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Abstract— Whole-body optimizers have been successful at au-
tomatically computing complex dynamic locomotion behaviors.
However they are often limited to offline planning as they are
computationally too expensive to replan with a high frequency.
Simpler models are then typically used for online replanning.
In this paper we present a method to generate whole body
movements in real-time for locomotion tasks. Qur approach
consists in learning a centroidal neural network that predicts
the desired centroidal motion given the current state of the
robot and a desired contact plan. The network is trained using
an existing whole body motion optimizer. Our approach enables
to learn with few training samples dynamic motions that can
be used in a complete whole-body control framework at high
frequency, which is usually not attainable with typical full-body
optimizers. We demonstrate our method to generate a rich set
of walking and jumping motions on a real quadruped robot.

I. INTRODUCTION

Recently quadrupeds like Spot or ANYmal have shown
a new level of autonomy by traversing rough terrain. For
control, these kind of robots often use a simplified dynamics
model of the robot using only the dynamics of the center of
mass [1]. In order to carry out more complex movements
with a legged robot, it becomes important to take the
full body dynamics into account. Recently, there has been
progress in providing faster full body optimizers [2], [3], [4].
However, these methods can still require seconds to optimize
a full-body movement over a sequence of contacts. This is
too long to run the computation online while the robot is
executing the motion. Reducing the optimization horizon can
help decrease optimization time but to date, full nonlinear
optimizer for legged robots are not run in fast control loops
at the order of a few milliseconds. Therefore, in many cases,
either the full-body motion is computed up front and only
replayed on the robot [4], [5], [6] or a simplified model of the
dynamics is used for online optimization [1], [7], [8]. This
makes it difficult to react to (fast) changes in the environment
that require full-body adaptation.

In this work, we present a new machine learning based
approach for computing whole body movements for legged
robots performing dynamic locomotion tasks. The method
is fast and allows running the computation of full-body
movements online at 100 Hz. Our approach uses the output of
an existing kino-dynamic optimizer to train a planner capable
of generating various motion patterns and generalize motions
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Fig. 1: The robot Solo12 used for the experiments [9].

outside of the training data, e.g. to adapt the motion to new
footstep sequences. Furthermore, the resulting computation
time is an order of magnitude faster than typical trajectory
optimization methods.

The use of machine learning to cache the results of loco-
motion plans has been investigated before. In [10] multiple
tasks are optimized and a global neural network policy is
trained from all the local optimal trajectories. In this work,
however, we are not learning a policy but preserve a struc-
tured output from the motion optimizer. [11] uses a neural
network to predict internal optimization variables to warm
start a classical optimization method. While the method
shows a speedup and improved initialization, it is not fast
enough for real time use. Offline computations of full-body
motions are also used to learn feasible contact transitions for
efficient dynamically-consistent contact planning [12].

The work closest to ours is the one presented in [13].
The approach also learns a network to predict the centroidal
motions of a robot and intertwine the prediction with inverse
kinematics. In contrast to our work, however, a full body
motion generator is not used to generate the training data.
Further, the input to the neural network is not relying
on motion patterns as we do in this contribution. Finally,
results, while impressive, are limited to simulations while
we demonstrate our approach directly on a real quadruped.

Methods based on reinforcement learning have also gained
popularity to compute full-body movements. They are
model-free methods that typically sample from a simulator to
learn policy. While these methods have shown applications
on real robots lately [14], [15], [16], their optimization is
black-box and tend to require a lot of samples compared to



the approach presented in this work.

The contributions of the paper are as follow: 1) we propose
a method for learning and predicting the output of a whole
body motion optimizer for a legged robot for dynamic tasks
with contacts, 2) we introduce a way to learn motion patterns
which allow to generalize the learned motions outside of
the trained area, 3) we demonstrate the capabilities of our
approach to generate motion plans at 100 Hz, one order of
magnitude faster than the original motion planner, and 4) we
demonstrate the applicability of our approach on walking and
jumping experiments with a quadruped robot.

II. BACKGROUND

In this section, we describe the elements necessary for our
approach, including the whole-body controller and inverse
kinematics used to generate full movements and the kino-
dynamic optimizer that will be replaced by our approach.

