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A Hierarchical Spatiotemporal Statistical
Model Motivated by Glaciology
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In this paper, we extend and analyze a Bayesian hierarchical spatiotemporal model
for physical systems. A novelty is to model the discrepancy between the output of a
computer simulator for a physical process and the actual process values with a multi-
variate random walk. For computational efficiency, linear algebra for bandwidth limited
matrices is utilized, and first-order emulator inference allows for the fast emulation of
a numerical partial differential equation (PDE) solver. A test scenario from a physi-
cal system motivated by glaciology is used to examine the speed and accuracy of the
computational methods used, in addition to the viability of modeling assumptions. We
conclude by discussing how the model and associated methodology can be applied in
other physical contexts besides glaciology.

Key Words: Model discrepancy; Uncertainty quantification; Emulation.

1. INTRODUCTION

Scientists and engineers often study a physical system with the goal of making spatiotem-
poral predictions (e.g., temperature or glacier thickness) and inferring unknown quantities
governing the system (e.g., atmospheric density or ice viscosity). This system’s dynamics
can often be phrased in terms of spatiotemporal partial differential equations (PDEs) that
are based on approximations. The scientist or engineer may also be able to simulate the
physical system with a computer simulator, such as a numerical PDE solver, which is sub-
ject to imperfections (e.g., numerical error). Moreover, the scientific constants entering into
the system’s dynamical equations such as density, friction, or viscosity may not be known
precisely, but their range can be constrained to some set of plausible values. Additionally
field data, though potentially scarce and noisy, can be incorporated into the analysis.
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Such scenarios can be modeled with a variant of a Bayesian hierarchical spatiotemporal
model that was introduced in Gopalan et al. (2018) for glacial dynamics, if considered more
generally. We delineate three methods to make posterior inference efficient: The first is to
utilize bandwidth limited linear algebraic routines for likelihood evaluation (Rue 2001), the
second is to utilize an embarrassingly parallel approximation to the likelihood, and the third
is to use first-order emulators (Hooten et al. 2011) for speeding up computer simulators.
Though our modeling and numerical results are still within a glaciology context, we con-
clude with a discussion of how the model can be applied to other physical scenarios. Before
introducing the Bayesian hierarchical model and associated methodology for computation-
ally efficient posterior inference, it is appropriate to summarize relevant statistical literature
developed over the last two decades.

Bayesian hierarchical modeling for geophysical problems was introduced in Berliner
(1996) and Wikle et al. (1998), and summarized in Berliner (2003), Cressie and Wikle
(2011), and Wikle (2016). In this modeling approach, prior distributions are specified for
physical parameters of interest, a physical process is modeled at the intermediary, latent
level (conditional on the physical parameters), and the data collection process is modeled
conditional on the latent physical process values. Both numerical error and model uncer-
tainty can be incorporated at the process level, while measurement errors can be modeled at
the data level. This approach has been applied in a variety of scientific contexts, including
the study of ozone concentrations (Berrocal et al. 2014), sediment loads at the Great Bar-
rier Reef (Pagendam et al. 2014), precipitation in Iceland (Sigurdarson and Hrafnkelsson
2016), Antarctic contributions to sea level rise (Zammit-Mangion et al. 2014), and tropical
ocean surface winds (Wikle et al. 2001) (among many others). In Gopalan et al. (2018), the
motivating example for the work in this paper, a Bayesian hierarchical model for shallow
glaciers based on the shallow ice approximation (SIA) PDE was developed and evaluated.

Kennedy and O’Hagan (2001) suggest constructing Bayesian statistical models that incor-
porate the output of a computer simulator of a physical process, such as a numerical solver
for the underlying system of PDEs. Fundamental to their approach is the inclusion of a spe-
cific term that represents the deviation between the output of a computer simulator and the
actual process values, known as model discrepancy or model inadequacy. This framework
is developed in Higdon et al. (2004), Higdon et al. (2008), and Brynjarsdéttir and O’Hagan
(2014). In particular, Higdon et al. (2008) use a Bayesian model along with a principal
component-based approach for reducing the computational overhead of running a computer
simulation with high-dimensional output multiple times (an approach termed as emulation).
Brynjarsdoéttir and O’Hagan (2014) note that the prior for model discrepancy must be chosen
carefully to mitigate bias of physical parameters and predictions. In particular, as more prior
information is incorporated into a model discrepancy term through a constrained Gaussian
process (GP) prior over a space of functions, the less biased inferences and predictions
tend to become. The notions of an emulator, a computer simulator, and model discrepancy
enter naturally into the aforementioned Bayesian hierarchical framework. Conditional on
physical parameters coupled with initial and/or boundary conditions, the physical process
values at the latent level can be written as the sum of a computer simulator or emulator term
and a model discrepancy term.
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To be precise, let us assume that the physical process S can be indexed through time, i.e.,
as S, and §; is a vector where each element corresponds to a distinct spatial location. One
can specify the process-level conditional on physical parameter 8 as

Sj = fO.))+30)). (1)

where §(.) is a vector-valued model discrepancy function that is independent of 6, and
f(0, j) is the output of a computer simulation or emulator for physical parameter 8 at time
index j. If, for instance, at each time point j an observation ¥; of S; is made with associated
measurement error 7 ;, then observations can be written as

Y; = f,))+38()+n, 2)

which is analogous to Eq. 5 of Kennedy and O’Hagan (2001).

In Kennedy and O’Hagan (2001), 8(.) is a fixed but unknown function independent of
0 that is learned with a GP prior distribution. Similarly, §(.) has a constrained GP prior in
Brynjarsdéttir and O’Hagan (2014). The approach in this paper instead assumes a temporally
indexed stochastic process (with spatial correlation) that follows a multivariate random walk,
rather than a deterministic function. Additionally, in Liu and West (2009), the authors frame
a computer emulator of time series run under multiple inputs as a dynamic linear model
(DLM). As part of their approach, they allow for time-varying auto-regressive coefficients
that follow a random walk process, to embed non-stationarity into the model.

