1% 1351.8 1650.4 255.4
6 0% 1382.7 1689.7 264.9

200
1 4% 558.1 1121.6 224.2
3 -1% 658.9 1033.9 195.7
6 -3% 695.9 889.5 179.9

1000
1 -21% 293.4 939.3 201.7
3 -7% 429.7 1044.2 196.9
6 -2% 507.6 1031.3 199.0

60

50
1 -1% 11542.1 20243.9 1316.6
3 -1% 13184.6 18809.5 1224.9
6 1% 13992.7 17936.8 1208.9

200
1 22% 6915.5 14057.2 1054.5
3 4% 8155.6 15258.6 1106.1
6 0% 8832.1 13790.7 1066.3

1000
1 39% 3425.1 13303.9 1057.3
3 29% 5209.3 12240.7 1002.3
6 21% 6128.0 12708.9 1063.5

96

50
1 -4% 20440.0 43158.4 2171.7
3 -4% 24748.6 43057.4 2142.9
6 -4% 26423.4 40410.1 2047.7

200
1 35% 8802.5 29835.2 1801.4
3 16% 12272.4 29523.0 1781.1
6 3% 13842.2 27967.9 1692.6

1000
1 160% 5135.1 29857.2 1855.8
3 65% 7743.8 23569.6 1538.3
6 45% 9201.8 24856.5 1577.7

120

50
1 3% 24675.2 56631.6 2543.5
3 -1% 29347.3 53209.1 2482.7
6 -3% 31181.5 54567.1 2580.4

200
1 48% 10766.7 42268.2 2286.6
3 32% 14555.9 39501.1 2180.5
6 24% 17008.6 39200.8 2170.3

1000
1 125% 4573.2 37001.7 2129.7
3 107% 7919.8 35109.2 2053.8
6 73% 9597.2 35442.0 2108.0

Table 2 Lower bound z progress and the upper bound estimates z̃ obtained by the APEP-SDDP algorithm

(see Section 4.1.1) compared to the QP-SDDP algorithm. %z = 100⇥ (z�zQP�SDDP)

(zQP�SDDP)
and |S |= 10000.
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Instances time limit (hrs) %z z z̃ ±1.96s̃/|S |T |Xt |

24

50
1 -6% 1195.0 1659.4 251.4
3 -2% 1307.6 1504.2 256.9
6 -2% 1354.2 1735.2 288.9

200
1 4% 558.3 1112.8 221.6
3 -2% 649.3 1223.6 226.3
6 -1% 711.9 1015.2 204.9

1000
1 -21% 293.2 938.5 202.2
3 -13% 398.9 987.7 196.9
6 -8% 479.1 1117.6 216.0

60

50
1 4% 12149.9 19291.0 1302.8
3 2% 13594.8 18755.8 1253.2
6 2% 14145.5 18845.2 1217.9

200
1 22% 6910.3 14166.8 1064.9
3 4% 8163.0 15104.6 1109.9
6 2% 9005.7 14854.4 1124.2

1000
1 39% 3425.1 13303.9 1057.3
3 29% 5208.3 12126.5 994.5
6 21% 6122.8 12707.4 1044.9

96

50
1 -2% 20866.1 43234.5 2141.9
3 -1% 25449.3 43107.0 2164.4
6 -2% 27071.4 41903.3 2074.4

200
1 34% 8795.7 29902.0 1796.2
3 17% 12348.1 31100.0 1876.1
6 4% 14049.0 27391.5 1654.3

1000
1 160% 5129.8 29203.4 1840.2
3 62% 7618.8 25347.5 1643.1
6 40% 8885.5 26294.7 1606.5

120

50
1 5% 25104.6 56957.2 2640.5
3 1% 29921.9 52880.2 2479.2
6 -1% 31806.5 51540.2 2472.3

200
1 48% 10792.1 42730.3 2298.7
3 33% 14616.4 40973.7 2251.8
6 22% 16757.0 38618.4 2113.7

1000
1 126% 4598.0 36480.5 2101.1
3 107% 7950.9 36795.5 2166.3
6 77% 9816.3 35866.8 2112.6

Table 3 Lower bound z progress and the upper bound estimates z̃ obtained by the ITER-SDDP algorithm

(see Section 4.1.2) compared to the QP-SDDP algorithm. %z = 100⇥ (z�zQP�SDDP)

(zQP�SDDP)
and |S |= 10000.
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(a) T = 24, |Xt |= 50. One hour of processing. (b) T = 24, |Xt |= 50. Six hours of processing.