A. Kino-dynamics motion optimizer

We are interested in the kino-dynamic motion optimizer
proposed in [17] that decomposes the problem into a cen-
troidal dynamic optimization problem and a kinematic prob-
lem. Given a motion description (i.e. sequence of contacts
and cost function), the solver alternatively optimize the
dynamic and kinematic problems until they reach consensus.
While this method is very efficient [4] it still can take seconds
to find a complete plan.

1) Centroidal dynamic optimization: The centroidal opti-
mization problem, which our approach will aim to learn, is
formulated as
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where the problem finds center of mass X, linear 1, and
angular k, momentum, contact force F , center of pressure
3e and yaw torque 7, at each contact to minimize user
and consensus with the kinematics optimization costs ¢™>™.
m is the mass of the robot, p, . the position of endeffector
e at time t, g is the gravity vector, A, the discretization
time, R, , are rotation matrices descrlblng the orientation of
the endeffectors (z being the axis orthogonal to the surface),
 the friction coefficient, and ™** L the maximum distance
between the CoM and an endeffector. Equation (2a) to Equa-
tion (2c) ensure consistency with the centroidal dynamics,

Equation (2d) are center of pressure bounds, Equation (2e)
are friction cone constraints and Equation (2f) ensures that
the contact surfaces remain reachable. In this paper, we use
the solver proposed in [4] to solve the problem.

B. Inverse kinematics

Given centroidal quantities and desired velocity of the
endeffectors, we use a standard differential inverse kinemat-
ics algorithm for computing the corresponding whole body
motion of the robot. We use three tasks: one tracking task on
the centroidal motion which additionally stabilizes the base
orientation, a task for each leg to track the desired endeffector
velocity (zero velocity in case the endeffector should stay
in contact with the ground) and a task to regularize the
default posture of the robot. We use the pseudo inverse
of the problem to compute joint and base velocities. The
computation along the trajectory is then as follows: We get
a desired centroidal quantities for the current time step, we
compute the inverse kinematics for the current time step,
we integrate the velocity forward to obtain the new robot
posture. Then the procedure repeats until the end of the
trajectory.

C. Whole body controller

We use the whole body controller introduced in [9]. The
controller computes the desired wrench Weom! at the center
of mass using a reference wrench Wi\, and a PD controller
of the form
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where K., D, K} and Dy are gains, x™ and 1", k™ are
the reference CoM position, linear and angular momentum,
q{ff is a quaternion for the desired base orientation. x and 1,
k and q, are the corresponding measured quantities. The 5
operator computes the difference between two quaternions
as an angular velocity using the logarithmic map of SO(3).

To achieve the desired centroidal wrench, forces at the

endeffectors in contact with the ground are allocated as
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where C' contains the indices of endeffectors currently in
contact with the ground, F; is the desired force at the th
endeffector, p; is the position of the ith endeffector with
respect to the CoM, « is a large weight and 7, (1, (2 are
slack variables.

The torques for each leg 7; are computed using an
impedance controller
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'Note that the centroidal wrench is given by the centroidal force F and
centroidal momentum M as W¢om = f



where I'*f and I; are the desired and measured endeffector
positions.

III. LEARNING A CENTROIDAL MOTION PLANNER

In this section, we describe the propose approach to
compute whole-body motions. Figure 2 shows an overview
of the approach. Given a motion description (cost function,
desired contact sequence and timing, etc), a motion planner
computes the resulting whole-body motion plan. The plan
contains full-body kinematic as well as dynamic trajectories,
i.e. base position, joint positions, linear and angular momen-
tum, contact forces, which is then tracked by a whole-body
controller. A typical trajectory optimization approach would
compute the whole body motion plan using an optimizer [4].
However, such optimizers are computationally expensive and
cannot compute solutions at high frequencies (e.g. 100 Hz).

In this paper, we propose to learn the motion optimizer
instead to generate a typical gait, e.g. walking, jumping,
etc, such that the computation can be done in real time.
One straightforward manner to accomplish this would be to
use motion plans computed by kino-dynamic optimizers to
directly learn the entire whole-body motion plan at once.
However, in practice such approach does not work very well
as long-term predictions can be unstable and thereby make it
impossible to predict a whole body motion plan over multiple
time steps and contacts.

