Modeling Dependence in Spatio-Temporal
Econometrics

Noel Cressie and Christopher K. Wikle

Abstract This chapter is concerned with lattice data that have a temporal label as
well as a spatial label, where these spatio-temporal data appear in the “space-time
cube” as a time series of spatial lattice (regular or irregular) processes. The spatio-
temporal autoregressive (STAR) models have traditionally been used to model such
data but, importantly, one should include a component of variation that models
instantaneous spatial dependence as well. That is, the STAR model should include
the spatial autoregressive (SAR) model as a subcomponent, for which we give a
generic form. Perhaps more importantly, we illustrate how noisy and missing data
can be accounted for by using the STAR-like models as process models, alongside
a data model and potentially a parameter model, in a hierarchical statistical model
(HM).

1 Introduction

Spatial Econometrics has its origins in the statistical modeling of data that are labeled
with a spatial (regular or irregular) lattice and, hence, they fall under Tobler’s first
law of geography (everything is related to everything else, but near things are more
related than distant things; Tobler, 1970). Spatial-econometric models were inspired
by the autoregressive (AR) statistical models found in time series analysis, where
the data are temporally labeled and things in the recent past are more related than
things in the distant past. The area of study known as Econometrics has these
AR (combined with moving-average) models at its core. Spatial Econometrics has
mimicked Econometrics with spatial autoregressive (SAR) models at its core [e.g.,
Anselin, 1988, Arbia, 2006]. In this chapter, we consider the spatial and the temporal
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aspects together and give spatio-temporal-econometric models based on spatio-
temporal autoregressive moving average (STARMA) models that can be fitted to
spatio-temporal data.

One might think that SAR models have very similar statistical properties to those
of AR models. However, the time dimension is ordered whereas the spatial dimension
is not (unless one-dimensional space provides the spatial labels or a partial order
is imposed on a high-dimensional space; see e.g., Tjostheim, 1978, Cressie and
Davidson, 1998). While the SAR models of Spatial Econometrics can be defined
analogously to the (temporal) AR models of Econometrics, some of their spatial-
statistical-dependence properties are quite different from those of their temporal
counterparts. Furthermore, the notion of filtering out noise due to measurement
error, which is common in signal processing, has not been given the emphasis it
deserves in Spatial Econometrics. These and other issues will be discussed and
extended to spatio-temporal-econometric models.

Consider now data with both a spatial label and a temporal label, where these
spatio-temporal data appear in the “space-time cube,” as a time series of spatial lattice
processes. The spatio-temporal autoregressive (STAR) models have traditionally
been used but, importantly, one should include a component of variation that models
instantaneous spatial dependence as well. That is, the STAR model should include
the SAR model as a sub-component. In this chapter, we give the generic form for
such a spatio-temporal model. We also consider the fundamental problem of how to
handle measurement error in the data as well as missing data, by introducing a data
model along with the STAR model, which defines a hierarchical statistical model
(HM).

This chapter is organized as follows. Section 2 motivates why space and time
are important factors in any scientific investigation and why modeling statistical
dependence is key when making inferences from spatio-temporal data. Section 3
develops the core statistical models of Spatio-Temporal Econometrics. Section 4
looks back at the evolution of Spatial Econometrics and notes how some key advances
in spatial-statistical modeling have been slow to take hold. Section 5 returns to
the core spatio-temporal econometric models presented in Section 3 and gives a
modern, HM approach to modeling spatio-temporal data on regular or irregular
spatial lattices. Some general remarks are given in Section 6, and a brief technical
appendix concludes the chapter.

2 Spatio-temporal statistics

Spatio-temporal data were essential to the nomadic tribes of early civilizations,
who used them to return to seasonal hunting grounds. On a bigger scale, data
sets on weather, geology, plants, animals, and indigenous people were collected
by early explorers seeking to map and exploit new lands. In a sense, we are all
analyzers of spatial and temporal data. As we plan our futures (economically, socially,
educationally, etc.), we must take into account the present and seek guidance from
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the past. As we look at a map to plan a trip, we are letting its spatial abstraction
guide us.

There is an important statistical characteristic of spatio-temporal data that is
almost ubiquitous, namely that nearby (in space and time) observations tend to
be more alike than those that are far apart. A simple, often-effective forecast of
tomorrow’s weather is to use today’s observed weather. This “persistence” forecast is
based on observing large autocorrelations between successive days. Such dependence
behavior in “nearby” temporal data is also seen in “nearby” spatial data, such as in
studies of the environment. Statistics for spatio-temporal data is challenging due to
this dependence in time and space. One fundamental scientific problem that arises is
understanding the evolution of spatial processes over time (e.g., the evolution of sea-
ice coverage in the Arctic; sea surface temperature and the El Nifio phenomenon; and
time trends of precipitation in agricultural regions). Proper inference to determine
if evolutionary components (natural or anthropogenic) are real requires a spatio-
temporal statistical methodology.

The scientific method involves observation, inspiration, hypothesis-generation,
experimentation (to support or refute the current scientific hypothesis), inference,
more inspiration, more hypothesis-generation, and so forth. In a sense, everything
begins with observation, but it is quickly apparent to a scientist that unless data
are obtained in a more-or-less controlled manner (i.e., according to an experimental
design), scientifically defensible inference can be challenging. Understanding the
role of dependencies when the data are spatial or temporal or both, provides an
important perspective when working with experimental data versus observational
data.