While the approach taken in this paper most closely follows the above literature (i.e.,
Bayesian hierarchical modeling, model discrepancy, and emulation), we briefly review
the literature in probabilistic numerics and Bayesian numerical analysis; the emphasis in
Bayesian numerical analysis is to use probabilistic methods to solve numerical problems,
whereas, in the Bayesian hierarchical setup, one is also interested in inference of scientifi-
cally relevant parameters and predictions of the physical process. In Conrad et al. (2017),
a probabilistic ordinary differential equation (ODE) solver is developed that adds stochas-
ticity at each iteration; conditions for the convergence of this method to the ODE solution
are given. Chkrebtii et al. (2016) utilize GPs for solving ODEs; moreover, Calderhead et al.
(2008) use a GP regression-based method to avoid explicitly solving nonlinear ODEs when
performing inference for parameters that provides computational speedups; additionally,
Owhadi and Scovel (2017) present a gamblet-based solver that comes with provably com-
putationally efficient solutions to PDEs. The approach is derived from a game theoretic and
stochastic PDE framework.

In the spatiotemporal model described in this paper, stochasticity is induced with an error-
correcting process that is separated from the numerical solution. In general, another way to
achieve this is to define a stochastic process by equating a PDE to a white noise term—that is,
the solution X to a stochastic partial differential equation (SPDE) L[X] = W, where L is a
differential operator and W is a white noise process (indexed by spatiotemporal coordinates).
For instance, a fractional Laplacian operator yields the Matérn covariance function (Whittle
1954, 1963; Lindgren et al. 2011). We employ the former approach mainly because it is
difficult to derive exact covariance functions for arbitrary differential equations (e.g., in
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the presence of non-linearities), though we highlight the utility of the latter approach in
situations where an analytical covariance function can be derived exactly.

A major feature of this work is to represent the discrepancy between real physical pro-
cess values and the output of a computer simulator for these physical process values as a
multivariate random walk; typically, model discrepancy is endowed with a GP prior or a
constrained GP prior over a space of functions as in Kennedy and O’Hagan (2001) and Bryn-
jarsdéttir and O’Hagan (2014). Along with this model is the development of two ways for
making computations faster: The first is harnessing first-order emulator inference (Hooten
et al. 2011) for speeding up the computation of a numerical solver and the second is the
use of bandwidth limited numerical linear algebra (Rue 2001) for computing the likelihood
efficiently. Moreover, in the regime of a high signal-to-noise ratio, an embarrassingly par-
allel approximation to the likelihood can be employed. Finally, methodology to fit a spatial
Gaussian field for the log of the scale of numerical errors is discussed.

We must also be clear about what distinguishes this work from its predecessor (Gopalan
etal. (2018)). This includes the use of emulators, probing higher-order random walks besides
order 1, derivation of sparsity and computational complexity of log-likelihood evaluation,
empirical run-time results, and methodology to fit an error-correcting process when little
prior information is available. The structure of this paper is as follows: First a test system
from glaciology is described. Then the statistical model that is the focus of this work is
presented in detail (in the context of the glaciology test case), followed by the exact and
approximate likelihood. Then this model is analyzed in terms of computational run-time and
accuracy of inference, based on the test system from glaciology; moreover, the random walk
error-correcting process is assessed with residual analysis. Afterward, we discuss how the
model and associated methodology can be applied to other physical scenarios, and conclude
by summarizing the model, method, and limitations of the approach.

2. DESCRIPTION OF A TEST SYSTEM FROM GLACIOLOGY

Before delving into the specifics of the Bayesian hierarchical model and computational
subtleties, we begin with a brief discussion of glaciology. Glaciology is the study of phys-
ical systems consisting mostly of ice and snow. This broad definition includes the study
of the crystalline nature of ice, the transformation and compaction of snow into ice, the
dynamics of the flow of ice and water in a glacier, the relationships between fundamental
quantities like viscosity, temperature, and pressure, the relationships between precipitation
and meteorology with said ice systems, the interaction of ice systems with other geological
systems such as volcanoes and bedrock, and so on. As such, glaciology synthesizes elements
from a multitude of scientific disciplines including continuum mechanics, fluid mechanics,
hydraulics, chemistry, and meteorology.

Bueler et al. (2005) introduce analytical solutions for the SIA PDE, a commonly used
model for the dynamics of glaciers (Fowler and Larson 1978; Hutter 1982; Flowers et al.
2005; Cuffey and Paterson 2010; van der Veen 2013; Brinkerhoff et al. 2016; Guan et al.
2016; Gopalan et al. 2018). Based on the principle of conservation of mass, the SIA dictates
that glacier flow is in the direction of the (negative) gradient of the glacier surface and is
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due to gravity and basal sliding (also referred to as friction or drag if in the direction of the
positive gradient). While an explanation of the SIA PDE is given in Gopalan et al. (2018),
our focus is on ice viscosity, B. Intuitively, this parameter controls the softness of the ice.
The other main physical parameter, which is not the subject of this paper, is Coy. This
controls basal sliding or friction.

For the analysis that follows, we focus on a periodic solution to the SIA in which the
thickness of the glacier oscillates through time; H (7, t), the thickness of the glacier as a
function of two-dimensional space (in polar coordinates) and time, is

H(rvt)=HA‘(r)+P(r’t)9 (3)
—0.6L

P(r,1) = Cpsin(2rt/T,) cos® [%] ;if0.3L <r < 9L, 4)

P(r,t) = 0;if0 <r <0.3Lorifr > 0.9L. 5)

In Eq. 3, H; is a static initial profile of the glacier (i.e., a dome as in Eq. 21 of Bueler et al.
(2005)), P is a perturbation (e.g., precipitation) function, L is the margin length, C), is the
magnitude of the periodic perturbation, and 7T), is the period of the perturbation. Bueler
et al. (2005) derive a mass balance function that achieves this periodic solution for the SIA
PDE. Qualitatively, this test case appears like a dome with a periodic oscillation in thickness
around an annulus defined by 0.3L < r < .9L. In Fig. 1, an illustration of the oscillations
of glacier thickness through time is displayed.

The value of each surface elevation measurement is the value of the exact analytical
solution above added to a zero-mean Gaussian random variable with standard deviation of
1m, larger than errors of the digital GPS instruments employed by the UI-IES. We use the
same values of parameters as in Bueler et al. (2005) to make for easier comparison with that
work and the EISMINT experiment. In particular, Hy = 3600 m, L = 750 km, C, = 200
m, and T, = 5000 years.

Employing the same setup as Gopalan et al. (2018), glacial surface elevation measure-
ments are assumed to be collected for 20 years, twice a year, and at 25 fixed spatial locations
across the glacier, to emulate how the glaciology team at the University of Iceland Institute
of Earth Sciences (UI-IES) collects data at Icelandic glaciers (e.g., see Fig. 2 illustrating
Langjokull and the mass balance measurement sites).

