DeepQ Stepper: A framework for reactive dynamic walking on uneven
terrain

Avadesh Meduri', Majid Khadiv? and Ludovic Righetti!-?

Abstract— Reactive stepping and push recovery for biped
robots is often restricted to flat terrains because of the difficulty
in computing capture regions for nonlinear dynamic models. In
this paper, we address this limitation by proposing a novel 3D
reactive stepper, the DeepQ stepper, that can approximately
learn the 3D capture regions of both simplified and full robot
dynamic models using reinforcement learning, which can then
be used to find optimal steps. The stepper can take into
account the entire dynamics of the robot, ignored in most
reactive steppers, leading to a significant improvement in
performance. The DeepQ stepper can handle nonconvex terrain
with obstacles, walk on restricted surfaces like stepping stones
while tracking different velocities, and recover from external
disturbances for a constant low computational cost.

I. INTRODUCTION

The development of fast contact and motion planning
algorithms has been a topic of interest in robotics for many
years. Fast contact planning allows a legged robot to quickly
make or break contacts with its environment to move to
desired locations, recover from an external disturbance or
react to a change in its surroundings. Fast motion planning
enables robots to rapidly move their body to reach a desired
contact configuration while remaining balanced.

Most reactive motion planning algorithms, i.e. used for
real-time trajectory generation, are based on simplified mod-
els such as the Linear Inverted Pendulum Model (LIPM) [1].
The LIPM along with predefined footstep locations was used
to make a humanoid robot walk in [2], [3]. Since footstep
locations are computed beforehand, these approaches cannot
handle external disturbances that require the robot to adapt
its footsteps to stabilize itself.

To resolve this limitation, two important concepts, the
instantaneous capture point (ICP) [4] and capture region
[5], were introduced to decide step locations for recovering
from external disturbances. An equivalent concept to the
ICP, called the divergent component of motion (DCM), was
proposed in parallel to generate walking motions on flat
ground [6] and was extended to the non planar ground in [7].
In [8], the notion of DCM offset was introduced to generate
walking patterns with desired velocities while adapting both
step location and timing online. However, the approach,
based on the LIPM, is restricted to flat ground walking.

This work was supported by New York University, the European Union’s
Horizon 2020 research and innovation program (grant agreement 780684
and European Research Councils grant 637935) and the National Science
Foundation (grants 1825993 and 1925079).

ITandon School of Engineering, New York University (NYU), USA.
am9789@nyu.edu, ludovic.righetti@nyu.edu

2Max-Planck Institute for Intelligent Systems, Tuebingen, Germany.
majid.khadiv@tuebingen.mpg.de

Contact planning algorithms that can handle more complex
terrains are computationally expensive. In [9], [10], the full-
body motion and contact selection problems are formulated
as single nonlinear optimization problems. While they can in
principle find complex contact sequences, these approaches
are computationally too expensive to be used in realtime.
In [11], a slightly more efficient phase-based formulation
of contact planning is proposed. In [12], mixed integer
programming is used to formulate the contact planning
problem. The optimizer only considers kinematic constraints
to generate a feasible contact plan and the computation
time grows exponentially with the number of terrains and
steps. [13] extends this approach by introducing centroidal
dynamics so that dynamically feasible contact sequences
and trajectories can be generated together. [14] generates
dynamically feasible contact sequences using a variation of
the A* algorithm with a learned contact feasibility classifier
on a centroidal dynamics planner [13]. Dynamic feasibility
constraints are also considered in [15] along with learned
approximations of the centroidal dynamics to reduce the
computation time of the algorithm. Despite the reduced
computation time and a certain level of generality of these
contact planning algorithms, they are still not quick enough
to be used for real-time control.

Given the LIPM assumption, to be able to walk with-
out falling, it is necessary and sufficient to step within
the (infinite-step) capturable region [8], [5]. Unfortunately,
extending this result to more complicated scenarios including
the robot nonlinear dynamics, uneven terrains or non-convex
stepping regions is generally not feasible because of the
intractability in computing the capture region in such cases.

