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Abstract—Model Predictive Control (MPC) promises to en-
dow robots with enough reactivity to perform complex tasks
in dynamic environments by frequently updating their motion
plan based on measurements. Despite its appeal, it has seldom
been deployed on real machines because of scaling constraints.
This paper presents the first hardware implementation of
closed-loop nonlinear MPC on a 7-DoF torque-controlled robot.
QOur controller leverages a state-of-the art optimal control
solver, namely Differential Dynamic Programming (DDP), in
order to replan state and control trajectories at real-time rates
(1kHz). In addition to this experimental proof of concept,
an exhaustive performance analysis shows that our controller
outperforms open-loop MPC on a rapid cyclic end-effector
task. We also exhibit the importance of a sufficient preview
horizon and full robot dynamics through comparisons with
inverse dynamics and kinematic optimization.

I. INTRODUCTION

In order for robots to perform complex tasks such as
collaborating with a human or running out in the real
world, they must be able to anticipate and react. Optimal
control offers a convenient framework to endow them with
such capabilities as it characterizes state-dependent control
policies from high-level objectives over a time horizon.
Model predictive control (MPC) [1], [2] approximates those
closed-loop policies online into locally optimal policies.
Although well-known within the robotics community [1],
[3], its hardware deployment is yet to be achieved when
using high dimensional nonlinear dynamics, mainly due to
scaling issues. In default of sufficient computation resources
two main approaches can be found in the literature.

One approach is to separate planning and control into
offline or low-frequency motion planning and online inverse
dynamics (ID) [4]. Modern planners can generate complex
and dynamic whole-body motions [5], [6] and ID controllers
nowadays enjoy very fast rates thanks to efficient rigid-body
dynamics algorithms [7], [8]. For instance the task function
approach [9] which consists in solving IK/ID as the opti-
mization of an operational space task metric can be solved
in far less than 1ms [10]-[12]. However when these planners
are not fast enough to allow online replanning, it becomes
an issue in face of uncertainty such as external disturbances
or modelling errors. Conversely, ID controllers [13], [14] are
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Fig. 1: Pick-and-place-like task, with high dynamics and
precision thanks to our state-feedback MPC, but keeping high
compliance thanks to the low-level torque control.

unable to plan because the instantaneous linearization of the
robot dynamics leads to a torque selection based solely on
the next desired state. From an optimal control perspective
ID can be regarded as the singular case of a zero preview
horizon [15]. Yet anticipation at the control level is important
for complex tasks, e.g. capturability-constrained balancing
tasks in locomotion [16] or non-holonomic orientation con-
trol tasks through angular momentum [17], where current
actions affect future states.

Another approach is to reduce the complexity of the
MPC problem by reasoning over simplified models. For
instance in [18] the manipulator dynamics are neglected and
kinematic optimization problems are solved online. In aerial
robotics, model simplifications enable to exploit structural
advantages in the dynamics [19]. In legged locomotion,
center-of-mass reductions, such as the linear inverted pendu-
lum, can be used in a receding horizon controller to generate
stable gaits thanks to its linearity and low dimension [20],
[21]. But as simplified models are less expressive they
artificially restrict the capabilities of the robot and thus limit
the range of possible motions. In fact the importance of the
full dynamics in complex motion generation was already
acknowledged [22], [23].

Recent progress in trajectory optimization (TO) of-
fers plausible solutions for preview control. The original
continuous-time Optimal Control Problem (OCP) is tran-
scripted into a finite dimensional nonlinear program (NLP)
which can then be solved using parametric optimization
techniques. In particular Differential Dynamic Programming
(DDP) [24] has revealed its potential in whole-body motion



generation [25] [17]. DDP is an iterative method based on
the shooting approach [1], i.e it optimizes over controls while
keeping states implicit, as opposed to collocation methods
[26] which treat states explicitly as decision variables. While
collocation methods can produce impressively realistic be-
haviors such as in [27] thanks to a proper globalization
strategy, they are much slower than shooting methods which
exploit the sparsity of the problem. Recent improvements
based on multiple-shooting [28] such as FDDP [29] mitigate
the poor globalization by allowing unfeasible initialization.