(c) T = 60, |Xt |= 200. One hour of processing. (d) T = 60, |Xt |= 200. Six hours of processing.

(e) T = 96, |Xt |= 200. One hour of processing. (f) T = 96, |Xt |= 200. Six hours of processing.

(g) T = 120, |Xt |= 1000. One hour of processing. (h) T = 120, |Xt |= 1000. Six hours of processing.

Fig. 4 Solution progress using Refinement outside SDDP compared to QP-SDDP after one and six hours of
processing on different instances.
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instances, since the performances depend on the sample paths visited by the algorithms,
which are randomly generated.

• When analyzing the incompetence in the performance of Refinement within SDDP algo-
rithms, and in particular the AP-QP-SDDP algorithm compared to Refinement outside
SDDP algorithms, it is important to note the following:

– In the Refinement outside SDDP algorithms, where we only generate coarse cuts by
implementing the standard SDDP algorithm on the coarse tree T̄ (

�!
N

p
), there is a

criterion by which we measure the added value of these coarse cuts to the current
cost-to-go function approximations ˇ̄Qp

t (·). This is done by keeping track of the lower
bound progress when generating cuts from the coarse tree at every iteration (see
Algorithm 3). Hence, we restrict the algorithm to allocate some of the computational
budget to generating coarse cuts using

�!
N

p
, only if these coarse cuts have significant

added value to them. Otherwise,
�!
N

p
will be refined.

– In the Refinement within SDDP algorithms, the process is continuously attempting
to generate coarse cuts, irrespective of their added value to the decision policy. This
might hinder the performance of the algorithm, especially in the case of AP-QP-
SDDP algorithm, where the existence of any violated cut, regardless of its quality,
is the criterion for going back from stage t to t� 1. This makes refining the coarse
tree (in order to obtain some accuracy) less frequent.

We conclude this subsection by mentioning that, while the coarse cuts generated by the
Refinement within SDDP algorithms do not seem to serve its desired purpose, as far as the
previous analysis goes, this may not necessarily be the case under different time limits or
different integration scheme such as the SPAP-SDDP algorithm that we shall discuss next.

5.4 Computational Experiments on the Adaptive Partition-based SDDP with structured cut
generation policies

In this subsection we report and analyze the results for the performance of the SPAP-SDDP
algorithm presented in Subsection 4.3. In Table 6 we report its performance and compare
it to the standard SDDP algorithm. Additionally, we illustrate a few selected instances in
Figure 6 which compare the performance of the SPAP-SDDP algorithm with that of dif-
ferent Refinement outside SDDP algorithms, as well as the AP-QP-SDDP and QP-SDDP
algorithms.

The overall pattern in the behavior of the SPAP-SDDP algorithm for different number
of stages T , realizations per stage |Xt | and processing time limits, is very similar to the
observations made regarding the Refinement outside SDDP algorithms. We summarize these
observations as follows:

• Except for the first hour of the instance where (T = 120, |Xt |= 1000), the performance
of the SPAP-SDDP algorithm compared to that of the standard SDDP algorithm is con-
sistently improving as T and/or |Xt | increases.

• Similar to the observations made in Subsection 5.2 and except for when (T = 24, |Xt |=
200) and (T = 120, |Xt |= 1000), the overall performances of the SPAP-SDDP algorithm
have the following trend under different processing time limits: as the processing time
limit increases, the relative gap between the lower bounds of the SPAP-SDDP algorithm
and the SDDP algorithm, either deteriorates if it was superior or improves if it was
inferior.
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Instances time limit (hrs) %z z z̃ ±1.96s̃/|S |T |Xt |

24

50
1 -31% 874.4 1655.6 245.0
3 -25% 1000.9 1623.4 256.9
6 -24% 1041.1 1858.7 306.9

200
1 -33% 359.3 874.7 205.3
3 -30% 467.2 1258.2 237.7
6 -30% 502.9 1088.1 213.1

1000
1 -32% 252.6 933.3 190.8
3 -27% 334.4 974.8 203.5
6 -25% 389.1 1060.4 212.3

60

50
1 -33% 7843.9 19615.6 1285.2
3 -28% 9643.6 20420.9 1324.1
6 -26% 10300.5 19652.6 1288.4