In this paper, we propose a novel reactive stepping ap-
proach, the DeepQ stepper, that approximates 3D capture
regions for the full robot dynamics using deep reinforce-
ment learning. We formulate the problem of choosing step
locations as a continuous-state discrete-action Markov De-
cision Problem (MDP), affording the use of efficient Deep
Q-Learning algorithm [16]. The learned state-action value
function implicitly encodes an approximation of the capture
region which is then used to plan footsteps online, irre-
spective of terrain complexity, and recover from external
disturbance, while tracking the desired velocity at a constant
computational cost. Empirical evidence suggests that the
DeepQ stepper learns a good approximation of both 2D
& 3D capture regions even for nonlinear dynamic models.
Extensive walking simulations with a biped robot with point
feet demonstrate the advantages of our approach, which takes
into account the full robot dynamics, including swing foot

dynamics, acceleration limits, or joint friction.

II. BACKGROUND

In this section, we briefly provide the necessary back-
ground to introduce the DeepQ stepper.

A. Nonlinear Inverted Pendulum

The nonlinear inverted pendulum dynamics can be derived
from the Newton-Euler equations

m(é—g):ZFi, L:Z(ui—c) x F; (1)
i=1 =1

where m is the robot mass, c is its CoM location, g is the
gravity vector, F; is the ground reaction force applied on leg
i, L is the angular momentum at the CoM and w; is the foot
location (assuming a point contact foot). If we assume that
there is no angular momentum around the CoM and only one
foot is in contact with the ground at a given instant, the above
equations simplify to the nonlinear pendulum dynamics

CZ

C? +gz
m(é&® + g°) = F? (3)

Y —

(&Y —g"¥) =u™v 2)

The linear inverted pendulum dynamics [1] is recovered
when ¢ = 0.

B. Capturability and Viability Regions

For a walking robot, the N-step capturable region corre-
sponds to the set of footsteps that would enable the robot to
come to a stop after at most N steps. Computing the capture
region for a general robot model is generally infeasible.
However, the infinite step capture region for the linear
inverted pendulum dynamics can be computed analytically
[5]. The DCM offset is defined as the distance between the
next footstep and the DCM location at the time of the next
step. By ensuring that the DCM offset at each step remains
in a certain bound [8], it is possible to track the desired COM
velocity while remaining capturable.

C. Reinforcement Learning

In this paper, we use the Deep Q Network (DQN) algo-
rithm, a very successful deep reinforcement learning algo-
rithm for continuous state space and discrete actions MDPs
[16]. It uses a deep neural network (DNN) to approximate
the Q-function and one DNN called the target network which
closely follows the Q-function DNN [17] to stabilize the
training. The learned Q-function is then used to compute the
optimal action for a given state.

In our implementation, we smoothly update the target
network weights at each iteration §~ = 70+ (1—7)0~ as in
[17], where 7 € (0,1). Note that in this work, we minimize
a cost as opposed to maximizing a reward function.

III. APPROACH: THE DEEPQ STEPPER

In this section, we describe our approach to learn an
efficient footstep planner along with the trajectory planner
and controller used with the robot.

A. DeepQ Stepper

The main idea of the DeepQ Stepper is to learn a Q
function associated with each feasible stepping action for a
given robot state, where the Q value represents the capability
of the robot to either bring itself to rest or track the
desired velocity after taking that step. For a given state,
the set of possible steps with low Q values will provide an
approximation of the capture region. As we use a model-free
approach to learn the Q-function, it can directly be used to
approximate the capture region of the full robot dynamics.