Hardware MPC implementations based on DDP-like al-
gorithms can already be found in the literature [30], [31].
For instance in [32] the authors propose online replanning
based on a DDP variant where an optimal open-loop torque
is combined with a closed-loop PD controller, but sensory
feedback is not directly used in the replanning loop. In [33]
the authors use iLQR in a separate thread to replan with
state feedback every 50ms while the robot is controlled at
5ms. In [34], the authors propose to accommodate a low
replanning frequency (15 — 20H z) with a control frequency
of 400H z through frequency shaping. While the proposed
controller exhibits good performance it only solves kinematic
TO and torques are retrieved through ID. Until the point
where the MPC can be evaluated at the frequency of the
motor driver inputs, an additional layer of control would be
necessary and the MPC would act as a planner.

In this paper we present controller that computes torques
at 1kHz over a time horizon based on the full dynamics
model. We propose an original optimal control formulation
of the pick-and-place task and use FDDP [29] to solve
the OCP in an MPC fashion with two variants: an open-
loop controller similar to [32] computing a feedforward
torque combined with a joint impedance controller, and
a closed-loop controller updating the feedforward torque
based on sensory feedback. We show experimentally that
the closed-loop controller outperforms the open-loop one
and we compare it with ID and kinematic TO. To the best
of our knowledge, it is the first experimental demonstration
of nonlinear MPC at 1kHz with pure torque control on a
manipulator without any additional stabilizing controller. The
outcomes are of strong practical interest: the robot is able
to versatily adapt to perturbation during a dynamic task,
reach the target with arbitrary precision and offer a full
compliance when e.g. an operator physically interacts with
it. This paves the road to a new way of designing controllers
of manipulator robots in applicative contexts. In Section II
the OCP is formulated and solved through DDP-based MPC.
In Section III the pick-and-place task is presented, which is
then benchmarked on the real robot in Section IV.

II. DDP-BASED MPC

In this section we formulate the motion generation prob-
lem as an OCP solve it using FDDP. The two MPC con-
trollers are presented.

A. OCP formulation

The problem is formulated as a continuous-time OCP

T
(rr)lin( : / L(xz(t), u(t),t)dt + Lr(x(T)) (1)
u(.),x(. 0
| 2(0) =20, 2(t) €X, ut) €U
where * = (q,v) is the robot’s state of positions and

velocities, u = 7 is the control torque, F' the robot dynamics,
L, Lt the running and terminal costs, X',U/ are the sets of
admissible states and controls.

B. DDP resolution

For more details about the original DDP algorithm we
refer the reader to [25], [24]. The time horizon is divided into
sub-intervals [t;, t;+1) of length 6 > 0 and the solution space
of (1) is restricted to piecewise-constant open-loop controls

N-1
1}1(1111]1 = Z; Li(zi,u;) + In(zN) 3)

oL {xi+1 = f(xz,uz) Vi e {0, ey N — 1}
o = X

where (X, U) is the state-control sequence, f is the Euler

discretization of F and I; = f;f“ L(z;,u;)dt. DDP solves

(3) through Bellman’s recursion in 2 stages, given an initial

guess (XY, U°) and LQ approximations of f, 1

1) Backward pass : a quadratic model of the Hamiltonian
around the current guess is propagated starting from
the terminal node and the corresponding LQRs are
solved recursively for : = N, ..., 0

2) Forward pass : the resulting LQR policy is simulated
and the current guess is updated

The algorithm returns optimal state sequence and control
policy (X*,U*) with feedforward control k* and feedback
gains K*
uw(z)=ki+ K/ (x—=a]) Vie{0,..N—-1} (@
The specificity of the FDDP solver used is to accept un-
feasible initialization to enhance classical DDP globaliza-
tion strategy. This is done by using a multiple-shooting
transcription which forces the discretized state trajectory to
match the shooting nodes: the equality constraint in (3) is
changed into ;41 = f(x;,u;) — fi+1 where f;;, represent
the gap between the current integrated state and the next
shooting node z;4;. Detailed explanations of the FDDP
solver can be found in [29]. Also note that the inequality
constraints are not explicitly taken into account in the solver
but implicitly using cost penalization. It enables us to enjoy
the efficiency of shooting methods, while enforcing hard-
constraints using collocation [35] or recent constrained-DDP
solvers [36] would be computationally more demanding.
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Fig. 2: Open-loop MPC: replan based on predictions. Plan-
ning and control are separated. This control scheme is
representative of MPC controllers found in the literature such
as in [32].