3. THE HIERARCHICAL SPATIOTEMPORAL MODEL AND ITS
PROPERTIES

Now that we have acquainted the reader with some facts about glaciology and the par-
ticular test case used for the analysis in this paper, we next delineate the hierarchical spa-
tiotemporal model that is the focus of this work, by specifying its variables, parameters, and
properties, including efficient computation of the likelihood and connections to other mod-
eling frameworks. For the sake of specificity of the presentation, the glaciology example is
referenced, similar to the setup in Gopalan et al. (2018). We assume that n spatial locations
are modeled at the latent level, and m of those locations are observed, where m is typically
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Glacier profile from analytical solution through time
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Figure 1. An illustration of the periodic oscillatory exact solution to the SIA PDE that is used for the analysis.
Since the solution is radially symmetric, only a radial cross section is illustrated. This solution is stationary except
for an annulus defined by 0.3L < r < .9L, where L is 750km; in the annulus, the glacier thickness vibrates back
and forth periodically, as illustrated..

Figure 2. A digital elevation map of Langjokull along with measurement sites demarcated on the right, provided
by the University of Iceland Institute of Earth Sciences (UI-IES). Langjokull is Iceland’s second largest glacier by
area, at 900sq. km, and its mean thickness is 210m above sea level (Bjornsson and Palsson 2008), so Langjokull
is shallow. .
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much smaller than n. We use the index j to refer to time indices and i to refer to spatial
indices; while space and time are discretized, the differences between successive time and
spatial points can be made as small as desired depending on the context of the application
and computational resources available. Throughout, we use bolded notation for vectors and
uppercase, unbolded, and non-italic notation for matrices. All other mathematical symbols
are scalars.

We introduce the Bayesian hierarchical model in the parameter, process, data-level frame-
work of Berliner (1996). We denote the physical parameters as # and initial and/or boundary
conditions for the physical process as ¢. At the parameter level, one possibility is to use a
truncated normal distribution for @ if the support of the parameter value can be constrained,
as was done in Gopalan et al. (2018), where @ represented ice viscosity. However, more
generally, the distribution can be specified based on domain knowledge or expertise. We
denote the output of a computer simulator, which could be either a numerical solver or an
emulator, at time j with the notation f(@, ¢, j), which, in full generality, is an element of
R". While some values could be negative (e.g., temperature), in many cases the computer
simulator output can be restricted to the nonnegative real numbers. For a specific example,
in Appendix A of Gopalan et al. (2018), f (8, ¢, j) is a second-order finite difference solver
for glacier thickness, which is constrained to be nonnegative based on a boundary condition.
Evidence for a nonnegative support for the physical process, in glaciology, can be found in
Gopalan et al. (2018). Particularly, this is evident in Fig. 6 of that paper, which shows the
process (i.e., glacier thickness) predictions across the glacier, and the distributions are all
greater than zero. Specifically, the minimum of the smallest box-plot is more than 750 m.
Nonetheless, the reader is suggested to think carefully about whether a negligible amount
of probability mass is below zero in different applications (e.g., temperature models).

The process level of the model, conditional on € and ¢, can be written as:

Xj=Xj-1+¢j, (6)
S;=f0.¢.)+X;, (7

where X is a vector of zeros.

In the above expressions, €; is MVN(0, X) and independent of ¢; for j # /. Furthermore,
X, €;, f(0,9¢, ), and (consequently) S; are members of R". In Gopalan et al. (2018),
{X1, X, ..., } was referred to as an error-correcting process because it was meant to rep-
resent the difference between the numerical solver and the exact solution to the SIA PDE.
Note that in Gopalan et al. (2018), S; referred to glacial thickness at a particular time point,
where each component referred to the glacial thickness at a particular grid point. In more
generality, the error-correcting statistical process can be a random walk of higher order; a
multivariate RW process of order g (RW(q)) is given by:

q
6 () e ©
p=1 P

where €1,..., €, are independent and marginally MVN(0, X). This form of a higher-order
random walk is a multivariate extension of the integrated auto-regressive process given in
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Chapter 5.6 of Madsen (2007). For ¢ = 2, this corresponds to RW(2) of Rue and Held
(2005).

At the data level, it is assumed that data are regularly sampled at every kth time point,
so that one observes Yi, Yo, ..., Yy € R™; in the glaciology test case, the variables Y
referred to glacial surface elevation measurements, and k was set to 5, to represent the fact
that the glaciologists take a set of measurements in the summer and winter, or twice a year.
The corresponding observation errors §x, §2k, - - - , §yk are [IID MVN(O, 021) and represent
digital GPS measurement errors in the glaciology example. We define the matrix A € R"*"
to be such that its rows are unit basis vectors (i.e., an incidence matrix as in Cressie and
Wikle (2011)). That is, A, = 1 if and only if the bth index of the process-level vector S
has been observed, and A,;, = O for all other entries. Then the data-level model, conditional
on the process S, is

Yoo = ASck + Nek, (9)

where we assume that j € {1,2,...,T}andc € {1, 2, ..., N},sothereare N total observed
spatial vectors, observed with a period of length k.

Conditional on 6, ¢, and a computer simulator, the model can be thought of as a hidden
Markov model (HMM) (Baum and Petrie 1966); the latent physical process evolves accord-
ing to a RW(1) process added to a numerical solution, and it is observed indirectly with
Gaussian noise. It can also be thought of as a conditional general state space model. This is
because, conditioning on 6, ¢, and a computer simulator, one can write:

Si=8j-1+[-f0,¢,j]— 1D+ f(0,0,))]+¢,, (10)
Yoo = ASck + Nek- (11)

Here, the state evolves linearly with a time-dependent offset term: [— f(0,¢, j — 1) +
f(0, ¢, j)]. The notation ck is used in Eq. 11 to indicate that observations of the process
are only observed every kth time point, whereas the latent process evolves at every time step
Jj. The reader who is interested in further understanding the connection between Gaussian
processes and state space models may consult Solin and Sérkka (2014).

