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Abstract—The rapid development of machine learning (ML)
technology has introduced substantial impact on ergonomics
research in manufacturing. Numerous studies and practices have
been carried out to apply ML techniques to address manufactur-
ing ergonomics issues, which has brought extensive opportunities
as well as significant challenges. To incentivize future research
in this area, this paper reviews the recent advances of ML
applications in manufacturing ergonomics, and discusses future
research opportunities and challenges from ML, ergonomics, and
manufacturing systems perspectives.
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I. INTRODUCTION

The rapid development of information and artificial intel-
ligence (AI) technology, particularly machine learning (ML),
has greatly influenced research, industry, and society. Using
ML techniques for risk assessment and injury prevention
represents a new trend in ergonomics research. According
to Bureau of Labor Statistics, more than 30% of DAFW
(days away from work) cases in the US private sector are
due to musculoskeletal disorders (MSDs), i.e., ergonomic
injuries, which occur when the body uses muscles, tendons,
and ligaments to perform tasks, and lead to a median of 12
days away from work [1]. Thus, ergonomics, as an important
part of engineering, especially for manufacturing, has attracted
growing interest from ML research. The revolutionary and
paradigm change due to Industry 4.0 has expedited such a
trend, and generated numerous opportunities for innovations
and many new challenges [2], [3]. These opportunities and
challenges have significantly expanded the scope of traditional
ergonomics research. Therefore, there is a need to review
the recent advances and development in ML applications
for ergonomics study in manufacturing, and provide strategic
views of visions and directions for future research and practice.
The main contribution of this paper is to present such a
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study from a manufacturing system perspective by focusing
on integration of ML technology with ergonomics research for
manufacturing applications, structured from small scale and
detailed activities to large scale and higher system level.

In this paper, we first review the available ML applica-
tions for ergonomics research in manufacturing (Section II),
Then the research gaps, emerging opportunities, and potential
challenges are discussed, from ML, ergonomics, and manu-
facturing perspectives (Section III). Finally, conclusions are
formulated in Section IV.

II. LITERATURE REVIEW

In this section, recent advances of using ML techniques for
ergonomics research in manufacturing are reviewed, which is
carried out by searching different combinations of keywords
such as ML, AI, ergonomics, manufacturing, production,
workload, fatigue, etc., in Google Scholar, Scopus, ScienceDi-
rect, Web of Science, PubMed/Medline, and other databases
in university libraries. Then the survey is structured in terms
of models for individual operators, operator and workplace
interactions, and system design and optimization.

A. Operator Model

Assessing, classifying, and evaluating the ergonomics risks
of a human operator’s activity in manufacturing are of sig-
nificant importance. Both physical and mental workloads
and fatigues need to be studied to identify the relationship
between operator activities and work events, and quantify
the association between human work posture and degree of
ergonomics risk. Wearable devices, sensors, and videos are the
main data sources to capture the operators’ activities. Thus, an
operator model for ergonomics risk can be studied from the
perspectives of physical activity assessment (through sensor-
based and video data) and risk stratification, mental workload
evaluation, and fatigue classification.

1) Sensing-based Activity Assessment: Various sensors and
wearable devices have been introduced to collect posture
and kinematic data. A systematic review is presented in [4]
to identify wearable devices proposed in the literature for
ergonomic purposes and analyze how they can support the
improvement of ergonomic conditions. Paper [5] uses body-
mounted wearable sensors and ML techniques to monitor the
risk of overexertion. Using kinematic data fed by wireless
inertial measurement units (IMUs) and ML algorithms, a
solution to recognize postural patterns is introduced in [6] to
measure biomechanical risk in lifting load tasks. An efficient
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classification approach using random forest and support vector
machine (SVM) models is developed in [7] to recognize
static and dynamic work activities from a single accelerometer
attached to the chest. Moreover, using the data collected from
sensors on screwdrivers, paper [8] studies manual activity
recognition by comparing datasets covering different tool
movements, sensor placements with different classifiers, and
observes that multiple sensors and ensemble deep learning
methods can achieve superior performances.

