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Abstract— Point-of-care diagnostics are a key technology for 
various safety-critical applications from providing diagnostics in 
developing countries lacking adequate medical infrastructure to 
fight infectious diseases to screening procedures for border 
protection. Digital microfluidics biochips are an emerging 
technology that are increasingly being evaluated as a viable 
platform for rapid diagnosis and point-of-care field deployment.    
In such a technology, processing errors are inherent.  Cyber-
physical digital biochips offer higher reliability through the 
inclusion of automated error recovery mechanisms that can 
reconfigure operations performed on the electrode array. Recent 
research has begun to explore security vulnerabilities of digital 
microfluidic systems.  This paper expands previous work that exploits 
vulnerabilities due to implicit trust in the error recovery mechanism.  
In this work, a discriminative data mining approach is introduced to 
identify frequent bioassay operations that can be cyber-physically 
attested for runtime security protection. 

Keywords—Digital microfluidics, graph mining, point-of-care 
diagnostics, cyber-physical systems, information flow security  

I. INTRODUCTION 

Point-of-care (POC) medical technology represents a 
promising solution for addressing a wide breadth of critical 
applications including rapid, reliable diagnosis in developing 
countries   commonly afflicted  with infectious diseases to 
protecting neighboring countries from experiencing an 
outbreak of these diseases [9][15].  In the former case, 
developing countries are typically scarce in resources and lack 
fully trained medical staffing and regulation.  Due to this 
deficiency in infrastructure, the availability of POC testing, that 
brings healthcare closer to the home, is paramount.  
Additionally, POC and rapid testing medical technology are 
being explored as an important support for homeland 
protection.  The application has recently gained greater 
importance with the emergence of the COVID-19 virus.  When 
visual evaluation of symptoms is unreliable and insufficient, 
providing in-field diagnostics is key for preventing an outbreak 
that could rapidly become uncontrollable.  In response to the 
COVID-19 outbreak, the research community has promptly 

 
1 This work was supported in part by a grant from the US National Science 
Foundation under award CNS-1837472. 

evaluated numerous diagnostic platforms that could be quickly 
and effectively deployed.  For example, Abbot Laboratories 
launched a molecular point-of-care detection device that 
produced results in as few as five minutes [25].  Such advances 
are essential in fighting not only the current global pandemic, 
but also future viral outbreaks.     

Microfluidic devices are being demonstrated as    
effective low-cost diagnostic platforms for both applications.  
Microfluidics is an interdisciplinary science focusing on the 
development of devices and systems that process low volumes 
of fluid for applications such as high throughput DNA 
sequencing, immunoassays, gene expression analysis, and 
entire Labs-on-Chip (LOC) platforms.  Microfluidic diagnostic 
technology enables these advances by facilitating the 
miniaturization and integration of complex biochemical   
processing through a microfluidic biochip.  Recent research has 
introduced cyber-physical digital microfluidic systems [1] that 
include error recovery capabilities for increased reliability.  In 
contrast to continuous microfluidics biochips, digital 
microfluidics systems utilize micro/nano droplets to perform 
biochemical operations on chip.  Cyber-physical digital 
microfluidic biochip systems tightly couple the biochemical 
operations, sensing system, control algorithm, and droplet-
based biochip.  During bioassay execution, the status of a 
droplet is monitored in real-time to detect operational errors. If 
an error has occurred, the control algorithm dynamically 
reconfigures to allow recovery and rescheduling of on-chip 
operations.  During this recovery procedure the droplet   that is   
the source of   the   error   is discarded to prevent the propagation 
of the error and the operation is repeated.  This increased 
adaptability represents a crucial step towards creating reliable 
on-chip diagnostics. The work discussed in [1] takes an 
additional step towards enabling adaptive LOC devices with a 
novel hardware-assisted approach to error-recovery that utilizes 
a compact dictionary implemented on a field-programmable  
gate  array  (FPGA).  The dictionary consists of predetermined 
actuation sequences needed for error-recovery which are stored 
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in memory.  Using the   proposed   finite   state   machine 
control, the FPGA can transfer the preloaded actuation 
sequences to the biochip as required. This error-recovery 
approach shows promise for handling the highly precise time 
control of chemical synthesis in flash chemistry, point-of-care 
field-deployment, and handheld device development.  
Although   within   the   last decade there has been much 
research    in   the   development   of   Cyber-physical digital 
microfluidic biochips (DMFB), analysis of their security 
implications and vulnerabilities has only begun as a research 
topic in recent years.  In [16] information  flow security  threats  
to the operation of the microfluidics biochip were explored 
from two perspectives, (1) integrity: an attack  can modify 
control electrodes to corrupt the diagnosis, and  (2)  privacy:  
what  can  a  user/operator  deduce about the diagnosis. [16] 
used the novel approach of Multiple Security Domain 
Nondeducibility  (MSDND) and  Belief, Information transfer, 
and Trust logic (BIT) to explore the vulnerabilities of exploiting 
this error   recovery process through  implicit trust and creating 
desirable information flow leakages to protect the system.  At 
the heart of this security methodology introduced in [16] is 
cyber-physical attestation to verify cyber-physical monitors 
that form a part of the underlying system infrastructure.  This 
will be discussed in greater detail in a later section. 
 Given the complex nature of bioassay protocol, there 
are numerous invariant relationships that could be used for 
cyber-physical security attestation.  This inherent complexity 
presents two research questions concerning the implementation 
of the independent verifier: (1) How to intelligently determine 
which biochemical operations are of interest to attest and (2) 
how to reduce runtime cost of the verifier.  This work discusses 
a solution to both questions using discriminative data mining to 
identify frequent bioassay operations that can be cyber-
physically attested for runtime security protection.    

