
DeepQ Stepper: A framework for reactive dynamic walking on uneven

terrain

Avadesh Meduri1, Majid Khadiv2 and Ludovic Righetti1,2

Abstract— Reactive stepping and push recovery for biped
robots is often restricted to flat terrains because of the difficulty
in computing capture regions for nonlinear dynamic models. In
this paper, we address this limitation by proposing a novel 3D
reactive stepper, the DeepQ stepper, that can approximately
learn the 3D capture regions of both simplified and full robot
dynamic models using reinforcement learning, which can then
be used to find optimal steps. The stepper can take into
account the entire dynamics of the robot, ignored in most
reactive steppers, leading to a significant improvement in
performance. The DeepQ stepper can handle nonconvex terrain
with obstacles, walk on restricted surfaces like stepping stones
while tracking different velocities, and recover from external
disturbances for a constant low computational cost.

I. INTRODUCTION

The development of fast contact and motion planning

algorithms has been a topic of interest in robotics for many

years. Fast contact planning allows a legged robot to quickly

make or break contacts with its environment to move to

desired locations, recover from an external disturbance or

react to a change in its surroundings. Fast motion planning

enables robots to rapidly move their body to reach a desired

contact configuration while remaining balanced.

Most reactive motion planning algorithms, i.e. used for

real-time trajectory generation, are based on simplified mod-

els such as the Linear Inverted Pendulum Model (LIPM) [1].

The LIPM along with predefined footstep locations was used

to make a humanoid robot walk in [2], [3]. Since footstep

locations are computed beforehand, these approaches cannot

handle external disturbances that require the robot to adapt

its footsteps to stabilize itself.

To resolve this limitation, two important concepts, the

instantaneous capture point (ICP) [4] and capture region

[5], were introduced to decide step locations for recovering

from external disturbances. An equivalent concept to the

ICP, called the divergent component of motion (DCM), was

proposed in parallel to generate walking motions on flat

ground [6] and was extended to the non planar ground in [7].

In [8], the notion of DCM offset was introduced to generate

walking patterns with desired velocities while adapting both

step location and timing online. However, the approach,

based on the LIPM, is restricted to flat ground walking.

This work was supported by New York University, the European Union’s
Horizon 2020 research and innovation program (grant agreement 780684
and European Research Councils grant 637935) and the National Science
Foundation (grants 1825993 and 1925079).

1Tandon School of Engineering, New York University (NYU), USA.
am9789@nyu.edu, ludovic.righetti@nyu.edu

2Max-Planck Institute for Intelligent Systems, Tuebingen, Germany.
majid.khadiv@tuebingen.mpg.de

Contact planning algorithms that can handle more complex

terrains are computationally expensive. In [9], [10], the full-

body motion and contact selection problems are formulated

as single nonlinear optimization problems. While they can in

principle find complex contact sequences, these approaches

are computationally too expensive to be used in realtime.

In [11], a slightly more efficient phase-based formulation

of contact planning is proposed. In [12], mixed integer

programming is used to formulate the contact planning

problem. The optimizer only considers kinematic constraints

to generate a feasible contact plan and the computation

time grows exponentially with the number of terrains and

steps. [13] extends this approach by introducing centroidal

dynamics so that dynamically feasible contact sequences

and trajectories can be generated together. [14] generates

dynamically feasible contact sequences using a variation of

the A
∗ algorithm with a learned contact feasibility classifier

on a centroidal dynamics planner [13]. Dynamic feasibility

constraints are also considered in [15] along with learned

approximations of the centroidal dynamics to reduce the

computation time of the algorithm. Despite the reduced

computation time and a certain level of generality of these

contact planning algorithms, they are still not quick enough

to be used for real-time control.

Given the LIPM assumption, to be able to walk with-

out falling, it is necessary and sufficient to step within

the (infinite-step) capturable region [8], [5]. Unfortunately,

extending this result to more complicated scenarios including

the robot nonlinear dynamics, uneven terrains or non-convex

stepping regions is generally not feasible because of the

intractability in computing the capture region in such cases.

In this paper, we propose a novel reactive stepping ap-

proach, the DeepQ stepper, that approximates 3D capture

regions for the full robot dynamics using deep reinforce-

ment learning. We formulate the problem of choosing step

locations as a continuous-state discrete-action Markov De-

cision Problem (MDP), affording the use of efficient Deep

Q-Learning algorithm [16]. The learned state-action value

function implicitly encodes an approximation of the capture

region which is then used to plan footsteps online, irre-

spective of terrain complexity, and recover from external

disturbance, while tracking the desired velocity at a constant

computational cost. Empirical evidence suggests that the

DeepQ stepper learns a good approximation of both 2D

& 3D capture regions even for nonlinear dynamic models.

