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Abstract—High-throughput sequencing is widely used for
strain detection and characterization of antibiotic resistance in
microbial metagenomic samples. Current analytical tools use
curated antibiotic resistance gene (ARG) databases to classify
individual sequencing reads or assembled contigs. However,
identifying ARGs from raw read data can be time consuming
(especially if assembly or alignment is required) and challenging,
due to genome rearrangements and mutations. Here, we present
the k-mer-based antibiotic gene resistance analyzer (KARGA), a
multi-platform Java toolkit for identifying ARGs from
metagenomic short read data. KARGA does not perform
alignment; it uses an efficient double-lookup strategy, statistical
filtering on false positives, and provides individual read
classification as well as covering of the database resistome. On
simulated data, KARGA’s antibiotic resistance class recall is
99.89% for error/mutation rates within 10%, and of 83.37% for
error/mutation rates between 10% and 25%, while it is 99.92% on
ARGs with rearrangements. On empirical data, KARGA provides
higher hit score (>1.5-fold) than AMRPlusPlus, DeepARG, and
MetaMARC. KARGA has also faster runtimes than all other tools
(2x faster than AMRPlusPlus, 7x than DeepARG, and over 100x
than MetaMARC). KARGA is available under the MIT license at
https://github.com/DatalntellSystLab/KARGA.
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I. INTRODUCTION

Antibiotic resistance is a worldwide public health and
environmental health concern, because it reduces therapeutic
options in present-day infections and in future outbreaks caused
by resistant strains [1]. High-throughput sequencing is widely
used for strain detection and characterization of antimicrobial
resistance in microbial metagenomic samples [2], [3]. Current
analytical tools use curated antibiotic resistance gene (ARG)
databases to classify individual sequencing reads or assembled
contigs [4]. However, identifying ARGs from raw read data can
be time consuming (especially if assembly or alignment is
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required) and challenging, due to genome rearrangements and
mutations [5]. The translational utility —in terms of clinical
point-of-care or veterinary employment— of ARG classification
tools for high-throughput sequencing relies on comprehensive
databases, regularly updated to include new resistance genes,
and on accurate, fast turnaround reporting.

A. Curated, Reference ARG Databases

MEGARes (v.2.0) [6] is one of the largest (~8,000 gene
entries), manually-curated ARG databases currently maintained.
MEGARes utilizes a tree-like ontology to annotate ARGs, with
a four-level hierarchy of antibiotic resistance (type, class,
mechanism, and group). Other ARG databases include the
Comprehensive Antibiotic Resistance Database (CARD) [7],
which employs a different, non-tree-like ontology (~4,500
entries), and the Antibiotic Resistance Genes Database (ARDB)
[8], which is no longer maintained and has been later
incorporated into CARD.

B. ARG Classification Tools

The tools that are able to analyze directly short read data,
without requiring first an assembly step, include AMRPIlusPlus
(v.2.0) [9], DeepARG [10], KmerResistance [11], and Meta-
MARC [12]. AMRPlusPlus aligns reads to MEGARes using
BWA and then aggregates results for each ARG, providing
detailed coverage, depth, and rarefaction support statistics.
DeepARG also is alignment-based, but uses the CARD ontology
(plus other ancillary data sources), translates reads into proteins
via PRODIGAL, aligns them with DIAMOND, and then
predicts ARGs using a deep learning classifier. KmerResistance
is instead alignment-free, uses ARDB, and maps the ARDB
resistome through k-mer (short sequences of fixed & length)
matching. Meta-MARC uses a hidden Markov model (HMM)
approach on ARG clusters derived from MEGARes.

C. Our Contribution

We present the k-mer-based antibiotic gene resistance
analyzer (KARGA), a multi-platform Java toolkit for identifying



ARGs from metagenomics short read data. KARGA is
alignment-free, utilizes hash-based k-mer mapping, providing
faster runtimes and more ARG classification robustness with
respect to genome rearrangements compared to alignment-based
or HMM methods. Differently from KmerResistance, which is
k-mer-based, KARGA employs an efficient double-lookup
strategy, a statistical test for handling false positives upon the
choice of k, a weighting of ambiguous k-mers, and a much
larger, up-to-date, maintained reference ARG database.

II. METHODS

A. Strategy for K-mer Matching and ARG Annotation

KARGA extracts all distinct k-mers (both in forward- and
reverse-strand) from the MEGARes database and places them
into lookup tables as keys, storing their ARG annotations (gene
identifier and type/class/group/mechanism information) in a
one-to-many relation. Complementarily, each ARG entry is
placed in another one-to-many lookup relation where now all k-
mers and their frequencies are stored with respect to ARG keys.