In contrast, we follow the (exact) kino-dynamic decom-
position proposed in [17], [4]. To compute the kinematic
quantities of the whole body plan an inverse kinematics prob-
lem is solved tracking the previously computed centroidal
quantities (center of mass, linear and angular momentum).
Instead of computing the centroidal quantities, we predict
these quantities using a previously trained neural network.
We call this neural network the centroidal neural network,
see Figure 2. In this setting, the neural network has to predict
the centroidal quantities for only a single time step into the
future, instead of a full trajectory. In addition, the kinematic
quantities like joint positions of the robot can be used as
input to the network for prediction.

Using the centroidal network together with the inverse
kinematics has also the benefit of using the ground truth
dynamics model of the robot during the prediction. This
helps to avoid diverging or unrealistic predictions.

A. Motion patterns

The motions we learn are often repetitive. For instance
walking in a straight line is made up of the same motions
at different offsets. Though these motions look similar, they
would require to make different predictions for the centroidal
network as the center of mass is moving over time. To avoid
this, the centroidal network predictions are done in a local
frame. For this, we divide the motion description into motion
patterns. Each pattern specifies a local frame. In this local
frame, the repeating motions look the same to the centroidal
neural network and therefore it can predict the same output
again.

Typical approach Our approach
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Fig. 2: Pipeline overview: A motion description gets mapped
to a whole body motion plan. In typical approaches (left
side) this happens using a whole body motion optimizer,
e.g. the kino-dynamic optimizer proposed in [17], which
cannot be done in real time at 100 Hz. Our approach
(right side): a centroidal neural network predicts the next
desired centroidal quantities which are mapped to whole-
body motions through inverse kinematics. The centroidal
neural network gets feedback from robot state (positions and
velocities). This method easily runs at 100 Hz. The output of
both methods is then sent to a whole-body torque controller
(lower part).

B. Centroidal neural network training and design

We use the motion optimizer in [4] to compute training
data for the neural network. First, we optimize a motion
description using the optimizer. Then, we record the inputs
and the computed centroidal motions at every time step.
Training the centroidal neural network is then a regression
from the centroidal neural network’s inputs to the computed
centroidal motions. We use the generalized positions and
velocities of the robot from the last ten time steps as an
input to the network. Here the base orientation is expressed in
roll-pitch-yaw angles. We found it beneficial to add Gaussian
noise on the generalized position and velocity training data.
This helps to make the network prediction more robust to
small divergences during the prediction process. Note that
our centroidal neural network is not using all the information
from the motion description. For instance the information
about CoM via points is not used. The network still learns
how to predict the motion patterns properly even when using
less information.

In addition to the generalized positions and velocities, we



also use contact information from the last 50 until 50 future
time steps as input. We found it necessary to have a very
large range of contact information provided to the neural
network for predicting long ranging effects like swinging
the body back after landing. The contact information comes
from the motion description (e.g. they can be computed with
a contact planner [18]). At every time step each endeffector
is either in contact with the ground at a specified position or
moving to the next desired contact location. If the endeffector
is planned to be in contact with the ground we put a
contact duration of zero. Otherwise we encode the time till
making the next contact. The contact information for each
endeffector at each time step is then the contact location and
contact duration. All quantities are expressed in the local
frame of the current motion pattern.

In our evaluations, we noticed that the last motion pattern
before the robot stops behaved sometimes differently. This
is due to the motion optimizer trying to minimize the linear
and angular momentum towards the end. In this case, the
centroidal network has to change its prediction when the
robot needs to stop. To indicate if a motion pattern is the
last one to the centroidal network, a binary flag is added to
the input. The binary flag is set to ten if the current motion
pattern is the last one and otherwise the value is set to zero.

While in principle the centroidal force and centroidal
momentum can be computed by taking the derivative of the
linear and angular momentum, we found these differentiated
quantities to be too noisy to use on the real robot. Therefore,
we also added these quantities as outputs of the centroidal
neural network. Similarly, the CoM position can be computed
by integrating the linear momentum. We found the resulting
CoM trajectory to drift away from the desired one. Therefore,
we are predicting the CoM position from the centroidal neu-
ral network and fuse it with the linear momentum prediction
in the inverse kinematics step.

