

expert demonstrations for RL tasks. After training the meta-

loss function, the task-specific losses are no longer required

since the training of optimizees can be performed entirely by

using the meta-loss function alone, without requiring the extra

information given at meta-train time. In this way, our meta-loss

can find more efficient ways to optimize the original task loss.

We apply our meta-learning approach to a diverse set

of problems demonstrating our framework’s flexibility and

generality. The problems include regression problems, image

classification, behavior cloning, model-based and model-free

reinforcement learning. Our experiments include empirical

evaluation for each of the aforementioned problems.

II. RELATED WORK

Meta-learning originates from the concept of learning to

learn [25, 3, 30]. Recently, there has been a wide interest in

finding ways to improve learning speeds and generalization

to new tasks through meta-learning. Let us consider gradient

based learning approaches, that update the parameters of an

optimizee fθ(x), with model parameters θ and inputs x as

follows:

θnew = hψ(θ,∇θLφ(y, fθ(x)); (1)

where we take the gradient of a loss function L, parametrized

by φ, with respect to the optimizee’s parameters θ and use

a gradient transform h, parametrized by ψ, to compute new

model parameters θnew
1. In this context, we can divide related

work on meta-learning into learning model parameters θ that

can be easily adapted to new tasks [7, 18, 10, 35], learning

optimizer policies h that transform parameters updates with

respect to known loss or reward functions [16, 2, 14, 8, 17, 5],

or learning loss/reward function representations φ [27, 11, 36].

Alternatively, in unsupervised learning settings, meta-learning

has been used to learn unsupervised rules that can be transferred

between tasks [19, 12].

Our framework falls into the category of learning loss

landscapes. Similar to works by Sung et al. [27] and Houthooft

et al. [11], we aim at learning loss function parameters φ that

can be applied to various optimizee models, e.g. regressors,

classifiers or agent policies. Our learned loss functions are

independent of the model parameters θ that are to be optimized,

thus they can be easily transferred to other optimizee models.

This is in contrast to methods that meta-learn model-parameters

θ directly [e.g. 7, 18], which are orthogonal and complementary

to ours, where the learned representation θ cannot be separated

from the original model of the optimizee. The idea of learning

loss landscapes or reward functions in the reinforcement

learning (RL) setting can be traced back to the field of inverse

reinforcement learning [21, 1, IRL]. However, in contrast to

IRL we do not require expert demonstrations (however we can

incorporate them). Instead we use task losses as a measure of

the effectiveness of our loss function when using it to update

an optimizee.

1For simple gradient descent:
h(θ,∇θL(y, fθ(x)) = θ − ψ∇θL(y, fθ(x))

Closest to our method are the works on evolved policy

gradients [11], teacher networks [32], meta-critics [27] and

meta-gradient RL [33]. In contrast to using an evolutionary

approach [e.g. 11], we design a differentiable framework and

describe a way to optimize the loss function with gradient

descent in both supervised and reinforcement learning settings.

Wu et al. [32] propose that instead of learning a differentiable

loss function directly, a teacher network is trained to predict

parameters of a manually designed loss function, whereas each

new loss function class requires a new teacher network design

and training. In Xu et al. [33], discount and bootstrapping

parameters are learned online to optimize a task-specific meta-

objective. Our method does not require manual design of the

loss function parameterization or choosing particular parameters

that have to be optimized, as our loss functions are learned

entirely from data. Finally, in work by Sung et al. [27] a meta-

critic is learned to provide a task-conditional value function,

used to train an actor policy. Although training a meta-critic in

the supervised setting reduces to learning a loss function as in

our work, in the reinforcement learning setting we show that

it is possible to use learned loss functions to optimize policies

directly with gradient descent.