3.1. EXACT LIKELIHOOD

An advantage of using this model is that the likelihood, p (Y, Yo, ..., Ynk|0, @), can
be computed exactly in an efficient manner. It can also be approximated in a way that leads
to embarrassingly parallel computation when the signal-to-noise ratio is high. The next
several sections provide more details for these considerations. The likelihood of the model,
L@O,¢) = p(Yk, Yo, ..., YNi|0, @), has a multivariate normal PDF form:

1

~(Y—p)" =7 V=) /2
Qm) 2|12 c o (12)

L@@, ¢) = p
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where the mean is:
w=AfO,9.k),....Af(0.¢,Nk), (13)
and the covariance matrix is:
% =U®V+o2, (14)

where Uy, = kmin(a, b) with U € R¥V*N and V = AXAT. Also, the symbol ® stands
for the Kronecker product. Y., is multivariate normal (conditioning on @ and ¢) as a direct
consequence of Eqs. 7 and 9, noting that X and . are independent conditional on 6
and ¢. Moreover, the linearity property of expectations can be used to show that the mean
of Yo is E[ASck + Nek]l = E[ASck] + Elner] = E[Af(0, ¢, ck) + AX k] + E[ner] =
E[Af0, ¢, ck)]+ E[AX ]+ Enek] = Af (0, ¢, ck) + 040 (again, conditional on fixed
0 and ¢ fixed). Appendix A contains more details of the covariance matrix.

Since evaluating Eq. 12 requires the calculation of the inverse of the matrix ¥; and its
determinant, these must be calculated efficiently. (Generally this takes O(N3m?) opera-
tions, which can grow very quickly with more space and time observations.) Since U™!
is tridiagonal, the bandwidth of U~!is 1, and the band-limited nature of U~! allows us
to compute ;- !and |%;] in O(N m3) time (Rue 2001; Golub and Van Loan 2012). More
details for this derivation are given in Appendix A. While using band-limited linear algebra
routines can improve computation, in the next subsection we derive an approximation to
the likelihood that is embarrassingly parallel and can therefore accelerate computation even
more.

3.2. AN APPROXIMATE LIKELIHOOD

Here we show how to approximate the likelihood in a way that leads to embarrassingly
parallel computation. The likelihood p(Yg, ..., Ynk|6, ¢) can be equivalently written as

p(Ykl0, ) p(Yai| Y, 0, 0) ... p(¥YNk| Yy « -« s Yn—1)k, 0, @). First note that:
k
Ye= AL, $.5) +m+ ) Ae;. (15)
j=1

Hence, p(Yy|0, ¢) is multivariate normal with mean A f (0, ¢, k) and covariance matrix
A(kXZ)AT + o%1. More generally, we have the relationship:

Yoo = Y1k + ALF(O, ¢, ck) — f(0, ¢, (c — D]+ ek — 1)k

ck
+ ) A (16)
Jj=(c=1Dk+1
Thus, we can approximate p(Yei|Yx, ..., ¥Yc—1)k, 0, ¢) as a MVN distribution with mean

Yi—ik +ALfO, ¢, ck) — f(8, ¢, (c — 1)k)] and covariance matrix A(kX)AT + 2021,
Nonetheless, to clarify, p(Yex|Y, ..., Yc—1)k, 0, ¢) is not exactly a MVN with mean
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Y-k + ALf(0, ¢, ck) — f(0,¢, (c — 1)k)] and covariance matrix AkX)AT + 2021
because Y(.—1)k and (.—1)k are dependent. However, when the magnitude of the observation
€rTor 7)(c—1)k 1s much smaller in comparison with the magnitude of the observation Y(._1,
and for Z ~ MVN(0, O’ZI) with Z independent of Y(c—l)k’ Y(c—l)k —Ne—Dk ~ Y(c—l)k —Z.

This approximation is embarrassingly parallel because each of the N terms in the product
form of the likelihood p (Y, ..., Y70, ¢) = p(Yr10, ®)p(Yor | Y, 0, @) ... p(¥Yni| Yk, .. .,
Y(n—1)k, 0, @) (or sum, if computing the log-likelihood) can be evaluated independently of
each other. Therefore, in parallel, the computation comes down to evaluating a multivariate
normal PDF of dimension m — this can be done in O (m?).

3.3. COMPUTATIONAL COMPLEXITY SUMMARY

If no attention is paid to the structure of ¥;, the cost of evaluating L(0, ¢) is limited
by the evaluation of X;” and ||, which generally takes O (N3m?) operations. However,
the exact likelihood evaluation can be reduced to O (N m3 ) using band-limited numerical
linear algebra. The computational complexity of the approximation is also O (Nm?) (if no
parallelism is used). While an exact likelihood is preferred to an approximation, a benefit of
the approximation is that it is embarrassingly parallel—if parallelized, the time complexity is
that of evaluating a multivariate normal PDF of dimension m, which is O (m3). Nonetheless,
there also exist parallel versions of sparse Cholesky decomposition, for instance in Gupta and
Kumar (1994). Empirical comparisons of the exact and approximate likelihood computations
are presented in Sect. 4.

4. ANALYSIS OF THE MODEL AND ASSOCIATED
METHODOLOGY

The purpose of this section is to motivate the various modeling choices introduced in
this paper using the previously described test system from glaciology, in terms of both
computational run-time and quality of inferences. In particular, we compare a posterior based
on an emulator to a posterior based on a numerical PDE solver, motivate the use of the random
walk error-correcting process with residual analysis, examine the impact of prior information
encoded into the error-correcting process on the bias of posterior distributions for physical
parameters, and compare the run-time and accuracy of the likelihood approximation versus
the exact likelihood. The physical parameter of interest in these examples is ice viscosity,
B, whose actual value is the same as Bueler et al. (2005), Payne et al. (2000), and Gopalan
etal. (2018): 31.7 x 1072 in units of s~ Pa ™.

Consistent with Gopalan et al. (2018) is the choice of settings for the numerical PDE
solver: A 21 by 21 grid (so n = 441) is used with Ay = Ay, = 10° m and A, = .1
years. Note that, consequently, the number of simulator runs (25) is much smaller than the
dimensionality of the output of the solver (441).
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Table 1. Summary statistics of 100 posterior samples of the ice viscosity parameter using an emulator for the STA
and a numerical solver for the STA; qualitatively, these posterior samples are similar.

