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The use of accelerometers in wildlife tracking provides a fine-scale data source for
understanding animal behavior and decision making. Current methods in movement
ecology focus on behavior as a driver of movement mechanisms. Our Markov model is
a flexible and efficient method for inference related to effects on behavior that considers
dependence between current and past behaviors. We applied this model to behavior data
from six greater white-fronted geese (Anser albifrons frontalis) during spring migration in
mid-continent North America and considered likely drivers of behavior, including habi-
tat, weather and time of day effects. We modeled the transitions between flying, feeding,
stationary and walking behavior states using a first-order Bayesian Markov model. We
introduced Pélya-Gamma latent variables for automatic sampling of the covariate coetfi-
cients from the posterior distribution, and we calculated the odds ratios from the posterior
samples. Our model provides a unifying framework for including both acceleration and
Global Positioning System data. We found significant differences in behavioral transi-
tion rates among habitat types, diurnal behavior and behavioral changes due to weather.
Our model provides straightforward inference of behavioral time allocation across used
habitats, which is not amenable in activity budget or resource selection frameworks.
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1. INTRODUCTION

Animals make decisions daily that can result in differential fitness (i.e., survival or repro-
ductive success; Brown et al. 2004; Breed and Moore 2015). The knowledge of an animal’s
behavior provides insight into its decision-making process. Historically, behavioral studies
of animal populations were conducted using methods such as direct observation of focal
individuals or instantaneous scan sampling of the group (Altmann 1974). However, data
collection by direct observation prevents a comprehensive understanding of the decision-
making process because it is limited to specific times and places when the animal is observ-
able. The introduction of wildlife tracking devices has largely mitigated these constraints
and provided observations over greater time and space. Recent improvements in tracking
technology have allowed researchers to gather high-frequency data over extended periods of
time (e.g., >1 year), which has led to unprecedented insights into animal decision making
(Nathan et al. 2012; Leos-Barajas et al. 2017).

Behavioral inference from animal movement models has long been a research goal. Early
work by Morales et al. (2004) showed the accuracy of movement state-space models based on
location data only could be improved by including latent behavioral states allowing the model
to switch between movement modes such as exploratory and encampment. Specifically,
an exploratory state was assumed to be characterized by longer step lengths and smaller
turning angles, whereas an encamped state was characterized by shorter step lengths and
larger turning angles. State-space models considering more than two states typically require
more information. Michelot et al. (2017) included constraints in the temporal sequence of
latent behavioral states based on expert knowledge of the annual cycle of the study species
in order to distinguish among four states. McClintock et al. (2017) used a three-state model,
and states were distinguished by the addition of an auxiliary data stream. State estimation in
this context typically is accomplished via hidden Markov models (McClintock 2017), which
have proven to be an efficient method for estimating an unobserved sequence of a categorical
variable, such as behavior, that is associated with the values of observed quantities (e.g.,
step length and turning angle; Zucchini et al. 2016). In general, the estimated states are
not interpretable as true behaviors, but rather proxies as they arise from a mixture model
clustering procedure (Leos-Barajas et al. 2017; Patterson et al. 2017; Michelot and Blackwell
2019). Therefore, when “ground truth” data are available and inference on specific behavior
states is the primary goal, behavioral inference is better achieved by building a classifier
and then applying a behavior model to the classified states as we propose in this paper.

The inclusion of accelerometers in wildlife tracking devices has become increasingly
common. An accelerometer is a tool for measuring an object’s acceleration (ACC), and
when placed on animals, can be used to derive energy expenditure and behavior of the tagged
individual independent of location information (Nathan et al. 2012). Data collected from
accelerometers are substantially different from Global Positioning System (GPS) obser-
vations in quantity, resolution and quality. That is, ACC data can be collected at a high
frequency throughout the life of the tracking device, which results in richer and relatively
larger data sets. The frequency of ACC collection can range from nearly continuous to more
widely spaced intervals and is typically set to the highest frequency possible before affecting
battery performance. Importantly, unlike location tracking devices, accelerometers do not
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typically miss “fixes” because the accelerometer instrument does not require linkages with
external equipment such as satellites or radio trackers. In addition, ACC data are collected
in two or three axes of movement relative to the device position, which provides the ability
to discriminate between behavioral states with similar trajectory profiles.