1) Learning the value of a step: During training, we
will use either the (nonlinear) inverted pendulum dynamics
(IPM) or the full robot dynamics as the model of the robot.
We discretize the possible stepping locations in the X, y
direction, such that we can use the DQN approach. The step
height (z-direction) is also provided to the DQN (continuous
action) during uneven terrain walking and is determined by
the terrain at the given step location. At the beginning of
each step, the model is allowed to take an action, which
corresponds to selecting one of the possible step lengths.
The state of the agent at a given time step consists of
the distance of the CoM from the current foot location in
each direction, the velocity of the CoM in the = and y
directions, an index determining which foot is on the ground
(+1 or —1 if right or left foot is on the ground respectively)
and the desired velocity in the =z and y directions. That is
T = [y — Uy, Cy — Uy, €z — Uy, Cg, Gy, M, vges,v;es].

The goal is to step so as to track a desired walking velocity,
while trying to be as close as possible to the hip at the
beginning of the next step and choosing as small step lengths
as possible without falling down. The episode terminates
after n steps or if the robot falls down before the n steps.
The agent is considered to have fallen down if the kinematic
constraint (maximum allowed leg length) is violated. We use
the following cost function

c(z,a) = wi(|h” = u®| + |hY — u¥]) + wa(|éz — vg®|

+]ép — v2)) + ws(|ag| + |ay| + |a.|) + I(z)

where w1, ws, ws are weights, c; , . is the location of the
CoM at the start of the next step, h, . is the hip location of
the leg whose foot is on the ground. u; 4 . = ugyy,ZJramyy,z is
the foot location at the start of the next step, ugyyyz is the foot
location at the start of the current step, vgfyﬁz is the desired
velocity, a, 4 . is the chosen action at the start of the step
and I(x) is an indicator function that returns a constant value
(here 100) if the kinematic constraint is violated otherwise
it returns zero.

The DeepQ stepper architecture is designed to accept the
state of the agent at the starting of each step along with
an action (step length in the 3 directions) and return the
corresponding Q-value. The optimal policy for the agent is
to choose the action with the lowest Q-value.

The DeepQ stepper is trained using the DQN algorithm
described in the previous section with w; = 0.5, wo = 3.0,
ws = 1.5. To accelerate learning, we bias the exploration at
the beginning of learning. We use a LIPM-based stepper to

select actions 80 % of the time to first fill the replay buffer.
After the desired buffer size is reached, we use an e—greedy
strategy with ¢ = 0.2. When sampling the mini-batch, we
take 20 % of the mini-batch to be the latest state-action pairs
and the rest is sampled uniformly from the replay buffer.
In our experiments, this significantly improved the rate of
convergence of the algorithm especially because the rewards
are sparse for the problem.

2) The DeepQ Stepper as a reactive foot-step planner:
During execution, the state of the agent is computed at
the beginning of each step and provided to the trained
DeepQ stepper. We compute the optimal step length (lowest
Q-value) only using admissible actions given the current
allowable stepping regions, which is possible due to the
discrete-action space formulation. Consequently, a constant
number of network evaluations are needed for the stepper
independent of the stepping region, which provides a sig-
nificant computational advantage. The agent then takes the
optimal action at the end of the step. This process is repeated
indefinitely to generate walking motions on different terrain.

B. Trajectory generation and control approach

We generate CoM trajectories using the nonlinear inverted
pendulum dynamics, Eqgs. (2) and (3) given the choice of
the foot step locations. This approach is used during both
learning and evaluation. Initially, a trajectory optimization
problem is solved for the dynamics governing the z direction
independently, such that the height of the inverted pendulum
moves from its current height to the desired height by the end
of the trajectory (duration of one step) while also reaching
a zero velocity [18], [19]. The QP problem solved for the z
direction trajectory is

T
min . ZwFt2
i=0

(—-9)
=0

st ciyy = cf + tcy,

z b Z
cg=ho, ¢=0, ct=hr,

where cf is the height at the time step t. hg, h are initial and
final height of the inverted pendulum and 7' is the number
of collocation points in the trajectory optimization problem.
The z trajectory obtained from the motion planner is then
plugged into inverted pendulum Eq. (2) to integrate the x and
y dynamics of the system to obtain a dynamically feasible
CoM trajectory.

