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Abstract—High-throughput sequencing is widely used for 

strain detection and characterization of antibiotic resistance in 

microbial metagenomic samples. Current analytical tools use 

curated antibiotic resistance gene (ARG) databases to classify 

individual sequencing reads or assembled contigs. However, 

identifying ARGs from raw read data can be time consuming 

(especially if assembly or alignment is required) and challenging, 

due to genome rearrangements and mutations. Here, we present 

the k-mer-based antibiotic gene resistance analyzer (KARGA), a 

multi-platform Java toolkit for identifying ARGs from 

metagenomic short read data. KARGA does not perform 

alignment; it uses an efficient double-lookup strategy, statistical 

filtering on false positives, and provides individual read 

classification as well as covering of the database resistome. On 

simulated data, KARGA’s antibiotic resistance class recall is 

99.89% for error/mutation rates within 10%, and of 83.37% for 

error/mutation rates between 10% and 25%, while it is 99.92% on 

ARGs with rearrangements. On empirical data, KARGA provides 

higher hit score (≥1.5-fold) than AMRPlusPlus, DeepARG, and 

MetaMARC. KARGA has also faster runtimes than all other tools 

(2x faster than AMRPlusPlus, 7x than DeepARG, and over 100x 

than MetaMARC). KARGA is available under the MIT license at 

https://github.com/DataIntellSystLab/KARGA.  
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metagenomics, antibiotic resistance, k-mer, ontology, classification  

I. INTRODUCTION 

Antibiotic resistance is a worldwide public health and 
environmental health concern, because it reduces therapeutic 
options in present-day infections and in future outbreaks caused 
by resistant strains [1]. High-throughput sequencing is widely 
used for strain detection and characterization of antimicrobial 
resistance in microbial metagenomic samples [2], [3]. Current 
analytical tools use curated antibiotic resistance gene (ARG) 
databases to classify individual sequencing reads or assembled 
contigs [4]. However, identifying ARGs from raw read data can 
be time consuming (especially if assembly or alignment is 

required) and challenging, due to genome rearrangements and 
mutations [5]. The translational utility –in terms of clinical 
point-of-care or veterinary employment– of ARG classification 
tools for high-throughput sequencing relies on comprehensive 
databases, regularly updated to include new resistance genes, 
and on accurate, fast turnaround reporting. 

A. Curated, Reference ARG Databases 

MEGARes (v.2.0) [6] is one of the largest (~8,000 gene 
entries), manually-curated ARG databases currently maintained. 
MEGARes utilizes a tree-like ontology to annotate ARGs, with 
a four-level hierarchy of antibiotic resistance (type, class, 
mechanism, and group). Other ARG databases include the 
Comprehensive Antibiotic Resistance Database (CARD) [7], 
which employs a different, non-tree-like ontology (~4,500 
entries), and the Antibiotic Resistance Genes Database (ARDB) 
[8], which is no longer maintained and has been later 
incorporated into CARD. 

B. ARG Classification Tools 

The tools that are able to analyze directly short read data, 
without requiring first an assembly step, include AMRPlusPlus 
(v.2.0) [9], DeepARG [10], KmerResistance [11], and Meta-
MARC [12]. AMRPlusPlus aligns reads to MEGARes using 
BWA and then aggregates results for each ARG, providing 
detailed coverage, depth, and rarefaction support statistics. 
DeepARG also is alignment-based, but uses the CARD ontology 
(plus other ancillary data sources), translates reads into proteins 
via PRODIGAL, aligns them with DIAMOND, and then 
predicts ARGs using a deep learning classifier. KmerResistance 
is instead alignment-free, uses ARDB, and maps the ARDB 
resistome through k-mer (short sequences of fixed k length) 
matching. Meta-MARC uses a hidden Markov model (HMM) 
approach on ARG clusters derived from MEGARes.  

C. Our Contribution 

We present the k-mer-based antibiotic gene resistance 
analyzer (KARGA), a multi-platform Java toolkit for identifying 
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ARGs from metagenomics short read data. KARGA is 
alignment-free, utilizes hash-based k-mer mapping, providing 
faster runtimes and more ARG classification robustness with 
respect to genome rearrangements compared to alignment-based 
or HMM methods. Differently from KmerResistance, which is 
k-mer-based, KARGA employs an efficient double-lookup 
strategy, a statistical test for handling false positives upon the 
choice of k, a weighting of ambiguous k-mers, and a much 
larger, up-to-date, maintained reference ARG database. 

II. METHODS 

A. Strategy for K-mer Matching and ARG Annotation 

KARGA extracts all distinct k-mers (both in forward- and 
reverse-strand) from the MEGARes database and places them 
into lookup tables as keys, storing their ARG annotations (gene 
identifier and type/class/group/mechanism information) in a 
one-to-many relation. Complementarily, each ARG entry is 
placed in another one-to-many lookup relation where now all k-
mers and their frequencies are stored with respect to ARG keys. 