III. META-LEARNING VIA LEARNED LOSS

In this work, we aim to learn a loss function, which we call

meta-loss, that is subsequently used to train an optimizee, e.g.

a classifier, a regressor or a control policy. More concretely,

we aim to learn a meta-loss function Mφ with parameters φ,

that outputs the loss value Llearned which is used to train an

optimizee fθ with parameters θ via gradient descent:

θnew = θ − α∇θLlearned, (2)

where Llearned =Mφ(y, fθ(x)) (3)

where y can be ground truth target information in supervised

learning settings or goal and state information for reinforcement

learning settings. In short, we aim to learn a loss function that

can be used as depicted in Algorithm 2. Towards this goal, we

propose an algorithm to learn meta-loss function parameters φ

via gradient descent.

The key challenge is to derive a training signal for learning

the loss parameters φ. In the following, we describe our

approach to addressing this challenge, which we call Meta-

Learning via Learned Loss (ML3).

A. ML3 for Supervised Learning

We start with supervised learning settings, in which our

framework aims at learning a meta-loss functionMφ(y, fθ(x))
that produces the loss value given the ground truth target y and

the predicted target fθ(x). For clarity purposes we constrain

the following presentation to learning a meta-loss network

that produces the loss value for training a regressor fθ via

gradient descent, however the methodology trivially generalizes

to classification tasks.

Our meta-learning framework starts with randomly initialized

model parameters θ and loss parameters φ. The current loss

parameters are then used to produce loss value Llearned =

Mφ(y, fθ(x)). To optimize model parameters θ we need to

compute the gradient of the loss value with respect to θ,∇θL =
∇θMφ(y, fθ(x)). Using the chain rule, we can decompose

the gradient computation into the gradient of the loss network

with respect to predictions of model fθ(x) times the gradient

of model f with respect to model parameters2,

∇θMφ(y, fθ(x)) = ∇fMφ(y, fθ(x))∇θfθ(x). (4)

Once we have updated the model parameters

θnew = θ − α∇θLlearned using the current meta-loss network

parameters φ, we want to measure how much learning progress

has been made with loss-parameters φ and optimize φ via

gradient descent. Note, that the new model parameters θnew are

implicitly a function of loss-parameters φ, because changing

φ would lead to different θnew. In order to evaluate θnew, and

through that loss-parameters φ, we introduce the notion of

a task-loss during meta-train time. For instance, we use the

mean-squared-error (MSE) loss, which is typically used for

regression tasks, as a task-loss LT = (y − fθnew
(x))2. We now

optimize loss parameters φ by taking the gradient of LT with

respect to φ as follows2:

∇φLT = ∇fLT∇θnew
fθnew
∇φθnew (5)

= ∇fLT∇θnew
fθnew
∇φ[θ − α∇θE [Mφ(y, fθ(x))] (6)

where we first apply the chain rule and show that the gradient

with respect to the meta-loss parameters φ requires the new

model parameters θnew. We expand θnew as one gradient step

on θ based on meta-loss Mφ, making the dependence on φ

explicit.

Optimization of the loss-parameters can either happen after

each inner gradient step (where inner refers to using the current

loss parameters to update θ), or after M inner gradient steps

with the current meta-loss network Mφ.

The latter option requires back-propagation through a chain

of all optimizee update steps. In practice we notice that updating

the meta-parameters φ after each inner gradient update step

works better. We reset θ after M inner gradient steps. We

summarize the meta-train phase in Algorithm 1, with one

inner gradient step.

B. ML3 Reinforcement Learning

In this section, we introduce several modifications that

allow us to apply the ML3 framework to reinforcement

learning problems. Let M = (S,A, P,R, p0, γ, T) be a finite-

horizon Markov Decision Process (MDP), where S and A

are state and action spaces, P : S × A × S → R+ is

a state-transition probability function or system dynamics,

R : S × A → R a reward function, p0 : S → R+ an initial

state distribution, γ a reward discount factor, and T a horizon.

Let τ = (s0, a0, . . . , sT , aT) be a trajectory of states and

actions and R(τ) =
∑T−1

t=0
γtR(st, at) the trajectory return.