Test case Min 1st quartile Median Mean 3rd quartile Max
Emulator SIA solver 15.0 26.5 27.0 27.4 29.0 38.5
Numerical SIA solver 15.0 24.5 26.5 26.3 28.0 37.5

Units are in 10725 1 pa—3,

4.1. POSTERIOR INFERENCE OF THE ICE VISCOSITY PARAMETER WITH AN
EMULATOR COMPARED TO A NUMERICAL PDE SOLVER

In this section, we conduct an empirical study to examine how a first-order spatiotemporal
emulator (i.e., an emulator based on the method in Appendix B) compares to a numerical
solver of the PDE, in terms of both run-time of computations and posterior inference of ice
viscosity. While the precise technical details for constructing a first-order spatiotemporal
emulator are given in Appendix B, the idea is to approximate the numerical solver output
for each time point that there is collected data. To do this, we train an emulator using the
following values for ice viscosity: {10, 12.5, 15.0, ..., 70.0} in units of 10757 1pa3, a
grid of values that is intentionally coarser than the values used for posterior computation,
since in this case the emulator must be used for parameter values not in the training set.
We used the rbenchmark (Kusnierczyk 2012) package to benchmark the run-time of
the log-likelihood of the model evaluated at the actual parameter value computed with a
numerical solver versus a first-order spatiotemporal emulator, using a MacBook Pro early
2015 model with a 2.7 GHz Intel Core i5 processor and 8 GB 1867 MHz DDR3 memory. The
emulator version performs 14.5 times faster (.354 s for the emulator-based log-likelihood
versus 5.148 s for the numerical solver-based log-likelihood). We also generated samples
from the posterior distribution of ice viscosity with grid sampling (grid [10,70] inclusive
with grid width .50 in units of 102> s~! Pa~3), using both the numerical PDE version and
the emulated version. The summary statistics of 10° posterior samples for ice viscosity using
both the emulator and numerical solver are given in Table 1. Qualitatively, the summary
statistics are similar.

The principle behind choosing the ice viscosity parameter values in the training set is to
fill the space of the support for ice viscosity, but not to choose a grid as fine as the one used
for posterior sampling. (Such an approach would be circular, in that the emulator would just
be generating predictions inside of the training set.) However, such a heuristic will not be
feasible as the number of parameters grows beyond one parameter. (The number of design
points would need to grow exponentially in the number of dimensions.) In such cases, we
suggest using other space-filling designs: Notably, a latin hypercube design has been used
extensively in the computer experiments literature, for instance in Higdon et al. (2008).

4.2. ASSESSING A RANDOM WALK FOR REPRESENTING MODEL DISCREPANCY

The choice of using a random walk to correct for deviations between the output of a
computer simulator and the actual physical process values has a few important motivations:
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1. The inaccuracy of a spatiotemporal computer simulation is most likely going to
increase as it is run further into the future. Conveniently, a random walk’s variance
increases with time—for example, a RW(1) has marginal variance j X at time j.

2. Asshownin Appendix A and Sect. 3.1, the likelihood involves band-limited matrices,
for which there exist specialized numerical linear algebra routines. However, there
is a trade-off between bandwidth and the order of the random walk utilized.

3. Spatial correlations in the inaccuracies of a computer simulation can be captured
with the covariance matrix X.

In addition to these motivations, the purpose of this section is to empirically assess how
a random walk model performs for correcting the output of a numerical SIA PDE solver.
To do this, we use the analytical SIA solution as a gold standard. This is a simplification
in the sense that the real glacial dynamics will not follow the SIA PDE and therefore the
analytical STA solution exactly, but nonetheless this is a way to check the veracity of the
random walk error model in some capacity—at the very least, as a model for numerical
error but not model uncertainty.

Figure 3 displays the differences between the analytical SIA PDE solution for glacial
thickness and the numerical SIA PDE solution for glacial thickness at all of the glacier grid
points, run forward for 5000 time steps (i.e., 500 years). More precisely, the points in blue
are at the margin of the glacier, the points in red are at the interior, and the points filled in
black are close to the top (also referred to as the dome) of the glacier. Recall from Fig. 1
that the glacier looks like a shallow ellipsoid sliced in half (in the x—y plane), and so, the
panel on the right of this figure is a top view of the glacier grid points, which looks like a
circle of radius 750km projected onto the x—y plane. In comparison, the height is 3600 m.

The differences are all very smooth (i.e., continuous) functions of time, implying that
the numerical STA PDE solver is producing continuous output as well—we know that the
analytical solution is continuous based on the functional form in Eqgs. 3-5. Thus, it appears
that a random walk of at least a few orders is necessary to represent these differences.
Moreover, as expected from Bueler et al. (2005), the largest errors occur at the margin,
whereas the interior and dome differences are less extreme.

To assess whether a random walk model is appropriate, for each time point j and for
orders 1-7, we computed residuals, in other words, the left-hand side of Eq. 8, which
should theoretically be distributed like € (i.e., independent MVN(0, %) random variables).
To compute X ;, we take the difference S; — f(0, j), where §; is the analytical glacial
thickness solution to the SIA PDE at time j (i.e., the real physical process for the purpose
of this analysis) and f (@, j) is the numerical glacial thickness solution to the SIA PDE at
time j. We examine the residuals for two randomly selected grid points of the glacier (one
at the interior and one at the margin) in Figs. 4 and 5.

A few important observations should be emphasized based on the empirical analysis
displayed in these figures. The first is that a single-order random walk substantially filters
the discrepancy; for the interior grid point, it is reduced from the order of 10 m to the order of
.01'm (1000 times reduction in magnitude), and for the margin grid point from the order of
100—.05 m (more than 1000 times reduction). Additionally, for both the interior and margin
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Figure 3. An illustration of the difference between the exact analytical solution and the numerical solution for
the SIA PDE. On the right panel is a top view of the glacier, whose shape looks like a dome, and therefore, the
projection on to the x—y plane is a circle. The blue points signify the margin of the glacier (where it drops down to
zero thickness), the red points are at the interior of the glacier, and the black points are toward the top of the glacier.
The points that are not filled in signify the border of the glacier, where there is no ice thickness. On the left panel,
the discrepancies between the analytical SIA PDE solution and the numerical SIA PDE solution for all grid points
are shown. Specifically, the color of each path corresponds to the grid points on the right panel. Additionally, the
paths are shown for 500 years, or 5000 time steps. .
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Figure 4. This figure displays residuals in units of meters (i.e., the term € ; in Eq. 8) for RW(q) of orders 1-7 for a
randomly selected interior grid point. The first four panels display values on different scaled y axes to better show
the shapes, whereas the bottom four panels have the same scaling for the y axis to be able to compare across the
figures. RW(5) and above look like white noise processes, though RW(5) has the smallest variance..
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Time series of X_j for margin grid point Residual analysis at margin with RW(1) Residual analysis at margin with RW(2) Residual analysis at margin with RW(3)

g 3 84 g
i
g 3 g =
= = = = 34
E E E ES
K] T T3 R
8.9 38 3% 3
B B° B3 32
3 2 2 e
4 2 2 g
[ [ <
° 8 3
¥ ? & %
o 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000
Time index Time index Time index Time index
Residual analysis at margin with RW(4) Residual analysis at margin with RW() Residual analysis at margin with RW() Residual analysis at margin with RW(7)
3 3 3 3
g E” E” E
® 3 TS = ®
S %4 g - 39 - §
s B3 Bs o
? 2 @ @
o F o ]
[ & - o _ [
¥ § 3 §

