


generation [25] [17]. DDP is an iterative method based on
the shooting approach [1], i.e it optimizes over controls while
keeping states implicit, as opposed to collocation methods
[26] which treat states explicitly as decision variables. While
collocation methods can produce impressively realistic be-
haviors such as in [27] thanks to a proper globalization
strategy, they are much slower than shooting methods which
exploit the sparsity of the problem. Recent improvements
based on multiple-shooting [28] such as FDDP [29] mitigate
the poor globalization by allowing unfeasible initialization.

Hardware MPC implementations based on DDP-like al-
gorithms can already be found in the literature [30], [31].
For instance in [32] the authors propose online replanning
based on a DDP variant where an optimal open-loop torque
is combined with a closed-loop PD controller, but sensory
feedback is not directly used in the replanning loop. In [33]
the authors use iLQR in a separate thread to replan with
state feedback every 50ms while the robot is controlled at
5ms. In [34], the authors propose to accommodate a low
replanning frequency (15− 20Hz) with a control frequency
of 400Hz through frequency shaping. While the proposed
controller exhibits good performance it only solves kinematic
TO and torques are retrieved through ID. Until the point
where the MPC can be evaluated at the frequency of the
motor driver inputs, an additional layer of control would be
necessary and the MPC would act as a planner.

In this paper we present controller that computes torques
at 1kHz over a time horizon based on the full dynamics
model. We propose an original optimal control formulation
of the pick-and-place task and use FDDP [29] to solve
the OCP in an MPC fashion with two variants: an open-
loop controller similar to [32] computing a feedforward
torque combined with a joint impedance controller, and
a closed-loop controller updating the feedforward torque
based on sensory feedback. We show experimentally that
the closed-loop controller outperforms the open-loop one
and we compare it with ID and kinematic TO. To the best
of our knowledge, it is the first experimental demonstration
of nonlinear MPC at 1kHz with pure torque control on a
manipulator without any additional stabilizing controller. The
outcomes are of strong practical interest: the robot is able
to versatily adapt to perturbation during a dynamic task,
reach the target with arbitrary precision and offer a full
compliance when e.g. an operator physically interacts with
it. This paves the road to a new way of designing controllers
of manipulator robots in applicative contexts. In Section II
the OCP is formulated and solved through DDP-based MPC.
In Section III the pick-and-place task is presented, which is
then benchmarked on the real robot in Section IV.

II. DDP-BASED MPC

In this section we formulate the motion generation prob-
lem as an OCP solve it using FDDP. The two MPC con-
trollers are presented.

A. OCP formulation

The problem is formulated as a continuous-time OCP

min
u(.),x(.)

∫ T

0
L(x(t), u(t), t)dt+ LT (x(T )) (1)

s.t.

{

ẋ(t) = F (x(t), u(t)) ∀t ∈ [0, T ]

x(0) = x0, x(t) ∈ X , u(t) ∈ U
(2)

where x = (q, v) is the robot’s state of positions and
velocities, u = τ is the control torque, F the robot dynamics,
L,LT the running and terminal costs, X ,U are the sets of
admissible states and controls.

B. DDP resolution

For more details about the original DDP algorithm we
refer the reader to [25], [24]. The time horizon is divided into
sub-intervals [ti, ti+1) of length δ > 0 and the solution space
of (1) is restricted to piecewise-constant open-loop controls

min
X,U

=
N−1
∑

i=0

li(xi, ui) + lN (xN ) (3)

s.t.

{

xi+1 = f(xi, ui) ∀i ∈ {0, ..., N − 1}

x0 = x0

where (X,U) is the state-control sequence, f is the Euler

discretization of F and li =
∫ ti+1

ti
L(xi, ui)dt. DDP solves

(3) through Bellman’s recursion in 2 stages, given an initial
guess (X0, U0) and LQ approximations of f, l

1) Backward pass : a quadratic model of the Hamiltonian
around the current guess is propagated starting from
the terminal node and the corresponding LQRs are
solved recursively for i = N, ..., 0

2) Forward pass : the resulting LQR policy is simulated
and the current guess is updated

The algorithm returns optimal state sequence and control
policy (X∗, U∗) with feedforward control k∗ and feedback
gains K∗

u∗

i (x) = k∗i +K∗

i (x− x∗

i ) ∀i ∈ {0, ..., N − 1} (4)

The specificity of the FDDP solver used is to accept un-
feasible initialization to enhance classical DDP globaliza-
tion strategy. This is done by using a multiple-shooting
transcription which forces the discretized state trajectory to
match the shooting nodes: the equality constraint in (3) is
changed into xi+1 = f(xi, ui)− f̄i+1 where f̄i+1 represent
the gap between the current integrated state and the next
shooting node xi+1. Detailed explanations of the FDDP
solver can be found in [29]. Also note that the inequality
constraints are not explicitly taken into account in the solver
but implicitly using cost penalization. It enables us to enjoy
the efficiency of shooting methods, while enforcing hard-
constraints using collocation [35] or recent constrained-DDP
solvers [36] would be computationally more demanding.
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