The goal of reinforcement learning is to find parameters θ of a

policy πθ(a|s) that maximizes the expected discounted reward

over trajectories induced by the policy: Eπθ
[R(τ)] where

2Alternatively this gradient computation can be performed using automatic
differentiation

Algorithm 1 ML3 at (meta-train)

1: φ← randomly initialize
2: while not done do

3: θ ← randomly initialize
4: x, y ← Sample task samples from T
5: Llearned =M(y, fθ(x))
6: θnew ← θ − α∇θ Ex [Llearned]
7: φ← φ− η∇φLT (y, fθnew

)
8: end while

Algorithm 2 ML3 at (meta-test)

1: M ← # of optimizee updates
2: θ ← randomly initialize
3: for j ∈ {0, . . . ,M} do

4: x, y ← Sample task samples from T
5: Llearned =M(y, fθ(x))
6: θ ← θ − α∇θ Ex [Llearned]
7: end for

s0 ∼ p0, st+1 ∼ P (st+1|st, at) and at ∼ πθ(at|st). In what

follows, we show how to train a meta-loss network to perform

effective policy updates in a reinforcement learning scenario.

To apply our ML3 framework, we replace the optimizee fθ
from the previous section with a stochastic policy πθ(a|s). We

present two applications of ML3 to RL.

1) ML3 for Model-Based Reinforcement Learning: Model-

based RL (MBRL) attempts to learn a policy πθ by first learning

a dynamic model P . Intuitively, if the model P is accurate, we

can use it to optimize the policy parameters θ. As we typically

do not know the dynamics model a-priori, MBRL algorithms

iterate between using the current approximate dynamics model

P , to optimize the policy πθ such that it maximizes the reward

R under P , then use the optimized policy πθ to collect more

data which is used to update the model P . In this context, we

aim to learn a loss function that is used to optimize policy

parameters through our meta-network M.

Similar to the supervised learning setting we use current

meta-parameters φ to optimize policy parameters θ under the

current dynamics model P : θnew = θ − α∇θ [Mφ(τ, g)],

where τ = (s0, a0, . . . , sT , aT) is the sampled trajectory

and the variable g captures some task-specific information,

such as the goal state of the agent. To optimize φ we again

need to define a task loss, which in the MBRL setting can be

defined as LT (g, πθnew
) = −Eπθnew ,P

[Rg(τnew)], denoting the

reward that is achieved under the current dynamics model P .

To update φ, we compute the gradient of the task loss LT

wrt. φ, which involves differentiating all the way through

the reward function, dynamics model and the policy that

was updated using the meta-loss Mφ. The pseudo-code in

Algorithm 3 (Appendix A) illustrates the MBRL learning loop.

In Algorithm 5 (Appendix A), we show the policy optimization

procedure during meta-test time. Notably, we have found that in

practice, the model of the dynamics P is not needed anymore

for policy optimization at meta-test time. The meta-network

learns to implicitly represent the gradients of the dynamics

model and can produce a loss to optimize the policy directly.

2) ML3 for Model-Free Reinforcement Learning: Finally,

we consider the model-free reinforcement learning (MFRL)

case, where we learn a policy without learning a dynamics

model. In this case, we can define a surrogate objective, which

is independent of the dynamics model, as our task-specific

loss [31, 28, 26]:

LT (g, πθnew
) = −Eπθnew

[Rg(τnew) log πθnew
(τnew)] (7)

= −Eπθnew

[

Rg(τnew)

T−1
∑

t=0

log πθnew
(at|st)

]

(8)

Similar to the MBRL case, the task loss is indirectly a function

of the meta-parameters φ that are used to update the policy

parameters. Although we are evaluating the task loss on full

trajectory rewards, we perform policy updates from Eq. 2

using stochastic gradient descent (SGD) on the meta-loss with

mini-batches of experience (si, ai, ri) for i ∈ {0, . . . , B −
1} with batch size B, similar to Houthooft et al. [11]. The

inputs of the meta-loss network are the sampled states, sampled

actions, task information g and policy probabilities of the

sampled actions: Mφ (s, a, πθ(a|s), g). In this way, we enable

efficient optimization of very high-dimensional policies with

SGD provided only with trajectory-based rewards. In contrast

to the above MBRL setting, the rollouts used for task-loss

evaluation are real system rollouts, instead of simulated rollouts.