2) Motion Analysis through Videos: In addition to sensing
data, cameras and videos have been used extensively to capture
human motion and gestures. Paper [9] develops a method
to automatically compute the rapid upper limb assessment
(RULA) scores through snapshots of digital videos via com-
puter vision and ML techniques. Similarly, using convolutional
neural network (CNN)-based pose detector to infer 2-D poses
from images, and a deep neural network (DNN) to estimate
RULA action levels, a real-time method is introduced in [10] to
evaluate postural risk factors associated with MSDs. Paper [11]
automatically quantifies repetitive hand activity with the use
of digital video processing for the hand activity level (HAL).
The technique is advanced in [12] and [13] using ML for
time and motion studies in laboratory simulations of paced
repetitive tasks for varying HAL and from videos of workers
performing 50 industrial tasks based on decision tree and the
proposed feature vector training algorithms. A graph-based
multi-task learning approach is proposed in [14] for human
postural assessment in long videos. In addition, a motion
analysis system (MAS) utilizing a neural network model is
developed in [15] to assess the ergonomic risk in manual and
assembly activities through capturing operator movements and
postures. Moreover, an application using Microsoft Kinect [16]
is presented in paper [17] to employ ML algorithms, known as
AdaBoost [18] Trigger indicator, to detect lifting and lowering
gestures with real-time motion data capture on the shop floor
for ergonomic evaluations and risk assessment.

Integrating sensing and video data with ergonomics mod-
els, paper [19] predicts real-time ergonomic risks for indoor
operator movements and postures using spatiotemporal convo-
lutional networks. Furthermore, statistical process control and
data analytics techniques are used in [20] to develop a human
motion analytics system to identify patterns of repetitive
motions and the deviations from those patterns by collecting,
transforming, storing, and analyzing data from repetitive phys-
ical motions performed by manufacturing workers.

3) Risk Stratification of Physical Workload: By creating
and validating classifiers to distinguish between low and high
risk manual lifting jobs contributed to low back disorders
(LBD), paper [21] uses SVM, radial basis function neural
network, and random forest models to predict the risk of
LBDs. Similarly, SVM models are used in [22] to classify
risks of occupational LBDs. A computer vision method is
introduced in [23] to automatically classify lifting postures
from simple features in video recordings using an elastic rect-
angular bounding box, drawn tightly around the subject, for
classifying standing, stooping, and squatting at the lift origin
and destination. The approach is further developed in [24]
for an algorithm that automatically calculates a widely used

risk prediction tool, the revised NIOSH (National Institute for
Occupational Safety and Health) lifting equation using a single
video camera. It is then extended in [25] for estimating the
trunk flexion angle, angular speed, and angular acceleration
by extracting simple features from the moving image during
lifting. In addition, paper [26] demonstrates that computer
vision and deep learning algorithms may be used for the
automatic measurement of lifting load by analyzing body part
movements extracted from a lifting video, without the need
for stopping to weigh the object.

4) Mental Workload Evaluation: In addition to physical
workload, mental workload and cognitive issues are also
critical, and ML techniques can help for identification and
evaluation. For example, neural network-based algorithms
are proposed in [27]-[29] to assess mental workload, job
satisfaction, and efficiency with respect to health, safety,
environment, and ergonomics factors using survey data. Mul-
timodal and ML methods are used in [30] to measure mental
workload in simulated computer tasks and validate estimation
indicators from physiological signals, subjective ratings of
mental workload, and task performance. Using SVM and CNN
algorithms, paper [31] analyzes and classifies mental workload
states using Electroencephalogram (EEG) and functional Near-
Infrared Spectroscopy (fNIRS) datasets.

5) Fatigue Classification: As an important element of er-
gonomics research, fatigue has been studied extensively. In
recent years, ML methods have been utilized to classify fatigue
states. For instance, a literature review of fatigue identification
with application to human activity recognition using ML
techniques is provided in [32].

Using Gaussian process regression to learn the complex
relationship between individual human muscle forces, arm
configuration, and arm endpoint force, paper [33] estimates in-
dividual muscle fatigue levels in human-robot co-manipulation
scenarios, to optimize positions for task execution and alter
endpoint force direction for maximal fatigue-related endurance
time so that the fatigued muscle group can be relaxed and
become active. An SVM approach is introduced in paper
[34] to detect the changes in gait parameters measured by
wearable sensors and classify the states into fatigued and non-
fatigued ones following an occupational task. Moreover, a data
analytic framework is introduced in [35] to manage fatigue in
physically-demanding workplaces by using wearable sensor
data to select feature and ML algorithms to capture different
fatigue modes and phases. In [36], a neural network model
is used for macro-postural classification to evaluate postural
workload based on perceived discomforts and postural stress
levels for various joint motions. Moreover, a recurrent neural
network (RNN) model is presented in [37] to evaluate the
fatigue factor caused by repetitive motions in manual material
handling operations using 3D motion capture data.