The high frequency of data collected by accelerometers often allows researchers to
“ground-truth” acceleration profiles with visual observations of the animals. When “ground-
truth” observations of behavior are available, behavioral classification of ACC data can be
conducted using machine learning algorithms (Resheff et al. 2014; Chakravarty et al. 2019).
These approaches have greater reliability at identifying more than two states when compared
to methods that consider only location data (Resheff et al. 2014). The richness of the ACC
data allows for the derivation of many features to build the classification model. The fitted
classification model can be used to assign behavior labels to ACC data. Then the labeled data
can be used to make inference on animal behavior in a second stage. Currently, researchers
summarize the labeled data within a time scale of interest (e.g., days or hours) and use a
traditional activity budget framework, such as linking proportions of observed behaviors to
covariates through generalized linear mixed models (Broekhuis et al. 2014; Heurich et al.
2014). However, by analyzing the aggregate summarized data, inherent temporal structure
and small-scale processes in the data may not be fully utilized. The analysis of the activity
budgets generally ignores temporal dependence in the data by modeling the proportions of
behaviors separately. Rugg and Buech (1990) showed that a Markov model for behavior
resulted in improved estimates of time allocation compared to traditional activity budget
analyses. Additionally, the use of the labeled data ignores uncertainty associated with the
chosen classification method.

We propose a two-stage framework in which we first build a behavioral state classifier and
then explicitly model temporal dependence in the high frequency behavioral observations
via a Markov model and multiple imputation. Multiple imputation is often used in missing
data scenarios and averages inference across a suite of potential true data sets (Scharf et al.
2017; McClintock 2017). We build a classifier using features of the accelerometer data
then build potential data sets based on the classification probabilities or proportions. For a
given behavior data set, our Markov model works directly on the behavioral state transitions
and inherently assumes that current behavior depends on recent behavior (i.e., the Markov
assumption states that given the most recent past, the current behavior is independent of
the long-term past). The transition probabilities are modeled with a logistic function to
link covariates to the probability of transition. Therefore, covariate effects retain the useful
odds ratio interpretation as in multinomial logistic regression and provide insight into how
covariates affect the tradeoff between time spent in each behavior. By using additional habi-
tat information from location data, we can infer habitat use differences among behaviors.
Resource selection models determine selection of habitats by animals based on differences
in frequency of use and availability. As compared to traditional resource selection frame-
works, we can make these inferences without having to define an “availability distribution”
(Hooten et al. 2017). Although these approaches are important for identifying frequently
used habitat, they do not define use and availability with respect to behavior. Our Markov
model framework allows one to consider behavior profiles for different used habitats. Our
approach provides the ability to answer questions about differential use of selected habitats
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that may be apparent from the focal animal’s behavior. For instance, a resource selection
study may identify two different agricultural crops as preferentially used, but these results
do not identify the behavior associated with the crops or the differences in behavioral rates
between the crops.

The relationship between energy expenditure and fitness is especially critical for migra-
tory animals because the time allocation of behaviors during migration, such as feeding, can
impact survival during migration and subsequent reproductive success (Harrison etal. 2011).
We consider a long-distance migrant bird, the greater white-fronted goose (Anser albifrons
frontalis), to demonstrate the inference capabilities of our Markov model. The migration
route of white-fronted geese spans a wide range of habitats in mid-continent North America.
It is known that geese use different habitat types for different behaviors (e.g., roosting in
water and feeding in crops), and thus, we expect differences in behavior transition probabil-
ities or rates depending on habitat (Krapu et al. 1995). Our Markov model has the ability to
provide inference on potential differences in behavior transition rates among habitats that
serve a similar purpose. For example, feeding may primarily occur in agricultural fields,
but rates of feeding may differ by crop type. Variability in rates of behavior transitions may
also be related to environmental factors such as weather. Although activity budget analyses
during winter have not found strong effects of weather (Ely 1992), studies during spring
have found important relationships between weather and the timing of migratory movements
(Fox et al. 2003), and previous work has demonstrated heterogeneity in the movement of
the geese (Hooten et al. 2018). We include weather variables comprising temperature and
wind because we anticipate that these features can explain variation in behavior transitions
during spring migration (e.g., favorable weather conditions increase rates of flight).

We implemented our Markov model in a Bayesian framework. At the core of our Markov
model is multinomial logistic regression. There is a rich literature on Bayesian estimation
of logistic models because sampling from the posterior distribution requires Metropolis-
Hastings Markov Chain Monte Carlo algorithms that can be difficult to implement (tune)
for moderate numbers of covariates or low observed frequencies of categories (Albert and
Chib 1993; Holmes and Held 2006; Friihwirth-Schnatter and Frithwirth 2010; Polson et al.
2013). To mitigate this challenge, automatic sampling strategies have been developed that
rely on augmentation of data with latent variables. For example, Albert and Chib (1993)
introduced the use of truncated normal random variables for category membership using
probit link regression. Hooten et al. (2010) used the Albert and Chib sampling for a multi-
nomial movement model. Holmes and Held (2006) expressed a multinomial logistic model
as a product of binary models and used truncated scale mixture normals to define category
membership. Alternatively, Polson et al. (2013) developed a class of Pélya-Gamma distri-
butions for automatic sampling of Bayesian logistic regression models that is faster and
provides exact inference when compared to the scale mixture latent variables. The introduc-
tion of Pélya-Gamma latent variables induces simple Gibbs updating steps for the logistic
regression coefficients when using a normal (Gaussian) prior. Additionally, Polson et al.
(2013) showed the Pélya-Gamma scheme is significantly faster than other data augmenta-
tion methods and more efficient than Metropolis Hastings for mixed effects logistic models.
Note that Pélya-Gamma latent variables have been used to estimate coefficients of a tran-
sition probability matrix of a hidden Markov model for rainfall data (Holsclaw et al. 2017)
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and to learn dependence structure in topic models for text mining applications (Chen et al.
2013; Linderman et al. 2015; Glynn et al. 2019). Pélya-Gamma latent variables have yet to
be used for analysis of animal behavior data. Moreover, to the best of our knowledge, this is
the first comprehensive example of Pélya-Gamma latent variables and multiple imputation
within a Markov model.