This method of trajectory planning is adopted to bypass
the nonlinearity in the dynamics and subsequently generate
feasible trajectories very efficiently. This makes it possible
to replan CoM trajectories while walking on uneven ground
in the presence of external forces on the robot in real-
time. Further, in the case where the height of the inverted
pendulum is kept a constant, the motion plans from the
solver coincide with the linear inverted pendulum, which will
facilitate our experimental comparisons later. Note that any
other trajectory generator [20] could also be used with the
DeepQ stepper since it’s a model-free approach.

Swing foot trajectories are generated for the robot at the
beginning of each step after obtaining the desired next step
location from the DeepQ stepper. The end-effector trajectory
starts from the current location of the foot and ends at
the next foot location. A Sth-degree polynomial is used to
parameterize the foot trajectory. The trajectories generated
by the CoM planner and the swing foot trajectory generator
are tracked using the whole-body controller proposed in [21].

IV. EXPERIMENTS

We now present extensive simulation results to investigate
the capabilities of the approach. In the first set of experi-
ments, we evaluate the DeepQ stepper to control the simplest
dynamic model, a 1D LIPM. This enables its analysis in light
of exact results for the capturability region [5]. Then, we
evaluate the approach to generate walking for a 3D nonlinear
inverted pendulum model. Finally, we demonstrate the ability
of the approach to learn footstep planning using the full
dynamics of a biped robot with point feet. In particular,
we show that the stepper is capable of learning a better
approximation of the capture region that more adequately
reflects the true capabilities of the robot. This leads to an
improvement in walking performance when compared to
typical LIPM-based approaches.

A. Experimental Setup

For the simulations, we use Bolt (Fig. 4), a newly designed
open source biped robot [22], as we eventually aim to
implement our approach on the real robot. Bolt is a torque-
controlled biped robot with 6 active DoFs [21], [22] capable
of very dynamic walking. It has passive ankles which we
model with point feet. Each leg is 0.4m long, its base is
0.13m wide and 0.078m high. It easily can step every 0.2
seconds [22]. All the modeling choices such as step time
or nominal CoM height described below are based on the
model of the real robot and its capabilities.

The DeepQ stepper is trained using the procedure dis-
cussed in section III-A. The DNN of the DeepQ stepper
contains 7 layers each containing 512 neurons followed by a
final layer with one neuron. All layers except the last one are
activated with a ReLU function. The stepper is trained with
a learning rate of 1074, 7 = 1073, and a buffer size of 8000.
Each episode during training is terminated after 10 steps
or when the agent falls down. The DNN architecture and
training parameters are kept the same throughout all the ex-
periments. All the training instances converged consistently
for all the experiments we conducted.

For all the experiments, we used a Dell precision 5820
tower machine with a 3.7 GHz Intel Xeon processor. The
accompanying video' illustrates the simulation results.

B. ID LIPM

A 1D LIPM model is used to initially test the performance
of the DeepQ stepper. The model has its CoM at a constant
height of 0.35 m above the ground and is allowed to take
a step every 0.2 seconds. The state of the agent is z =

https://www.youtube.com/watch?v=aITooZlm-WY

—— [0.06-0.3] —— [0.02-0.1]
100 100
90 90
» »
4]
3 E]
s 80 T 80
3 B4
o o
70 70
60 60
50 -0.4 -0.2 0.0 0.2 0.4 50 -0.4 -0.2 0.0 0.2 0.4
Step Lengths Step Lengths
110 110
—— [0.01-0.04] —— [0. -0.02]
100 100
90 90
» »
?]
3]
s 80 T 80
> >
o o
70 70
60 60
64 -0.2 0.2 0.4 064 -0.2 02 0.4

0.0 0.0
Step Lengths Step Lengths

Fig. 1: Action values along with the location of the ICP/DCM
(vertical black line) and the infinite step capture region
(yellow region) for a 1D LIPM in different states (blue label).

[z — uz, C;]. We discretize the action space into 11 equally
spaced step lengths starting from -0.4 m to 0.4 m (i.e. an 8
cm discretization step).