B. Operator and Workspace Interaction Model

An operator’s work always consists of interactions with
the surroundings. Thus, the occupational safety concerns,
impact of workplace environment, and in manufacturing, the
collaboration between the human operator and the robots (or
machines), are all related to the operator’s risks.
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1) Occupational Safety: Occupational health and safety
(OHS) have a high priority in all workplaces. The OHS
factors should integrate both qualitative and quantitative data
dynamically and adaptively, drawn on expert elicitation and
smart technologies, to reduce cumulative exposure of workers
to OHS risks [38].

A Bayesian ML technique is applied in [39] to auto-code
injury causation among 1.2 million state workers’ compen-
sation claims that may be preventable with biomechanical
ergonomics or slip/trip/fall interventions to identify industry-
specific ergonomics and safety prevention priorities. To clas-
sify ergonomics data, particularly for incomplete dataset, paper
[40] uses feedforward neural networks with simulated anneal-
ing and conjugate gradient algorithms and forward selection of
input variables to predict the risk of injuries in industrial jobs.
A DNN model is described in [41] to study musculoskeletal
injuries by detecting isometric grip exertions using facial
videos and wearable photoplethysmograms.

In addition, paper [42] evaluates the performance of ML
algorithms in classifying post-incident outcomes of occupa-
tional injuries based on injury factors extracted from 14,000
workers’ compensation claims between 2008 and 2016 in the
US Midwest region. To enhance safety in sensitive workplaces
such as gas refineries, based on Bayesian and neural network
models, paper [43] studies the effects of macro-ergonomics in-
dicators on system safety efficiency by combining the expert’s
and operator’s opinions to form the final criterion.

2) Workplace Environment: In addition to workplace safety,
more aspects of working environment should also be consid-
ered. Neural network models with six input parameters (tem-
perature, humidity, noise, luminosity, weight, and frequency)
are introduced in [44] and [45] to quantify the ergonomics
aspects of a workplace in manufacturing, characterized by
three categories: good, medium, and poor. Also using a neural
network model, paper [46] analyzes the effect of organizational
safety climate and behavior on workplace injuries in Turkish
metal casting industry based on surveys.

Through an adaptive network-based fuzzy inference system
(ANFIS), survey data is used in [47] to assess staff productivity
from motivational factors, health, safety, environmental, and
ergonomics perspectives. From an ML-based human in the
loop (HIP) simulation, the human choice complexity in a
mixed model assembly line is studied in [48] to identify sig-
nificant features affecting choice complexity and use them in a
regression model to predict the impact of choice complexity on
operator’s effectiveness and overall throughput. Furthermore,
paper [3] presents a conceptual framework that integrates
several key concepts from the human factors engineering
discipline that are important in the context of Industry 4.0,
which should be considered in future workplace design.

3) Human-Robot Collaboration: As more robots are used
in manufacturing, studies on collaborations between robots
and humans are increasing. A systematic review of emerging
research is presented in [49] to assess the state of the art for the
design of safe and ergonomic collaborative robotic workcells.
A publicly available human motion data set for collaborative
robotics is provided in [50], which includes a series of six
industry-oriented activities of postures and actions that are

commonly observed in industrial settings and fully labeled
according to the ergonomics assessment worksheet, such as
screwing and manipulating loads under different conditions.

Using wearable sensors and inertial measurement units to
capture the human upper body gestures, and an artificial
neural network for static, dynamic, and composed gesture
classification, paper [S1] proposes a human robot interaction
framework to study robot assistance to a human co-worker in
delivering tools and parts, and holding objects to/for an assem-
bly operation. Similarly, a unified human-robot collaboration
framework is proposed in [52] to improve human ergonomics
and the reconfigurability of production/assembly through real-
time adaptation to human dynamic factors and intentions,
which is composed of pose tracking, tool recognition, torque
estimation, robot interaction and control, using DNN and a
global finite state machine.