The presented framework provides rich inference about covariate effects including infor-
mation related to the location from GPS data on the sequence of observed behaviors derived
from ACC data. We expected to estimate behavior transition probabilities for greater white-
fronted geese during spring migration that confirm prior knowledge of the diurnal pattern of
behavior and habitat use. The coefficients should reflect an increase in stationary behavior
overnight in open water and wetland habitats while also suggesting more movement during
the day. Additionally, we hypothesized that the estimates would exhibit variability among
habitat types, suggesting variability in time allocation. Furthermore, we expected behav-
ioral transitions associated with flight and feeding to be influenced by inclement weather
more than walking and stationary behaviors. Our method provides a fine-scale picture of the
behavioral decision-making process that is driven by both ACC and GPS data rather than
mechanistic drivers of movement.

2. MATERIALS AND METHODS

2.1. DATASET

Greater white-fronted geese, hereafter white-fronted geese, migrate from wintering areas
in the southern USA (i.e., Arkansas, Louisiana, Mississippi and Texas) to breeding areas
in Alaska and northern Canada (Fig.1; Baldassarre 2014). Individual female white-fronted
geese were captured using rocket nets between December 2017 and January 2018 in Texas.
Captured individuals were each fitted with a U.S. Geological Survey metal leg band and
solar-powered Ornitela (http://www.ornitela.com) neck collar, comprising GPS, ACC and
Global System for Mobile communications (i.e., for daily data upload) technology. Age,
sex and morphometric measurements (normal wing cord [cm], head, culmen, tarsus, middle
toe lengths [mm] and mass [nearest 0.1 kg]) were also collected. We set tracking devices
to obtain ACC values at 10 Hz for 3 seconds at 6 minute intervals and GPS locations at 30
minute intervals with data upload every 24 hours. To demonstrate our modeling approach,
we used GPS and ACC data from six white-fronted geese subset to 1-31 March 2018, which
comprises a portion of the spring migration period (Fig.1). For simplicity, we chose a time
period when all of the geese were migrating within the U.S. rather than defining the specific
dates associated with the geese leaving wintering habitat and arriving at breeding areas. The
average number of ACC fixes per individual was 7257 with a range of 7054-7319.

The location data were used to determine habitat and weather factors experienced
by geese during spring migration. The U.S. Department of Agriculture maintains a
raster of habitat and crop data throughout the contiguous lower 48 states (CropScape;
https://nassgeodata.gmu.edu/CropScape/), which is updated annually. We assumed the habi-
tat at the GPS fix was best represented by the CropScape grid cell containing the observed
point. The original CropScape categories were combined into fewer groups (supplemen-
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Locations from February to May 2018
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Figure 1. Spring migration paths in North America of 6 individual greater white-fronted geese (Anser albifrons
frontalis) from GPS-equipped tracking devices. The highlighted section (white) are the locations for March 2018
used in the analysis of behavior transition probabilities.

tary materials S.1). The National Centers for Environmental Prediction’s North American
Regional Reanalysis (NARR; https://rda.ucar.edu/datasets/ds608.0/) data provide high res-
olution historical weather data in space and time. NARR is available eight times daily (i.e.,
every three hours) on an approximately 32 km grid. We assumed that the weather at the time
of GPS fix was best represented by the NARR value corresponding to the nearest time and
grid cell containing the observed point. We further assumed the weather and habitat at the
time of an ACC fix were best represented by the values assigned to the most recent GPS
location. The weather variables obtained were temperature (K), wind direction (°) and wind
speed (m/s?). Temperature was further summarized to daily minima and maxima. Weather
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variables were standardized to have mean 0 and standard deviation 1. We assumed diurnal
variability in behavior patterns because geese move most predictably near dawn and dusk
between roosting and feeding areas; thus, we included such variability by using the local
solar time of GPS fixes. We captured the diurnal behavior of the geese through two contin-
uous covariates with a 24-h period calculated from the local solar time of day (in seconds)
by cos(27 (seconds)/86,400) and sin(27r (seconds)/86,400), referred to as cos(time) and
sin(time). That is, cos(time) is a representation of night (high values) and day (low values),
while sin(time) represents the first half of the day (high values) and the second half of the
day (low values).