KARGA processes reads individually and extracts k-mers,
mapping them first on to the k~~-mer-ARG lookup relation. If a &-
mer maps on to multiple ARGs, that hit is weighted as a fraction
of the number of ARGs found. After mapping all k-mers,
KARGA assigns the type/class/group/mechanism of a read on
the basis of the most frequent, weighted ARG hits. Note that this
voting is independent at each level of the ontology hierarchy.
After classifying all reads, KARGA summarizes the nucleotide
coverage and the median k-mer depth for each ARG entry using
the complementary lookup ARG-k-mer relation. Of note,
KARGA does not provide classification for housekeeping genes
where single-point mutations are responsible for resistance;
these genes are removed from the MEGARes database before
creation of lookup tables.

B. Statistical Assessment of K-mer Hits

Since the probability that a random A-mer matches a given
gene is not null, there can be cases when reads that do not belong
to ARGs are mistakenly mapped because of random matches. In
order to avoid this, KARGA calculates the empirical count
distribution D of randomly generated k-mers within the
reference ARG database, approximating the theoretical
Markovian distribution [13]. We then set a threshold (99™
percentile) to filter out reads whose kA-mer hit number is below
the expected count in D.

C. Experimental Setup and Performance Assessment

We validate and test KARGA on synthetic, semi-synthetic
and real-world experimental datasets. The synthetic
metagenomic data designed for validation include: (i) reads
drawn from MEGARes genes with mutations/errors up to a 25%
rate; (ii)) reads from MEGARes with a two-point
transposition/transversion of half-read length size; (iii) non-
AMR reads, randomly generated. We evaluate KARGA for
different values of &, since k can influence the false positive rate
with respect to non-ARG sequences and the false negative rate
with respect to ARG sequences that bear mutations, gene
rearrangements, or sequencing errors.

The semi-synthetic includes bacterial genomes from the
Pathosystems Resource Integration Center (PATRIC) [14], for

which an available antibiogram test is available, and thus
information on antibiotic resistance at the molecular level
(which can be mapped to the MEGARes ontology). We select
both antibiotic-resistant (at least one molecule in the class) and
antibiotic-susceptible genomes and simulate high-throughput
sequencing data. The in silico datasets are generated using
InSilicoSeq [15] parameterized for NovaSeq (Illumina, Inc.).
The real-world datasets are functional metagenomics
experiments of cultured bacteria that survived on an antibiotic-
laden medium, named ‘Pediatric’ and ‘Soil’ from the sample
sources  (Genbank  accessions = PRJNA244044  and
PRINA215106) [16], [17]. Note that for both datasets it is not
assured that an ARG is present in each read, so the resistance is
known only at the whole sample level. Also, not all antibiotic
classes, mechanisms or groups are represented.

On both the semi-synthetic and real-world datasets, we
compare KARGA with state-of-the-art tools —AMRPIlusPlus
(v.2.0), DeepARG, and Meta-MARC- in terms of recall, hit rate,
difference between resistance and susceptible hits, and runtime.

D. Implementation and Availability

KARGA is implemented in Java™ (www.java.com) and
compiled using Oracle Corporation’s Java Development Kit
v.15, 64-bit. MEGARes (v.2.0) is used by default, but any other
database consistent with the MegaRES ontology and in FASTA
format can be used. A HashMap indexes all distinct k-mers
found across all ARGs, and each value points to an ArrayList of
ARG identifiers where that k-mer is found. Complementarily,
another HashMap links ARG identifiers with a complex object
that stores one HashMap of distinct k-mers found in that ARG
with their frequency, and another HashMap that is to be filled
with potential hits from the read set.

The read file is parsed sequentially as a plain or a gzipped
FASTQ, and each read is checked for consistency, flagging all
non-ACGT characters as ‘N’. A preliminary scan of the first
50,000 reads assesses average read length and calculates the
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Fig. 1. Empirical distribution of counts for random k-mers (k=3...41)
found in the MEGARes database, estimated on 200,000 randomizations.
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Fig. 2. Recall performance of KARGA on synthetic short read metagenomics data (200,000 reads, 151 nucleotides) containing ARGs with
mutations/sequencing errors up to 25%. Results are stratified by MEGARes annotation hierarchy (class/mechanism/group) and by value of £.

frequency threshold of A-mer hits for random reads. Then, each
read is divided into k-mers and each k-mer is queried against the
ARG HashMaps. If the total number of A-mer hits is above the
false positive threshold, the program outputs the ARG
classification for each hierarchy level. The level-specific k-mer
hits and weights are stored in other read-specific HashMaps. If
the resistome mapper module is invoked, then the program
outputs the percentage of gene length spanned by mapping reads
and the median k-mer coverage for each ARG.

The software and the source code are available under the
MIT license at https://github.com/DatalntellSystLab/KARGA.

III. RESULTS

The empirical count distribution analysis of k-mer hits for
NovaSeq-like data (average read length of 151) on MEGARes
(v.2.0) indicates that k£ values of 11 and above provide very low
probability of finding a random k-mer once or more in the
database. Fig. 1 plots the count distribution percentiles
calculated over 250,000 random strings; the curve that divides
the top from the bottom distribution corresponds to A=11.