Furthermore, using a deep learning algorithm-based camera
(https://aws.amazon.com/deeplens/) to recognize the operator,
paper [53] introduces an approach to adapt a cobot workstation
to operator skills to implement an efficient and safe synergy
between robots and humans. In [54], deep learning-based
human motion recognition techniques, enabled by a deep CNN
structure adapted from AlexNet [55], are developed to predict
the needs for human-robot collaboration, leading to improved
robot planning and control in accomplishing a shared task.

C. System Design and Optimization Model

In a manufacturing system, all operators’ activities are inter-
connected and their impacts can propagate throughout the
system. Thus, ergonomics measures should be considered in
all aspects of manufacturing system design and optimization,
from products to tasks and processes.

1) Product Design: Using ML technology, more er-
gonomics issues can be considered in product development.
For example, through an empirical study, paper [56] proposes
a neural network-based data mining framework to generate
useful patterns for developing standard size charts for apparel.
Using a neural network to classify proper and defective signals
in connector assembly lines, a digital assembly glove with
wearable sensors is described in [57] to measure vibration
and force values on fingers to detect defective processes. Also,
a wearable solution is presented in [58], which uses signals
from a trunk IMU and pressure insoles with a gradient boosted
decision tree algorithm to provide a practical, automated, and
accurate monitoring of time series lumbar moments across a
broad range of material handling tasks.

2) Task Assignment: As cycle times play a key role in
planning and scheduling, using skeleton and depth data of
a Kinect sensor, paper [59] introduces three classification
trees and their fusions and applies discriminant analysis to
estimate cycle times in computer assembly. To evaluate task
performance, a data-driven approach is introduced in [60] for
repetitive precision tasks, using kinematics, electromyography,
and heart rate data collected from wearable sensors, with a
linear discriminant analysis algorithm, where the kinematic
data provides the most promising classification performance.
In addition, a mutualistic and adaptive human-machine col-
laboration framework is proposed in [61] to continuously
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monitor worker’s physiological parameters, measured by wear-
able devices, and couple them with process information to
dynamically assign tasks to either humans or cobots in an
injection molding manufacturing line, where a random forest
algorithm is used to classify workers’ fatigue levels.

3) Process Planning: In addition to product design and task
assignment, ML methods can be applied for process planning
and system design. For example, by combining neural network
and RULA analysis, paper [62] introduces an experimental
study of ergonomic workstations redesign process for auto-
motive assembly lines. Using verbal parameters of profile of
mood states and non-verbal parameters of heart rate in a given
workplace environment, a neural network model is presented
in [63] to evaluate work performance in a medium-scale food
production system.

Moreover, extending from traditional manufacturing to busi-
ness processes such as supply chain, paper [64] reviews the
current ergonomics design approaches in delivering digital
solutions, and proposes an interaction, process, integration and
intelligence (IPII) design approach, by leveraging ML tech-
nologies for future ergonomics practices. Through integrating
IoT (internet of things) paradigm and Al techniques in cold
chain risk management, paper [65] introduces a real-time mon-
itoring system for quality control and cold-associated occupa-
tional safety risk assessment by considering the surrounding
environment and the operators’ personal health status.

III. RESEARCH OPPORTUNITIES AND CHALLENGES

The available results have proved that extensive success and
significant impact can be achieved by using ML technology for
ergonomics research in manufacturing. Various ML methods,
such as neural network, random forest, AdaBoost, multivariate
linear regression, deep learning, SVM, reinforce learning,
have been utilized, based on the data from sensors, cameras,
experiments, records and surveys, etc., to solve a broad range
of ergonomics problems in manufacturing, from risk analysis
(e.g., physical and mental workloads) and classification for
operators and workplace, to design and optimization issues
(such as planning and assignment). Such developments sug-
gest that ML in manufacturing ergonomics is an area with
explosive and promising opportunities. However, there still
exist significant research gaps and challenges to achieve high
fidelity, operator-specific, dynamic, and systematic analysis of
ergonomics risks, using which prompt and optimal actions
are expected to be taken to improve the overall safety, pro-
ductivity, and sustainability performance in manufacturing. To
promote and incentivize future research in this area, potential
opportunities and challenges are summarized below, from the
perspectives of ML methodology, ergonomics consideration,
and manufacturing systems.