It is our belief that statistical models used for describing temporal variability in
space should represent the variability dynamically. Models used in Physics, Chem-
istry, Biology, Economics, etc., do this all the time with difference equations and dif-
ferential equations to express the dynamical evolutionary mechanisms. Why should
this change when the models become statistical? Perhaps it is because there is often
an alternative framework, for example a model based on correlations, that describes
the spatio-temporal dependence. However, this descriptive approach does not directly
involve evolutionary mechanisms and, as a consequence, it can push scientific un-
derstanding of the Physics/Chemistry/Biology/Economics/etc. into the background.
There is in fact a way to have both, in the form of a scientific-statistical model
that recognizes the dynamical scientific aspects of the phenomenon, with its uncer-
tainties expressed through statistical models. Obviously, descriptive (correlational)
statistical models have a role to play when little is known about the etiology of the
phenomenon; however, when possible, we believe that one should use a dynami-
cal statistical approach to model spatio-temporal data, such as the models given in
Section 3.2.
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2.1 Uncertainty and Data

Central to the observation, summarization, and inference (including prediction) of
spatio-temporal processes are data. All data come bundled with error. In partic-
ular, along with the obvious errors associated with measuring, manipulating, and
archiving, there are other errors, such as discrete spatial and temporal sampling of
an inherently continuous system. Consequently, there are always scales of variability
that are unresolvable and that will further “contaminate” the data. For example, in
Atmospheric Science, this is considered as a form of “turbulence,” and it corresponds
to the well known aliasing problem in time series analysis [e.g., Chatfield, 1989, p.
126] and the micro-scale component of the “nugget effect” in geostatistics [e.g.,
Cressie, 1993, p. 59].

Furthermore, spatio-temporal data are rarely sampled at spatial or temporal loca-
tions that are optimal for the analysis of a specific scientific problem. For instance,
in environmental studies there is often a bias in data-coverage towards areas where
population density is large and, within a given area, the coverage is often limited
by cost. Thus, the location of a measuring site and its temporal sampling frequency
may have very little to do with the underlying scientific mechanisms. A scientific
study should include the design of data locations and sampling frequencies when
framing questions, when choosing statistical-analysis techniques, and when inter-
preting results. This task is complicated since the data are nearly always statistically
dependent in space and time, and hence most of the traditional statistical methods
taught in introductory statistics courses (which assume independent and identically
distributed, or iid, errors) do not apply or have to be modified.

2.2 Uncertainty and Models

Science attempts to explain the world in which we live, but that world is very com-
plex. A model is a simplification of some well chosen aspects of the world, where
the level of complexity often depends on the question being asked. Pragmatically,
the goal of a model is to predict and, at the same time, scientists want to incorporate
their understanding of how the world works, into their models. For example, the
motion of a pendulum can be modeled using Newton’s second law and the simple
gravity pendulum that ignores the effect of friction and air resistance. The model
predicts future locations of the pendulum quite well, with smaller-order modifica-
tions needed when the pendulum is used for precise time-keeping. Models that are
scientifically meaningful, that predict well, and that are conceptually simple are gen-
erally preferred. However, an injudicious application of Occam’s razor (or “the law
of parsimony”’) might elevate simplicity over the other two criteria. For example, a
statistical model based on correlational associations might be simpler than a model
based on scientific theory.

The way to bridge this divide is to focus on what is more-or-less-certain in the
scientific theory, and use scientific-statistical relationships to characterize it. In other
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words, we suggest that the uncertainties in the models be expressed probabilistically.
As the data become more expansive, it is natural that they might suggest a more
complex model. Clearly, there is a balance to be struck between too much simplicity,
so failing to recognize an important signal in the data, and too much complexity,
which results in a non-existent signal being “discovered.” The research area known
as model choice uses various criteria (e.g., AIC, DIC) to achieve this balance [e.g.,
Wikle et al., 2019, pp. 284-287].

2.3 Conditional probabilities in a hierarchical statistical model (HM)

There is a very general way to express uncertainties coming from different sources,
through an approach known as hierarchical statistical modeling. There are data Z
that measure Y (with measurement uncertainty), there is the scientific process Y
(with less or more uncertainty), and there are parameters 8 (unknown, not certain)
that control the conditional probability distribution of Z given Y, and the probability
distribution of Y. In this chapter, the quantities in which we are interested are random
vectors and random variables.

The following conditional probabilities are the basic building blocks of a hierar-
chical statistical model (HM):

Data model: [Z]Y, 0]

Process model: [Y60]
where, using generic random quantities A and B, [A] denotes the marginal distribu-
tion of A, [A, B] denotes the joint distribution of A and B, and [A|B] denotes the
conditional distribution of A given B. Now the joint distribution of Z and Y can be
decomposed as follows. From the equation [A, B] = [A|B][B], we have

[Z,Y]0] = [Z]Y, 6][Y]6], ey

which is simply a product of the data model and the process model.

In the HM above, it is assumed that 6 is fixed (not random), and that all probability
distributions are conditional on the fixed values of the parameters. Inference on Y
depends on the following distribution (sometimes called the predictive distribution),
obtained from Bayes’ Theorem:

[Z1Y, 6][Y16]

Y|Z,0] = ————, 2
[Y1Z, 6] [Z16] 2

where the normalizing “constant,” [Z|6] = f [Z|Y,0][Y|60]1dY, ensures that the total
probability of the predictive distribution is 1.

