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Abstract— Whole-body optimizers have been successful at au-
tomatically computing complex dynamic locomotion behaviors.
However they are often limited to offline planning as they are
computationally too expensive to replan with a high frequency.
Simpler models are then typically used for online replanning.
In this paper we present a method to generate whole body
movements in real-time for locomotion tasks. Our approach
consists in learning a centroidal neural network that predicts
the desired centroidal motion given the current state of the
robot and a desired contact plan. The network is trained using
an existing whole body motion optimizer. Our approach enables
to learn with few training samples dynamic motions that can
be used in a complete whole-body control framework at high
frequency, which is usually not attainable with typical full-body
optimizers. We demonstrate our method to generate a rich set
of walking and jumping motions on a real quadruped robot.

I. INTRODUCTION

Recently quadrupeds like Spot or ANYmal have shown

a new level of autonomy by traversing rough terrain. For

control, these kind of robots often use a simplified dynamics

model of the robot using only the dynamics of the center of

mass [1]. In order to carry out more complex movements

with a legged robot, it becomes important to take the

full body dynamics into account. Recently, there has been

progress in providing faster full body optimizers [2], [3], [4].

However, these methods can still require seconds to optimize

a full-body movement over a sequence of contacts. This is

too long to run the computation online while the robot is

executing the motion. Reducing the optimization horizon can

help decrease optimization time but to date, full nonlinear

optimizer for legged robots are not run in fast control loops

at the order of a few milliseconds. Therefore, in many cases,

either the full-body motion is computed up front and only

replayed on the robot [4], [5], [6] or a simplified model of the

dynamics is used for online optimization [1], [7], [8]. This

makes it difficult to react to (fast) changes in the environment

that require full-body adaptation.

In this work, we present a new machine learning based

approach for computing whole body movements for legged

robots performing dynamic locomotion tasks. The method

is fast and allows running the computation of full-body

movements online at 100 Hz. Our approach uses the output of

an existing kino-dynamic optimizer to train a planner capable

of generating various motion patterns and generalize motions
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Fig. 1: The robot Solo12 used for the experiments [9].

outside of the training data, e.g. to adapt the motion to new

footstep sequences. Furthermore, the resulting computation

time is an order of magnitude faster than typical trajectory

optimization methods.

The use of machine learning to cache the results of loco-

motion plans has been investigated before. In [10] multiple

tasks are optimized and a global neural network policy is

trained from all the local optimal trajectories. In this work,

however, we are not learning a policy but preserve a struc-

tured output from the motion optimizer. [11] uses a neural

network to predict internal optimization variables to warm

start a classical optimization method. While the method

shows a speedup and improved initialization, it is not fast

enough for real time use. Offline computations of full-body

motions are also used to learn feasible contact transitions for

efficient dynamically-consistent contact planning [12].

The work closest to ours is the one presented in [13].

The approach also learns a network to predict the centroidal

motions of a robot and intertwine the prediction with inverse

kinematics. In contrast to our work, however, a full body

motion generator is not used to generate the training data.

Further, the input to the neural network is not relying

on motion patterns as we do in this contribution. Finally,

results, while impressive, are limited to simulations while

we demonstrate our approach directly on a real quadruped.

Methods based on reinforcement learning have also gained

popularity to compute full-body movements. They are

model-free methods that typically sample from a simulator to

learn policy. While these methods have shown applications

on real robots lately [14], [15], [16], their optimization is

black-box and tend to require a lot of samples compared to



the approach presented in this work.

The contributions of the paper are as follow: 1) we propose

a method for learning and predicting the output of a whole

body motion optimizer for a legged robot for dynamic tasks

with contacts, 2) we introduce a way to learn motion patterns

which allow to generalize the learned motions outside of

the trained area, 3) we demonstrate the capabilities of our

approach to generate motion plans at 100 Hz, one order of

magnitude faster than the original motion planner, and 4) we

demonstrate the applicability of our approach on walking and

jumping experiments with a quadruped robot.

II. BACKGROUND

In this section, we describe the elements necessary for our

approach, including the whole-body controller and inverse

kinematics used to generate full movements and the kino-

dynamic optimizer that will be replaced by our approach.