KARGA processes reads individually and extracts k-mers, 
mapping them first on to the k-mer-ARG lookup relation. If a k-
mer maps on to multiple ARGs, that hit is weighted as a fraction 
of the number of ARGs found. After mapping all k-mers, 
KARGA assigns the type/class/group/mechanism of a read on 
the basis of the most frequent, weighted ARG hits. Note that this 
voting is independent at each level of the ontology hierarchy. 
After classifying all reads, KARGA summarizes the nucleotide 
coverage and the median k-mer depth for each ARG entry using 
the complementary lookup ARG-k-mer relation. Of note, 
KARGA does not provide classification for housekeeping genes 
where single-point mutations are responsible for resistance; 
these genes are removed from the MEGARes database before 
creation of lookup tables. 

B. Statistical Assessment of K-mer Hits 

Since the probability that a random k-mer matches a given 
gene is not null, there can be cases when reads that do not belong 
to ARGs are mistakenly mapped because of random matches. In 
order to avoid this, KARGA calculates the empirical count 
distribution D of randomly generated k-mers within the 
reference ARG database, approximating the theoretical 
Markovian distribution [13]. We then set a threshold (99th 
percentile) to filter out reads whose k-mer hit number is below 
the expected count in D. 

C. Experimental Setup and Performance Assessment 

We validate and test KARGA on synthetic, semi-synthetic 
and real-world experimental datasets. The synthetic 
metagenomic data designed for validation include: (i) reads 
drawn from MEGARes genes with mutations/errors up to a 25% 
rate; (ii) reads from MEGARes with a two-point 
transposition/transversion of half-read length size; (iii) non-
AMR reads, randomly generated. We evaluate KARGA for 
different values of k, since k can influence the false positive rate 
with respect to non-ARG sequences and the false negative rate 
with respect to ARG sequences that bear mutations, gene 
rearrangements, or sequencing errors. 

The semi-synthetic includes bacterial genomes from the 
Pathosystems Resource Integration Center (PATRIC) [14], for 

which an available antibiogram test is available, and thus 
information on antibiotic resistance at the molecular level 
(which can be mapped to the MEGARes ontology). We select 
both antibiotic-resistant (at least one molecule in the class) and 
antibiotic-susceptible genomes and simulate high-throughput 
sequencing data. The in silico datasets are generated using 
InSilicoSeq [15] parameterized for NovaSeq (Illumina, Inc.). 
The real-world datasets are functional metagenomics 
experiments of cultured bacteria that survived on an antibiotic-
laden medium, named ‘Pediatric’ and ‘Soil’ from the sample 
sources (Genbank accessions PRJNA244044 and 
PRJNA215106) [16], [17]. Note that for both datasets it is not 
assured that an ARG is present in each read, so the resistance is 
known only at the whole sample level. Also, not all antibiotic 
classes, mechanisms or groups are represented. 

On both the semi-synthetic and real-world datasets, we 
compare KARGA with state-of-the-art tools –AMRPlusPlus 
(v.2.0), DeepARG, and Meta-MARC– in terms of recall, hit rate, 
difference between resistance and susceptible hits, and runtime. 

D. Implementation and Availability 

KARGA is implemented in Java™ (www.java.com) and 
compiled using Oracle Corporation’s Java Development Kit 
v.15, 64-bit. MEGARes (v.2.0) is used by default, but any other 
database consistent with the MegaRES ontology and in FASTA 
format can be used. A HashMap indexes all distinct k-mers 
found across all ARGs, and each value points to an ArrayList of 
ARG identifiers where that k-mer is found. Complementarily, 
another HashMap links ARG identifiers with a complex object 
that stores one HashMap of distinct k-mers found in that ARG 
with their frequency, and another HashMap that is to be filled 
with potential hits from the read set. 

The read file is parsed sequentially as a plain or a gzipped 
FASTQ, and each read is checked for consistency, flagging all 
non-ACGT characters as ‘N’. A preliminary scan of the first 
50,000 reads assesses average read length and calculates the 

 

Fig. 1. Empirical distribution of counts for random k-mers (k=3…41) 

found in the MEGARes database, estimated on 200,000 randomizations. 



frequency threshold of k-mer hits for random reads. Then, each 
read is divided into k-mers and each k-mer is queried against the 
ARG HashMaps. If the total number of k-mer hits is above the 
false positive threshold, the program outputs the ARG 
classification for each hierarchy level. The level-specific k-mer 
hits and weights are stored in other read-specific HashMaps. If 
the resistome mapper module is invoked, then the program 
outputs the percentage of gene length spanned by mapping reads 
and the median k-mer coverage for each ARG. 

The software and the source code are available under the 
MIT license at https://github.com/DataIntellSystLab/KARGA. 

III. RESULTS 

The empirical count distribution analysis of k-mer hits for 
NovaSeq-like data (average read length of 151) on MEGARes 
(v.2.0) indicates that k values of 11 and above provide very low 
probability of finding a random k-mer once or more in the 
database. Fig. 1 plots the count distribution percentiles 
calculated over 250,000 random strings; the curve that divides 
the top from the bottom distribution corresponds to k=11. 