200
1 -12% 4946.5 15811.3 1155.7
3 -18% 6424.8 13697.9 1049.0
6 -20% 7021.9 14782.3 1100.5

1000
1 19% 2910.0 15085.2 1122.5
3 7% 4329.2 12978.3 1027.5
6 0% 5049.0 13046.6 1009.6

96

50
1 -19% 17222.6 41401.7 2102.9
3 -20% 20665.7 42076.4 2108.9
6 -19% 22275.2 40545.2 2053.2

200
1 -13% 5666.4 31427.5 1809.0
3 -20% 8499.6 28384.1 1721.1
6 -23% 10422.0 30921.5 1886.0

1000
1 -8% 1814.7 28645.6 1774.6
3 -2% 4603.0 25738.3 1657.9
6 13% 7153.4 26009.3 1657.9

120

50
1 -14% 20403.0 54505.4 2533.5
3 -10% 26882.5 54056.0 2512.3
6 -12% 28206.4 55706.3 2534.5

200
1 -4% 6941.5 43669.3 2357.0
3 -1% 10913.8 40205.1 2173.5
6 -8% 12562.8 38633.8 2114.2

1000
1 -4% 1907.4 38862.3 2148.3
3 39% 5312.6 35381.5 2021.7
6 46% 8058.3 34850.4 2018.4

Table 4 Lower bound z progress and the upper bound estimates z̃ obtained by the AP-QP-SDDP algorithm

(see Section 4.2.1) compared to the QP-SDDP algorithm. %z = 100⇥ (z�zQP�SDDP)

(zQP�SDDP)
and |S |= 10000.
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(a) T = 24, |Xt |= 50. One hour of processing. (b) T = 24, |Xt |= 50. Six hours of processing.

(c) T = 60, |Xt |= 200. One hour of processing. (d) T = 60, |Xt |= 200. Six hours of processing.

(e) T = 96, |Xt |= 200. One hour of processing. (f) T = 96, |Xt |= 200. Six hours of processing.

(g) T = 120, |Xt |= 1000. One hour of processing. (h) T = 120, |Xt |= 1000. Six hours of processing.

Fig. 5 Solution progress using Refinement within SDDP algorithms compared to the corresponding SDDP
algorithm under different tree traversal strategies for one and six hours of processing on different instances.
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Instances time limit (hrs) %z z z̃ ±1.96s̃/|S |T |Xt |

24

50
1 -11% 1140.5 1735.2 276.0
3 -5% 1269.0 1857.0 293.9
6 -5% 1311.2 1599.0 259.1

200
1 -48% 280.8 1081.6 233.8
3 -35% 435.2 1174.6 215.5
6 -21% 568.6 1023.2 199.1

1000
1 -72% 103.0 1129.2 226.2
3 -56% 201.1 1300.6 233.9
6 -44% 291.4 934.3 201.8

60

50
1 -22% 9044.5 19487.6 1236.2
3 -15% 11370.9 19209.6 1241.4
6 -10% 12438.2 18276.1 1261.4

200
1 -66% 1938.7 14873.0 1091.0
3 -40% 4714.3 15367.9 1125.1
6 -33% 5951.7 15317.5 1154.4

1000
1 -97% 82.0 27024.0 1355.5
3 -82% 731.6 13743.6 1071.8
6 -68% 1608.5 14197.0 1163.0

96

50
1 -33% 14248.8 44633.0 2178.3
3 -23% 19767.4 42015.9 2086.7
6 -17% 22779.3 42574.8 2157.2

200
1 -69% 2022.0 34056.0 1956.6
3 -53% 5028.1 34264.9 2097.7
6 -46% 7327.6 34779.9 2169.4

1000
1 -96% 72.2 129691.0 3046.6
3 -91% 424.0 31538.5 1957.0
6 -88% 789.6 32030.4 2017.7

120

50
1 -42% 13862.7 63115.0 2958.8
3 -28% 21327.9 60063.0 2806.7
6 -22% 24935.1 56700.9 2563.5

200
1 -87% 958.9 53364.3 2765.8
3 -60% 4451.9 49244.0 2593.4
6 -47% 7190.1 42010.5 2374.2

1000
1 -100% 1.6 462666.6 4382.6
3 -99% 48.0 140768.3 3341.4
6 -87% 697.9 38660.0 2189.2

Table 5 Lower bound z progress and the upper bound estimates z̃ obtained by the AP-CP-SDDP algorithm
(see Section 4.2.2) compared to the CP-SDDP algorithm. %z = 100⇥ (z�zCP�SDDP)

(zCP�SDDP)
and |S |= 10000.