A. Kino-dynamics motion optimizer

We are interested in the kino-dynamic motion optimizer

proposed in [17] that decomposes the problem into a cen-

troidal dynamic optimization problem and a kinematic prob-

lem. Given a motion description (i.e. sequence of contacts

and cost function), the solver alternatively optimize the

dynamic and kinematic problems until they reach consensus.

While this method is very efficient [4] it still can take seconds

to find a complete plan.

1) Centroidal dynamic optimization: The centroidal opti-

mization problem, which our approach will aim to learn, is

formulated as
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where the problem finds center of mass xt, linear lt and

angular kt momentum, contact force Fe,t, center of pressure

ze,t and yaw torque τ e,t at each contact to minimize user

and consensus with the kinematics optimization costs φ
dyn
t .

m is the mass of the robot, pe,t the position of endeffector

e at time t, g is the gravity vector, ∆t the discretization

time, Re,t are rotation matrices describing the orientation of

the endeffectors (z being the axis orthogonal to the surface),

µ the friction coefficient, and
max

Le the maximum distance

between the CoM and an endeffector. Equation (2a) to Equa-

tion (2c) ensure consistency with the centroidal dynamics,

Equation (2d) are center of pressure bounds, Equation (2e)

are friction cone constraints and Equation (2f) ensures that

the contact surfaces remain reachable. In this paper, we use

the solver proposed in [4] to solve the problem.

B. Inverse kinematics

Given centroidal quantities and desired velocity of the

endeffectors, we use a standard differential inverse kinemat-

ics algorithm for computing the corresponding whole body

motion of the robot. We use three tasks: one tracking task on

the centroidal motion which additionally stabilizes the base

orientation, a task for each leg to track the desired endeffector

velocity (zero velocity in case the endeffector should stay

in contact with the ground) and a task to regularize the

default posture of the robot. We use the pseudo inverse

of the problem to compute joint and base velocities. The

computation along the trajectory is then as follows: We get

a desired centroidal quantities for the current time step, we

compute the inverse kinematics for the current time step,

we integrate the velocity forward to obtain the new robot

posture. Then the procedure repeats until the end of the

trajectory.

C. Whole body controller

We use the whole body controller introduced in [9]. The

controller computes the desired wrench WCoM
1 at the center

of mass using a reference wrench Wref
CoM and a PD controller

of the form

WCoM = Wref
CoM +

[

Kc(x
ref − x) + Dc(l

ref − l)
Kb(q

ref
b ⊟ qb) + Db(k

ref − k)

]
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where Kc,Dc,Kb and Db are gains, xref and lref, kref are

the reference CoM position, linear and angular momentum,

qref
b is a quaternion for the desired base orientation. x and l,

k and qb are the corresponding measured quantities. The ⊟

operator computes the difference between two quaternions

as an angular velocity using the logarithmic map of SO(3).

To achieve the desired centroidal wrench, forces at the

endeffectors in contact with the ground are allocated as

min
Fi,η,ζ1,ζ2

∑

i

F2
i + α(η + ζ1 + ζ2) (4)

s.t. WCoM =
∑
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(
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)
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Fi,x < µFi,z + ζ1,Fi,y < µFi,z + ζ2, 0 ≤ Fi,z ∀i ∈ C,

where C contains the indices of endeffectors currently in

contact with the ground, Fi is the desired force at the ith

endeffector, pi is the position of the ith endeffector with

respect to the CoM, α is a large weight and η, ζ1, ζ2 are

slack variables.

The torques for each leg τi are computed using an

impedance controller

τi = JTi

(

Fi + K(Iref
i − Ii) + D(İ

ref

i − İi)
)

, (5)

1Note that the centroidal wrench is given by the centroidal force F and

centroidal momentum M as WCoM =

[

F

M

]

.



where Iref
i and Ii are the desired and measured endeffector

positions.

III. LEARNING A CENTROIDAL MOTION PLANNER

In this section, we describe the propose approach to

compute whole-body motions. Figure 2 shows an overview

of the approach. Given a motion description (cost function,

desired contact sequence and timing, etc), a motion planner

computes the resulting whole-body motion plan. The plan

contains full-body kinematic as well as dynamic trajectories,

i.e. base position, joint positions, linear and angular momen-

tum, contact forces, which is then tracked by a whole-body

controller. A typical trajectory optimization approach would

compute the whole body motion plan using an optimizer [4].