The synthetic validation dataset includes 200,000 reads 
(each 151 nucleotides long), of which 10% are non-ARG 
(random), 90% are ARGs with mutations/errors, and the 
remaining 10% are ARGs with gene rearrangement. The 
statistical test to discard non-ARG reads works as expected. Out 
of 10,000 randomly simulated reads, less than 1% are 
mistakenly assigned. The false positive rate decreases when k 
increases, and no false positives are found for any k larger than 
19. Classification results for the ARG reads with 
mutations/errors are shown in Fig. 2, stratified by k value and 
antibiotic resistance hierarchy. Overall, there is a nonlinear, 
sigmoid-like decrease in performance when the error rate 
increases. The best k is 13 (relative to a read length of 151), with 
an average class recall of 99.89% for error/mutation rates within 
10%, and of 83.37% for error/mutation rates between 10% and 
25%. However, any value between 13 and 21 yields results 
above the average across all k values being tested, i.e. 11 to 41. 
On the gene-rearranged ARG reads, KARGA shows high 
robustness: on average, 99.92%, 99.66%, and 98.52% of the 

reads are assigned to the correct class, group, and mechanism, 
respectively. These performance values are stable across all k 
values, with no evidence of slope due to k. 

On the semi-synthetic PATRIC dataset (Fig.3), the method 
with the highest hit score (resistance hits minus susceptible hits) 
is KARGA, with a median (IQR) of 415 (193–672), followed by 
MetaMARC with 284 (71–454), DeepARG with 219 (39–454), 
and AMRPlusPlus with 46 (-262–209). On the experimental 
Pediatric and Soil datasets, KARGA’s average hit rate is 5.1% 
whereas AMRPlusPlus yields 4.2%, DeepARG 3.7%, and 
MetaMARC 6.4%. Of note, MetaMARC has been calibrated on 
the Pediatric/Soil data in its original paper, so its performance 
cannot be considered external validation as with the other tools. 

In terms of runtimes, we tested the software on a 4-cores 
AMD Opteron 6378, 2.4GHz, 32GB of RAM, and KARGA is 
faster than all other software across all file sizes, as shown in 
Table 1, being on average 2x faster than AMRPlusPlus, 7x faster 
than DeepARG, and over 100x faster than MetaMARC. 

TABLE I.  RUNTIME BENCHMARKS (HH:MM:SS) COMPARING KARGA 

WITH AMRPLUSPLUS, DEEPARG, AND METAMARC. 

File 

size 
Reads KARGA 

AMR 

PlusPlus 
DeepARG MetaMARC 

1GB 1.6M 0:08:27 00:21:19 00:53:01 16:26:27 

2GB 3.1M 0:15:32 00:49:40 01:38:55 >24h 

5GB 7.9M 0:38:11 01:35:47 03:41:06 >24h 

10GB 15.8M 1:38:20 2:48:43 11:43:16 >24h 

IV. DISCUSSION 

KARGA demonstrates high recall and hit rate in identifying 
ARGs from high-throughput, short read metagenomics data. It 
is highly robust with gene rearrangement and with genetic 
divergence at lower k values, yet maintaining a low false 
positive rate thanks to the statistical filtering. Its hit rate on semi-
synthetic and empirical data is higher than all other methods. 
Only in one real-world dataset KARGA is second to 
MetaMARC; however that dataset was used for calibration, and 

 

Fig. 2. Recall performance of KARGA on synthetic short read metagenomics data (200,000 reads, 151 nucleotides) containing ARGs with 
mutations/sequencing errors up to 25%. Results are stratified by MEGARes annotation hierarchy (class/mechanism/group) and by value of k.  



on large experimental data MetaMARC is practically unusable 
due to extremely long execution times. In addition to be the most 
accurate, KARGA is the fastest of all off-the-shelf ARG 
classification software tested here.  

This work has some limitations. First, we do not classify 
antibiotic resistance in housekeeping genes, since resistance in 
these genes is determined by single nucleotide polymorphisms 
(SNPs). However, such feature could be added by requiring 
always the presence of k-mers containing the SNPs in addition 
to non-SNP-containing k-mer hits. Second, the data structures 
we implement are standard and can have high memory 
overhead. We use String types for k-mers, but they can be 
transformed, processed and stored in much more efficient data 
structures (e.g. using bit maps, Bloom filters and minimizers) 
[18]. Finally, KARGA could be parallelized: each read can be 
processed independently from the others and the k-mer-ARG 
HashMap is read-only; however, the ARG-k-mer HashMap 
would need to be updated concurrently. 

In conclusion, KARGA is a fast, reliable and flexible ARG 
classifier that can be employed in multiple contexts; its multi-
platform implementation makes it also ideal for mobile 
bioinformatics applications, e.g. Oxford’s Nanopore sequencing 
data generated by MinION (with the Mk1C), and the 
smartphone-pluggable SmidgION [19]. 
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Fig. 3. Resistance and susceptibility hit rate of KARGA, AMRPlusPlus, DeepARG and MetaMARC on semi-synthetic short read metagenomics data 

(~250,000 reads, 151 nucleotides) drawn from the PATRIC repository, stratified by antibiotic class. 
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