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

Time index Time index Time index Time index

Figure 5. This figure also displays residuals in units of meters (i.e., the term €; in Eq. 8) for RW(q) of orders
1-7 for a randomly selected margin grid point. Just like the previous figure, the first four panels display values on
different scaled y axes to better show the shapes, whereas the bottom four panels have the same scaling for the y
axis to be able to compare across the figures. Just as in the previous figure, RW(5) and above look like white noise
processes, though RW(5) has the smallest variance. .

grid points, it appears that RW(5) is optimal in the sense that the residuals closely resemble
a white noise process and have the smallest variance. While the residuals from higher-order
RW processes also resemble white noise, the magnitude of the noise is larger. Nonetheless,
we believe that real physical processes will not always be as smooth as the analytical SIA
PDE solutions, and hence, it is likely that a lower-order RW process will be preferred for
real scenarios.

4.3. REDUCING BIAS FOR THE POSTERIOR DISTRIBUTION OF 0

In Brynjarsdéttir and O’Hagan (2014), when prior information about the model discrep-
ancy term is introduced in a simple physical system (i.e., a constrained GP over a space of
functions), the bias of a posterior distribution of a physically relevant parameter reduces.
We have found that a very similar phenomenon occurs in the glaciology test case, a result
that was pointed out in Gopalan et al. (2018). Specifically, in Bueler et al. (2005), it is shown
that there is large spatial variation in the scale of deviations between the exact solution to
the STA and a numerical finite difference solver of the SIA. Specifically, there is spatial
variation between the dome, interior, and margin of a glacier, with deviations at the margin
being markedly larger than at the interior and dome. To investigate the effect of such prior
information, we choose the matrix X to be such that it is block diagonal with 3 blocks: iy,
Ydome> and Lmargin. Each of these blocks is derived from a square exponential covariance
kernel with the same length scale parameter ¢ = 70km, but differing variance parameters
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2 2
IoF and O margin®

it> Odome> If we ignore prior information from Bueler et al. (2005), we assume

and o2 is in the set

2 52
int> ~dome’ margin

{.1,1, 10, 100} in units of m?. If we use prior information from Bueler et al. (2005), we

that there is an equal prior probability that each of o;

instead assume equal prior probability on {.1, 1} for o2, {1, 10} for o3 ., and {10, 100}

for o2 (again all units are m?). As shown in Gopalan et al. (2018), the posterior for ice

margin
viscositfl is less biased in the case that incorporates prior information for the scale of errors;
this phenomenon is explored again in the next section.

While in the above discussion we have not been precise about the term bias, the following
ought to make this notion more rigorous. Let 6 be the true parameter and 6 be an estimator
of 6p. The frequentist definition of bias is usually £ [é — 6], where the expectation (i.e.,
average) is taken over the sampling distribution, p(Y |6p). The Bayesian notion of bias used
informally in the preceding paragraph (and essentially the same notion as in Brynjarsdéttir
and O’Hagan (2014))is b(Y, 6y) = E[6 — 6], where the expectation (i.e., average) is taken
with respect to the posterior distribution of @, p(0|Y). Consider E[b(Y, 6y)], where the
(outer) expectation is taken with respect to the sampling distribution. Then E[b(Y, 6p)] =
E[E[60 —60]] = E[E[0]—60] = E[é —6o], which is the frequentist bias. In other words, the
frequentist bias is equivalent to the average of b(Y, 6y) over the sampling distribution, if the
posterior mean is chosen as an estimator. In the glaciology test case, we have (informally)
not noticed much variability in the posterior for ice viscosity over repeated sampling of the
data, and hence, the distinction between Bayesian bias and frequentist bias is not significant.

The reader may wonder why a fixed 6y was assumed in the preceding paragraph, despite
that a Bayesian model has been presented in this paper. In fact, it is typical to assume that the
actual value of a parameter is fixed, despite ascribing a probability distribution to it in the
form of a prior or posterior. Conceptually, such a probability distribution is a representation
of a modeler’s uncertainty regarding the fixed, unknown value of the parameter. For more on
this interpretation of Bayesian statistics, the reader can consult results of statistical decision
theory (e.g., on admissibility) in Lehmann and Casella (2003) and Robert (2007). This
viewpoint is also taken in Bayesian asymptotic analysis, such as the Bernstein—von Mises
theorem (van der Vaart 2000; Shen and Wasserman 2001).

4.4. INFERRING X

The covariance matrix X, first introduced after Eq. 7 in Sect. 3, determines the spatial
correlation inherent in the error-correcting process, X . Since spatial correlation in the error-
correcting process is important to model (which is particularly evident in the glaciology
example of Bueler et al. (2005)), we need to discuss how X ought to be specified. Choosing
% can be difficult if no or little prior information is available, and in such a case, we suggest:

¥ = diag(v)R diag(v),

where log(v) ~ MVN(n,, 2y), X, is derived from a GP kernel such as squared exponential
or Matérn kernel, and R is a correlation matrix also derived from a GP kernel. To avoid non-
identifiability and complexity of inference, it is suggested to pre-specify the parameters of
these GP kernels. This approach is similar to the modeling strategy employed in Geirsson
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Visualization of inferred posterior variances
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Figure 6. Inferred posterior variance field of the error-correcting process, where the area of each circle is propor-
tional to the variance at the grid point centered at the circle. Qualitatively, this field behaves as one would expect
from the work of Bueler et al. (2005), where the authors demonstrate that numerical inaccuracies for the SIA PDE
are greatest toward the margin, but much smaller at the interior of the glacier..

etal. (2015). The intuition behind this approach is that the term v encodes spatial variability
in the scale of deviations between the output of a computer simulator and the true physical
process, and spatial correlation in these deviations is strongly enforced with non-diagonal
terms in both ¥, and R.