The paper is organized as follows.  As background, 
Sections II-V provides a brief overview of the following topics: 
cyber-physical digital microfluidics biochips and error-
recovery, foundations of cyber-physical system security, 
related security work, and discriminative subgraph mining.  
Section VI discusses the problem being addressed and how the 
discriminative data mining approach is leveraged for the given 
problem. Section VII discusses the implementation of an 
independent verifier that relies on discriminative mining for 
operation selection for attestation.  Finally, Section VIII 
discusses future work and concludes the paper.  

II. CYBER-PHYSICAL DIGITAL MICROFLUIDIC 

BIOCHIPS 

 Although variations are seen in literature, a common DMFB 
configuration can be described simply as follows: There is a 
two-dimensional electrode array with additional built-in 
resources such as on-chip reservoirs and sensors.  The DMFB  
cell consists of parallel plates with a thin insulator layer coating 
the electrode surface as seen in Figure 1a. The  theory  of  
electrowetting-on-dielectric  (EWOD)  permits the   device  to  
perform  a  basic  set  of  operations  on  small picoliter  volumes  
of  fluids. EWOD  uses  the  principle  of modulating  the  
interfacial  tension  between the liquid and the dielectric  coated  

electrode.   When an electric field is applied in  the dielectric 
layer, a surface imbalance is created and the droplet moves 
accordingly.   The  Cyber-physical representation of digital 
microfluidic system seen in Fig 1b includes the interactions 
between the primary system components.  Frequently, 
implementations consist of a biochip, single-board computer or 
FPGA, some peripheral circuitry, and control software running 
on a computer.   The  sensing  system  resident on the   biochip   
provides   input  to   the   control   algorithm   that computes (and  
recomputes  in  the  event  of  an  error)  droplet transport    
pathways,    module    placement,    and    operation schedule.  
While   this   approach   increases   reliability,   the computer-in-
loop    solution    may    not    be optimal    for    POC deployment  
[1].To  address  this  shortcoming,  a  hardware assisted  error  
recovery  method  has been proposed [1].    This approach   uses   
a   finite   state   machine   (FSM)   to   access  a dictionary   
stored   in   memory   that   contains   pre-computed actuation  
sequences  to  recover  from  all  errors  of  interest. Since  online  
re-synthesis  is  not  necessary,  response  time is reduced. 
Therefore, a portable cyber-physical implementation is possible. 