At test time, we use the same policy update procedure as in

the MBRL setting, see Algorithm 5 (Appendix A).

C. Shaping ML3 loss by adding extra loss information during

meta-train

So far, we have discussed using standard task losses, such

as MSE-loss for regression or reward functions for RL settings.

However, it is possible to provide more information about the

task at meta-train time, which can influence the learning of the

loss-landscape. We can design our task-losses to incorporate

extra penalties; for instance we can extend the MSE-loss with

Lextra and weight the terms with β and γ:

LT = β(y − fθ(x))
2 + γLextra (9)

In our work, we experiment with 4 different types of extra

loss information at meta-train time: for supervised learning we

show that adding extra information through Lextra = (θ− θ∗)2,

where θ∗ are the optimal regression parameters, can help shape

a convex loss-landscape for otherwise non-convex optimization

problems; we also show how we can use Lextra to induce

a physics prior in robot model learning. For reinforcement

learning tasks we demonstrate that by providing additional

rewards in the task loss during meta-train time, we can

encourage the trained meta-loss to learn exploratory behaviors;

and finally also for reinforcement learning tasks, we show

how expert demonstrations can be incorporated to learn loss

functions which can generalize to new tasks. In all settings, the

additional information shapes the learned loss function such

that the environment does not need to provide this information

during meta-test time.

IV. EXPERIMENTS

In this section we evaluate the applicability and the benefits

of the learned meta-loss from two different view points. First,

we study the benefits of using standard task losses, such as the

mean-squared error loss for regression, to train the meta-loss in

Section IV-A. We analyze how a learned meta-loss compares to

using a standard task-loss in terms of generalization properties

and convergence speed. Second, we study the benefit of adding

extra information at meta-train time to shape the loss landscape

in Section IV-B.

A. Learning to mimic and improve over known task losses

First, we analyze how well our meta-learning framework

can learn to mimic and improve over standard task losses for

both supervised and reinforcement learning settings. For these

experiments, the meta-network is parameterized by a neural

network with two hidden layers of 40 neurons each.

1) Meta-Loss for Supervised Learning: In this set of exper-

iments, we evaluate how well our meta-learning framework

can learn loss functions Mφ for regression and classification

tasks. In particular, we perform experiments on sine function

regression and binary classification of digits (see details in

Appendix A). At meta-train time, we randomly draw one task

for meta-training (see Fig. 2 (a)), and at meta-test time we

randomly draw 10 test tasks for regression, and 4 test tasks

for classification (Fig. 2(b)). For the sine regression, tasks are

drawn according to details in Appendix A, and we initialize

our model fθ to a simple feedforward NN with 2 hidden layers

and 40 hidden units each, for the binary classification task fθ is

initialized via the LeNet architecture [13]. For both experiments

we use a fixed learning rate α = η = 0.001 for both inner (α)

and outer (η) gradient update steps. We average results across

5 random seeds, where each seed controls the initialization of

both initial model and meta-network parameters, as well as

the the random choice of meta-train/test task(s), and visualize

them in Fig. 2. We compare the performance of using SGD

with the task-loss L directly (in orange) to SGD using the

learned meta-network Mφ (in blue), both using a learning rate

α = 0.001. In Fig. 2 (c) we show the average performance

of the meta-network Mφ as it is being learned, as a function

of (outer) meta-train iterations in blue. In both regression and

classification tasks, the meta-loss eventually leads to a better

performance on the meta-train task as compared to the task loss.

In Fig. 2 (d) we evaluate SGD using Mφ vs SGD using L on

previously unseen (and out-of-distribution) meta-test tasks as a

function of the number of gradient steps. Even on these novel

test tasks, our learned Mφ leads to improved performance as

compared to the task-loss.