C. MPC control schemes

At each MPC cycle, problem (3) is solved with a horizon
T}, = Np6 and its solution is used as an initial guess for the
next cycle, i.e. (X%, U%) < (X*,U*) where x is replaced
by some initial state . The open-loop and closed-loop MPC
differ in the way z¢ is selected.

1) Open-loop MPC: The plan is updated based on the
MPC predictions (see Figure 2), i.e. g - z]. The control
policy yields

uor(Z) = us(xy) + PD(z7, &) 5)
= kg + Kg(x] — 25) — Kp(G— ¢f) — Kp(0 — v7)

where & = (§,0) is the measured/estimated state and
Kp, Kp > 0 are joint PD gains. Since planning and control
are synchronous, z¢ = x{ is reset to z7 at each cycle so the
feedback term vanishes and (5) reduces to

uor () =ky — Kp(§d—q7) = Kp(0 —vy)  (6)

2) Closed-loop MPC: The plan is updated based on direct
state feedback (see Figure 3), i.e. z¢p <— 2. The control policy
yields

ucr (i‘) = u(’g (f?) (7)
=kj + Kj(& — )

Since the z¢p = () is reset to & at each cycle, the control
law (7) only includes a feedforward term

ucrp (&) = k§ 8

The feedback gain Kj compensates small deviations around
x¢ and can be used to interpolate the control trajectory over
[to, t1) when the planning rate is lower than the control rate.
But as seen from equation (8) the feedback term is not used
when planning and control are synchronous.

III. PICK-AND-PLACE TASK FORMULATION

We propose here an original formulation of a cyclic end-
effector task. First we introduce an acyclic reaching task.
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Fig. 3: Closed-loop MPC: direct feedback from sensors. This
control scheme is representative of an “’ideal” MPC.

A. Static pose reaching task

The task is to bring the end-effector position p(z) to a
desired end-effector position p. The running cost is split into
a goal tracking term, regularization terms and a barrier term

Wz, u) =11 (z) + 12(2) + B(u) + 14 () )
= wl|p(z) — p|® + 2T Qx + v Ru+ B(x)

And the terminal cost is similarly defined as

In(a) = Iy (2) + () + I ()
— wy|lp(x) - Bl + 27 Qnx + By (x)

(10)

where the weights w,wy > 0 penalize the deviation from
the end-effector goal, the weight matrices Q, R,Qyn > 0
regularize states and controls and B(.), By(.) are weighted
quadratic barriers enforcing the state limits (z, T)

0 if z<z<z
B(x)=q (t—z)'Blx—z) if z<z (11)
(z—2)'B(z —2) if >z

Note that the OCP for this acyclic task needs to be defined
only once as the weights are fixed. Typically a high terminal
cost is set on the end-effector goal (wy >> w).

B. Pick-and-place task

The pick-and-place motion consists in alternatively reach-
ing desired end-effector positions p, and p; at predefined
times characterized by the cycle duration T>. We propose to
use a time-varying cost function similar to (9),(10), the main
difference being that w becomes an increasing sequence of
weights over each half-cycle and p is modified in order to
cyclically penalize targets p, and p,. We also add to I* a
term penalizing the end-effector velocity in order to ensure
that the robot comes to a rest each time p, or p; is reached.
Also, as shown in Figures 2 and 3 the OCP is solved at the
control rate (1kH z) while the problem formulation (3) only
allows an update of the cost function weights at the OCP
sampling rate J. In order to mitigate discontinuities in the
solution, the OCP can be updated at each control cycle ¢

e, t) = wt)lp(z) = p O] +o@®)p)>  (12)
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where w(t),v(t),p?®(t) are designed to encode the cyclic
nature of the pick-and-place task, i.e. the alternation of goals
P and pp and a zero end-effector velocity at switching times

w(t) = w(t) + w(t) (13)
P = SO ) ()
v(t) = ew(t) (15)

where w®(t), w’(t) > 0 penalize the distances to p,, p, and
e > 0 is a scaling factor. Without going into algorithmic
details we explain here how these weights are calculated. The
general idea behind our cost design is to gradually enforce
a soft terminal constraint on the end-effector position every
Lc We use a periodic function h(t) that is monotonically
increasing over each half-cycle

t+6 Tc Tc
h(t) = / e e k=L, (k+1)-2] (16)
t

2
where the parameters «,5 > 0 control the slope and
sharpness of the exponential. Then w®(t), w’(t) are defined
from h(t) such that they are anti-cyclic (see Figure 4).