Extensive walking simulations with a biped robot with point

feet demonstrate the advantages of our approach, which takes

into account the full robot dynamics, including swing foot

dynamics, acceleration limits, or joint friction.

II. BACKGROUND

In this section, we briefly provide the necessary back-

ground to introduce the DeepQ stepper.

A. Nonlinear Inverted Pendulum

The nonlinear inverted pendulum dynamics can be derived

from the Newton-Euler equations

m(c̈− g) =

n∑

i=1

Fi, L̇ =

n∑

i=1

(ui − c)× Fi (1)

where m is the robot mass, c is its CoM location, g is the

gravity vector, Fi is the ground reaction force applied on leg

i, L is the angular momentum at the CoM and ui is the foot

location (assuming a point contact foot). If we assume that

there is no angular momentum around the CoM and only one

foot is in contact with the ground at a given instant, the above

equations simplify to the nonlinear pendulum dynamics

cx,y −
cz

c̈z + gz
(c̈x,y − gx,y) = ux,y (2)

m(c̈z + gz) = F z (3)

The linear inverted pendulum dynamics [1] is recovered

when c̈z = 0.

B. Capturability and Viability Regions

For a walking robot, the N-step capturable region corre-

sponds to the set of footsteps that would enable the robot to

come to a stop after at most N steps. Computing the capture

region for a general robot model is generally infeasible.

However, the infinite step capture region for the linear

inverted pendulum dynamics can be computed analytically

[5]. The DCM offset is defined as the distance between the

next footstep and the DCM location at the time of the next

step. By ensuring that the DCM offset at each step remains

in a certain bound [8], it is possible to track the desired COM

velocity while remaining capturable.

C. Reinforcement Learning

In this paper, we use the Deep Q Network (DQN) algo-

rithm, a very successful deep reinforcement learning algo-

rithm for continuous state space and discrete actions MDPs

[16]. It uses a deep neural network (DNN) to approximate

the Q-function and one DNN called the target network which

closely follows the Q-function DNN [17] to stabilize the

training. The learned Q-function is then used to compute the

optimal action for a given state.

In our implementation, we smoothly update the target

network weights at each iteration θ− = τθ+(1−τ)θ− as in

[17], where τ ∈ (0, 1). Note that in this work, we minimize

a cost as opposed to maximizing a reward function.

III. APPROACH: THE DEEPQ STEPPER

In this section, we describe our approach to learn an

efficient footstep planner along with the trajectory planner

and controller used with the robot.

A. DeepQ Stepper

The main idea of the DeepQ Stepper is to learn a Q

function associated with each feasible stepping action for a

given robot state, where the Q value represents the capability

of the robot to either bring itself to rest or track the

desired velocity after taking that step. For a given state,

the set of possible steps with low Q values will provide an

approximation of the capture region. As we use a model-free

approach to learn the Q-function, it can directly be used to

approximate the capture region of the full robot dynamics.

1) Learning the value of a step: During training, we

will use either the (nonlinear) inverted pendulum dynamics

(IPM) or the full robot dynamics as the model of the robot.

We discretize the possible stepping locations in the x, y

direction, such that we can use the DQN approach. The step

height (z-direction) is also provided to the DQN (continuous

action) during uneven terrain walking and is determined by

the terrain at the given step location. At the beginning of

each step, the model is allowed to take an action, which

corresponds to selecting one of the possible step lengths.

The state of the agent at a given time step consists of

the distance of the CoM from the current foot location in

each direction, the velocity of the CoM in the x and y
directions, an index determining which foot is on the ground

(+1 or −1 if right or left foot is on the ground respectively)

and the desired velocity in the x and y directions. That is

x = [cx − ux, cy − uy, cz − uz, ċx, ċy, n, v
des
x , vdesy].

The goal is to step so as to track a desired walking velocity,

while trying to be as close as possible to the hip at the

beginning of the next step and choosing as small step lengths

as possible without falling down. The episode terminates

after n steps or if the robot falls down before the n steps.

The agent is considered to have fallen down if the kinematic

constraint (maximum allowed leg length) is violated. We use

the following cost function

c(x, a) = w1(|h
x − ux|+ |hy − uy|) + w2(|ċx − vdesx |

+|ċx − vdesx |) + w3(|ax|+ |ay|+ |az|) + I(x)

where w1, w2, w3 are weights, cx,y,z is the location of the

CoM at the start of the next step, hx,y,z is the hip location of

the leg whose foot is on the ground. ux,y,z = u0
x,y,z+ax,y,z is

the foot location at the start of the next step, u0
x,y,z is the foot

location at the start of the current step, vdesx,y,z is the desired

velocity, ax,y,z is the chosen action at the start of the step

and I(x) is an indicator function that returns a constant value

(here 100) if the kinematic constraint is violated otherwise

it returns zero.