2) Learning Reward functions for Model-based Reinforce-

ment Learning: In the MBRL example, the tasks consist of a

free movement task of a point mass in a 2D space, we call this

environment PointmassGoal, and a reaching task with a 2-link

2D manipulator, which we call the ReacherGoal environment

(see Appendix A for details). The task distribution p(T)
consists of different target positions that either the point mass

or the arm should reach. During meta-train time, a model of the

system dynamics, represented by a neural network, is learned

from samples of the currently optimal policy. The task loss

during meta-train time is LT (θ) = Eπθ,P [R(τ)], where R(τ)

efficient optimization with gradient descent. When using the

learned meta-loss we observe significant speed improvements in

regression, classification and benchmark reinforcement learning

tasks. Furthermore, we showed that by introducing additional

guiding information during training time we can train our meta-

loss to develop exploratory strategies that can significantly

improve performance during the meta-test time.

We believe that the ML3 framework is a powerful tool to

incorporate prior experience and transfer learning strategies

to new tasks. In future work, we plan to look at combining

multiple learned meta-loss functions in order to generalize over

different families of tasks. We also plan to further develop

the idea of introducing additional curiosity rewards during

training time to improve the exploration strategies learned by

the meta-loss.

ACKNOWLEDGMENT

The authors thank the International Max Planck Research School for
Intelligent Systems (IMPRS-IS) for supporting Sarah Bechtle. This work
was in part supported by New York University, the European Union’s Horizon
2020 research and innovation program (grant agreement 780684 and European
Research Councils grant 637935) and the National Science Foundation (grants
1825993 and 2026479).

REFERENCES

[1] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse
reinforcement learning. In ICML, 2004.

[2] M. Andrychowicz, M. Denil, S. G. Colmenarejo, M. W. Hoffman,
D. Pfau, T. Schaul, and N. de Freitas. Learning to learn by
gradient descent by gradient descent. In NeurIPS, pages 3981–
3989, 2016.

[3] Y. Bengio and S. Bengio. Learning a synaptic learning
rule. Technical Report 751, Département d’Informatique et
de Recherche Opérationelle, Université de Montréal, Montreal,
Canada, 1990.

[4] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Robot
programming by demonstration. In Springer Handbook of
Robotics, pages 1371–1394. Springer, 2008.

[5] Y. Duan, J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever,
and P. Abbeel. Rl2: Fast reinforcement learning via slow
reinforcement learning. CoRR, abs/1611.02779, 2016.

[6] R. Featherstone. Rigid body dynamics algorithms. Springer,
2014.

[7] C. Finn, P. Abbeel, and S. Levine. Model-agnostic meta-learning
for fast adaptation of deep networks. In ICML, 2017.

[8] L. Franceschi, M. Donini, P. Frasconi, and M. Pontil. Forward
and reverse gradient-based hyperparameter optimization. In
Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1165–1173. JMLR. org, 2017.

[9] E. Grefenstette, B. Amos, D. Yarats, P. M. Htut, A. Molchanov,
F. Meier, D. Kiela, K. Cho, and S. Chintala. Generalized inner
loop meta-learning. arXiv preprint arXiv:1910.01727, 2019.

[10] A. Gupta, R. Mendonca, Y. Liu, P. Abbeel, and S. Levine.
Meta-reinforcement learning of structured exploration strategies.
In Advances in Neural Information Processing Systems, pages
5302–5311, 2018.

[11] R. Houthooft, Y. Chen, P. Isola, B. C. Stadie, F. Wolski, J. Ho,
and P. Abbeel. Evolved policy gradients. In NeurIPS, pages
5405–5414, 2018.

[12] K. Hsu, S. Levine, and C. Finn. Unsupervised learning via
meta-learning. CoRR, abs/1810.02334, 2018.

[13] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the
IEEE, 86(11):2278–2324, Nov 1998.

[14] K. Li and J. Malik. Learning to optimize. arXiv preprint
arXiv:1606.01885, 2016.

[15] M. Lutter, C. Ritter, and J. Peters. Deep lagrangian networks:
Using physics as model prior for deep learning. arXiv preprint
arXiv:1907.04490, 2019.

[16] D. Maclaurin, D. Duvenaud, and R. Adams. Gradient-based
hyperparameter optimization through reversible learning. In
International Conference on Machine Learning, pages 2113–
2122, 2015.

[17] F. Meier, D. Kappler, and S. Schaal. Online learning of a memory
for learning rates. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 2425–2432. IEEE, 2018.