2.1.1. Behavior Classification

We summarized the ACC fixes into the 52 features described in the appendix of Resheff
et al. (2014). The features were used to classify the ACC observations into four behavioral
categories (i.e., flying, feeding, stationary and walking) using a random forest model. We
chose arandom forest model for its efficient handling of the large feature space. By using the
random forest model, we assume the behavior labels are conditionally independent in time
given the ACC data. The number of variables used to build the classification trees was varied
from 1 to 15 and chosen by repeated 10-fold cross validation. The final model used 4 variables
and had 96.5% accuracy on the training data set acquired by video recording. The random
forest model was used to predict classification probabilities for the ACC fixes from the time
period of interest. From the classification probabilities, we constructed M = 200 possible
data sets for multiple imputation. We discuss the details of imputation in the Model Fitting
section. For more details on fitting the classification model, see supplementary materials
(S.2).

2.2. MODEL
2.2.1. Behavior Transition Model

Each imputation data set is a regularly spaced time series of categorical behaviors, S,,1, =
{520, .., SuT, *Sur € {1, ..., J}}, where sy, is the observed behavior category for individual
n,n=1,...,N,and timepointz,r =0, 1, ..., T,, from the set of J behavioral categories.
A Markov model for categorical time series data is defined by a transition probability matrix,
P,;, describing the time-varying transition probabilities between observed states s, ;1 and
Syt as follows:

Pnllt Pnl2t = PnlJt

Pn21t Pn22t *** Pn2Jt
Py, = ) . ) , (D

PnJlt PnJ2t " PnJJt
where ppijr = P(Spr = jlsn,r—1 = i), and the row probabilities sum to one, Z]J'=1 Dnijt =

1. Therefore, given the behavioral state at the previous time step (z — 1), the current observed
category (at time ¢) is modeled as a multinomial trial with probabilities from the correspond-
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Figure 2. 95% credible intervals for habitat effects on the log-odds scale estimated in a Bayesian framework by
behavior transition for six greater white-fronted geese in March 2018. There are significant pairwise differences
between intervals that do not overlap.

ing row of the transition matrix (1). We let y,;j, be an indicator for individual n’s transition
from state i at time # — 1 to state j at time ¢, in other words, yp;j; = 1(Sp; = jlSn,—1 =1i)1s
defined to be 1 for the case when the nth individual is in state i attime ¢ — 1 and state j at time

I
t, and O otherwise. Then the aggregated transition indices vector y,;;, = [ym-lt e Yni Jt:l ,

along with the corresponding transition probabilities, p,;, = [ Dnilt = DPni J,]/, describe a
multinomial trial.

Covariates are introduced by the multinomial logistic link function on the elements of
the vector of transition probabilities, p,,;;, (e.g., see Sung et al. 2007; Holsclaw et al. 2017):

Yniji = 10g ((Pnij0)/(Pnisi)) =X, B;;. and

! )
Paiji = (expWnii)/ | Y expWiko) |,
k=1
where we assume the vector of parameter coefficients §;; = O foralli = 1,2,..., J for

identifiability. In our application, J refers to the walking behavior. Therefore, coefficients
for transitions to walking are 0 and do not appear in subsequent Figs. 2 and 3. Note that
covariates may vary by individual and/or time, which induces non-homogeneous transition
probabilities.
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Figure 3.  95% credible intervals for diurnal (a) and weather (b) covariate effects on the log-odds scale estimated
in a Bayesian framework by behavior transition for six greater white-fronted geese in March 2018. Significance
refers to whether or not the credible interval overlaps zero.

2.2.2. Parameter Model

The B-dimensional parameter vectors in the data model multinomial logistic functions,
ﬂij, fori=1,2,...,Jand j =1,2,...,J — 1 are partitioned into three components:

/

By = [ @i @3] - 3)
where o;; is an (N — 1)-dimensional vector of random individual effects, ¢; j is an H-
dimensional vector of habitat intercepts and 6;; are B — (N — 1 + H)-dimensional vectors
of fixed quantitative covariate effects. The random individual effects are subject to a “sum
to zero” constraint, and therefore, we only sample (N — 1) coefficients. We assume inde-
pendent normal distribution priors for each of the sampled coefficients as given below. The
habitat coefficients for each transition are assumed to have the same mean, p;;. This mean
is equivalent to the average intercept and, therefore, each habitat coefficient can be inter-
preted as the mean plus the habitat effect, similar to a cell means model in ANOVA. The
common mean is assigned a flat prior. The hierarchical centering of these habitat parame-
ters leads to less correlation between parameters compared to estimating H habitat effects
and an intercept in the regression model (Gilks et al. 1995). In addition, centering provides
more interpretability compared to including a baseline intercept and H — 1 coefficients. In
summary, the prior distributions for these coefficients are given by
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N
/
o = [alij Ol(Nfl)ij:I ~ N(O0, UO%I,J,I), such thatZamj =0,

n=1

/ 4
g = [Clij CHij] ~ N(Mijl,ﬁgzijl), puij) o 1, @

/
0ij = I:Qlij e 03—(N—1+H)ij:| ~ N(O’ 062111)

where 0 and 1 are vectors of zeroes and ones, respectively. Note, all prior variances
2 2