The DeepQ stepper architecture is designed to accept the

state of the agent at the starting of each step along with

an action (step length in the 3 directions) and return the

corresponding Q-value. The optimal policy for the agent is

to choose the action with the lowest Q-value.

The DeepQ stepper is trained using the DQN algorithm

described in the previous section with w1 = 0.5, w2 = 3.0,

w3 = 1.5. To accelerate learning, we bias the exploration at

the beginning of learning. We use a LIPM-based stepper to

select actions 80 % of the time to first fill the replay buffer.

After the desired buffer size is reached, we use an ǫ−greedy

strategy with ǫ = 0.2. When sampling the mini-batch, we

take 20 % of the mini-batch to be the latest state-action pairs

and the rest is sampled uniformly from the replay buffer.

In our experiments, this significantly improved the rate of

convergence of the algorithm especially because the rewards

are sparse for the problem.

2) The DeepQ Stepper as a reactive foot-step planner:

During execution, the state of the agent is computed at

the beginning of each step and provided to the trained

DeepQ stepper. We compute the optimal step length (lowest

Q-value) only using admissible actions given the current

allowable stepping regions, which is possible due to the

discrete-action space formulation. Consequently, a constant

number of network evaluations are needed for the stepper

independent of the stepping region, which provides a sig-

nificant computational advantage. The agent then takes the

optimal action at the end of the step. This process is repeated

indefinitely to generate walking motions on different terrain.

B. Trajectory generation and control approach

We generate CoM trajectories using the nonlinear inverted

pendulum dynamics, Eqs. (2) and (3) given the choice of

the foot step locations. This approach is used during both

learning and evaluation. Initially, a trajectory optimization

problem is solved for the dynamics governing the z direction

independently, such that the height of the inverted pendulum

moves from its current height to the desired height by the end

of the trajectory (duration of one step) while also reaching

a zero velocity [18], [19]. The QP problem solved for the z
direction trajectory is

min .

T∑

i=0

wF 2
t

s.t. czt+1 = czt + δtċzt , ċzt+1 = ċzt + δt(Ft/m− g)

cz0 = h0, ċz0 = 0, czT = hT , ċzT = 0

where czt is the height at the time step t. h0, hT are initial and

final height of the inverted pendulum and T is the number

of collocation points in the trajectory optimization problem.

The z trajectory obtained from the motion planner is then

plugged into inverted pendulum Eq. (2) to integrate the x and

y dynamics of the system to obtain a dynamically feasible

CoM trajectory.

This method of trajectory planning is adopted to bypass

the nonlinearity in the dynamics and subsequently generate

feasible trajectories very efficiently. This makes it possible

to replan CoM trajectories while walking on uneven ground

in the presence of external forces on the robot in real-

time. Further, in the case where the height of the inverted

pendulum is kept a constant, the motion plans from the

solver coincide with the linear inverted pendulum, which will

facilitate our experimental comparisons later. Note that any

other trajectory generator [20] could also be used with the

DeepQ stepper since it’s a model-free approach.

Swing foot trajectories are generated for the robot at the

beginning of each step after obtaining the desired next step

location from the DeepQ stepper. The end-effector trajectory

starts from the current location of the foot and ends at

the next foot location. A 5th-degree polynomial is used to

parameterize the foot trajectory. The trajectories generated

by the CoM planner and the swing foot trajectory generator

are tracked using the whole-body controller proposed in [21].

IV. EXPERIMENTS

We now present extensive simulation results to investigate

the capabilities of the approach. In the first set of experi-

ments, we evaluate the DeepQ stepper to control the simplest

dynamic model, a 1D LIPM. This enables its analysis in light

of exact results for the capturability region [5]. Then, we

evaluate the approach to generate walking for a 3D nonlinear

inverted pendulum model. Finally, we demonstrate the ability

of the approach to learn footstep planning using the full

dynamics of a biped robot with point feet. In particular,

we show that the stepper is capable of learning a better

approximation of the capture region that more adequately

reflects the true capabilities of the robot. This leads to an

improvement in walking performance when compared to

typical LIPM-based approaches.

A. Experimental Setup

For the simulations, we use Bolt (Fig. 4), a newly designed

open source biped robot [22], as we eventually aim to

implement our approach on the real robot. Bolt is a torque-

controlled biped robot with 6 active DoFs [21], [22] capable

of very dynamic walking. It has passive ankles which we

model with point feet. Each leg is 0.4m long, its base is

0.13m wide and 0.078m high. It easily can step every 0.2

seconds [22]. All the modeling choices such as step time

or nominal CoM height described below are based on the

model of the real robot and its capabilities.