However, such optimizers are computationally expensive and

cannot compute solutions at high frequencies (e.g. 100 Hz).

In this paper, we propose to learn the motion optimizer

instead to generate a typical gait, e.g. walking, jumping,

etc, such that the computation can be done in real time.

One straightforward manner to accomplish this would be to

use motion plans computed by kino-dynamic optimizers to

directly learn the entire whole-body motion plan at once.

However, in practice such approach does not work very well

as long-term predictions can be unstable and thereby make it

impossible to predict a whole body motion plan over multiple

time steps and contacts.

In contrast, we follow the (exact) kino-dynamic decom-

position proposed in [17], [4]. To compute the kinematic

quantities of the whole body plan an inverse kinematics prob-

lem is solved tracking the previously computed centroidal

quantities (center of mass, linear and angular momentum).

Instead of computing the centroidal quantities, we predict

these quantities using a previously trained neural network.

We call this neural network the centroidal neural network,

see Figure 2. In this setting, the neural network has to predict

the centroidal quantities for only a single time step into the

future, instead of a full trajectory. In addition, the kinematic

quantities like joint positions of the robot can be used as

input to the network for prediction.

Using the centroidal network together with the inverse

kinematics has also the benefit of using the ground truth

dynamics model of the robot during the prediction. This

helps to avoid diverging or unrealistic predictions.

A. Motion patterns

The motions we learn are often repetitive. For instance

walking in a straight line is made up of the same motions

at different offsets. Though these motions look similar, they

would require to make different predictions for the centroidal

network as the center of mass is moving over time. To avoid

this, the centroidal network predictions are done in a local

frame. For this, we divide the motion description into motion

patterns. Each pattern specifies a local frame. In this local

frame, the repeating motions look the same to the centroidal

neural network and therefore it can predict the same output

again.
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COM via points

Contact time and locations

Cost function

…

Whole body motion plan 

Generalized joint positions and velocities

Ende ector motions

Centroidal forces

Centroidal

Dynamics

Optimizer
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Inverse
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Body

Controller
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Fig. 2: Pipeline overview: A motion description gets mapped

to a whole body motion plan. In typical approaches (left

side) this happens using a whole body motion optimizer,

e.g. the kino-dynamic optimizer proposed in [17], which

cannot be done in real time at 100 Hz. Our approach

(right side): a centroidal neural network predicts the next

desired centroidal quantities which are mapped to whole-

body motions through inverse kinematics. The centroidal

neural network gets feedback from robot state (positions and

velocities). This method easily runs at 100 Hz. The output of

both methods is then sent to a whole-body torque controller

(lower part).

B. Centroidal neural network training and design

We use the motion optimizer in [4] to compute training

data for the neural network. First, we optimize a motion

description using the optimizer. Then, we record the inputs

and the computed centroidal motions at every time step.

Training the centroidal neural network is then a regression

from the centroidal neural network’s inputs to the computed

centroidal motions. We use the generalized positions and

velocities of the robot from the last ten time steps as an

input to the network. Here the base orientation is expressed in

roll-pitch-yaw angles. We found it beneficial to add Gaussian

noise on the generalized position and velocity training data.

This helps to make the network prediction more robust to

small divergences during the prediction process. Note that

our centroidal neural network is not using all the information

from the motion description. For instance the information

about CoM via points is not used. The network still learns

how to predict the motion patterns properly even when using

less information.

In addition to the generalized positions and velocities, we



also use contact information from the last 50 until 50 future

time steps as input. We found it necessary to have a very

large range of contact information provided to the neural

network for predicting long ranging effects like swinging

the body back after landing. The contact information comes

from the motion description (e.g. they can be computed with

a contact planner [18]). At every time step each endeffector

is either in contact with the ground at a specified position or

moving to the next desired contact location. If the endeffector

is planned to be in contact with the ground we put a

contact duration of zero. Otherwise we encode the time till

making the next contact. The contact information for each

endeffector at each time step is then the contact location and

contact duration. All quantities are expressed in the local

frame of the current motion pattern.