What can be done about 8?7 A Bayesian approach would augment the HM with
a parameter model, [0], which is usually called the prior. In this chapter, we want
to make an important point, that Spatial (and Spatio-Temporal) Econometrics does
not need to adopt a Bayesian approach to use Bayes’ Theorem, given by (2), and to
exploit the power of an HM. Henceforth in this chapter, we adopt a non-Bayesian
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approach and assume that 6 is fixed but unknown, with some closing remarks about
this given in Section 6.

In practice, ¢ is often specified using an estimate, in which case (2) is replaced
with [Y|Z, 0] where 6 is an estimate of § (i.e., depends on the data Z). It is also
possible that 0 is estimated from an independent study or is simply an educated guess.
It is this “empirical” step of “plugging in 6 that we shall adopt in this chapter. A
fully Bayesian HM can be found in, for example, Wikle et al. [2019, pp. 168-170].

2.4 “Classical” Statistical Modeling

Here we use “classical” as an adjective for both frequentist and Bayesian modeling.
The HM introduces data Z, process Y, and parameters 6; however, the “classical”
model found in the work of Fisher [e.g., Fisher, 1935] has only data Z and pa-
rameters 6, as does the “classical” model of Bayes and many who followed him
[e.g., Press, 1989]. Classical frequentists base their inferences on the likelihood,
[Z]6]. Classical Bayesians base their inferences on the posterior distribution, [6|Z],
which requires both a likelihood [Z|6] and a prior [6] to be specified. Both ap-
proaches miss the fundamental importance of modeling the latent process Y, where
the Physics/Chemistry/Biology/Economics/etc. typically resides.

To be sure, Statistics has played and continues to play an important role in Sci-
ence, but often using simple, introductory-textbook approaches based on correlation
and regression. Without Y being made explicit in statistical models, Science has
often chosen its own path to statistical inference. Scientists know that parameters 6
are important; these might be starting values, or boundary conditions, or diffusion
constants, and so forth. In what follows, we give a deliberately simplistic description
of how a traditional scientist might use Statistics in her/his research, although we
note that in some disciplines this is changing fast. It is our hope that this modern way
of building statistical-dependence models will happen in Spatial Econometrics and
in Spatio-Temporal Econometrics (presented in Sections 4 and 5 of this chapter).

Scientific experiments produce data Z, and variability in the data is generally
recognized by scientists. One approach to support, refine, or refute a scientific theory
has been to “smooth” the data first. Consider the smoother f, and write

Y = f(2).

The scientist might then assume that any (random) variability has been removed and
that ¥ can now be treated as the true process with no uncertainty. A less extreme
viewpoint would be to consider that Y is “close to” the true process Y. In that case,
the scientist might fit a model for ¥ using the “data” Y. If the model for Y is [Y|6p],
namely a process model with parameters 6 p that are a subset of ¢, the scientist might
use classical Statistics to fit [Y|0p] to Y. While the approach just described can be
effective when the “signal” is strong, it also has the potential to declare the presence
of a signal when it may simply be the result of chance fluctuations.
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Given the data are to be smoothed, it should be recognized that they are often
a combination of raw observations and algorithmic manipulations. The statistical
scientist might write instead,

Z=f(2), 3)

where the notation Z in (3) is deliberate and suggests an important difference between
the two ways to think about f(Z).

An HM can be fitted using the data V4 , where the data model, [Z |Y, 6], recognizes
any remaining uncertainty in Z after smoothing. Inference on the process Y is based
on the predictive distribution obtained from (2):

[Y|Z.6] « [Z]Y, 61[Y 6], @)
where “oc” means “is proportional to.” By writing the data manipulation and pre-
processing according to (3), we have a coherent way to decompose the variability in
Z through (4). (Bayesian statisticians would then specify a prior distribution [6], but
the ultimate goal of inference on Y and 6 remains unchanged.)

While the picture painted above is simplistic, it does illustrate that scientific
interest is in Y. If a classical frequentist statistician were to include the scientific
model [Y|0] in the analysis, it should be done in the calculation of the marginal
model,

[Zmzfimmwmw.

That is, the classical frequentist who bases inference on the likelihood should recog-
nise Y and then integrate it out. However, if there is no such recognition in the first
place, the model chosen to be fitted, (Z16], may be difficult to interpret scientifically
or, worse yet, may be inappropriately interpreted.

The classical Bayesian is also compromised; inclusion of the scientific model
[Y|6] yields the posterior distribution of 6,

[0]Z] o f[Z|Y, 011Y|01dY x [6].

This has the same potential for misinterpretation, if the Bayesian modeler tries to
model directly [Z |0] and uses it in [Z |0] x [0].

Spatial Econometrics has a tradition of fitting data directly to process models,
and hence from the HM perspective it leaves the data model out of its formalism.
As aresult, variability due to measurement error is confounded with process-model
error. That is, Spatial Econometrics has traditionally taken the classical-frequentist
approach to inference. In the next section, we concentrate on process models for
processes indexed by both space and time and, in Sections 4 and 5, we return to
the HM where the data model is formulated along with the process model (and 6 is
estimated).
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3 Spatio-temporal-econometric modeling

There are a number of ways to express statistically that “things” nearby (in space
and time) are more related than distant “things.” In this section, we illustrate the
fundamental difference between space and time with a simple example, and then we
show how dynamical spatio-temporal-econometric models can be built that capture
the best features of Spatial Econometrics and multivariate time series analysis. In
what follows, we let ¥;(s) denote a random variable at spatial location s and time ¢,
and then we allow s and 7 to vary over a spatio-temporal domain of interest.