(Ua’-ja ;ij’

ters needing to be estimated.

o(_)%_j) are fixed at 100 to induce a vague prior and reduce number of parame-

2.3. MODEL FITTING

The likelihood of each coefficient vector, B; i» is the product of multinomial logistic
functions. As the dimension of B;; increases, the tuning of a Metropolis-Hastings algorithm
becomes increasingly difficult. Latent variable schemes provide ways to automatically sam-
ple from the posterior without tuning and are generalized from binomial logistic regression to
multinomial logistic regression (Albert and Chib 1993; Holmes and Held 2006; Frithwirth-
Schnatter and Frithwirth 2007; Polson et al. 2013). Specifically, the latent variable schemes
express the likelihood as a product of binary logistic functions by the following transforma-
tion:

N T, J-1 J Ynijt
L(BijlIBi—jsS1,....Sn) x 1_[ 1_[ 1_[ |:e¢m'jt/(z ewnikr)] 7
n=11=1 j=1

= )

N T,
x 1_[ l_[ [eﬂm‘jz/(l + ennijt)]yﬂi/'f [1/(1 + ennfjr)]l_ynijt ,

n=11r=1

where n,ijr = Ynijr — Cnijr and Cyjj; = log Zk# exp{Y¥nik}- In this formulation, 1y, is
the log odds for a binomial random variable, which indicates whether or not the transition
was from state i to j for individual n at time point ¢ (Holmes and Held 2006; Polson et al.
2013). From Theorem 1 of Polson et al. (2013), the product of logistic functions in the
likelihood (5) is proportional to the product of an exponential of 7,;;; and a P6lya-Gamma
kernel. Therefore, by introducing the Pélya-Gamma latent variables, the sampling is done
by conditional Gibbs updates alternating between the coefficients, B;;, and Pélya-Gamma
latent variables. The details for the derivation of the full conditionals are in supplementary
material (see supplementary materials S.3).

2.3.1. Multiple Imputation

The uncertainty associated with classifying the ACC data into categorical data by random
forest is incorporated in the posterior distribution of the parameters via multiple imputation.
Multiple imputation is used in situations involving missing data (e.g., the true behavior
category) to provide approximate inference for the parameters based on the observed data
(e.g., ACC fixes) (Rubin 2004; Scharf et al. 2017; McClintock 2017).
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Let B be the collection of regression coefficients for all transitions, S be the collection
of the state transitions for all individuals, and A be the collection of ACC data for all
individuals. Our target distribution is the posterior of the unknown parameters, 8, given the
behavior labels, S. However, we do not observe the true behavior labels directly, but we
predicted the behavior labels by classifying the observed auxiliary data, A. Therefore, our
target distribution is

wwsz&mmmw,
©)
=/w&wmw,

where given the behavior labels, S, the parameters are conditionally independent of the
ACC data. We assumed the distribution of the behavior labels given the ACC data, [S|.A],
is the prediction from the supervised classification random forest.

We follow the multiple imputation MCMC algorithm outlined by Scharf et al. (2017)
which numerically marginalizes over [S|.4] by randomly sampling from a set of M potential
data sets where M = 200:

1. Draw realizations from the imputation distribution, Sl(r%), ""S/(VmT)N’ for m =
1,.... M.

2. For each iteration of the MCMC repeat:

e Select an imputation data set with probability 1/M.

e Use the Gibbs updating steps in supplementary materials (S.3) with (S17,, .. .,
Snry) = S, SR

Throughout model fitting, we used “walking” as our reference behavioral category, J,
in the multinomial logistic function (2). The coefficients for the reference were set to 0
and therefore are not displayed in the results. We chose walking as the reference category
because we did not have specific hypotheses for this behavior, and there was little variation
in acceleration due to walking among individuals. Our method is amenable to choosing a
different reference category specific to the study species. If it is of interest to more easily
interpret effects on state duration, the reference category would depend on the previous state
(i.e., for transitions from flight, the reference category would be flight).