Figure 6 illustrates a map of the mean posterior field for the variances of the error-
correcting process, where the area of each circle is proportional to the inferred posterior
mean of variance; due to a multivariate normal prior on log(v), elliptical slice sampling
is used as the method for posterior sampling (Murray et al. 2010). Consistent with Bueler
et al. (2005), the variances tend to increase at the margins and are smaller at the interior.
Additionally, the scaled differences between the analytical solution and numerical solver at
the final time point the simulator is run (where scaling is inverse of the posterior mean of
standard deviation) should theoretically approach a mean zero normal distribution according
to the model. The p-value for an Anderson—Darling test is .436, suggesting that the scaled
differences between the analytical solution and numerical solver are consistent with a normal
distribution. Moreover, the sample mean for these scaled differences is .079 and the sample
standard deviation is .409.
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Table 2. Summary statistics of 100 posterior samples of the ice viscosity parameter under three versions of X.

Test case Min 1st quartile Median Mean 3rd quartile Max
¥ with GP field 10.0 21.0 36.0 35.7 50.5 70.0
% with strong prior information 18.0 25.0 26.5 26.6 28.0 355
% with weak prior information 12.5 18.5 19.5 19.5 20.5 26.5

While the weakly informative case leads to a very biased posterior, the biases for the ice viscosity posterior in
the first two X matrices are comparable. Nonetheless, the posterior variance is much less in the case with prior
information from Bueler et al. (2005).

As is discussed in the previous subsection, prior information for ¥ has an effect on
the inference of physical parameters (i.e., ice viscosity), and in particular, a lack of prior
information can lead to a very biased posterior distribution for physical parameters. To
compare the fitted X using a GP field against the ¥ matrices discussed in the previous section,
we show in Table 2 a comparison of posterior inference for the ice viscosity parameter for
three choices of X. The first choice of ¥ is the posterior mean of samples assuming the
structure ¥ = diag(v)Rdiag(v), with log(v) ~ MVN(u,, £,). In the second and third
scenarios, X is block diagonal with three variance parameters for each of the three blocks.
A weakly informative case assumes that Ui%n = acfome = Gr%largin = .1, whereas a more
informative case (using prior information from Bueler et al. (2005)) has oi%n = agome =.1

and o2 = 10 (all units are m?). The scenario for weak prior information for ¥ results

margin
in a velryg biased posterior distribution whose support does not cover the actual parameter
value (31.7 x 10725 in units of s~—! Pa=3)—the maximum in this case is 26.5 x 10~2° in
units of s~1 Pa~3. While the (absolute) biases of the posterior for ice viscosity for the GP
field version compared to the prior information from Bueler et al. (2005) are comparable
(5.09 versus 4.01 in units of 10723 s~! Pa~3), the posterior variance is markedly larger in
the former case. This result suggests that prior knowledge from a domain expert is likely
to be useful in determining X, though in a case when that does not exist, the methodology

described in this section is an adequate alternative.

4.5. EXACT VERSUS APPROXIMATE LIKELIHOOD

In Sect. 3.1, we showed an exact way to calculate the model likelihood as well as an
approximation in Sect. 3.2. In this subsection, our purpose is to compare these two methods
of likelihood computation in terms of run-time and posterior inference. Using a MacBook
Pro early 2015 model with a 2.7 GHz Intel Core i5 processor and 8 GB 1867 MHz DDR3
memory (as before), one component of the log-likelihood approximation (which can be
computed in an embarrassingly parallel fashion with the other components of the sum)
takes .0179s, whereas the full log-likelihood calculation, as in Sect. 3.1, is .354 s (in both
cases, using a first-order emulator). The results of comparing posterior samples for the ice
viscosity parameter are given in Table 3—thus, while the mean, median, first, and third
quartiles are comparable, the approximate version has larger posterior uncertainty than the
exact version as is evidenced by the wider tails. These results suggest that, while there is
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Table 3. Summary statistics of 100 posterior samples of the ice viscosity parameter using an exact likelihood and
a likelihood approximation (units are in 1072551 pa—3)y,

Test case Min Ist quartile Median Mean 3rd quartile Max
Exact likelihood 15.0 26.5 27.0 27.4 29.0 39.5
Likelihood approximation 10.0 26.0 28.0 27.7 31.0 52.5

While the Ist quartile, median, mean, and 3rd quartile are similar, the tails in the approximation are much wider.

likely a computational speedup afforded by using the approximation (i.e., at least an order
of magnitude), the price to pay is increased posterior uncertainty.

5. GENERALITY OF THE MODEL AND METHODOLOGY

Though we have tested the model and methodology in the previous sections in the context
of a glaciology example, it should be noted that they can be used in other physical systems
with similar components. In essence, this modeling and methodology can be applied in
scenarios where:

1. A computer program (i.e., computer simulator) is available to simulate a continuous
physical process through space and time, but there is a deviation between the output
of the computer simulator and the actual physical process.

2. Thedeviations between the computer simulator output and the actual physical process
values tend to grow with time and exhibit spatial correlation structure.

3. Measurements of the physical process are available, but they are potentially scarce
in both space and time.

4. Physical parameters governing the physical process are uncertain but can be con-
strained with domain knowledge for the random walk error covariance (i.e., ).

Recall that at the process level, the model stipulates that:
Sj=/0.¢.))+X. a7

To apply the same setup to another physical scenario, a different version of f(., ., .), such
as a numerical PDE solver for another system of spatiotemporal PDEs besides the SIA, can
be used. However, while f(., ., .) will need to be tailored to another physical scenario based
on a different numerical scheme or physical model, the X ; term would be modeled in the
same way (i.e., with a random walk).

6. CONCLUSION

The objective of this work has been to set forth a versatile physical statistical model in
the Bayesian hierarchical framework that incorporates a computer simulator for a physical
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process, such as a numerical solver for a system of PDEs. Posterior inference for physical
parameters (and, consequently, posterior predictions of the physical process) can be com-
putationally demanding within this model, since each evaluation of the likelihood requires
a full PDE solve and computing the inverse and determinant of a large covariance matrix.
Therefore, we have set forth two main ways to speed up the computation: First is the use of
bandwidth limited linear algebra in a manner similar to Rue (2001) for quickly handling the
covariance matrix in the likelihood and the second is the use of spatiotemporal emulation in
a manner similar to Hooten et al. (2011) to emulate a PDE solver that is expensive to eval-
uate. An additional method for speeding up computation is to approximate the likelihood
in a way that leads to embarrassingly parallel computation. The utility of this model and
corresponding inference methodology is demonstrated with a test example from glaciology.