The DeepQ stepper is trained using the procedure dis-

cussed in section III-A. The DNN of the DeepQ stepper

contains 7 layers each containing 512 neurons followed by a

final layer with one neuron. All layers except the last one are

activated with a ReLU function. The stepper is trained with

a learning rate of 10−4, τ = 10−3, and a buffer size of 8000.

Each episode during training is terminated after 10 steps

or when the agent falls down. The DNN architecture and

training parameters are kept the same throughout all the ex-

periments. All the training instances converged consistently

for all the experiments we conducted.

For all the experiments, we used a Dell precision 5820

tower machine with a 3.7 GHz Intel Xeon processor. The

accompanying video1 illustrates the simulation results.

B. 1D LIPM

A 1D LIPM model is used to initially test the performance

of the DeepQ stepper. The model has its CoM at a constant

height of 0.35 m above the ground and is allowed to take

a step every 0.2 seconds. The state of the agent is x =

1https://www.youtube.com/watch?v=aITooZlm-WY

REFERENCES

[1] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The
3d linear inverted pendulum mode: A simple modeling for a biped
walking pattern generation,” in Proceedings 2001 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems. Expanding

the Societal Role of Robotics in the the Next Millennium (Cat. No.

01CH37180), vol. 1. IEEE, 2001, pp. 239–246.

[2] P.-B. Wieber, “Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations,” in 2006 6th IEEE-

RAS International Conference on Humanoid Robots. IEEE, 2006,
pp. 137–142.

[3] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in 2003 IEEE International Conference

on Robotics and Automation (Cat. No. 03CH37422), vol. 2. IEEE,
2003, pp. 1620–1626.

[4] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step
toward humanoid push recovery,” in 2006 6th IEEE-RAS international

conference on humanoid robots. IEEE, 2006, pp. 200–207.

[5] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt,
“Capturability-based analysis and control of legged locomotion, part 1:
Theory and application to three simple gait models,” The international

journal of robotics research, vol. 31, no. 9, pp. 1094–1113, 2012.

[6] T. Takenaka, T. Matsumoto, and T. Yoshiike, “Real time motion
generation and control for biped robot-1 st report: Walking gait pattern
generation,” in 2009 IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, 2009, pp. 1084–1091.

[7] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional
bipedal walking control using divergent component of motion,” in
2013 IEEE/RSJ International Conference on Intelligent Robots and

Systems. IEEE, 2013, pp. 2600–2607.

[8] M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti, “Walking
control based on step timing adaptation,” IEEE Transactions on

Robotics, 2020.

[9] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions

on Graphics (TOG), vol. 31, no. 4, pp. 1–8, 2012.

[10] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal

of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[11] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560–1567, 2018.

[12] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS international

conference on humanoid robots. IEEE, 2014, pp. 279–286.

[13] B. Ponton, M. Khadiv, A. Meduri, and L. Righetti, “Efficient multi-
contact pattern generation with sequential convex approximations of
the centroidal dynamics,” IEEE Transactions on Robotics, 2021.

[14] Y.-C. Lin, B. Ponton, L. Righetti, and D. Berenson, “Efficient hu-
manoid contact planning using learned centroidal dynamics predic-
tion,” in 2019 International Conference on Robotics and Automation

(ICRA). IEEE, 2019, pp. 5280–5286.

[15] P. Fernbach, S. Tonneau, O. Stasse, J. Carpentier, and M. Taı̈x, “C-
croc: Continuous and convex resolution of centroidal dynamic trajec-
tories for legged robots in multicontact scenarios,” IEEE Transactions

on Robotics, vol. 36, no. 3, pp. 676–691, 2020.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[17] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[18] H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko,
and E. Yoshida, “Model preview control in multi-contact motion-
application to a humanoid robot,” in 2014 IEEE/RSJ International

Conference on Intelligent Robots and Systems. IEEE, 2014, pp. 4030–
4035.

[19] R. Mirjalili, A. Yousefi-Korna, F. A. Shirazi, A. Nikkhah, F. Nazemi,
and M. Khadiv, “A whole-body model predictive control scheme
including external contact forces and com height variations,” in
2018 IEEE-RAS 18th International Conference on Humanoid Robots

(Humanoids). IEEE, 2018, pp. 1–6.

[20] B. Ponton, A. Herzog, A. Del Prete, S. Schaal, and L. Righetti, “On
time optimization of centroidal momentum dynamics,” in 2018 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 1–7.

[21] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols, et al.,
“An open torque-controlled modular robot architecture for legged
locomotion research,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 3650–3657, 2020.

[22] E. Daneshmand, M. Khadiv, F. Grimminger, and L. Righetti, “Variable
horizon mpc with swing foot dynamics for bipedal walking control,”
IEEE Robotics and Automation Letters, 2021.