(a) 

 

 

(b) 

 

Figure 1: (a) Cross section of digital microfluidic biochip [20] (b) 
Cyber-physical coupling [1] 

 

Error Recovery in Cyber-Physical Digital Biochips: 

The presence of integrated sensors and physical-aware control 
software enables the composition of cyber-physical digital 
microfluidic biochips that can monitor operations during 
runtime.   Additionally, cyber-physical digital microfluidic 
biochips can dynamically adapt to runtime errors and 
reconfigure in response.  Reconfiguration techniques re-
compute electrode actuation sequences which produces new 
module placement, droplet routing, and scheduling to adjust to 
a previously encountered error: 

Recent work has taken an additional step towards enabling 
adaptive lab-on-chip devices with a novel hardware-assisted 
approach to error-recovery that utilizes a compact dictionary 
implemented on a field-programmable gate array (FPGA).  The 
dictionary consists of predetermined actuation sequences 
needed for error-recovery which are saved and used during 
bioassay execution. This error recovery dictionary is first 
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generated in simulation for a given set of errors prior to 
experimentation and then stored in controller memory [1].  
Using the proposed finite state machine control, the FPGA can 
transfer the preloaded actuation sequences to the biochip as 
required. This error-recovery approach shows promise for 
handling the highly precise time control of chemical synthesis in 
flash chemistry, point-of-care field-deployment, and handheld 
device development.  Figure 2 illustrates the finite state machine 
control system. 

 

Figure 2: Finite state machine control for hardware-assisted error 
recovery 

The outputs shown saved in memory as shown in Figure 2 are 
pre-determined recovery actuation sequences that account for all 
errors of interest that may occur at runtime.  If an error is 
detected, then the system performs a search in the compact 
dictionary that corresponds to the event that occurred.  This 
dictionary look-up approach to perform re-synthesis has a faster 
response time than the “computer-in-the-loop” approach that 
relies on external control application to execute error correction 
responses.  Eliminating the need for control software to execute 
on-line error recovery also removes the requirement of an 
external computer and related interfaces.  In addition to reducing 
the latency, this reduction in hardware can increase the overall 
reliability of the cyber-physical system since each component 
can be a point-of-failure. 

III. CYBER-PHYSICAL SYSTEM SECURITY 

FOUNDATION 

In this section some key concepts are defined to understand 
the proposed security methodology. 
 
  
Invariants: 
An invariant is a function, quantity, or property that remains 
unchanged when a specified transformation is applied.  An 
invariant is a logical predicate on a system state that should not 
change its truth value if satisfied by the system execution.   
Recently invariants have been used in physical power systems 
to ensure correct operation [8].  Invariants are well-understood   
for cyber processes but extending them into the physical   
domains requires some insight. We can arrive at invariant 
equations based on the physical, thermal, or chemical properties 
of the system which can   be   used   as an alternative source of 
information for a parameter in question. 
 

Attestation: 
CPS can become vulnerable to unexpected attacks without 
physical monitors to verify cyber-physical monitors.  Vital 
areas where an agent trusts a report from another agent should 
be   examined, and   where   possible, those reports should be 
verified by physical measurements [4].   CPS attestation is a 
method of securing a system that exploits the physical system 
dynamics. This technique uses an independent verifier to 
continuously monitor    invariants    to    detect    whether    a 
component is behaving as expected or driving the system to an 
unsafe state.   [4] emphasizes that the verifier would need to 
have a physical model of the plant and a model of the control 
algorithm to be able to identify false sensor or controller 
signals. As applied to cyber-physical digital microfluidic 
systems, the verifier would require knowledge of the bioassay 
protocol, i.e. bioassay sequencing graph, and invariant 
relationships for attestation.    More discussion on attestation 
and invariants is provided in later sections. 
 
Run-time Information Flow Security Enforcement: 
Execution monitoring (EM) enforceability is the approach of 
monitoring the execution of a program at runtime for security 
policy violations and terminating this program if a violation has 
been detected.  While this may be adequate for some program 
properties, it is not applicable to information flow properties 
(IFP) because they cannot be defined as safety properties as 
described by the Alpern-Schneider framework [21].  Recently, 
research has started to explore bridging the gap between 
existing runtime monitoring schemes and IFP protection.  
These works have created execution monitoring methodologies 
that enforce information flow security.  In [16] Love et al 
extended these approaches to address potential vulnerabilities 
in implicit trust in monitors used in POC technology.  
Intelligent attacks could “hide” behind mechanisms that protect 
IFP therefore allowing intrusion to go undetected.  To 
counteract this, the proposed independent verifier must induce 
a beneficial runtime information flow leakage to expose hidden 
attacks.  Although formal definition of the independent 
verification automata is beyond the scope of this work, later 
sections will describe how discriminative pattern matching can 
be used to select which biochemical operations will be paired 
in this runtime monitor.   
 