We attribute the aforementioned observations to the following:

• Most of the reasoning made in Subsection 5.2 regarding the performance of the Refine-
ment outside SDDP algorithms can also be made to the SPAP-SDDP algorithm. This
reasoning being, in large instances, where accuracy is more computationally expensive
to obtain, the computational savings come from the fact that the algorithm makes the
cut generation effort adaptive to the solution progress. Except here, this adaptability is
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not integrated by the value which a coarse cut adds immediately to the lower bound
progress, but instead, by the added value of a coarse cut from a particular stage to the
decision policy at giving point in the processing time, which affects the lower bound
progress implicitly.

• The most notable difference between the performance the SPAP-SDDP algorithm and
the Refinement outside SDDP algorithms is that, the performance of the SPAP-SDDP
algorithm is very stable in outperforming QP-SDDP compared to that of the Refinement
outside SDDP algorithms. That is to say, the SPAP-SDDP algorithm is outperformed by
QP-SDDP in only two out of the twelve instances, unlike the refinement-outside SDDP
strategies which are being outperformed by QP-SDDP in four out of the twelve in-
stances. However, in instances where the refinement-outside SDDP strategy outperform
QP-SDDP, it is by a large margin compared to that of SPAP-SDDP.

• Overall, it is not difficult to see that the SPAP-SDDP algorithm bridges the gap between
the computational ease of generating excess of inaccurate coarse cuts using AP-QP-
SDDP and the computational burden of generating a few, but accurate fine cuts using
the standard SDDP algorithm.

Finally, we also solve one of the smallest instances in our experiments (T = 24 and
|Xt | = 50) with a large time limit (for 48 hours of processing time) to see the convergence
behaviors of different algorithms in terms of the optimality gaps. The refinement strategy
coupled with Assumptions 1 implies that coarser trees have lower expected costs. Hence,
evaluating the policies on coarse trees could yield inconsistent values. To ensure fairness
in comparison, we generate the set S , used to calculate the upper bound estimates, from
the original (fine) scenario tree. In particular, we generate S before running the different
algorithms and use it at the various evaluation points. In Table 7, we report the optimality
gaps obtained by 100⇥ z̃�z

z % at different time limits and in Figure 7, we show the lower
bound progress for 48 hours of processing time. From Table 7, we can see that the opti-
mality gaps get smaller as the processing time increases. We can also see that after 48
hours of processing time, the APEP-SDDP algorithm has the smallest z̃ value, followed by
QP-SDDP, SPAP-SDDP, ITER-SDDP, CP-SDDP, AP-QP-SDDP and finally AP-CP-SDDP.
From Figure 7, we can see that the lower bound value starts to stabilize after, approximately,
six hours of processing time. This, however, is the case for all different algorithms except
for the AP-QP-SDDP algorithm, which makes its progress gradually throughout the entire
processing time.

Summary of numerical experiment results. In sum, based on the aforementioned analysis
on the numerical results, the Refinement outside SDDP algorithms and the SPAP-SDDP
algorithm yield the most significant improvements over the standard SDDP algorithm in
terms of the lower bound progress. We thereby suggest that as a rule of thumb, integrat-
ing the adaptive partition-based strategies into the SDDP algorithm should be done via the
Refinement outside SDDP approach, and structured policies cut generation should be pur-
sued (like the SPAP-SDDP algorithm) if any structure can be exploited from the underlying
problem instance. The collections of computational tools that we propose and develop in this
paper can be potentially useful for use in any SDDP related problem instances to make dif-
ferent computational trade-offs, which may enable further exploitation of specific problem
structures for better computational performances. One potential drawback of the proposed
approach is that, when a nontrivial sufficient partition or even locally sufficient partition is
hard to obtain due to high variance of the random vectors in the problem or the high dimen-
sionality/complexity of the dual polyhedron, the adaptive partition-based SDDP becomes a
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Instances time limit (hrs) %z z z̃ ±1.96s̃/|S |T |Xt |