The centroidal neural network is modeled as a feedforward
neural network. The first hidden layer is made up of 32
neurons and uses a soft sign activation function. Afterwards
there are two more hidden and one output layer using soft
sign for the first layer and ReL.U activation functions for the
second layer. Each layer comes with 128 hidden neurons.
During experiments we found it crucial for the prediction
performance to have the initial bottleneck with 32 neurons
and a saturating output function like soft sign. The output
is of size 15: nine outputs represent the three dimensions
(x, y, z) each for the center of mass, linear and angular
momentum; six outputs represent the centroidal wrench. The
network regression is optimized using Adam optimizer using
a learning rate of le-4 and weight decay of le-4. The batch
size is 256 samples and we train for 64 epochs (less than
one minute on a GPU). The regression is done using a L1
loss between the center of mass, linear, angular momentum
and centroidal wrench separately.

IV. EXPERIMENTS

All experiments are performed on a real Solo12 quadruped
robot (Figure 1), an open-source [19], [9] torque-controller

robot with 12 actuated degrees of freedom (shoulder, hip and
knee joints for each leg). In our experiments the absolute base
position and orientation of the robot were measured using a
motion capture system. These and the experiments in [20]
are the first demonstrations of the capabilities of Solo12.

To assess the quality of the generated motions on the robot,
we compare the centroidal network predictions compared to
the computed motions with the kino-dynamics optimizer.
In particular, we look at the tracking performance using
the whole-body controller to assess the dynamic feasibility
of the generated motions. We compute the tracking error
between the planned trajectory and the tracked trajectory
when executing the original plan and the plan generated by
the centroidal network. The tracking error is computed as
the distance error for the center of mass (COM) and the
base orientation. We report the mean tracking error as well
as the maximum tracking error.

In the following we demonstrate our method on three
example motions: first a set of static walks that we compare
with the kino-dynamic optimizer, then a longer sequence
of static walks that were not part of the training data, and
finally a set of jumping motions. We answer the following
questions with our experiments: 1) Is our method able to
make predictions in real time, 2) is our method able to learn
motion patterns that can be executed on a robot and 3) is our
method able to generate movements with variables desired
contact sequences?

A. Static walk motion

We create a motion generator that allows us to step in
any direction. The motion generator performs always the
same sequence of leg motions: front left, hinge right, front
right, hinge left. For training our centroidal neural network,
we generate motions with three consecutive static walks
using our motion generator. This results in a walk of 2.9
seconds duration. Each of the walks is in a randomly sampled
direction. We assign a different motion pattern to each of
these static walks. We generate 60 motion descriptions and
use them to train the centroidal neural network described
in Section III-B.

To test the quality of the learned centroidal neural net-
work, we generate eight test static walks samples with ten
consecutive static walks each with a total duration of 14.1
seconds. As with the 60 training samples the directions of
the static walks are sampled randomly.

The tracking results for the static walks are shown in Fig-
ure 4a. From the plots we see that the tracking of the center of
mass as well as the base orientation is very similar between
the original plan and the network generated plan. Overall,
the robot is able to track all motions generated by the neural
network without falling.

B. Marathon motion

This motion tests the ability of the method to generate long
lasting motions. We randomly generate a stepping sequence
made up of 50 steps and test the ability of our approach
to generate motions for long step sequences. The results of



Fig. 3: Screenshots from a sideways jumping motion. The images are 0.1 s apart.
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Fig. 4: (Left) Results from tracking eight random static walks over ten steps on the robot. (Right) Results from tracking
eight motions with eight random jumps each on the robot. In blue we show results with the original plan optimized with the
kino-dynamic optimizer [4] (labeled ”Original”) and in green with the plan generated using the centroidal neural network
(labeled ”"Network™). Top plot shows the tracking error for the CoM; lower plot shows the tracking error for the base angular
orientation. Solid line is the mean tracking error while dash line shows the maximum tracking error. The centroidal network
is capable of producing motions of similar quality as the original planner.

the marathon task are shown in the video provided with this
submission. As one can see, the robot is able to execute
the 50 static walk steps without any problem, although the
sequence of steps and associated motion plans were not part
of the training data.