A. Machine Learning Perspective

ML is a data-driven methodology relying on big data, which,
however, may not be accessible in practice. It is not uncommon
that only limited data collection or small and incomplete
dataset is available. Moreover, many ML methods may not
be able to capture causal inferences and dynamic nature in

datasets. Such limitations propose more challenges for ML
applications in manufacturing ergonomics research.

1) Data Availability: The application of ML technology
requires a substantial amount of data for training, learning,
and predicting. For ergonomics study in manufacturing using
ML, the data can come from different sources, including
videos or images from cameras, movement or biomedical
data from multiple sensors, as well as data from experiments,
simulations, and surveys or questionnaires. In addition, claims,
notes, or reports may also be additional sources. However,
sometimes the data may not be easy to access due to policy,
environment, privacy, and behavior concerns in manufacturing.
Furthermore, data collection can be difficult depending on the
technology behind data sources. Specifically, motion capture
systems or data from cameras and multiple sensors may
require considerable costs of devices and experiments.

The availability of data and difficulties in data collection
could be obstacles to conducting ML research in manufac-
turing ergonomics. These complications can be alleviated
by sharing collected data or sources for different studies or
combining various types of existing data. When sharing data
or model is considered, transfer learning [66] can be one of
the options that can be utilized to improve resulting models,
but it should be compatible with the data sources. When
combining different data is adopted, such data may have mixed
formats or dimensions, such as quantitative or qualitative,
discrete or continuous, numerical or descriptive, which may
introduce substantial difficulty to mine, convert or explain. The
ML technology needs to combine different types of data for
complex analysis. All these will present significant challenges
to existing ML methodologies and demand the development
of novel and effective methods.

2) Small and Incomplete Dataset: To apply ML methods,
not only data availability can be an issue, but also the dataset
itself. For many ML methods, such as neural network, SVM,
random forest, and deep learning, they are more effective
to deal with large datasets. However, in manufacturing er-
gonomics, small and imbalanced datasets with missing or
incoomlete data are typical, and usually have large variations.
Especially, when human subjects are involved in data col-
lection including motion captures, more efforts and time are
required, and the size of dataset is limited to the number of
participants in the experiments or surveys. Moreover, when
claims, surveys, or reports are utilized, data quality often
becomes an issue as there usually exist missing data, incorrect
and incomplete records. These add additional difficulty to data
utilization. Developing innovative ML methods to solve such
issues is of significant importance.

3) Causal Relationship: Many machine learning methods
seek to discover correlations between variables and outcomes.
Although associations are important, they may not represent
the causal relationships. As many ergonomics issues, particu-
larly those related to cognitive and mental workload, may be
subjective or lack clear inferences of fundamental knowledge,
the correlations may not be enough to derive policies or deci-
sions for subsequent control and implementations. Therefore,
there is a great need to develop causal models so that the effect
of variable manipulations can be inferred, which can be used
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to design optimal actions. Although causal models have been
introduced in ML research (e.g., monographs [67], [68]), the
application is still limited. More developments of appropriate
causal models to strengthen manufacturing ergonomics study
in both theory and practice are necessary.

4) Time Sensitivity: Many current studies consider static
behavior in the system. In manufacturing ergonomics study,
not only is static or average performance important, but also
the transient behavior needs to be addressed. For instance, the
fatigue level or mental workload may change over time. Risks
of certain injuries may be triggered or elevated randomly.
All these require computational efficient algorithms to quickly
identify and quantify the risks and respond appropriately to
eliminate them in real time. Thus, control or optimization
methods based on ML algorithms should be able to take im-
mediate actions in those time-sensitive issues. Reinforcement
learning [69] or models based on Markov decision processes
[70] can be optional models to deal with such issues. In ad-
dition, when motion capture systems are set up or sensors are
installed in manufacturing facilities, data can keep collected
continuously. Then, the models should be updated in real-time
to improve the results by utilizing additional data. Appropriate
learning paradigms such as evolutionary algorithms [71] could
be considered to deal with these challenges.

B. Ergonomics Perspective

To respond to the upcoming challenges of Industry 4.0 char-
acterized by new technologies of robotics, Al, biotechnology,
and quantum computing, ergonomics methods and practice
need to be changed, adapted, supplemented, and augmented
using a “radical systems thinking” approach [72]. ML tech-
niques should be more accessible, understood, and accepted
in the ergonomics community in order to help ergonomics
researchers greatly with realized benefits [73]. However, the
existing ML applications in ergonomics research are typically
isolated and narrowly subjected, without becoming an integral
component in manufacturing. Therefore, in addition to the
topics summarized in Section II, the following directions and
areas could have promising research opportunities, covering
from individual operator models, to interactions with work-
place, and decision support for manufacturing systems.