24

50
1 -7% 1180.9 1649.6 272.4
3 -4% 1287.8 1504.2 246.6
6 -4% 1324.8 1812.8 281.5

200
1 -3% 522.2 1179.9 242.5
3 -3% 642.6 1183.3 225.4
6 -4% 690.4 923.2 191.5

1000
1 18% 440.1 844.4 202.5
3 13% 519.7 1134.3 214.7
6 11% 572.4 995.6 216.6

60

50
1 1% 11757.3 20139.4 1308.5
3 1% 13522.6 19116.8 1251.3
6 2% 14085.0 18412.3 1252.6

200
1 10% 6237.5 15287.1 1104.7
3 6% 8347.9 14402.7 1087.7
6 2% 8967.3 14749.8 1108.9

1000
1 16% 2846.7 14412.9 1092.0
3 19% 4816.3 12469.7 1014.8
6 8% 5456.1 14169.9 1131.1

96

50
1 4% 22111.0 42287.9 2162.1
3 1% 26061.5 41698.4 2102.4
6 0% 27677.1 40104.2 2047.0

200
1 23% 8054.0 33350.5 1960.7
3 12% 11875.4 28794.3 1747.2
6 4% 13973.7 27844.1 1732.4

1000
1 27% 2498.1 30230.6 1752.4
3 22% 5706.1 26405.8 1652.9
6 24% 7845.1 28220.9 1692.9

120

50
1 5% 25145.1 56949.2 2647.2
3 5% 31202.0 54784.6 2525.1
6 3% 33063.0 54943.4 2577.5

200
1 19% 8642.8 42736.5 2333.2
3 15% 12648.4 42767.0 2304.3
6 14% 15589.7 39099.1 2195.9

1000
1 -3% 1938.2 43857.0 2444.0
3 31% 5027.5 36974.5 2099.9
6 23% 6812.7 36372.2 2148.6

Table 6 Lower bound z progress and the upper bound estimates z̃ obtained by the SPAP-SDDP algorithm

(see Section 4.3) compared to the QP-SDDP algorithm. %z = 100⇥ (z�zQP�SDDP)

(zQP�SDDP)
and |S |= 10000.
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(a) T = 24, |Xt |= 50. One hour of processing. (b) T = 24, |Xt |= 50. Six hours of processing.

(c) T = 60, |Xt |= 200. One hour of processing. (d) T = 60, |Xt |= 200. Six hours of processing.

(e) T = 96, |Xt |= 200. One hour of processing. (f) T = 96, |Xt |= 200. Six hours of processing.

(g) T = 120, |Xt |= 1000. One hour of processing. (h) T = 120, |Xt |= 1000. Six hours of processing.

Fig. 6 Solution progress using SPAP-SDDP algorithm compared to Refinement outside SDDP algorithms,
AP-QP-SDDP and QP-SDDP after one and the six hours of processing on different instances.
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1hr 3hrs 6hrs 12hrs 24hrs 48hrs
QP-SDDP 19.8% 11.7% 9.7% 4.5% 1.2% -1.6%
CP-SDDP 81.6% 28.2% 17.7% 11.1% 7.2% 2.9%
APEP-SDDP 27.4% 9.8% 6.9% 2.6% 0.8% -2.0%
ITER-SDDP 29.7% 15.1% 9.3% 5.3% 2.3% -1.1%
AP-QP-SDDP 89.7% 61.2% 52.2% 37.9% 22.2% 17.8%
AP-CP-SDDP 42.2% 30.0% 19.6% 10.0% 5.8% 3.2%
SPAP-SDDP 29.4% 20.8% 14.3% 8.7% 3.2% -1.5%

Table 7 The optimality gaps obtained by 100⇥ z̃�z
z and |S |= 10000 at different time limits on the instance

with T = 24 and |Xt |= 50.

Fig. 7 Solution progress of different algorithms for 48 hours of processing time on the instance with T = 24
and |Xt |= 50.

standard SDDP rather quickly, in which case it may not worth the extra work generating all
different variants of partition-based cuts.

6 Conclusions

In this study, we have investigated various ways to enhance the performance of the SDDP
algorithm in terms of its lower bound progress by employing various inexact cut generations
and scenario tree traversal strategies. Specifically, we have integrated the adaptive partition-
based approaches, which have been shown to be effective in two-stage stochastic programs,
into the SDDP algorithm for multi-stage stochastic programs in two different manners: per-
forming partition refinement within the SDDP and outside the SDDP algorithm. In addition,
we have proposed a structured cut generation strategy across all stages, which takes advan-
tage of the underlying seasonal uncertainty structure in the class of problems that we use as
the test instances.