The synthetic validation dataset includes 200,000 reads
(each 151 nucleotides long), of which 10% are non-ARG
(random), 90% are ARGs with mutations/errors, and the
remaining 10% are ARGs with gene rearrangement. The
statistical test to discard non-ARG reads works as expected. Out
of 10,000 randomly simulated reads, less than 1% are
mistakenly assigned. The false positive rate decreases when k
increases, and no false positives are found for any & larger than
19. Classification results for the ARG reads with
mutations/errors are shown in Fig. 2, stratified by & value and
antibiotic resistance hierarchy. Overall, there is a nonlinear,
sigmoid-like decrease in performance when the error rate
increases. The best k is 13 (relative to a read length of 151), with
an average class recall of 99.89% for error/mutation rates within
10%, and of 83.37% for error/mutation rates between 10% and
25%. However, any value between 13 and 21 yields results
above the average across all k values being tested, i.e. 11 to 41.
On the gene-rearranged ARG reads, KARGA shows high
robustness: on average, 99.92%, 99.66%, and 98.52% of the

reads are assigned to the correct class, group, and mechanism,
respectively. These performance values are stable across all &
values, with no evidence of slope due to £.

On the semi-synthetic PATRIC dataset (Fig.3), the method
with the highest hit score (resistance hits minus susceptible hits)
is KARGA, with a median (IQR) 0of 415 (193-672), followed by
MetaMARC with 284 (71-454), DeepARG with 219 (39-454),
and AMRPIlusPlus with 46 (-262-209). On the experimental
Pediatric and Soil datasets, KARGA’s average hit rate is 5.1%
whereas AMRPlusPlus yields 4.2%, DeepARG 3.7%, and
MetaMARC 6.4%. Of note, MetaMARC has been calibrated on
the Pediatric/Soil data in its original paper, so its performance
cannot be considered external validation as with the other tools.

In terms of runtimes, we tested the software on a 4-cores
AMD Opteron 6378, 2.4GHz, 32GB of RAM, and KARGA is
faster than all other software across all file sizes, as shown in
Table 1, being on average 2x faster than AMRPIlusPlus, 7x faster
than DeepARG, and over 100x faster than MetaMARC.

TABLE L RUNTIME BENCHMARKS (HH:MM:SS) COMPARING KARGA
WITH AMRPLUSPLUS, DEEPARG, AND METAMARC.
File | peads | KARGA AMR | 1y b ARG | MetaMARC
size PlusPlus
1GB 1.6M 0:08:27 00:21:19 00:53:01 16:26:27
2GB 3.1M 0:15:32 00:49:40 01:38:55 >24h
5GB 7.9M 0:38:11 01:35:47 03:41:06 >24h
10GB | 15.8M 1:38:20 2:48:43 11:43:16 >24h

IV. DISCUSSION

KARGA demonstrates high recall and hit rate in identifying
ARGs from high-throughput, short read metagenomics data. It
is highly robust with gene rearrangement and with genetic
divergence at lower k values, yet maintaining a low false
positive rate thanks to the statistical filtering. Its hit rate on semi-
synthetic and empirical data is higher than all other methods.
Only in one real-world dataset KARGA is second to
MetaMARC; however that dataset was used for calibration, and
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Fig. 3. Resistance and susceptibility hit rate of KARGA, AMRPlusPlus, DeepARG and MetaMARC on semi-synthetic short read metagenomics data
(~250,000 reads, 151 nucleotides) drawn from the PATRIC repository, stratified by antibiotic class.

on large experimental data MetaMARC is practically unusable
due to extremely long execution times. In addition to be the most
accurate, KARGA is the fastest of all off-the-shelf ARG
classification software tested here.

This work has some limitations. First, we do not classify
antibiotic resistance in housekeeping genes, since resistance in
these genes is determined by single nucleotide polymorphisms
(SNPs). However, such feature could be added by requiring
always the presence of k-mers containing the SNPs in addition
to non-SNP-containing k-mer hits. Second, the data structures
we implement are standard and can have high memory
overhead. We use String types for k-mers, but they can be
transformed, processed and stored in much more efficient data
structures (e.g. using bit maps, Bloom filters and minimizers)
[18]. Finally, KARGA could be parallelized: each read can be
processed independently from the others and the k-mer-ARG
HashMap is read-only; however, the ARG-k-mer HashMap
would need to be updated concurrently.

In conclusion, KARGA is a fast, reliable and flexible ARG
classifier that can be employed in multiple contexts; its multi-
platform implementation makes it also ideal for mobile
bioinformatics applications, e.g. Oxford’s Nanopore sequencing
data generated by MinlON (with the MkIC), and the
smartphone-pluggable SmidgION [19].
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