The whole training process of the DeepQ stepper takes
about 15 to 20 minutes (approximately 5000 episodes). A
visualization of the Q values for different states of the agent
at the start of the step is shown in Fig. 1. The location
of the instantaneous capture point (ICP) at the end of the
corresponding step along with the infinite step capture region
is also shown. We notice that the optimal stepping strategy
found by our approach is close to the location of the ICP
for different states, which is the optimal stepping strategy
to stop, for the LIPM model. Further, the value assigned
to each action by the learned Q-function is such that the
ones with the lower values lie within the capture region
while those with higher values lie outside the capture region.
This suggests that the Q-function has implicitly learned the
capture region. During execution, the value of each step can
be evaluated to select the next best possible step to take,
to continue walking, in case the optimal action cannot be
chosen (i.e. by choosing the step with the lowest value that
is also feasible in the current environment).

C. 3D Inverted Pendulum

We now use our approach with a nonlinear inverted
pendulum model (IPM) (Sec. II-A), for which no analytic
capture region characterization exists, to learn to walk. The
model contains a 0.13m-width base and a maximum leg
length is 0.4m (same as the real robot), which is used as
a kinematic constraint in the model to terminate the episode
when violated. The model is expected to keep its CoM
at a nominal height of 0.35 m above the ground at the
start of each step and it follows the trajectory generated

0.43
0.34
0.27
0.21
0.17
0.13
0.09
0.04

0.0
0.4 -0.24 -0.08 0.08 0.24 0.4

Fig. 2: A visualization of the action values while walking on
flat ground. The infinite step capture region for the model at
the end of the step is depicted by the red circle. The red dot
shows the location of the ICP/DCM at the end of the step.
The yellow circle represents the kinematic constraints at the
end of the step.

by the inverted pendulum motion planner (Sec. III-B). The
model takes a step every 0.2 seconds and its state is the
same as described in Sec. III-A. The action space now
consists of 99 step lengths with 11 equally spaced step
lengths in the forward direction (x axis) between +0.4m
and 9 geometrically spaced (geometric progression) step
lengths in the lateral direction (y-axis) starting from Om to
0.43m. Since the minimum step length allowed in the lateral
direction is zero, the model is not allowed to step to the right
of the right foot and the left of the left foot. This reduces
the possibility of foot collisions. However, the DeepQ stepper
can be trained with an action space that allows for crossing
of the feet, since the stepper can handle nonconvex reachable
spaces efficiently.

The DeepQ stepper takes approximately 6000 episodes
to learn to walk without falling while tracking the desired
velocity ranging from +0.7m/s. After learning, the stepper
can recover or balance without falling when an episode is
initialized with velocities ranging from +1.0m/s.

A visualization of the Q values for a state = [0, 0.065, 0.35,
0.16, -0.16, 1, 0, 0] (The agent has a velocity of 0.16 m/s
and -0.16 m/s in the x and y direction respectively, while the
CoM is at a height of 0.35 m above the ground and 0.065
m to the left of the right foot) at the start of the step, on
flat ground, along with the theoretical infinite step capture
region, ICP/DCM and kinematic constraints for the model
at the end of the step are shown in Fig. 2. Stepping on flat
ground is shown here because the dynamics match the LIPM,
which enables comparison with theoretical results. Darker
squares correspond to actions with lower cost (the darkest
square is the optimal action according to the Q-function).
The white box encloses the steps from which the robot can
recover (determined empirically). That is if the IPM is forced
to take any step within the white box (which need not be
the best action) and after which it is allowed to take optimal
actions, the DeepQ stepper can bring its CoM to rest without
falling, i.e. is captured. This shows that the DeepQ stepper
not only learns an optimal location to step for a given state
(that is close to the ICP/DCM), but it is also able to learn
an approximation of the true capture region for the nonlinear
inverted pendulum dynamics.