3.1 Spatial Description and Temporal Dynamics: A Simple Example

The best way to compare space and time in our statistical context is to consider a
simple example, where the spatial domain Dy = {sg, 5o + A, . . ., 5o + 99A} is defined
in one dimension, and the temporal domain D, = {0,1,2,...} is defined on the
nonnegative integers. Then let {¥;(s) : s € Dy, t € D,} be a spatio-temporal process
of interest; recall that in the space-time cube, fixing ¢ = #( yields a spatial process
and fixing s = s yields a time series.

Define the spatial process at the fixed time point #y to be the 100-dimensional
vector,

Y1, = (Y (50). . .. Y;y (0 + 99A))’,

and define the time series at fixed spatial location sg to be the (different) 100-
dimensional vector,

Y(s0) = (%, (50), - - -, Yy+99(s50)) "

For illustrative purposes, the dimension of these vectors were arbitrarily chosen to
be 100. By comparing spatial statistical models for Y,, and time series models for
Y(s0), we can see to what extent space is modeled differently from time. Note that
we deliberately chose the dimensions of the vectors to be the same to make the
comparison easier, but they need not be.

Let us consider the vector Y,. A simple departure from independence for a
spatial process is nearest-neighbor dependence expressed through conditional dis-
tributions. Let Gau(y, 02) denote a Gaussian distribution with mean y and variance
o 2. Assume, fori = 1,...,98, the Gaussian (conditional) distribution,

Y, ()Y (s;) - j=0,...,99and j # i}
~ Gau((dr /(1 + ¢p Wi (si<1) + Yo (sie) } 07 /(1 + 7)), (5)
where s; = 59 +iA; i =0,...,99. On the edges of the transect, assume

Yio (s0) Yy (57) 1 j = 1,...,99} ~ Gau(gy, ¥, (s1), o7,
Yo (s09)[{¥;, (s;) : j = 0,...,98} ~ Gau(gy, ¥, (s98), 07,).
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In (5), assume that the spatial-dependence parameter, ¢,,, satisfies |¢,,| < 1. Based
on these assumptions, it can be shown that £(Y,,) = 0, and the correlation between
nearest neighbors is

corr(¥y (s:), iy (si21)) = b1y i = 1,...,99. ©)

The process given by (6) is descriptive in that it is given simply in terms of correlation.
Let us now consider the vector Y(sp). A simple departure from independence for
a time series is a first-order autoregressive process. Assume that

Yi(s0) = ¢(s0)Yi-1(s0) +6¢5 t=t0+1,...,00+99, (M

where ¢, isindependent of ¥;_; (s¢), and the elements of {9, } are iid as Gau(0, o% (50)),
fort =to,t0 + 1,...,70 +99. To initialize the process, assume

Y, (s0) ~ Gau(0, 0% (s0) /(1 = ¢(s0)%)),

which is a deliberate choice, as is assuming that the temporal-dependence parameter
@ (so) satisfies |¢(sg)| < 1. Based on these assumptions, it can be shown that
E(Y(sg)) = 0, var(¥;(s9)) does not depend on ¢, and the correlation between two
adjacent time points is:

corr(¥Y;-1(s0), Y (s0)) = #(s0); t=to+1,...,50+99. 3

The dependence in the process given by (7) is dynamical in that it shows how
current values are related mechanistically to past values. More generally, the depen-
dence of current values on past values can be expressed probabilistically, and (7)
has an equivalent probabilistic expression in terms of the conditional probability of
Y (sp) given past values:

Y, (S0 Yi=1(80), - - -+ Yiy (50) ~ Gau(d(s0)¥Y—1(50), 2 (50))-

Such time series models are sometimes referred to as causal.

Let us compare and contrast the spatial process (5) and the time series (7). Both
are Gaussian with mean zero. From (6) and (8), we see that if ¢,, = ¢(so), they
imply the same correlation between adjacent random variables. In fact, because of
the Gaussian assumption, if the temporal-dependence and the spatial-dependence
parameters are equal, the processes are probabilistically identical! However, the
spatial process (5) looks east and west for dependence, in contrast to the time series
(7), which is causal and looks to the past. This example has a cautionary aspect.
Clearly, a description of the properties of spatial or temporal statistical dependence
of the model through just moments or even through joint probability distributions,
can completely miss the genesis of the statistical dependence, such as the dynamical
structure given by (7).

Now, when it comes to considering space and time together in {Y; (s)}, we believe
that (whenever possible) the temporal dependence should be expressed dynamically,
based on Physical/Chemical/Biological/Economic/etc. considerations, since here the
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etiology of the phenomenon is clearest. In a contribution to the Statistics literature
that was well ahead of its time, Hotelling [1927] gave various statistical analyses
based on dynamical models from stochastic differential equations (albeit only for the
temporal dimension).

This dynamical approach to spatio-temporal statistical modeling contrasts to that
of some others, where time is treated as an extra (although different) dimension.
In that case, descriptive expressions of spatial dependencies through covariance
functions are modified to account for the additional temporal dimension. We call
this expression descriptive because usually it is not accompanied by an explanation
of why the temporal dependence is present.

3.2 Time series of spatial processes

In Spatio-Temporal Econometrics, a generic spatio-temporal process Y is
{(Yi(s;):i=1,...,n;t=0,1,...}

and, for the moment, we can imagine that ¥;(-) is observed at every one of the n
spatial locations for all r. We write the spatial process at time ¢ as the vector,

Y, = X(s0),.... Y(sn))'s t=01,....

Hence, the original spatio-temporal process can be written as the multivariate time

series,
Yo, Yi,....