A unique feature of this work is how we represent the discrepancy between a computer
simulator for a physical process and the real physical process values. One approach, as in
Kennedy and O’Hagan (2001) and Brynjarsdéttir and O’Hagan (2014), is to assume that
this is a fixed yet unknown function that can be learned with a GP (or constrained GP)
prior distribution over a space of functions. Instead, we assume that this discrepancy is a
spatiotemporal stochastic process (i.e., a random walk), which is motivated by the fact that a
computer simulation is likely to become less accurate as it is run forward in time, as well as
exhibit some degree of spatial correlation in inaccuracies. An interesting consequence of this
modeling decision is that linear algebraic routines for band-limited matrices can be utilized
for evaluating the likelihood of the model in an efficient manner. Another interesting artifact
of this approach is that when prior information is used for the random walk’s error term
(i.e., in X), the bias for the posterior distribution of @ is reduced. The same phenomenon
is exhibited in the work of Brynjarsdéttir and O’Hagan (2014), where a constrained GP
prior over a space of functions ends up reducing the bias of the physical parameter posterior
distribution.

Despite that the model and methodology appear to perform well in the analysis of this
paper, it is important to comment on some potential drawbacks of the approach, particularly
when applied to other physical contexts. In this paper, emulation works adequately with
a single parameter, though emulators do not always work well in other applications or
higher-dimensional parameter spaces. For example, Salter et al. (2019) document some
shortcomings of a principal component-based emulator in climate modeling. The second
main computational advantages stem from log-likelihood evaluation speedups. The use of
bandwidth limited matrix algebra for the exact log-likelihood can be used so long as the
model holds, which may not always be the case (e.g., with a non-Gaussian data distribution).
Additionally, the log-likelihood approximation holds when the measurement errors are small
relative to the signal modeled, which depends on the measurement instruments used to collect
the data. For instance, on common geophysical scales of thousands of meters, light detection
and ranging (LIDAR) or digital GPS data have maximum errors on the order of a meter.

Additionally, if it is not possible to program the computer simulator to produce output
at the data measurement locations, there are essentially two main ways to handle such a
scenario. The first is to use spatial kriging to predict the value of the computer simulator at
the spatial locations where data are collected, given the output of the computer simulator
at the grid points. A simpler approach is to use inverse distance weighting of the simulator
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output at the nearest neighbors; that is, take a weighted average of the four nearest grid
points of the simulator, where the weights are proportional to the inverse of distance. Such
an approach, for example, has been used in Geirsson et al. (2015).

Future research will include predicting Langjokull glacier surface elevation using the
modeling and methodology within this paper, based on actual data collected by the UI-IES.

[Received December 2018. Revised June 2019. Accepted June 2019. Published Online June 2019.]

A DERIVATION OF THE EXACT LIKELIHOOD AND
COMPUTATIONAL SIMPLIFICATIONS

As is shown in Appendix B of Gopalan et al. (2018), the covariance matrix for the
observed data can be written as U ® V + o %I, where Uy, = k min(a, b) with U € RV*V,
and V = A(X)AT. It can be verified that U~! is tridiagonal, so it has bandwidth one—more
specifically:

(18)

One useful property of the Kronecker product is that (U®V)~! = U~!®V~!. Therefore:

UeV)y'=u'gVv! (19)
[ov—1  —y-! 0 T
—v-1 oyl _y-l 0 .
| 0 —v-1 oy-1l _vy-I 0
=k . . . N N . (20
0 —v-b vl _y-l
.0 vy

whose bandwidth is O (m).

Let us denote U® V as W. By the matrix inversion lemma, it follows that (6 21+ W)~ =
0 2I—02(W~ ' +6721)" 1o ~2. The matrix W~! 40 ~2I has bandwidth O (m) since W'
has bandwidth O (m) as shown previously, so this expression can be computed in O (Nm?)
(Rue 2001; Golub and Van Loan 2012).

Similarly, by the matrix determinant lemma, log[det(ozl + W)] is log[detI +
a?WhHdettW— 1)~ =log[det(I4+02W~1)]-log[det(W~")]. Since both terms are log deter-
minants of square matrices of dimension Nm and bandwidth O (m), this can be calculated



A HIERARCHICAL SPATIOTEMPORAL STATISTICAL... 689

in O(Nm?) due to the efficient Cholesky factorization of band-limited matrices (Rue 2001;
Golub and Van Loan 2012).

B FIRST-ORDER SPATIOTEMPORAL EMULATORS

In the examples of this paper, the function f (., ., .) (i.e., the computer simulator) can take
one of the two forms: a numerical PDE solver for the SIA, or an emulator constructed from
the numerical PDE solver for the SIA. The numerical method for solving the SIA PDE is as
given in Gopalan et al. (2018), and the emulator is constructed based on the finite difference
solver in a manner as suggested in Hooten et al. (2011), termed first-order emulation.

That is, we start with a set of plausible values for ice viscosity: {61, 62, ..., 0,} and, for
each time point there is collected data ck, we store a matrix M ,, where the gth column of
matrix My is the output of the numerical solver using parameter value ¢, after running for
ck time steps forward. Thus, each matrix M. is of dimension n by p, and without essential
loss of generality, we can assume that the number n is much larger than p, and each matrix
Mgy is of rank p.

For each matrix, M., we compute a singular value decomposition (SVD), UcchkVCTk.
The goal is to find a (vector-valued) function v (6) such that the emulated output at time ck
for parameter value 0 is U D¢k vek (6%). To find the gth element of v, we train a random
forest (Breiman 2001; Liaw and Wiener 2002) with (61, (V.1)g1), (02, (V.1)g2), ..., (0p,
(Vg,;)q p) as training data, where (VCTk)ql is the first element of the gth right singular vector,
(Vg,;)qg is the second element of the gth right singular vector, and so on. Not all of the right
singular vectors need be used in emulation, and a heuristic such as an elbow—scree plot or
the randomization procedure of Friedman et al. (2001) can be used to determine the number
of right singular vectors to keep. However, if the number of simulator runs (p) is much
smaller than the dimensionality of the output (n), all of the right singular vectors can be
utilized with computational savings, as is done in the experiments of this paper.

We have assumed the initial conditions and boundary conditions are known, since this
is the case in the glaciology problems we have studied, where the boundary condition is
that glacial thickness is nonnegative, and the initial glacier profile (i.e., a dome) is known.
In general, however, ¢ may be incorporated into the analysis above by considering 6 and ¢
jointly. Additionally, a variant is to directly emulate the likelihood function. However, since
there is flexibility in the choice of ¥ (which enters into the likelihood), unless one is set on
using a particular value of X, it is sensible to emulate the numerical solver as opposed to
retraining a likelihood emulator for each potential choice of X.
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