During training, the IPM is also exposed to scenarios

043 043 105.0
0.34 0.34 1025
0.27 0.27 100.0
021 021 975
017 0.17 95.0
013 013 925
0.09 0.09 90,0
0.04 0.04 87.5

0.0 0.0
0.4 -0.24 0.08 008 024 04 04 024 008 0.08 024 0.4

Fig. 3: Heatmaps representing learned 3D capture region for
two different states. The left and right figures are when the
agent is to step on a terrain that is 0.05 m below and 0.08
m above the current location of the foot respectively.

where the terrain varies randomly with heights ranging from
+0.07m (20 % of the leg height of the robot) so that
the DeepQ stepper approximately learns the 3D capture
region, which is the region in 3D space the IPM can step
to remain capturable. Using the learned 3D capture region,
the robot can navigate complicated terrain by accounting
for terrain height while choosing optimal actions. Figure
3 shows a visualization of the learned 3D capture region
for two different scenarios. Since the infinite step capture
region for a nonlinear inverted pendulum cannot be computed
analytically, it is not possible to compare the learned capture
regions with the ground truth. However, we verified that
the robot can walk on uneven terrain when steps within the
white box of the heatmaps are taken, as in the case of 2D
stepping discussed previously. It shows that the Q-function
can be used to choose among a set of possible steps, at no
additional cost, therefore approximating a 3D capture region
and enabling footstep selection on complex terrains.

D. 3D walking with Bolt Robot

Now we train the DeepQ stepper directly with a simulation
of the complete robot to demonstrate that our algorithm can
take into account its full dynamics such as inertia of the base,
friction in the joints, swing foot dynamics, possible tracking
errors in the controller, etc. All of which are ignored in the
nonlinear inverted pendulum model.

1) Comparison between the IPM and full-robot DeepQ
stepper: We compare the stepper learned with the 3D IPM
with the stepper learned in the full robot simulation to control
the full robot. Our goal is to show the improvement in
footstep selection when taking into account the complete
robot dynamics. The 3D IPM stepper was not able to
generate robust walking gaits with the real robot dynamics,
due to significant effects of the swing leg. A similar issue
appeared when a LIPM-based reactive planner, that ignores
the swing foot dynamics, was transferred to the real robot
[22]. We, therefore, set a simulation where we reduced the
mass of the legs to 10% of the mass of the real robot to
increase similarity with the LIPM dynamics.

The 3D IPM DeepQ stepper can generate walking gaits
while tracking velocities from £0.7 m/s on flat terrain and

bring the robot to rest (capturable) from velocities up to 0.8
m/s without falling down.

The DeepQ stepper trained directly in the simulation
environment with the modified Bolt robot (lighter legs) takes
approximately 6000 episodes to be able to generate robust
walking gaits of up to +1m/s. The robot is controlled with
the same control framework described above.

Fig. 5 shows a comparison between the learned capture
regions of the DeepQ stepper trained directly in simulation
and with the inverted pendulum environment for the same
state. The white box in the two heat maps encloses the step
locations from which Bolt can recover by taking optimal
actions after, when it starts from the same initial condition,
and uses the two DeepQ steppers in simulation. As can be
seen, the DeepQ stepper trained in simulation is able to learn
a larger capture region as compared to the inverted pendulum
stepper. Also, the orange box encloses actions that the IPM
stepper believes are good actions to take, but in reality, these
actions lie outside the kinematic limits and can not be taken
by the robot. This discrepancy arises because the rate of
divergence of the CoM of the robot is different from the
simplified IPM for the same state. Subsequently, actions that
are viable with the IPM for the same state, are not feasible
on the robot. In contrast, the simulation stepper returns high
Q values for actions that lie outside the kinematic region,
since it learns to step using the full robot dynamics.