IV. RELATED SECURITY WORK 

 
Research investigating the security of DMFB is a new 

development.  [23][24] offer state-of-the art reviews on the 
challenges facing building secure DMFB systems, current 
approaches to secure them, and possible research directions.  
[6] discusses both result manipulation attacks   of enzymatic 
glucose assays and denial-of-service attacks through tampering.  
[11] investigates DMFB supply chain security vulnerabilities 
and potential countermeasures.  [10] proposes an authentication 
method that utilizes characteristics of   electrodes to generate 
keys for piracy prevention.  [13] focuses on timing attacks and 
attack site localization using   symbolic   reasoning.  [12] 

1068



proposes a method of verifying the accuracy of signals from the 
online controller that uses a strategically placed droplet test 
circuit.  In [16] a methodology is introduced that primarily   
focuses   on   information   flow disruption   and   potential   
vulnerabilities caused by implicit belief and trust among system 
components.  The outcome of that analysis   proposed   adopting   
process-based detection mechanisms that rely on the underlying 
physical and chemical properties of the bioassay and test to 
secure the system.  This work expands this methodology by 
utilizing a discriminative subgraph pattern matching approach 
to select which bioassay operations the independent verifier 
selects for physical attestation.  Such attestation would be used 
by the verifier for runtime enforcement of a given security 
policy. 

V. FREQUENT SUBGRAPH PATTERN MATCHING 

 
Frequent graph pattern matching is defined as recurring 

subgraphs found within a collection of graphs or a single, large 
graph that has an occurrence frequency that surpasses a given 
threshold.  This approach is advantageous when compared to 
more exhaustive methods that intend to enumerate all subgraphs 
within a collection.  Frequent graph pattern matching focuses on 
finding high frequency recurrences.  These frequent subgraph 
patterns can be used for various purposes including, but not 
limited to, characterization, classification, and clustering.  These 
methods have been applied in numerous fields ranging from 
chemical structure discovery in HIV-screening datasets to the 
study of protein structural families. 

A well-known, frequent pattern matching methodology is 
discriminative subgraph mining [18][19].  Given two pre-
classified graph collections, discriminative frequent pattern 
matching attempts to find substructures that surpass a defined 
frequency threshold that contrast the collections.  These 
algorithms, such as LEAP and Top-k LEAP, have been 
successfully used to compare correct and faulty program 
executions to pinpoint bugs and provide contextual information 
useful for root cause analysis.  These algorithms model program 
execution as a software behavior graph that operates with 
program blocks of code as nodes and calls as edge relationships 
that describe the flow of execution.  LEAP generates the most 
discriminative subgraph signature, while Top-k LEAP generates 
a ranked list of k discriminative subgraph signatures which 
identifies different locations with the program that may contain 
bugs.   

VI. PROBLEM STATEMENT 

 
As initially proposed in [16], the selection of invariants 

chosen for runtime attestation would rely on domain knowledge 
or exhaustively attesting all invariants at all time steps.  The 
advantage of the first approach is that domain knowledge could 
allow evaluating only a subset of operations therefore reducing 
any unforeseen real-time consequences while still creating the 
beneficial information flow path needed to protect the system.  
This disadvantage is that there may be operations or system 
properties that would be valuable to attest that were not 
included in the subset.  This reasoning leads to the promotion 

of an exhaustive testing scheme.  While the advantage of this 
approach is clear, all biochemical and system invariants 
attested, the real-time consequences are unclear at this time.  
This raises questions such as: can the verifier adequately 
evaluate all invariants and rapidly respond?  With respect to a 
complete handheld lab-on-chip solution, does the verifier have 
access to enough memory to hold any required precomputed 
values that would be needed to attest each invariant?  Are there 
performance limitations that would complicate evaluating all 
invariants at every time, and in the event of an attack, raise the 
appropriate alarm? 