We have conducted extensive numerical experiments to empirically validate the effec-
tiveness of the proposed algorithms and compare them to the standard SDDP algorithm.
From the results, we can see that the refinement outside SDDP algorithms outperform the
refinement within SDDP algorithms. This is likely to be due to the fact that, the refinement
outside SDDP algorithms generate the coarse cuts (using the partitions) while taking into
consideration how much each cut can improve the decision policy. Unlike the refinement
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within SDDP algorithms which continuously attempt to generate coarse cuts – irrespective
of their added value to the decision policy. Moreover, we have found that the effectiveness
of different adaptive partition-based SDDP algorithms were more evident in instances with
a large number of stages and scenarios. This, indeed, testified to the competitive nature of
the adaptive partition-based approach in solving large-scale problems. Nevertheless, we note
that none of the proposed algorithms or the standard SDDP did converge in the allotted time
frame within a reasonable tolerance, especially for the large-scale instances.

We have identified several directions to pursue for future research. First, it is of interest
to investigate how the proposed algorithms can be applied to address more challenging prob-
lem classes such as distributionally robust multistage stochastic programs and multistage
stochastic integer programs. Second, from an algorithmic perspective it is worth investigat-
ing novel cut generation strategies that are adaptive to the underlying problem structure such
as the decision policy structures and/or uncertainty structures during the solution process, as
opposed to imposing these structures a priori as we did in the SPAP-SDDP algorithm.
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A Summary of Notation

Notation Description
T terminal stage in the planning horizon
t a stage in the planning horizon and t 2 {1,2, . . . ,T}
xt a random vector in stage t 2 {1,2, . . . ,T}
x[t] the history of the random vector xt up to stage t
Xt the support of the random vector xt in stage t
Nt set of the scenario indexes in stage t
pk

t probability of scenario k 2 {1,2, . . . ,Nt} in stage t
Nt a partition of the scenario set Nt in stage t
N a sequence of partitions for every stage t 2 1, . . . ,T
�!
N

p
a partition constructed after taking p sample paths

Lt the number of clusters in Nt
P

`
t a scenario cluster P

`
t ✓Nt , 8 j 2 {1,2, . . . ,Lt} in stage t

x̄ `
t the realization of xt chosen to represent cluster P

`
t in stage t

p̄k
t the probability weight associated with the cluster P

`
t in stage t

N
0

t refined partition of Nt in stage t
P
0
t refined cluster of Pt in stage t

(ct ,Bt ,At ,bt) cost vector and coefficients parameters in stage t
Qt(·) value function in stage t
Qt(·) a lower approximation for the value function Qt(·) in stage t
Qt(·),Q̄t(·) Expected cost-to-go function obtained by the scenario/partition-based formulation
Q̌t(·), ˇ̄Qt(·) Approximation of the expected cost-to-go function obtained by the scenario/partition-

based formulation
Q̌p

t (·), ˇ̄Qp
t (·) Approximation of the expected cost-to-go function obtained by the scenario/partition-

based formulation after p iterations
x̌t a candidate solution at stage t
P the dual feasible region of the subproblem in each stage
P⇤t (xt ,xt) the set of optimal dual solutions to the stage t subproblem
pt optimal dual vector associated with the constraint At xt = bt �Bt xt�1 at stage t
qt(·), q̄t(·) cutting/supporting hyperplane for Qt(·),Q̄t(·)
Jt collection of cutting/supporting hyperplanes for Qt(·)
rt the maximizer of the cutting/supporting hyperplanes in Jt at stage t
bt+1,at coefficients of the cutting/supporting qt(·)
b̄t+1, āt coefficients of the cutting/supporting q̄t(·)
z lower bound for the optimal value of the optimal value z(·)
ẑ unbiased estimator for the upper bound of the optimal value of the optimal value z(·)
z̃ the sample average of the optimal value z(·)
s2 the sample variance of the optimal value z(·)
S set of sample paths (used for estimating upper bounds)
T a scenario tree with |Xt | realization of xt at every stage t
T̄ (N ) a coarse scenario tree induced by the sequence of partitions N

e user-specified tolerance parameter
n user-specified stability test parameter
n user-specified termination parameter used in refinement outside SDDP algorithms

Table 8 Summary of notations.