We assessed parameter convergence by monitoring trace plots and setting different ran-
dom starting values (Brooks and Gelman 1998). For inference, we sampled 15000 iterations
from the model posterior and the first 5000 were discarded as burn in to ensure summaries
were not influenced by the starting values. We generated behavior sequences from the cur-
rent values of the parameters each iteration to investigate the goodness of fit of the model
(supplementary web material S.4).

The posteriors for odds ratios were obtained by exponentiating the coefficients each itera-
tion. The posterior samples for coefficients and odds ratios were summarized to the posterior
mean and 95% credible intervals. We determined significance by whether the 95% credible
intervals included zero for the quantitative covariates for weather and time of day. The signif-
icance of the quantitative coefficients corresponded to the 95% credible interval for the odds
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ratio not containing one and a proportion of >0.95 (positive effect on transition probability)
or <0.05 (negative effect on transition probability) of iterations in which the odds ratio was
> 1. For each transition probability, we investigated the differences in behavioral transition
probabilities among habitats by calculating the pairwise proportion of iterations in which
habitat coefficients differed in magnitude, ¢4 > &pij, a,b € {1,..., H}, and a # b.Two
habitat coefficients for a transition were considered significantly different if the proportion
of iterations with a difference in magnitude was >0.95 (the probability of transition from
behavior i to j is greater in habitat a than habitat b) or <0.05 (the probability of transition
from behavior i to j is lesser in habitat a than habitat ). We did not adjust the proportion
cutoff or widen credible intervals to account for inherent multiplicity in this case because
we modeled the habitat coefficients with a common mean, which pooled the coefficient
estimates (4). The hierarchical centering shrinks estimates toward the common mean, u;;,
which makes it harder for significant pairwise differences to occur, thus eliminating the need
to make additional post hoc adjustments for multiple comparisons (Gelman et al. 2012).

The assumption of a discrete time Markov process implicitly accommodates inference on
the original sampling scale of the ACC data schedule (e.g., every 6 minutes). We interpreted
all coefficient estimates as effects on behavioral transition probabilities from state i to state
J at a 6 minute interval, relative to a base behavior state of walking. For brevity, we did
not explicitly restate “relative to walking at a 6 minute interval” for each interpretation.
Similarly, the odds ratios are interpreted as the multiplicative change in odds of transitions
to state j from state i versus transitions to walking from state .

3. RESULTS

Our modeling framework establishes flexibility and efficiency in estimating covariate
effects in the behavioral decision-making process by specifying transition-specific coef-
ficients. The variability in coefficients across from states is indicative of the complexity
in the decision-making process in migrating white-fronted geese. The estimated effects of
different habitats on behavior transitions rates did not follow the same patterns across the
from states (Fig. 2). By contrast, for weather and time of day covariates, the pattern in the
coefficient estimates was similar across from states (Fig. 3).

There were significant differences between habitats for every behavior transition proba-
bility except flight to stationary (see supplementary materials S.5). We estimated a signifi-
cantly higher probability of transitioning to feeding from feeding (i.e., continued to feed),
stationary and walking for food crops such as corn and soybeans and a significantly lower
probability when the birds were in open water habitat (Fig. 4). The positive coefficient esti-
mates for corn and soybeans indicated an odds ratio >1 and an increase in the probability
for transitioning to feeding from flight and feeding (Fig. 2 to feeding subplots). For exam-
ple, the mean effect of corn on the odds of continuing to feed was 0.42 with corresponding
mean odds ratio 1.52, indicating the odds of continuing to feed at the next time step was
52% greater than the odds of transitioning to walking from feeding in corn habitat (Table
1). Transitions to stationary from feeding and walking were more probable in open water
habitats than in corn (see supplementary materials S.5). In general, the widths of the credi-
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Walking to Stationary
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Corn 063 034 025 03 004 02 051 049 063
Developed 0.37 031 032 032 028 024 037 037 044
Fallow/ldle Cropland 0.66 069 057 056 049 043 065 062 0.69
Grasses 075 068 043 047 022 028 072 058 073
Herbaceous Wetlands 07 068 044 053 033 031 067 059 073 Row vs Column effect
. Greater
No Difference
Open Water 072 051 078 067 039 092 068 082 Smaller
Other Crops 08 076 057 072 069 061 078 07 08
Soybeans 049 063 035 028 033 008 022 048 063
Wheat 051 063 038 042 041 032 03 052 0.59
Woody Wetlands 037 056 031 027 027 048 02 037 041

Figure 4. Matrix of pairwise comparisons between habitat coefficients for the transition feeding to feeding for
six greater white-fronted geese in March 2018. The values indicate the proportion of posterior MCMC iterations in
which the habitat coefficient down the row was greater than the coefficients along the column; the upper triangular
values and lower triangular values sum to 1. For example, in the first row, corn, the proportion of times the estimate
for the corn habitat coefficient was greater than the open water habitat coefficient was 1. The rest of the transitions
can be found in the supplementary web material (S.5).

ble intervals in Fig. 2 have an inverse relationship with the observed frequency of habitats
(see supplementary materials S.1 for frequencies). For example, the most frequently used
habitats were corn and open water, which tended to have the narrowest credible intervals.