IV. EXPERIMENTS

In this section we benchmark the two controllers of
Section II-C on a 7-DoF torque-controlled KUKA LWR iiwa
R820 14 (see Figure 1) for the pick-and-place task described
in Section III. We also analyze the performances of the
closed-loop MPC as it tends toward an ID controller and
a kinematic TO.

A. Setup

The FDDP solver used in our experiments is available in
the Crocoddyl library [29] which benefits from automatic dif-
ferentiation and analytical rigid-body dynamics from Pinoc-
chio [8]. Our MPC controllers were implemented in C++
and the real-time data flow was handled using the Dynamic
Graph library [37] along with the Fast Robot Interface
(FRI) extension of the KUKA Sunrise Workbench (v1.3).
We used an Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz
CPU running on RT-Preempt. The KUKA internal controller
applies gravity compensation by default while the policies
(6), (8) already take into account the full dynamics of the
robot. In order to avoid compensating twice for gravity we
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Fig. 5: The closed-loop controller generates smooth profiles
that are well tracked (in green) while the open-loop controller
generates abrupt switches that are difficult to track (in red).
High PD gains render the robot stiff and the controller close
to instability.

subtract the gravity torque g(z3) from our policies, i.e. the
actual torque commands sent to the robot are

uor(#) = ko + PD(&, x7) — g(a7)

ucr(®) = ko — g(a1)

a7
(18)

The actuator rotor inertia was estimated to 0.1kg.m? and
added to the diagonal of the inertia matrix.

B. Open-loop vs closed-loop MPC

We compare here the MPC policies (17) and (18). The reg-
ularization weights () were set to 10~2 for the joint positions
and 10! for the joint velocities, the control regularization R
to 1072 and the state limit weight B to 50. The running cost
weights are defined according to equation (16) with T = 2s,
a =40, f = 0.85 and € = 0.02. The MPC parameters were
set to & = 30ms and N, = 30 (i.e. we optimize over a
0.9s horizon). Figure 5 shows the end-effector trajectories
and tracking errors between MPC predictions and measure-
ments for both controllers. We can see that the open-loop
controller generates aggressive desired trajectories requiring
unreasonably high PD gains to be tracked. Furthermore it is
less optimal for the task as the total running cost was 31934
(against 19978 for the closed-loop controller). In order to
improve the tracking performance, the cost function weights
can be reduced and the MPC horizon increased for the



---- Target 1
05 ---- Target 2
— ——— Closed-loop
E o4 —— Open-loop |
s
5 04
0
2
5 0.2
2
¥
(<
£ 00
@
2 o5
w
Q 0.4
0.3

3 4 5
t(s)

Fig. 6: Reducing the cost weights (o = 20, 8 = 0.8) open-
loop MPC (red) results in a smaller tracking error (average
norm 0.7 vs 1.6 in Figure 5) but a loss in the end-effector
precision, as seen by comparison with the original closed-
loop MPC trajectory (green) duplicated from Figure 5.

open-loop controller but this results in a poor goal tracking
precision and the MPC solving time exceeding 1ms. As a
result we had to modify the task and trade-off a significant
part of the task precision against compliance in order to
improve the tracking, as shown in Figure 6. In conclusion the
trade-off between MPC tracking and task fulfillment appears
challenging to arbitrate with the open-loop controller since it
leads either to a high gains control loop close to instability,
or to a poor task performance with a longer solving time.
This experimental data shows that the open-loop control
scheme is not suited for online use as the predictions do not
match the actual capabilities of the robot. This confirms that
the state feedback is crucial to generate online smooth and
realistic trajectories. The attached video! shows qualitatively
the response of each controller during a real human-robot
interaction. The stiff open-loop MPC compensates poorly an
external push whereas the closed-loop controller exhibits a
more compliant, yet effective, response.