Figure 6 shows a comparison of episode costs over 50
episodes in the simulation environment. During each episode,
the robot is initialized with random conditions (different
CoM states, desired tracking velocities, and uneven terrain),
and both controllers are executed for 15 steps. The simulation
stepper shows a better performance about 77% of the time
(lower episode cost) when tested over 1000 episodes. The
IPM stepper often fails to capture the robot in scenarios
with high CoM velocities (> 0.8 m/s) where the swing foot
dynamics becomes prominent because this requires taking
large steps to recover. Consequently, the stepper does not
account for this and chooses steps that are longer than
necessary which destabilizes the robot. On the other hand,
the simulation DeepQ stepper is able to account for these
dynamics and learn a richer representation of the capture
region (the Q values are quite different within the white
box, as one moves away from the optimal action), where
it prefers to take smaller steps whenever possible to improve
the stability of the robot and reduce the effects of the
swing foot dynamics and still recover from high initial CoM
velocities. In addition, the simulation DeepQ stepper is more
robust while walking on uneven terrain and is able to track
desired velocities better as compared to the IPM stepper. This
can also be seen in Fig 6 where the bullet stepper incurs
lower episode cost in episodes where both the steppers can
generate walking without falling down (episodes with cost
under 100).

2) DeepQ stepper with robot dynamics: The DeepQ step-
per is now trained with real robot dynamics. During training,
the simulation environment is initialized with a sparsely
generated terrain consisting of random step heights up to 0.05

Fig. 4: Bolt navigating challenging environments with obstacles and stepping stones. Sequence of motion ordered starting

from left to right.

0.43 0.43 105
034 034
027 027 100
021
017
013 . |
0.09
0.04 .

0.0
04 024 -008 008 024 04

0.0+
04 024 -0.08 008 024 04

Fig. 5: Comparison of 2D capture regions for DeepQ stepper
trained in simulation (figure to the right) and in the inverted
pendulum environment (figure to the left).

— IPM Env

Bullet Env
— IPM Env Mean
140 —— Bullet Env Mean

0 10 20 30
Episode Number

Fig. 6: Comparison of episode cost in simulation.

m (contains both flat and nonconvex terrain). After every
500 episodes of training more nonconvex steps are placed
randomly into the environment to increase complexity. The
DeepQ stepper converges in about 6000 episodes.

The DeepQ stepper trained directly in the simulation
environment is able to navigate complex terrains (Fig. 4).
The robot can track and change desired velocities up to
+1m/s online to avoid obstacles reasonably well, despite
having point feet and discrete allowed step lengths (Fig. 7).
In addition, since the terrain is not flat, the CoM height is
constantly changing while the robot walks. LIPM approxi-
mations that are used in existing reactive steppers would not
hold in such scenarios and it becomes important to account

—— mavg_vx

1.0 vx i
—— des_vx
0.5 /V\

£
0.0 \V
VA=
-0.5
0 5 10 15 20
1001 — mavg_vy
vy
0751 des_vy
Pl
£ o2 /\ /\\/ \/ \/v’\ /\,/\/\\
0.00 \ J\

ol |
-0.25 ¥ \/\/ ¥ \

—-0.50

0 5 10 15 20

Fig. 7: CoM velocity, COM moving average of 0.2 second
and desired velocity plot.

for the nonlinear dynamics of the system, which the DeepQ
stepper can do. In situations where the robot can only step in
certain regions such as stepping stones and the optimal step
location is infeasible, the DeepQ stepper is able to choose
the next best viable action because it learns a capture region.
Subsequently, it becomes possible to plan footstep locations
on complex terrain online, with no additional computational
cost. Finally, the stepper is able to recover from external
disturbance ranging from +3N (push recovery) for up to
0.5 seconds on any terrain. The performance of the DeepQ
stepper in different scenarios is shown in the attached video.

CONCLUSION

In this work, a novel reactive stepping framework, the
DeepQ stepper is proposed. The stepper can learn the 3D
capture regions of different nonlinear systems for which
analytical solutions do not exist. Using this information the
DeepQ stepper generates robust walking gaits on uneven
terrain and recover from external disturbances. Further, the
stepper can handle scenarios like stepping stones by provid-
ing the next best feasible actions at no additional computation
cost. Finally, when trained with the robot in simulation, the
DeepQ stepper is able to improve its overall performance by
taking into account the whole dynamics (swing foot, joint
frictions, etc) that is ignored in simple dynamic models.