The probability of remaining in flight (i.e., transitioning to flight from flight) increased
significantly during the first half of the day as indicated by the left most credible interval
for sin(time) in the top left subplot of Fig. 3a. There were few ACC fixes classified as flight
at night, which corresponds to the significant negative effects of cos(time) on all transition
probabilities to flight (Fig. 3a). ACC fixes were classified as stationary most frequently and
in greater proportions at night. Therefore, it is not surprising that many diurnal coefficients
corresponding to transition probabilities to the stationary state were significant. Table 2
shows that 6 out of 8 diurnal coefficients for transitions to stationary were significant.
The transition probabilities to feeding and to flight from any behavior decreased overnight
(negative effect of cos(time) across all from states to feeding and flight; Fig. 3a).

Daily minimum and maximum temperatures did not affect the probability of remaining
in flight the same way. Warmer than average daily minimum temperatures decreased the
probability of remaining in flight (negative credible interval in top minimum temperature
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Table 1. Means and 95% credible intervals for odds ratios for habitat coefficients for the feeding to feeding
transition arranged by increasing mean estimated in a Bayesian framework for six greater white-fronted
geese in March 2018. A significant difference between habitats is indicated by non-overlapping credible
intervals which can be visualized in Fig. 4. The values correspond to exponentiating the estimates of the
coefficients depicted in the from feeding to feeding panel of Fig. 2

Covariate Mean 95% CI

Woody wetlands 0.80 0.38 1.48
Open water 0.91 0.78 1.07
Herbaceous wetlands 1.13 0.81 1.53
Grasses 1.40 1.20 1.62
Soybeans 1.42 1.19 1.69
Fallow/idle cropland 1.49 0.84 2.46
Corn 1.52 1.37 1.70
Other crops 1.72 1.06 2.64
Wheat 1.75 1.01 2.79
Developed 1.82 0.83 3.59

Table 2. A selection of means, 95% credible intervals and proportion of samples with an estimate greater than
1 for the odds ratios for quantitative covariate coefficients estimated in a Bayesian framework for six
greater white-fronted geese in March 2018. The quantitative variable has a significant effect on the
transition probability if the credible interval does not overlap with 1 which corresponds to a credible
interval in Fig. 3 not overlapping 0

Transition Covariate Mean 95% CI Proportion of samples > 1
Flight to flight Maximum temperature 1.26 1.14 1.39 1.00
Minimum temperature 0.83 0.75 0.91 0.00
Wind speed 0.84 0.76 0.92 0.00
Flight to stationary 1.23 1.04 1.45 0.99
Feeding to stationary cos(time) 1.18 1.06 1.31 1.00
Stationary to stationary 1.20 1.13 1.27 1.00
Walking to stationary 1.22 1.13 1.32 1.00

sin(time)

Stationary to stationary 1.17 1.11 1.24 1.00

subplot of Fig. 3b), while the warmer than average daily maximum temperatures increased
the probability (positive credible interval in top maximum temperature subplot of Fig. 3b).
Increased wind speeds decreased the probability of remaining in flight and transitioning to
feeding from feeding and walking. We found no evidence of the weather variables effecting
transition probabilities from stationary behavior. The probability of remaining in flight was
significantly affected by minimum daily temperature, maximum daily temperature and wind
speed, but not wind direction (Table 2).

4. DISCUSSION

We provide a unified framework to connect variation in animal behavior with variation
in habitat use and weather by propagating uncertainty in transitions using multiple imputa-
tion within a Bayesian Markov model with data from a long-distance migratory bird. Our



MARKOV MODEL FOR ACC BEHAVIOR TRANSITIONS

approach is broadly applicable to other focal species and study systems across ecology. By
analyzing data on the scale of frequency of collection, inferences are more intuitive and
appropriate than aggregating to proportions. Importantly, our approach allows analysis of
the behavior sequence with inherent temporal dependence and inference about covariate
effects on behavior transition probabilities.

Transition matrices are well studied and can provide a wealth of inference and predic-
tion beyond what is presented in this study including simulation of behavior sequences in
different settings. Further, transition matrix models are used in ecological and evolution-
ary research beyond behavioral applications and Markov models. We extended our Markov
model with a P6lya-Gamma sampling scheme, which will be useful for fast and automatic
estimation of other complex ecological models that utilize the logistic link function.