[18] R. Mendonca, A. Gupta, R. Kralev, P. Abbeel, S. Levine,
and C. Finn. Guided meta-policy search. arXiv preprint
arXiv:1904.00956, 2019.

[19] L. Metz, N. Maheswaranathan, B. Cheung, and J. Sohl-
Dickstein. Learning unsupervised learning rules. In Interna-
tional Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HkNDsiC9KQ.

[20] A. Moore. Efficient memory-based learning for robot control.
PhD thesis, University of Cambridge, 1990.

[21] A. Y. Ng, S. J. Russell, et al. Algorithms for inverse reinforce-
ment learning. In Icml, pages 663–670, 2000.

[22] OpenAI Gym, 2019.

[23] G. Parascandolo, H. Huttunen, and T. Virtanen. Taming the
waves: sine as activation function in deep neural networks. 2017.

[24] D. A. Pomerleau. Efficient training of artificial neural networks
for autonomous navigation. Neural Computation, 3(1):88–97,
1991.

[25] J. Schmidhuber. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-... hook.
Institut für Informatik, Technische Universität München, 1987.

[26] J. Schulman, N. Heess, T. Weber, and P. Abbeel. Gradient
estimation using stochastic computation graphs. In NeurIPS,
pages 3528–3536, 2015.

[27] F. Sung, L. Zhang, T. Xiang, T. Hospedales, and Y. Yang.
Learning to learn: Meta-critic networks for sample efficient
learning. arXiv preprint arXiv:1706.09529, 2017.

[28] R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy
gradient methods for reinforcement learning with function
approximation. In NeurIPS, 2000.

[29] Y. Tassa, N. Mansard, and E. Todorov. Control-limited differen-
tial dynamic programming. IEEE International Conference on
Robotics and Automation, ICRA, 2014.

[30] S. Thrun and L. Pratt. Learning to learn. Springer Science &
Business Media, 2012.

[31] R. J. Williams. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine Learning, 8:
229–256, 1992.

[32] L. Wu, F. Tian, Y. Xia, Y. Fan, T. Qin, J.-H. Lai, and T.-Y. Liu.
Learning to teach with dynamic loss functions. In NeurIPS,
pages 6467–6478, 2018.

[33] Z. Xu, H. van Hasselt, and D. Silver. Meta-gradient reinforce-
ment learning. In NeurIPS, pages 2402–2413, 2018.

[34] O. Yadan. A framework for elegantly configuring complex appli-
cations. Github, 2019. URL https://github.com/facebookresearch/
hydra.

[35] T. Yu, C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel,
and S. Levine. One-shot imitation from observing hu-
mans via domain-adaptive meta-learning. arXiv preprint
arXiv:1802.01557, 2018.

[36] H. Zou, T. Ren, D. Yan, H. Su, and J. Zhu. Reward shaping via
meta-learning. arXiv preprint arXiv:1901.09330, 2019.

APPENDIX

Algorithm 3 ML3 for MBRL (meta-train)

1: φ,← randomly initialize parameters

2: Randomly initialize dynamics model P

3: while not done do

4: θ ← randomly initialize parameters

5: τ ← forward unroll πθ using P

6: πθnew
← optimize(τ,Mφ, g, R)

7: τnew ← forward unroll πθnew
using P

8: Update φ to maximize reward under P :

9: φ← φ− η∇φLT (τnew)
10: τreal ← roll out πθnew

on real system

11: P ← update dynamics model with τreal
12: end while

Algorithm 4 ML3 for MFRL (meta-train)

1: I ← # of inner steps
2: φ← randomly initialize parameters
3: while not done do

4: θ0 ← randomly initialize policy
5: T ← sample training tasks
6: τ0, R0 ← roll out policy πθ0

7: for i ∈ {0, . . . , I} do

8: πθi+1
← optimize(πθi

,Mφ, τi, Ri)
9: τi+1, Ri+1 ← roll out policy πθi+1

10: Li
T
← compute task-loss Li

T
(τi+1, Ri+1)

11: end for

12: LT ← E

[

Li
T

]

13: φ← φ− η∇φLT
14: end while

Algorithm 5 ML3 for RL (meta-test)

1: θ ← randomly initialize policy
2: for j ∈ {0, . . . ,M} do

3: τ, R← roll out πθ
4: πθ ← optimize(πθ,Mφ, τ, R)
5: end for

We notice that in practice, including the policy’s distribution parameters
directly in the meta-loss inputs, e.g. mean µ and standard deviation σ of a
Gaussian policy, works better than including the probability estimate πθ(a|s),
as it provides a direct way to update the distribution parameters using back-
propagation through the meta-loss.