In Spatial Econometrics, the spatial statistical modeling of an individual Y, has
been largely based on SAR models (see below), although CAR models are equally
appropriate [e.g., Allcroft and Glasbey, 2003].
The vector notation enables us to express the Markov property for {Y;} succinctly
as,
[Y:AY0, -, Yoot = [Ye Yol =120

An example of a process satisfying the Markov property is the VAR(1) model of
dimension n:
Y, =MY,_; +7, C)]

where, in its full generality, M has n® parameters, and X, = var(n,) has 0(n?)
parameters. However, the spatial context can be used to reduce the number of pa-
rameters drastically.

For example, suppose we assume that the (7, j)th entry of M equals 0, unless
ls; —s;ll < h, for a given h > 0. Then the current value at s; is related to those
immediate-past values at s; and nearby values at s; (within a radius of h). Thus,
rather than M being made up of n> parameters, the parameter space can be made
O(n) by making M sparse through spatial proximities of the »n locations. A similar
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modeling strategy that allows further reduction in the size of the parameter space
would choose X, to be sparse (a geostatistical-type spatial model) or Z,_Il to be sparse
(a lattice-type spatial model).

The VAR(1) model is a special case of the spatio-temporal autoregressive moving-
average (STARMA) models. It is generally true that for these and other multivariate
time series, the number of parameters can be enormous, and an important skill of
the modeler is to reduce drastically the size of the parameter space. We believe that
this is best achieved through recognizing and preserving any known spatio-temporal
interactions in the underlying process {Y;(s)}.

3.3 Space-time autoregressive moving-average (STARMA) models

We could look for even more generality than a VAR(1) model in the temporal domain,
by assuming higher orders of autoregression as well as a moving-average type of
dependence. Define the spatio-temporal autoregressive moving average (STARMA)
models (Ali, 1979; Pfeifer and Deutsch, 1980; and Cressie, 1993, p. 450) as

P A q [
Y, = Z (Z fijkj)Yt—k + Z(Z glelj)a)t_l ;o t=01,...,
k=0 \j=1

1=0 \j=1

where {Uy;} and {V;;} are known weight matrices; p and ¢ are the orders of the
autoregressive part and the moving-average part, respectively; {fx;} and {g;;} are
parameters of the model; {w,} are iid random vectors with mean 0 and covariance
matrix X,; and the index j is used to denote substructures. These are core models
in Spatio-Temporal Econometrics.

Under reparameterization, we obtain

P q
Y; = Z Bi Y, + Z Eiw; (10)
k=0 =0

where, without loss of generality, we henceforth put X, , = O’Z)I and, for identifiability
reasons, By has zero entries down the diagonal. It is important to note that the index
k in (10) starts at k = 0; the matrix Bo models instantaneous spatial dependence in
the same way that spatial dependence is modeled in a SAR model. As for the SAR
model, we assume that (I — B) is invertible.

The number of parameters in (10) is still very large. Consider several simple
cases. First, p = 0 and ¢ = 0 results in a time series of purely spatial processes
without any temporal dependence linking them:

Y, =B)Y,+Eyw;; t=0,1,....

To see this clearly, rewrite the expression above:
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Y, =(I-By) 'Eqw,; t=0,1,...

and, since {w, w1, ...} are mutually independent, we see that the time series {Y;}
defined just above has no temporal dependence. When E( = I, the multivariate time
series consists of iid mean-zero SARs.

The second case is p = 1 and ¢ = 0, and recall that By has all-zero diagonal
entries. Then,

Y;=B)Y,+B Y, +Eyw;; t=0,1,....

Given Y;_1, the vector Y, has spatial statistical dependence that is expressed in the
form of a SAR model. From Cressie (1993, p. 409), a SAR can be written as a CAR,
which is a Markov random field with simple conditional probability dependencies.
The equation just above can be written equivalently as,

Y, = (I-Bo) 'B1Y,—; + (I-Bp) 'Eow, = MY, +1,,

where M = (I-By) "By and {1, } are iid with mean zero and var(y,) = X,, = 02, (I-
Bo)'EoE{(I-B{)~". This is a VAR(1) model, and recall that the matrix B represents
“instantaneous” spatial dependence. Notice that if we multiply out (I — Bg)~'B;,
where (I — By) is sparse, we obtain a propagator matrix M = (I — By) !B, that is
generally not sparse.

Another way to achieve a VAR(1) model is the third case, p = 1, ¢ = 0, and
By = 0. Then,

Y, =B Y +Eyw;; t=01,...,

which is equivalent to
Y; =MY,_| +1,,

where now M = By, and {5, } are iid with mean zero and var(n,) = X,, = o-iEOE(’J.

There are clearly a number of different ways to arrive at the same type of model.
The difference between them lies in their parameterizations. One way to think of
By is that it captures the variability at time steps much smaller than the unit of
time specified for the autoregression. Small-temporal-scale dynamics, which may be
important and unwise to ignore, are collected together into the matrix By that models
instantaneous spatial dependence [Cressie, 1993, p. 450; LeSage and Pace, 2009,
Section 2.1]. Thus, this instantaneous spatial dependence is in fact an approximation
of dynamical structure running at time scales much shorter than the unit of time in
the autoregression.

4 Spatial-econometric modeling

We saw in Section 3.1 that a spatial Gaussian process in one-dimensional space
that is described through its covariance function, can be probabilistically equivalent
to a corresponding temporal process (i.e., a time series) that is modeled dynami-
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cally through an autoregressive mechanism. Then in Section 3.3, we generalized the
autoregressive model by collecting all the spatial-process values into a vector, re-
sulting in a very flexible class of multivariate dynamical models for spatio-temporal
processes.