1) Integrated Worker-Specific Risk Analysis: In the past
decades, both physical and mental workloads have been
studied extensively in ergonomics research [2], [74]. Since
either workload can affect the other one, both workloads
should be modeled, analyzed, and evaluated simultaneously,
and the relationship between them needs to be identified.
Future studies should focus on integrating the physical and
mental workloads and their correlations, which can lead to
improvement in occupational safety and health. In addition,
using ML models for individualized analysis targeting to each
operator’s specific features is an interesting direction. Such
work will become more important and complicated when
aging workforce is considered.

In addition to data analytics methods, biomechanics laws
based on physics principles have been prevailing approaches
to evaluate operators risks in manufacturing. Ergonomics eval-
uation of work can be conducted using biomechanical models

to analyze single movements or body postures, and taking
internal forces in muscles and joints into account. However,
such models can be limited due to lack of applicable condi-
tions. ML techniques can compensate such constraints. Thus,
integrating biomechnics laws with ML methods could benefit
from both advantages. For instance, the data-driven approach
with biomechanical parameters input has proved that it can be
used to predict the occurrence and level of physical fatigue
[75]. Again, the model could be adapted for personalized
study based on each operator’s characteristics. Thus, more
ML approaches that use biomechanical data and operator’s
profile need to be developed to predict the ergonomics risk in
manufacturing systems.

2) Human-Machine Interaction: Both human operators and
robots or machines are essential parts of manufacturing sys-
tems with significant advantages in production processes.
The extensive use of robots through human-robot cooperation
could realize the advantages, but may also impact workload,
both physically and mentally. There is no doubt that with the
advent of Industry 4.0, more robots will be involved in manu-
facturing. Numerous studies have shown that human workload
can be decreased due to the involvement of robots [76], [77].
However, there is also evidence that increased levels of robot
autonomy would lead to higher mental workload [78]. There-
fore, more manufacturing principles and propositions need to
be provided to decrease operator workload in human-robot
interaction settings. As described in [79], developing technical,
human-related, and normative requirements and standards for
human-robot/machine interaction to ensure occupational safety
in ergonomic workspace and assembly process is important.
Moreover, consideration of different cognitive features of each
operator will be desirable. ML techniques can be key enablers
in developing such principles.

3) Optimal Decision Support: As more intelligent equip-
ment and devices are installed on the factory floor, there is
a need to better use them in decision support to help reduce
workloads and improve safety while increasing manufacturing
productivity. As many risks, such as fatigue and mental
workloads, are increasing with time and may only become
evident after a certain time period, it is also not easy to check
and verify the results before its happening, particularly when
operators have a diverse background and skill set. Therefore,
early detection of these risks and derivation of real-time and
optimal decisions to avoid potential injuries and production
losses become critical, especially when operators’ profiles are
considered. Paper [80] reviews the strategic use of Al, mainly
ML, from the perspectives of supporting decision making
process, improving customer relationship and employees en-
gagement, and enabling machine-to-machine communication
in new products and services. Therefore, applying ML tech-
niques to identify patterns and risk signals, predict outcomes,
and then provide optimal and specific action decisions will be
an important direction in the future.

To increase productivity, ML methods can help assess staff
performance from motivational factors, health, safety, environ-
mental, and ergonomics perspectives. Developing optimization
frameworks (e.g., [81], [82]) to integrate intelligent equipment
with physical strains of workers and productivity performance
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in manufacturing processes is needed. Such frameworks need
to be adaptable to different manufacturing scenarios, by iden-
tifying process features, classifying operators’ and equipment
activities, evaluating safety concerns, and then adjusting their
collaborations to accommodate these features, activities, and
concerns, where ML techniques can play a significant role.
Moreover, from a plant architecture perspective, it is argued
in [83] that in the new era of information technology and
deep learning, industrial architectures can help fit technology
to humans to assure wellbeing and health with ergonomics
optimization of all design aspects.