In our evaluations, we noticed that the last motion pattern

before the robot stops behaved sometimes differently. This

is due to the motion optimizer trying to minimize the linear

and angular momentum towards the end. In this case, the

centroidal network has to change its prediction when the

robot needs to stop. To indicate if a motion pattern is the

last one to the centroidal network, a binary flag is added to

the input. The binary flag is set to ten if the current motion

pattern is the last one and otherwise the value is set to zero.

While in principle the centroidal force and centroidal

momentum can be computed by taking the derivative of the

linear and angular momentum, we found these differentiated

quantities to be too noisy to use on the real robot. Therefore,

we also added these quantities as outputs of the centroidal

neural network. Similarly, the CoM position can be computed

by integrating the linear momentum. We found the resulting

CoM trajectory to drift away from the desired one. Therefore,

we are predicting the CoM position from the centroidal neu-

ral network and fuse it with the linear momentum prediction

in the inverse kinematics step.

The centroidal neural network is modeled as a feedforward

neural network. The first hidden layer is made up of 32

neurons and uses a soft sign activation function. Afterwards

there are two more hidden and one output layer using soft

sign for the first layer and ReLU activation functions for the

second layer. Each layer comes with 128 hidden neurons.

During experiments we found it crucial for the prediction

performance to have the initial bottleneck with 32 neurons

and a saturating output function like soft sign. The output

is of size 15: nine outputs represent the three dimensions

(x, y, z) each for the center of mass, linear and angular

momentum; six outputs represent the centroidal wrench. The

network regression is optimized using Adam optimizer using

a learning rate of 1e-4 and weight decay of 1e-4. The batch

size is 256 samples and we train for 64 epochs (less than

one minute on a GPU). The regression is done using a L1

loss between the center of mass, linear, angular momentum

and centroidal wrench separately.

IV. EXPERIMENTS

All experiments are performed on a real Solo12 quadruped

robot (Figure 1), an open-source [19], [9] torque-controller

robot with 12 actuated degrees of freedom (shoulder, hip and

knee joints for each leg). In our experiments the absolute base

position and orientation of the robot were measured using a

motion capture system. These and the experiments in [20]

are the first demonstrations of the capabilities of Solo12.

To assess the quality of the generated motions on the robot,

we compare the centroidal network predictions compared to

the computed motions with the kino-dynamics optimizer.

In particular, we look at the tracking performance using

the whole-body controller to assess the dynamic feasibility

of the generated motions. We compute the tracking error

between the planned trajectory and the tracked trajectory

when executing the original plan and the plan generated by

the centroidal network. The tracking error is computed as

the distance error for the center of mass (COM) and the

base orientation. We report the mean tracking error as well

as the maximum tracking error.

In the following we demonstrate our method on three

example motions: first a set of static walks that we compare

with the kino-dynamic optimizer, then a longer sequence

of static walks that were not part of the training data, and

finally a set of jumping motions. We answer the following

questions with our experiments: 1) Is our method able to

make predictions in real time, 2) is our method able to learn

motion patterns that can be executed on a robot and 3) is our

method able to generate movements with variables desired

contact sequences?

A. Static walk motion

We create a motion generator that allows us to step in

any direction. The motion generator performs always the

same sequence of leg motions: front left, hinge right, front

right, hinge left. For training our centroidal neural network,

we generate motions with three consecutive static walks

using our motion generator. This results in a walk of 2.9

seconds duration. Each of the walks is in a randomly sampled

direction. We assign a different motion pattern to each of

these static walks. We generate 60 motion descriptions and

use them to train the centroidal neural network described

in Section III-B.

To test the quality of the learned centroidal neural net-

work, we generate eight test static walks samples with ten

consecutive static walks each with a total duration of 14.1

seconds. As with the 60 training samples the directions of

the static walks are sampled randomly.

The tracking results for the static walks are shown in Fig-

ure 4a. From the plots we see that the tracking of the center of

mass as well as the base orientation is very similar between

the original plan and the network generated plan. Overall,

the robot is able to track all motions generated by the neural

network without falling.

B. Marathon motion

This motion tests the ability of the method to generate long

lasting motions. We randomly generate a stepping sequence

made up of 50 steps and test the ability of our approach

to generate motions for long step sequences. The results of
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