Spatial Econometrics grew out of seeing how dependence was modeled in time
in Econometrics. This was achieved through Box-Jenkins ARIMA modeling [Box
and Jenkins, 1970] and the use of “backshift” operators, and then by applying the
same idea with “spatial-shift” matrices to generate dependence in space [Paelinck
and Klaasen, 1979]. For example, the mean-zero AR(1) model for the time series
{Y;} is defined as, Y; = ¢Y;_1 + J,, where Y;_; is independent of &,, and {61, 02, . . .}
are iid with E(6;) = 0 and var(d;) = 0'(25 (see eq. (7)). This equation can be written
equivalently in terms of the backshift operator B as:

Y, = ¢BY, + 6, . (11)

At the core of Spatial Econometrics are models for Y = (Y (s1),...,Y(sn))’
that mechanistically connect Y (s;) to its “neighbors”: Replace ¢B in (11) with the
square-matrix operator By whose diagonal elements are defined to be zero, and any
off-diagonal element that is zero indicates a lack of spatial “connection” between the
two corresponding locations. The resulting SAR model is,

Y =B)Y +ow, (12)

where E(w) = 0 and var(w) = O'ZJI, which was introduced in Section 3.3 as a way
to capture instantaneous spatial dependence in a mean-zero spatio-temporal process.

If we write By = ¢B, where B is the square matrix (b;;), then the generalization
from “time” in (11) to “space” in (12) looks beguilingly straightforward. However,
these are mathematical relationships, and nothing has been said yet about the statisti-
cal dependence between BgY and w in (12). Recall that in the AR(1) process given by
(11), ¥;—1(= BY;) and ¢, are independent. In the SAR process given by (12), B)Y =
By - By) 'w, and hence cov(ByY, w) = Bo(I - By) 'var(w) = o-iBo(I -By)!,
which shows that BgY and w are statistically dependent.

This latter property means one has to be very careful when interpreting the
SAR model. It has been misinterpreted as being causal in Spatial Econometrics;
Gibbons and Overman [2012] address this mistake directly, and the presence of
non-zero covariances between the autoregressive part, BoY, and the error, w, is a
manifestation of the fundamentally different structure of the SAR model and the AR
model, which is causal.

For By = ¢B, (12) can be written as

Y(s)=¢ ) byY(sp)+wls); i=1,...,n,
=1

J

where recall b; = 0. In _a naive cross-validation exercise, Y (s;) would be deleted
and then predicted with Y (s;) = ¢ Z;‘Zl b;;Y (s;); then Y (s;) would be compared to
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Y (s;) via, say, (?(s,-) — Y(s;))%. However, this ?(s[) is an inferior predictor of Y (s;),
since the optimal cross-validation predictor of Y (s;) is,

Y*(si) = EY(s)IY-),

for Y_; the (n—1)-dimensional vector with Y (s;) removed from Y. From the Lemma
given in the Appendix, Y*(s;) can be derived analytically from the full n X n covari-
ance matrix, var(Y) = 0'[20{(1 -¢B)I - ¢>B’)}_l, and it is different from Y (s;).

Note that while a derivation of Y*(s;), albeit straightforward and resulting in
a closed-form expression, is necessary for the SAR model, Y*(s;) is immediately
available from the CAR (conditional autoregressive) model, although this model is
used much less frequently in Spatial Econometrics. (For readers interested in the
relationships between SAR and CAR models, see Cressie, 1993, p. 408-410, and Ver
Hoef et al., 2018.)

Another caution with the use of SAR models in Spatial Econometrics comes with
how they are specified when the spatial process Y does not have mean zero. One
should take guidance from how the time series model (11) would be modified to
handle, say, the regression, E(Y;) = x; . The time series model,

Y-xB=¢ Yo1 —x;_ B) + 6, 13)

is an AR(1) process that preserves the mean structure, E(Y;) = x;B. For reasons
that are not clear, the Spatial-Econometrics literature (e.g., Anselin, 1988) shows a
preference to include the regression term, X, and the spatial-dependence operator
By in its core model as follows:

Y =XB8+B)Y +w, (14)

where w = (w(sy), . . ., w(sy))’ represents model error with E(w) = 0.

Asaconsequence of (14), E(Y) = (I—BO)_IXﬁ, which results in the confounding
of large-scale regression effects 8 with small-scale spatial-dependence effects By.
This can be avoided by taking a cue from the time series model (13). That is, to
generalize the SAR model to include regression, we write

(Y-XB)=By(Y-XB) + .

Now E(Y) = X and var(Y) = 0"20{(1 -By)d - Bé)}‘l, and hence B appears only
in E(Y), and By appears only in var(Y). There is an equivalent way to write this
model, namely