The focus of this paper is the development of an offline 
discriminative mining approach to pre-select bioassay 
operations for cyber-physical attestation.  This contribution 
extends previous work modeling Stuxnet-type attacks on POC 
technology built around cyber-physical digital microfluidic 
systems [16].  In [16] the impact of such attacks was evaluated 
by formulating the following essential questions:  Can such an 
attack be detected while in progress?   How can a CPS be 
protected from the human operator’s blind trust in cyber 
monitoring?  If incorrect but reasonable information is used, 
how will one know?  The result of this analysis was a proposed 
independent verifier that utilized physical invariants of the 
system and the biochemical process to add a strong layer of 
protection.  In this work, discriminative data mining is explored 
to intelligently select which bioassay operations will be 
attested. 
 
DISCRIMINATIVE SUBGRAPH MINING 

In [18][19] a discriminative subgraph mining approach was 
used to identify bug signatures within a program.  The graph 
collection was divided into correct and faulty executions of the 
program with nodes representing basic code block.  This 
separation of collections allowed the algorithm to identify 
which portions of the “bad” control flow graphs were more 
prevalent than the “good”.  A similar separation between 
“good” and “bad” executions can be used for bioassays 
performed on cyber-physical digital microfluidic biochips.  
With respect to security, this approach will distinguish “under 
attack” and “attack-free” executions with the goal of identifying 
the subgraph that is most vulnerable to security attack. 

The discriminative subgraph mining algorithm used for this 
work is described in detail in [18]; the main functionality is 
briefly summarized here. Let C+ and C- represent the sets of 
graphs for the “good” and “bad” cases, respectively; there must 
be at least one graph in each such set. First, non-discriminative 
edges are removed from the graphs in both sets. The algorithm 
then tries to find a subgraph that is common to all of the “bad” 
graphs, but not common to all of the “good” graphs. If the 
algorithm is unable to find such a graph, then the algorithm 
relaxes the requirement that the subgraph we seek not be 
present in every “good” graph; instead the subgraph only has to 
not be present in α * |C+| of the “good” graphs, where α is a 
user-specified parameter (our default is α = 0.5). If we still fail 
to find a discriminative subgraph, then the anomaly likely does 
not involve components that are included in all “bad” cases and 
not in the “good” cases, but rather involves components that are 
in “good” cases and not in “bad” cases. Thus, the algorithm 
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performs the same processing, but reverses the order of the 
parameters (C+ and C-) from the previous execution. If it still 
fails to find a discriminative subgraph, it again relaxes the 
requirements and looks for a subgraph that only has to not be 
present in β * |C+| of the “good” graphs, where β is a user-
specified parameter (our default is β = 0.5). 

In terms of analyzing the computational complexity of this 
algorithm, let N+=|C+|, N-=|C-|, E+ be the total number of edges 
in C+, and E- be the total number of edges in C-. The task of 
finding (and removing) non-discriminant edges from the 
collection of graphs requires O(E+ + E- + N+ + N-); presumably, 
N+ and N- are much smaller than E+ + E-, so we can regard this 
step as O(E+ + E-). The process of finding a subgraph that is 
common to one collection C (either C+ or C-), but not the other 
collection, requires O(2N * (2 * N+ + N-) * N * (N-1)) where N 
is the maximum number of vertices in a graph in collection C. 
Hence, the overall complexity is exponential, proportional to 
the size of the largest graph in the entire collection. 

 When forming a “attack-free” graph collection, it is 
important to understand that processing errors do occasionally 
occur during bioassay execution.  Error recovery mechanisms 
are used to address such events and allow the bioassay to 
complete.  The real-time error recovery dictionary described 
previously accounts for such inherent errors and holds their 
respective actuation sequences in memory.  Since these errors 
are anticipated, they are not considered under-attack anomalies 
and their sequence graphs also form part of the “good” 
collection. 
 When creating a collection of “bad” graphs, or graphs 
that represent an under-attack scenario, a result manipulation 
attack model is currently being considered.  This attack model 
involves the subtle change of bioassay sequence graph that 
alters the execution of the test.  Such an attack could toggle the 
result leading to a false positive or false negative.  This contrast 
can be seen when comparing a golden execution with an 
execution under attack as seen in Figure 3 and Figure 4, 
respectively. Figure 3 shows a golden execution of a bioassay 
that operates as expected.  However, Figure 4 depicts the same 
assay, but the result has been changed through malicious 
tampering.  In this attack scenario, a sequence of malicious split 
operations was added to reduce the droplet concentration below 
the pass/fail threshold.  This could lead to a malicious toggling 
of the diagnostic result.          