We also implemented a unique approach to analyzing both ACC and GPS data from track-
ing devices. When we know the specific location of animals on the landscape, quantifying
the effects of habitat on behavior transitions provides unprecedented information regarding
the differential rates of behavior in specific habitats. We made simple assumptions when we
constructed our covariates by assigning values to ACC fixes from the most recent GPS fix,
but there is the potential to link to existing animal movement models for interpolation of
location data at times of ACC observations. McClintock et al. (2017) used a continuous time
correlated random walk model to predict locations at a regular time interval (Johnson et al.
2008). The locations could be predicted to the time points of the ACC fixes, and covariate
values could reflect the prediction location or be imputed from the prediction distribution
(Hooten et al. 2010; Scharf et al. 2017).

In the case of white-fronted geese during spring migration, different rates of behavior
can be attributed to different habitats. Larger relative effects of habitats associated with
food sources such as corn and soybeans on transition probabilities to feeding compared to
effects of wetland habitats and open water aligns with previous knowledge of white-fronted
goose ecology (Ely 1992; Krapu et al. 1995). Open water consistently had lower transition
probabilities than food habitats for transitions to feeding and flight. Our finding that white-
fronted geese were less likely to transition to feeding or flight in open water compared to food
habitats was consistent with our expectations. Also, we found significant effects of weather
on behavior transition probabilities of white-fronted geese during spring migration. Higher
winds decreased the odds of remaining feeding or transitioning to feeding from stationary
or walking behavior. Duration of flight behavior (flight to flight transitions) was the most
influenced by weather. The opposite effects of minimum and maximum daily temperature
on flight durations may be indicative of more complex decision-making processes by white-
fronted geese. An increase in flight duration with an increase in maximum daily temperature
aligns with our a priori assumptions that these birds do not often migrate beyond the snow
line during spring because food is relatively inaccessible under snow.

Furthermore, we were able to control for diurnal patterns in activity by using a continuous
transformation rather than discretizing the time of day. The effects of time of day were
consistent across from states. Specifically, the coefficients for cos(time) all appeared to be
significant in the same direction and magnitude in Fig. 3a. In the future, it may be beneficial
to relax the assumption that all covariate effects are transition specific and instead estimate
a mix of transition-specific and behavior-specific coefficients. For example, Holsclaw et al.
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(2017) estimated a transition matrix for a Hidden Markov model with a transition-specific
intercept and state-specific coefficients for all covariates. They estimated weather covariates
specific to rainfall states at weather stations in India to identify global effects of weather
systems. For animal migration and behavior, the occurrence of certain weather systems or
the time of day may always result in a specific decision regardless of the current behavior
which suggests a model with behavior-specific coefficients may be a better fit. Within the
Bayesian framework, models with different parameter formulations can be compared using
tools such as Bayes factors, information criteria, or prediction of hold out samples to test
hypotheses about the behavior process (Hooten and Hobbs 2015).

Our analysis was limited to a month-long subset of the spring 2018 migration, and
this pattern may become more clear with the inclusion of more years. Although much
of the inference was verification of previous knowledge about white-fronted geese, the
methodology allows us to infer about habitat use and behavior simultaneously using both
the GPS and ACC information. Most importantly, we developed a detailed picture of time
allocation in reference to the specific habitat types used by white-fronted geese during
spring migration which is not addressed by traditional models used in previous activity
budget analysis, movement trajectory prediction, or resource selection frameworks.

There is diminishing return on estimation and inference after a sufficiently large number
of imputation data sets are used (Scharf et al. 2017; McClintock 2017). In order to investigate
our choice of 200 data sets, we compared posterior inference among 200 imputation data
sets, 100 imputation data sets and 1 data set corresponding to the most likely behavior
classification. There was a general consensus among the three scenarios on the direction of
the effects. Compared to the estimates based on the most likely classification, the estimates
for the imputation scenarios were shrunk towards zero. Credible interval widths for the
imputation scenarios appeared consistent or larger than the widths for coefficients estimated
from the most likely behaviors (see supplementary web material (S.6) for side-by-side
comparisons).

Advances in animal tracking technologies continue to provide more frequently collected
data for a greater duration of time. Thus, rich data sets are emerging as never before for
ecologists and evolutionary biologists. Hence, there is an increasing need for development
of models that appropriately handle the structure and volume of collected information for
improved inference. Our Markov model framework provides much more capability for
directly interpreting behavior patterns. In addition, the P6lya-Gamma latent variables facili-
tate for more efficient sampling and have yet to be used in the animal behavior and movement
literature. If classification of behaviors is not feasible, the Pélya-Gamma sampling scheme
can be incorporated into Bayesian estimation of transition probability matrices in a hidden
Markov model framework (Holsclaw et al. 2017). The model directly handles temporal
dependence in ACC data and learns about the behavior process from both ACC and GPS
data. Our results suggest that new data sources coupled with appropriate modeling have
unprecedented potential to provide a comprehensive understanding of complex ecological
and evolutionary processes in animal movement.

[Received June 2019. Accepted May 2020.]
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