Y=XB+U, and U =ByU + w, (15)

which does appear in the more recent Spatial-Econometrics literature and is called
a spatial error model [e.g., LeSage and Pace, 2009, Section 2.3]. Our point is that
software based on the model (14) should not be used when fitting spatial statistical
models to spatial data with covariates X, due to the confounding of large-scale and
small-scale effects and the consequent misinterpretation of a fitted model (14).
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More generally, confounding between fixed effects and spatial random effects
has become an important topic in the spatial-statistics literature [e.g., Reich et al.,
2006, Paciorek, 2010, Hodges and Reich, 2010, Hughes and Haran, 2013, Hanks
et al., 2015]. There is still some uncertainty as to what extent these models are
able to account for confounding; appropriate mitigation approaches depend on the
underlying dependence structure of the random effects, the extent to which covariates
are known, and the spatial support [Hanks et al., 2015]. Geographers and spatial
econometricians have been aware of spatial confounding for some time in the context
of areal data, and they have provided “Moran’s I”” eigenvector approaches that make
the spatial random effects orthogonal to the fixed effects [e.g., Griffith, 2000, 2003].
Spatial statisticians have also considered Moran’s I basis functions and extensions in
this context [Hughes and Haran, 2013, Bradley et al., 2015]. However, it is unclear
how to force random effects to be in the space orthogonal to the fixed effects if
the fixed effects have continuous support as they do in geostatistical models [Hanks
et al., 2015]. More recently, Bradley et al. [2020] considered confounding between
the spatial process and the error process and showed that accounting for dependence
between these two processes can improve prediction accuracy.

In Section 2.3, we made the point that observations (Z) on a process are different
from the values of the process itself (Y). This is typically due to measurement error
(“noisiness”), and it can also be due to gaps in the observations (“missingness”).
This can be captured in a spatial-statistical model by writing,

Z(s;)=Y(s;)+e(s;); sie D" C{sy,...,Sq}. (16)

In (16), Z(s;) is an observation at spatial location s; in D*; locations not in D* are
considered as missing; and £(-) is an independent measurement-error process with
var(e(s;)) = a'z, > 0. Goulard et al. [2017] consider spatial-econometric models for
missing data, but they do not recognize that the measurement-error component of
variation £(-) is different from the model-error component of variation w(-).

In the general case of non-zero mean due to regression effects, (15) is the process
model that represents all components of Y = (Y (sy),. .., Y (s,))’, even though some
might not be observed, and (16) is the data model for data {Z(s;) : s; € D*} that are
observed. That is, in terms of the HM presented in Section 2.3, (16) defines [Z|Y]
and (15) defines [Y], where dependence of these two models on parameters 6 =
{B. o2, o2} has been dropped from the notation for ease of exposition. Specifically,
the HM is:

Data model: Z(s;)|Y (s;) ~ Gau(Y (s;), o-ﬁ), and define Z = (Z(s) : s € D*)’.
Process model: (Y — XB) = Bo(Y — XB) + w, where w ~ Gau(0, 0'2)1).

The data model and the process model together allow calculation of the predic-
tive distribution: Since [Z|Y] is Gaussian and [Y] is Gaussian, so too is the joint
distribution [Y, Z] the marginal distribution [Z], and most importantly the predic-
tive distribution [Y|Z]. Hence, the key calculations for inference on Y from the
“imperfect” data Z are the conditional moments,

E(Y(s)|Z), var(Y(s;)|Z), and cov(Z(s;), Z(s;)|Z), fori, j =1,...,n,
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and recall that there are locations {sy, . . ., s, }\D" at which there are no observations.
These are known in closed form from Bayes’ Theorem given by (2), where the
distributions in the numerator of (2) are obtained from (15) and (16), and likelihood-
based estimates of 6 are used in place of . No time-consuming iterative algorithms
are needed to calculate them; see the Lemma in the Appendix. The one bottleneck
may be fast computation of var(Z)~! when the data set Z is very large; see Burden
et al. [2015] for a reduced-rank approach to this problem and a comparison to the
Spatial-Econometrics literature where fast computation of var(Y)~! is the focus.

The lessons learned from this section are first to de-trend the spatio-temporal
data using covariates and then to use HMs to capture the imperfections of noisy and
missing data. The next section will apply these lessons to the spatio-temporal setting
given in Section 3.

S Modern spatio-temporal-econometric hierarchical models

All the ideas and methodology that are needed have been presented in the preceding
sections. It is simply a matter of tying them together now in a series of steps that
bears a resemblance to pseudocode for algorithmic development.

Recall that the generic spatio-temporal data are Z, the generic underlying process
being measured is Y, which represents the whole process {Y;(s)}, and the generic
parameters are 6. Due to incomplete data (“missingness”), Z will be of smaller
dimension than Y, and the presence of measurement error (“noise”) results in the
conditional distribution,

Z($)|Y, 02 ~ Gau(¥;(s), 0°2),

provided an observation occurs at location s and time ¢ in the spatio-temporal domain
of interest {sy,...,s,} X {0,1,...,T}.

The building blocks of dynamical models in Spatio-Temporal Econometrics are
given below in a sequence of eight steps:

1. [Z1Y,0] = [1p-[Z:(9)Y, 0'3], for D* the set of all spatio-temporal data locations,
is Gaussian.

2. [Y|0] is a (high-dimensional) Gaussian distribution; see, for example, (10) or its
modification that includes regression:

p q
Y, =X,B) = ) Bi(Y k=X, i) + ) Eyoor g,
k=0 =0

fort=p,p+1,...,T.
. [Z,Y|0] = [Z]Y, 0][Y 0] is Gaussian (since 1. and 2. are Gaussian).
4. L) = [Z]0] = f [Z,Y|0]dY; 6 includes o-ﬁ, B, the spatio-temporal-variation
parameters in {B;} and {E;}, and {var(w;_;)}. Recall that [Z|€] is Gaussian.

(O8]
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5. Estimate 6 with = arg sup L(6), the maximum likelihood estimator.
0

6. [Y|Z, 0] = [Z]Y,0][Y]0]/[Z|0] is a Gaussian distribution called the (empirical)
predictive distribution.