 
 

 
Figure 3: Attack-free bioassay executions (a) without error recovery 

operation (b) with error recovery operation 
 

 
Figure 4: Bioassay execution with error recovery events under results 

manipulation attack 
 

Figure 4 also includes an inherent error that occurs during 
operation Mix 1 which requires re-dispensing and re-mixing.  
Such an error should not be classified as malicious.   
     Both Figure 3 and 4 were respectively added to “attack-free” 
and “under attack” collections of graphs representing the same 
bioassay executions.  Both collections included graphs with 
inherent errors, but only the “under attack” graphs included the 
malicious split sequence that represent the result manipulation 
attack model.  The discriminative graph mining algorithm 
implemented in Python successfully identified the malicious 
bioassay operations as seen in Figure 5: 

 

 
Figure 5: Resulting Discriminative Subgraph 
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The implementation seen in Figure 5 first finds and removes 
subgraphs that all graphs have in common.  It then finds 
subgraphs that occur in most of the “under-attack” graphs, but 
not in the majority of the “attack-free” graphs.  The most 
discriminative substructure is finally reported.  The 
implementation of the discriminative subgraph mining 
algorithm utilized for this work (which varies slightly from 
[19]) is described in more detail in [18].  The following section 
discusses how such offline, pre-processing can be used to 
identify bioassay operations of interest for cyber-physical 
attestation at runtime.   

Also, it is worth noting that although the current 
implementation uses NetworkX [22] for offline pre-processing, 
it easily lends itself to on-device real-time discriminative graph 
mining since many bioassay graphs contain a relatively small 
node count, i.e., less than 128 nodes. This approach is currently 
under investigation. 
 

VII. DISCRIMINATIVE MINING FOR RUNTIME 

VERIFICATION 

 
To prevent the type of result manipulation attack seen 

in the previous section, a separate verifier that uses fundamental 
system properties has been proposed [16].  This verifier 
processes physical biochemical and system invariants to 
provide an independent verification of the results as the test is 
executing.  This runtime monitor would allow verification of 
system dynamics in accordance with both test intent and 
preservation of the system policy.  Figure 6 shows the proposed 
high-level operation of the independent runtime monitor. 

 
Figure 6:  Runtime Execution Monitor 

 
Extending the verifier proposed in [16], this runtime monitor 

would operate utilizing the following requirements: (1) biochip 
system architecture, (2) current bioassay under test, (3) physical 
invariants to be evaluated at runtime, and (4) discriminative 
subgraph signatures.  The first three requirements are well 
described in [16].  The extended independent verifier would also 
leverage the precomputed discriminate subgraph signatures to 

attest only a subset of operations, therefore reducing potential 
runtime costs.   

VIII. SUMMARY AND FUTURE WORK 

 
This paper has described the operation of a runtime execution 
monitor for DMFB that employs discriminative subgraph 
mining techniques.  Such an approach is promising in cases 
when an attacker can compromise operation of the system by 
blinding the system monitor from the actual bioassay operation 
that is taking place on the DMFB electrode array.   Although 
this work is an extension to past analysis of such attack, the 
operation of the independent verifier has been further 
described.    

However, there are still many research questions to answer.  
What are the real-time benefits to the proposed discriminative 
mining approach to more exhaustive methods?  Are their 
practical implementation limitations?  How will future 
implementations of this discriminative method handle multiple 
attack models.  This group is currently investigating practical 
implementations with the  current objective of developing a 
verifier and attestation algorithm that will   offer   “low-impact”   
security   overhead:   low-impact   to real-time  performance  for  
flash  chemistry  enablement,  and  low-impact  to  overall  
system  cost  for  POC  deployment  in low-resource settings 
and for border protection to prevent disease outbreaks. 
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