C. Jumping motion

Beside walking, we are interested in more dynamic mo-
tions, such as jumping. We create a motion generator that
generate jumps in random directions. Similar as before for
the walking motions, we generate 60 motion descriptions
consisting of three different jumps as training data. Each
jump is assigned a different motion pattern. For testing
the learned centroidal network, we generate eight jumping
motions with 10 jumps each. Each jump goes into a ran-
domly selected direction, to demonstrate the ability of the
approach to generate movements from previously unseen step
sequences.

The results for the jumping task are shown in Figure 4b;
screenshots of one jump are shown in Figure 3. As one can
see, the COM tracking is very similar when tracking the

original plan and when tracking the plan generated by the
neural network. For the tracking of the base orientation, the
mean tracking error is again similar between the two tracking
methods. However, the maximum tracking error when using
the neural network plan is up to nearly twice as large as the
original plan in three out of the eight cases. Again, the robot
managed to track all plans generated using the centroidal
neural network without falling.

For one of the jumping task, detailed plots of the centroidal
neural network prediction are shown in Figure 5. We notice
that it can generate predictions very close to what the original
planner would compute (i.e. close to the optimal motions).
The result after running the inverse kinematics for the same
section is shown in Figure 6. We notice that the network
generates kinematically feasible motions. Further, the inverse
kinematic part plays an important role as it filters the motion
before sending it to the whole-body controller.

D. Timing

Timing information about the motions and how long it
takes to optimize them using the original method and the



a) Centroidal neural network prediction
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Fig. 5: Comparing the centroidal neural network predictions
to the original plan predictions for two seconds along one
of the test jump sample trajectories. The output from the
centroidal neural network is plotted as solid lines, the original
plan as dashed lines.

centroidal neural network is shown in Table 1. Here we show
the time it takes for the network to generate a complete
plan when integrating forward for the whole duration of
the motion. As one can see, the neural network method is
significant faster: For the walking motion it is 22.1 times
faster than the original method and up to 41.3 times faster
on the jumping motion. Note in addition, that the prediction
time is always lower than the plan duration for the network
method. This makes it possible to predict the plan in real
time.

E. Discussion

During the motions the robot moves outside of the area
it was trained on. This shows that using the motion patterns
the robot is able to extrapolate motions to new areas for
the same repetitive motions. In addition, as seen in Table I
our method is able to make predictions in real time as the
compute time is lower than the plan duration for all the
motions. Last but not least, the proposed method was able
to generate plans for static walks as well as for jumping
motions. This demonstrates its ability to generate motions
for dynamic tasks involving multiple switching contacts.

b) Inverse kinematics result
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Fig. 6: Comparing result of running inverse kinematics based
on the centroidal neural network input from Figure 5 and
the original plan for two seconds along one of the test
jump sample trajectories. The output from centroidal neural
network inverse kinematics is plotted as solid lines, the
original plan as dashed lines.

Task Motion duration Mett.m.d computation fime Speedup
Original Network
Walk 14.1s 354s 1.6s 22.1x
Marathon 70.1 s 236.6 s 83s 28.5%
Jump 11.0 s 99.1s 24 41.3x

TABLE I: Timing information for the different motions. The
table shows how long each motion is and how long it takes
to compute the plan for the motion using the original kino-
dynamics optimizer [4] and the proposed neural network
method. The speedup is how much faster the centroidal
neural network method is over the original method.

V. CONCLUSION AND FUTURE WORK

In this paper, we considered the problem of speeding up
a whole body motion planner to real time. We do this by
learning a centroidal neural network. We use the centroidal
neural network together with an inverse kinematics solver to
solve for a whole body plan, which is then tracked using
a whole body controller. In our experiments we can show
that we achieve this goal and predict faster than real time.
The presented method has been validated for three tasks that
are about static walking in different directions as well as
jumping in different directions. This demonstrates that the
method works for contact rich, dynamic tasks. The use of
motion patterns allows us to generalize to new areas outside
of the training data. While the current motions have only
been evaluated on flat ground thus far, we are planning in
future work to extend the motions to more complex non-
planar scenarios and to study extensions of the approach to
more complex robots such as a humanoid.
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