7. E(Y|Z,0) and var(Y|Z, §) characterize the predictive distribution; both can be
calculated straightforwardly in closed form, using the Lemma in the Appendix.

8. Estimation and prediction: Report and interpret § and its uncertainties (estima-
tion). Make a choropleth map of E(Y|Z, é), which is the HM’s spatio-temporal
predictor of Y (prediction). Make a second choropleth map of (diag(var(Y|Z, é)))l/ 2
which uses the HM to quantify the uncertainty in the first map.

These are the basic steps taken to fit the dynamical spatio-temporal models given in
Chapter 5 of Wikle et al. [2019]: There, Sections 5.2 and 5.3 are the most relevant
to the development given in this chapter.

6 Concluding remarks

We would like to expression our best wishes to Christine (Thomas-Agnan) on the
occasion of her 65-th birthday. She has been a gracious host and an engaging co-
author during several long-terms visits by the first author to Université Toulouse 1
Capitole.

Our approach to the problem of “scientific understanding in the presence of
uncertainty” takes a probabilistic viewpoint, which allows us to build useful spatio-
temporal statistical models and make scientific inferences for various spatial and
temporal scales. Accounting for the uncertainty enables us to look for possible
associations within and between variables in the underlying scientific process, with
the potential for finding mechanisms that extend, modify, or even disprove a scientific
theory. The dynamical spatio-temporal-econometric models described in this chapter
are an important subset of a much larger class of dynamical HMs for the twenty-first
century [Wikle et al., 2019]. We have concentrated on HMs where the parameters 6
are estimated from the data, which are called empirical HMs. Bayesian HMs arise
when a prior, [6], is assigned to the unknown parameters 6. In many cases, the
predictive moments, E(Y|Z) and var(Y|Z), from the Bayesian HM are not available
in closed form. Then sampling from the predictive distribution, [Y|Z], is a way to
solve this problem (e.g., using MCMC).

There are many challenges associated with building HMs and then carrying out
valid inferences. A broad perspective is that there is subjectivity involved with the
specification of all model components, specifically here the data model and the
process model. However, it is not always clear what “subjective” means in this
context. For example, it might be “subjective” to use deterministic relationships to
motivate a stochastic model, such as for tropical winds [e.g., Wikle et al., 2001], yet
the science upon which such a model is based comes from Newton’s laws of motion.
Thus, we believe that it is not helpful to try to classify probability distributions that
determine the statistical model, as subjective or objective. It would be better to ask
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about the sensitivity of inferences to model choices and whether such choices make
sense scientifically.

Given that a modeler brings so much information to the table when developing
models, the conditional-probability framework presented earlier can be used to rec-
ognize that this information, say /, is part of what is involved in the conditioning.
For the HM, we have

[Y|Z,0,1] < [Z|Y,6,1][Y]6,1].

A major challenge in this paradigm is, to the extent possible, acknowledgement of
the importance of this information, /. It is often the case that a team of researchers
at the table has a collective “I” that is better quantified and more appropriate than
any individual’s “1.”

In the HM approach, there are certainly cases where models have to be simplified
due to practical concerns. Perhaps the computational issues in a given formulation are
limiting, which usually leads to a modification of the model. Such practical concerns
apply to all statistical inferences in complicated modeling scenarios. This tension
between the model you want and the model with which you can compute is healthy,
and in modern statistical computing it has led to algorithms that only approximate
valid inferences. However, user beware! Approximations to approximations can lead
to a serious propagation of errors.

Data hold so much potential, but unless they can be organized into a database
they are an entropic collection of digits or bits. With the ability in a database to
structure, search, filter, query, visualize, and summarize, the data begin to contain
information. Some of this information comes from judicious use of statistics (i.e.,
summaries). Then, in going from information to knowledge, Science (and, with it,
Statistical Science) takes over. Statistical Science makes contributions at all levels
of the data-information-knowledge pyramid, but it has often stopped short of the
summit where knowledge is used to determine policy. At the interface between
Science, Statistics, and Policy, there is an enormous need for decision-making in the
presence of uncertainty.

Finally, it is the responsibility of the research team to temper the tendency to
fit ever-more-complicated models, and to use model-selection criteria (e.g., AIC,
BIC, DIC, etc.) that concentrate on the twin pillars of predictability and parsimony
[e.g., Spiegelhalter et al., 2002, Wikle et al., 2019]. But these criteria do not address
the third pillar, namely scientific interpretability (i.e., knowledge). Our approach to
spatio-temporal-econometric modeling is to use the hierarchical-modeling paradigm
and, where possible, choose statistical models based on this third pillar, while not
ignoring the other two.
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Appendix

Throughout the chapter, we have referred to the predictive distribution [Y|Z] that
arises from a joint Gaussian distribution, [Y, Z]. Specifically, we have claimed that
[Y|Z] is Gaussian and the first two moments can be obtained analytically without
resort to iteration, simulation, or approximation. This claim is due to the following
lemma from multivariate analysis [e.g., Rencher and Christensen, 2012, p. 97].

Lemma:
Consider the Gaussian random vector, U = (U/, Ué)’, and its first two moments:
_ _ ’ N/ _ _ le Z'12
E(U) = p=(p, pu3)", and var(U) =X = [221 222] .

Then the conditional distribution, [U;|U;] is also Gaussian with mean vector,
-1
EUUp) = puy + X12X5, (U — up)
and variance-covariance matrix,

var(U[Us) = Zy; - X5 Xy .
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