C. Comparison with ID

When the horizon of an OCP collapses, the trajectories
consists in a single point optimized under the instantaneous
dynamics constraints and it is equivalent to ID, as shown
in Appendix. As a consequence we expect to observe a
reduced anticipation ability of the closed-loop controller as
it tends toward an ID controller. In order to exhibit this
phenomena we look at the joint velocity constraint saturation
in the pick-and-place task when T}, — 0. For the same task
as in the first experiment, Figure 7 shows joint velocities
obtained for 7, = 900ms and 1}, = 360ms as well as
the velocity constraints saturation and Figure 8 shows the
average saturation over all joints as a function of T}. As
expected when 1), — 0, the velocity constraint saturation
increases which confirms that short horizons are less able to
anticipate constraints. This resulted in a higher running cost
(14182 against 10048) so the shorter horizon is less optimal
for the task. This experimental data shows that a sufficiently
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(a) Joint velocities (desired in thin dashed line)
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(b) Joint velocities saturation (desired in thin dashed line)
Fig. 7: The velocity constraint saturation peaks more signifi-
cantly at each half-cycle when the horizon is smaller: short-
sighted controllers are less able to anticipate constraints.
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Fig. 8: Average constraint saturation over all joints as a
function of the time horizon. Shorter horizon controllers hit
the constraint more often.

long horizon in control schemes is important to avoid myopic
behaviors.

D. Comparison with kinematic TO

Taking into account the full dynamics in the preview
horizon is important in order to generate dynamically con-
sistent motions. This can be verified by reducing the control
regularization: when R — 0, the optimizer should neglect the
dynamics and return kinematically optimized trajectories that
are dynamically not relevant. Indeed, for a fixed-based ma-
nipulator, any desired accelerations can be realized through
ID at the cost of potentially very high torques. Figure 9 shows
the end-effector positions, joint velocities and torque profiles
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(c) Filtered joint torques and reference (thin dashed line)
Fig. 9: When the control regularization term decreases, the
trajectories are less relevant: the velocity tends toward a
square signal and the torque exhibits sharp peaks

obtained for R = 1072 and R = 10~%. As expected when the
control is less penalized, the MPC generates abrupt torque
and velocity switches that are not consistent with the robot
mechanical capabilities.

V. CONCLUSION

We introduced the first torque MPC controller running
at 1kHz on a real robot. We showed experimentally that
this controller is able to achieve with good performance
dynamic cyclic tasks while ensuring a compliant response
to external disturbances thanks to its high-frequency state
feedback. We also exhibited the importance of the preview
horizon and full dynamics in the performance and thereby
its superiority against kinematic optimization and ID which
is merely a singular case of MPC with a collapsed horizon.

As future work we would like to improve the efficiency off
our controller in order to increase the preview horizon and
achieve more dynamic tasks, to incorporate hard constraints,
and to extend this approach to more complex scenarios
involving contacts with the environment, with the ultimate
objective of applying it to multi-contact locomotion.

APPENDIX

We show here that ID is equivalent to an OCP with a col-
lapsed horizon. Task-Space Inverse Dynamics (TSID) com-
putes joint torques achieving a desired task-space impedance
by solving a QP

min aiJ(g)a+ PDy(p(a), (g v))]”

+aslla + PDs(q,v) | + s 7|2
st.a= M"Yt —0)

19)

where ¢, v,a are the joint positions, velocities and accel-
erations, p(q) is the end-effector position, J = g—g(q)
is the Jacobian, PD;, PD, are task-space and joint-space
impedances, b = b(q,v) summarizes Coriolis, gravity and

centrifugal effects. Consider the OCP (3) with N =1
lo(zo,uo) +11(71)

.t {1‘1 = f(zo,uo)

o = X9

min (20)
U0,20,%1

Selecting a cost function encoding a task-space objective
with joint-space regularization, e.g.

lo(z,u) = [[p(@)|* + [ 70l* + lg — @l + [[o]|* + Ju]?
(2D
(z) = @l + v + lla = al® + [|v]|?
where ¢ is a reference posture. Since DDP uses the shooting
approach, the state is not an explicit decision variable so the
singular-horizon OCP (20) is equivalent to
min uo|® + Ip(g0)|I* + [ Tor* + llgr — al|* + o |
(22)
sty = M~ (o) (T — b(go, vo))
The Euler 2"?-order integration with step § << 1 leads to

p(a1) = p(qo) + Jvod + Ja16° (23)

Jur ~ Jugd + Ja1 6

and using (23) in (22), it can be shown that the collapsed
OCP can be written under the form

min fyf|Ja + Kip(q) + KoJvl? (24)
+ Balla + K3(q — q) + Kqv|)?
st.a=M"Yr—0) (25)

where (K1, Ks), (K3, K4), 1, P2 are task-space PD gains,
joint-space PD gains, and weights all depending on § (and
the OCP cost weights if any). This problem is equivalent
to (19), which concludes the proof that TSID is merely the
particular case of an OCP with a singular horizon.
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