[1]

[2

—

[3

[t

[4

=

[5]

[6

=

[7

—

[9

—

(10]

[11]

(12

[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The
3d linear inverted pendulum mode: A simple modeling for a biped
walking pattern generation,” in Proceedings 2001 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems. Expanding
the Societal Role of Robotics in the the Next Millennium (Cat. No.
01CH37180), vol. 1. IEEE, 2001, pp. 239-246.

P.-B. Wieber, “Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations,” in 2006 6th IEEE-
RAS International Conference on Humanoid Robots. 1EEE, 2006,
pp. 137-142.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in 2003 IEEE International Conference
on Robotics and Automation (Cat. No. 03CH37422), vol. 2. IEEE,
2003, pp. 1620-1626.

J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step
toward humanoid push recovery,” in 2006 6th IEEE-RAS international
conference on humanoid robots. 1EEE, 2006, pp. 200-207.

T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,” The international
Jjournal of robotics research, vol. 31, no. 9, pp. 1094-1113, 2012.

T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real time motion
generation and control for biped robot-1 st report: Walking gait pattern
generation,” in 2009 IEEE/RSJ International Conference on Intelligent
Robots and Systems. 1EEE, 2009, pp. 1084-1091.

J. Englsberger, C. Ott, and A. Albu-Schiffer, “Three-dimensional
bipedal walking control using divergent component of motion,” in
2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 1EEE, 2013, pp. 2600-2607.

M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti, “Walking
control based on step timing adaptation,” IEEE Transactions on
Robotics, 2020.

I. Mordatch, E. Todorov, and Z. Popovié, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, pp. 1-8, 2012.

M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69-81, 2014.

A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560-1567, 2018.

R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS international
conference on humanoid robots. 1EEE, 2014, pp. 279-286.

B. Ponton, M. Khadiv, A. Meduri, and L. Righetti, “Efficient multi-
contact pattern generation with sequential convex approximations of
the centroidal dynamics,” IEEE Transactions on Robotics, 2021.
Y.-C. Lin, B. Ponton, L. Righetti, and D. Berenson, “Efficient hu-
manoid contact planning using learned centroidal dynamics predic-
tion,” in 2019 International Conference on Robotics and Automation
(ICRA). 1IEEE, 2019, pp. 5280-5286.

P. Fernbach, S. Tonneau, O. Stasse, J. Carpentier, and M. Taix, “C-
croc: Continuous and convex resolution of centroidal dynamic trajec-
tories for legged robots in multicontact scenarios,” IEEE Transactions
on Robotics, vol. 36, no. 3, pp. 676-691, 2020.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, 1. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko,
and E. Yoshida, “Model preview control in multi-contact motion-
application to a humanoid robot,” in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1EEE, 2014, pp. 4030—
4035.

R. Mirjalili, A. Yousefi-Korna, F. A. Shirazi, A. Nikkhah, F. Nazemi,
and M. Khadiv, “A whole-body model predictive control scheme
including external contact forces and com height variations,” in
2018 IEEE-RAS 18th International Conference on Humanoid Robots
(Humanoids). 1EEE, 2018, pp. 1-6.

[20]

[21]

[22]

B. Ponton, A. Herzog, A. Del Prete, S. Schaal, and L. Righetti, “On
time optimization of centroidal momentum dynamics,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). 1EEE,
2018, pp. 1-7.

F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wiithrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols, et al.,
“An open torque-controlled modular robot architecture for legged
locomotion research,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 3650-3657, 2020.

E. Daneshmand, M. Khadiv, F. Grimminger, and L. Righetti, “Variable
horizon mpc with swing foot dynamics for bipedal walking control,”
IEEE Robotics and Automation Letters, 2021.