B Proof of Proposition 1

Proposition 2 Convergence of the partition-based SDDP algorithms. Suppose that Assumptions 1–4 hold,
sampling is done with replacement in the SDDP algorithm, and the employed partition refinement rule ensures
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that the number of clusters Lt of the refined partition strictly increases whenever ˇ̄Qt(x̌t�1) 6= E[Qt(x̌t�1,xt)]
(see definitions in equations (16), (17), (22) and (25)) for any stage t unless Lt = Nt . Then w.p.1 after a finite
number of forward and backward steps, the algorithm yields an optimal policy for (2).

Proof Let us first consider the trivial but sufficient partition with all singletons N
max

t = {{k}k2Nt } and
ˇ̄Qmax

t (·) be its respective approximation of Qt(·). By definition, we have that ˇ̄Qmax
t (·) = Q̌t(·). Hence, if Nt =

N
max

t for every stage t = 2, . . . ,T then the partition-based variant of the SDDP algorithm is equivalent to
the standard SDDP algorithm and the classical convergence proofs of SDDP apply (see, e.g., [36, Proposition
3.1]).
Let us now consider the situation where Nt 6= N

max
t . Our goal is to show that for any arbitrary sample path

x s = (x s2
2 , . . . ,x sT

T ), the forward/backward pass of the adaptive partition-based SDDP algorithms will either
yield a partition Nt = N

max
t , or a sufficient partition such that ˇ̄Qt(·) = Q̌t(·), 8t = 2, . . . ,T along sample

path x s. In both cases, employing the adaptive partition-based SDDP algorithms over the sample path x s is
equivalent to the standard SDDP algorithm. We show this by using a backward induction argument as follows.

– Let x̌t = x̌t(x st
t ),8t = 1, . . . ,T �1 be the candidate solution induced by the approximate cost-to-go func-

tion ˇ̄Qt(·) along x s. At stage t = T the candidate solution x̌T�1 is evaluated at every partition-based
subproblem (21) and by Lemma 1 we know that, if there exists an optimal ˇ̄p`

T 2 \k2P`
T

P⇤(x̌T�1, x̄ k
T )

then NT is sufficient and ˇ̄QT (x̌T�1) = Q̌T (x̌T�1). Otherwise, ˇ̄QT (x̌T�1) < Q̌T (x̌T�1) and NT needs
to be refined. The case where ˇ̄QT (x̌T�1) = Q̌T (x̌T�1) is degenerate and hence, we focus on the case
where ˇ̄QT (x̌T�1) < Q̌T (x̌T�1). After refining NT using the absolute rule, a cut can be generated to the
subproblem at stage t = T �1 using the refined partition N

0
T whose size L0t > Lt . Then an updated can-

didate solution x̌0T�1 can be obtained by solving QT�1(x̌T�2,x s
T�1). If there still exists a positive gap

between ˇ̄Q0T (·) and Q̌T (·) when evaluated at the updated candidate solution x̌0T�1, the same process can
be repeated again until ˇ̄Q0T (·) = Q̌T (·) for all the candidate solutions encountered or N

0
T = N

max
T .

– Suppose now that ˇ̄Qt(x̌t�1)= Q̌t(x̌t�1) or Nt =N
max

t for all t = T�1, . . . ,t+1. At time t = t , similarly
to the case when t = T , the candidate solution x̌t�1 is evaluated at every partition-based subproblem (24)
and if Nt is not sufficient, the absolute refinement procedure is followed until ˇ̄Q0t (x̌t�1) = Q̌t (x̌t�1) or
N
0

t = N
max

t .

Since (by assumption) the sampling is done with replacement, we are guaranteed that each sample path
x s is sampled for infinitely many times with probability 1. Therefore, with probability 1, after a finite number
of iterations, for any arbitrary sample path x s, ˇ̄Qt(·) = Q̌t(·) or Nt = N

max
t ,8t = 2, . . . ,T . At that point,

employing the adaptive partition-based SDDP algorithms over sample path x s is equivalent to employing
the standard SDDP algorithm, and the convergence of the adaptive partition-based SDDP algorithms can be
subsequently proved by applying the convergence proof of the standard SDDP algorithm. ⇤