C. Manufacturing Systems Perspective

The existing research in manufacturing system design,
scheduling, and control is typically carried out separately, with
only limited attention on ergonomics issues. However, a manu-
facturing system includes machines, people, and products, and
all are associated with human behavior and ergonomics risks,
which should be systematically and integrally studied. In other
words, human-centered management equipped with Industry
4.0 is the key to support smart and sustainable manufacturing
[84]. Given the opportunities and challenges described above
from ML and ergonomics perspectives, integrating them into
manufacturing systems will generate fruitful results, which
will be discussed from system design, scheduling and control,
and enterprise planning perspectives next.

1) Integration with Product and Manufacturing System De-
sign: In product development, not only the manufacturability
and customer experiences should be considered, but also be
the ergonomics risks, as some product features are correlated
with the risk during manufacturing. For example, repetitive
wiring tasks on assembly lines may increase the risk of
MSD at hand, wrist, and arm. Such features are also coupled
with manufacturing system design, where capacity planning
(such as cycle time distribution), product allocation (set up
frequency and lot size) and layout selection (e.g., serial,
work cell or U-shaped lines), etc., may also impact the risk.
However, such issues have not been considered in an integrated
manner. Therefore, developing models to study the trade-offs
to balance multiple objectives from different perspectives is
needed. Applying ML technology in design phase to identify
and evaluate potential risks, and utilizing the results to seek
optimal solutions need to be explored.

2) Integration with Production Scheduling and Control:
The existing ergonomics research on task assignment and
scheduling only list ergonomics risk as a constraint without
considering their interactions. However, task assignment and
scheduling are tightly coupled with physical and mental work-
loads. For instance, task cycle time can impact fatigue and
mental workload, leading to work-related disorders, which in
turn may introduce more variations in cycle time, resulting in
reduced throughput. In addition, the operator’s characteristics
play an important role to carry out the tasks, which should be
included in the analysis. Using ML methods can help better
classify task features, identify operator profile, and predict
states of potential risks. Integrating these into an optimization
model can make production planning and scheduling more
efficient and effective.

Many production control work focuses on machine opera-
tions only without considering the impact on operator’s be-
havior. However, control actions on machines and ergonomics
risks on operators could have strong interactions. For example,
frequent adjustment of machine status may induce pressures
on operators and increase their ergonomic risks, which can
propagate to up- and downstream stations, finally causing
more variations and losses in production. Such pressures may
also result in low product quality reducing effective system
throughput. Such outcomes can intrigue more adjustments and
pressures, leading to further losses. Moreover, such impacts
could be machine and operator specific with large variations
among different workers. Applying techniques to identify
operator characteristics with respect to various actions and
outcomes and investigate the impacts in a closed loop can
better address their correlations, and help design optimal and
personalized control policies.

3) Integration with a Broader Manufacturing Community:
A manufacturing enterprise includes not only production
shops, but also warehouses, supply chains, as well as busi-
ness processes and customer service, etc. When a broader
manufacturing community is considered, more entities with
different or even conflict goals and diverse human groups
exist in the enterprise. The ergonomics risks and business
objectives are not only complex, but also coupled with each.
In addition, the safety and environmental issues and workers’
preferences should be embedded in the workplace model.
Moreover, the personnel, team and organization managements
become more critical, and can impact workers’ activities and
rational behaviors as well as the ergonomics risks, which
will feedback to influence business outcomes. Such issues
will be more complicated when labor cost, aging, or ethics
considerations are taken into account. It is expected that ML
techniques with integrated system engineering approaches can
help address the ergonomics and related issues in a broader
manufacturing area and contribute to the benefits of whole
enterprise and overall manufacturing industry or society.

IV. CONCLUSIONS

The rapid development of machine learning and informa-
tion technology has brought in substantial opportunities and
innovations to ergonomics and manufacturing. With ML tech-
nology, manufacturing ergonomics research is advancing from
population-based, static, and siloed analyses towards individu-
alized, real-time, and integrated studies. Developing novel ML
methodologies to address new ergonomics and manufacturing
challenges will lead to promising and meaningful studies in
a new paradigm. Promoting such a research program requires
collaborative efforts from researchers in multiple disciplines,
such as human factors, operations research, manufacturing,
computer science, psychology, and others, using integrated and
complemented tools and methodologies, in both hardware and
software (such as devices and algorithms), to solve complex
and significant issues.
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