The forward model of the dynamics is represented in both cases by a neural
network, the input to the network is the current state and action, the output is
the next state of the environment.

The Pointmass state space is four-dimensional. For PointmassGoal
(x, y, ẋ, ẏ) are the 2D positions and velocities, and the actions are accelerations
(ẍ, ÿ).

The ReacherGoal environment for the MBRL experiments is a lower-
dimensional variant of the MFRL environment. It has a four dimensional state,
consisting of position and angular velocity of the joints [θ1, θ2, θ̇1, θ̇2] the
torque is two dimensional [τ1, τ2] The dynamics model P is updated once
every 100 outer iterations with the samples collected by the policy from the
last inner optimization step of that outer optimization step, i.e. the latest policy.

The ReacherGoal environment is a 2-link 2D manipulator that has to reach a
specified goal location with its end-effector. The task distribution (at meta-train
and meta-test time) consists of an initial link configuration and random goal
locations within the reach of the manipulator. The performance metric for
this environment is the mean trajectory sum of negative distances to the goal,
averaged over 10 tasks. As a trajectory reward Rg(τ) for the task-loss (see
Eq. 7) we use Rg(τ) = −d+1/(d+0.001)− |at| , where d is the distance
of the end-effector to the goal g specified as a 2-d Cartesian position. The
environment has eleven dimensions specifying angles of each link, direction
from the end-effector to the goal, Cartesian coordinates of the target and
Cartesian velocities of the end-effector.

The AntGoal environment requires a four-legged agent to run to a goal
location. The task distribution consists of random goals initialized on a circle
around the initial position. The performance metric for this environment is the

mean trajectory sum of differences between the initial and the current distances
to the goal, averaged over 10 tasks. Similar to the previous environment we
use Rg(τ) = −d+ 5/(d+ 0.25)− |at| , where d is the distance from the
center of the creature’s torso to the goal g specified as a 2D Cartesian position.
In contrast to the ReacherGoal this environment has 33 4 dimensional state
space that describes Cartesian position, velocity and orientation of the torso
as well as angles and angular velocities of all eight joints. Note that in both
environments, the meta-network receives the goal information g as part of the
state s in the corresponding environments. Also, in practice, including the
policy’s distribution parameters directly in the meta-loss inputs, e.g. mean µ
and standard deviation σ of a Gaussian policy, works better than including
the probability estimate πθ(a|s), as it provides a more direct way to update
θ using back-propagation through the meta-loss.

For the sine task at meta-train time, we draw 100 data points from function
y = sin (x− π), with x ∈ [−2.0, 2.0]. For meta-test time we draw 100 data
points from function y = A sin (x− ω), with A ∼ [0.2, 5.0], ω ∼ [−π, pi]
and x ∈ [−2.0, 2.0]. We initialize our model fθ to a simple feedforward NN
with 2 hidden layers and 40 hidden units each, for the binary classification task
fθ is initialized via the LeNet architecture. For both regression and classification
experiments we use a fixed learning rate α = η = 0.001 for both inner (α)
and outer (η) gradient update steps. We average results across 5 random seeds,
where each seed controls the initialization of both initial model and meta-
network parameters, as well as the the random choice of meta-train/test task(s),
and visualize them in Fig. 2. Task losses are LRegression = (y − fθ(x))

2

and LBinClass = CrossEntropyLoss(y, fθ(x)) for regression and classification
meta-learning respectively.

4In contrast to the original Ant environment we remove external forces
from the state.

