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Abstract—Typically, loss functions, regularization mechanisms
and other important aspects of training parametric models are
chosen heuristically from a limited set of options. In this paper,
we take the first step towards automating this process, with
the view of producing models which train faster and more
robustly. Concretely, we present a meta-learning method for
learning parametric loss functions that can generalize across
different tasks and model architectures. We develop a pipeline for
“meta-training” such loss functions, targeted at maximizing the
performance of the model trained under them. The loss landscape
produced by our learned losses significantly improves upon the
original task-specific losses in both supervised and reinforcement
learning tasks. Furthermore, we show that our meta-learning
framework is flexible enough to incorporate additional informa-
tion at meta-train time. This information shapes the learned loss
function such that the environment does not need to provide this
information during meta-test time. We make our code available
at https://sites.google.com/view/mlthree

Index Terms—meta learning, reinforcement learning, optimiza-
tion, deep learning

I. INTRODUCTION

Inspired by the remarkable capability of humans to quickly
learn and adapt to new tasks, the concept of learning to learn,
or meta-learning, recently became popular within the machine
learning community [2, 5, 7]. We can classify learning to learn
methods into roughly two categories: approaches that learn
representations that can generalize and are easily adaptable
to new tasks [7], and approaches that learn how to optimize
models [2, 5].

In this paper we investigate the second type of approach.
We propose a learning framework that is able to learn any
parametric loss function—as long as its output is differentiable
with respect to its parameters. Such learned functions can be
used to efficiently optimize models for new tasks.

Specifically, the purpose of this work is to encode learning
strategies into a parametric loss function, or a meta-loss, which
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Fig. 1: Framework overview: The learned meta-loss is used as a
learning signal to optimize the optimizee fg, which can be a regressor,
a classifier or a control policy.

generalizes across multiple training contexts or tasks. Inspired
by inverse reinforcement learning [21], our work combines the
learning to learn paradigm of meta-learning with the generality
of learning loss landscapes. We construct a unified, fully
differentiable framework that can learn optimizee-independent
loss functions to provide a strong learning signal for a variety
of learning problems, such as classification, regression or
reinforcement learning. Our framework involves an inner and
an outer optimization loops. In the inner loop, a model or an
optimizee is trained with gradient descent using the loss coming
from our learned meta-loss function. Fig. 1 shows the pipeline
for updating the optimizee with the meta-loss. The outer loop
optimizes the meta-loss function by minimizing a task-loss,
such as a standard regression or reinforcement-learning loss,
that is induced by the updated optimizee.

The contributions of this work are as follows: i) we
present a framework for learning adaptive, high-dimensional
loss functions through back-propagation that create the loss
landscapes for efficient optimization with gradient descent.
We show that our learned meta-loss functions improve over
directly learning via the task-loss itself while maintaining the
generality of the task-loss. ii) We present several ways our
framework can incorporate extra information that helps shape
the loss landscapes at meta-train time. This extra information
can take on various forms, such as exploratory signals or



expert demonstrations for RL tasks. After training the meta-
loss function, the task-specific losses are no longer required
since the training of optimizees can be performed entirely by
using the meta-loss function alone, without requiring the extra
information given at meta-train time. In this way, our meta-loss
can find more efficient ways to optimize the original task loss.
We apply our meta-learning approach to a diverse set
of problems demonstrating our framework’s flexibility and
generality. The problems include regression problems, image
classification, behavior cloning, model-based and model-free
reinforcement learning. Our experiments include empirical
evaluation for each of the aforementioned problems.

II. RELATED WORK

Meta-learning originates from the concept of learning to
learn [25, 3, 30]. Recently, there has been a wide interest in
finding ways to improve learning speeds and generalization
to new tasks through meta-learning. Let us consider gradient
based learning approaches, that update the parameters of an
optimizee fp(x), with model parameters 6 and inputs z as
follows:

enew == h¢(07V9£¢(ya fQ(I))a (1)

where we take the gradient of a loss function £, parametrized
by ¢, with respect to the optimizee’s parameters 6 and use
a gradient transform h, parametrized by 1, to compute new
model parameters Ohew!. In this context, we can divide related
work on meta-learning into learning model parameters ¢ that
can be easily adapted to new tasks [7, 18, 10, 35], learning
optimizer policies h that transform parameters updates with
respect to known loss or reward functions [16, 2, 14, 8, 17, 5],
or learning loss/reward function representations ¢ [27, 11, 36].
Alternatively, in unsupervised learning settings, meta-learning
has been used to learn unsupervised rules that can be transferred
between tasks [19, 12].

Our framework falls into the category of learning loss
landscapes. Similar to works by Sung et al. [27] and Houthooft
et al. [11], we aim at learning loss function parameters ¢ that
can be applied to various optimizee models, e.g. regressors,
classifiers or agent policies. Our learned loss functions are
independent of the model parameters 6 that are to be optimized,
thus they can be easily transferred to other optimizee models.
This is in contrast to methods that meta-learn model-parameters
0 directly [e.g. 7, 18], which are orthogonal and complementary
to ours, where the learned representation € cannot be separated
from the original model of the optimizee. The idea of learning
loss landscapes or reward functions in the reinforcement
learning (RL) setting can be traced back to the field of inverse
reinforcement learning [21, 1, IRL]. However, in contrast to
IRL we do not require expert demonstrations (however we can
incorporate them). Instead we use task losses as a measure of
the effectiveness of our loss function when using it to update
an optimizee.

IFor simple gradient descent:
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Closest to our method are the works on evolved policy
gradients [11], teacher networks [32], meta-critics [27] and
meta-gradient RL [33]. In contrast to using an evolutionary
approach [e.g. 11], we design a differentiable framework and
describe a way to optimize the loss function with gradient
descent in both supervised and reinforcement learning settings.
Wu et al. [32] propose that instead of learning a differentiable
loss function directly, a teacher network is trained to predict
parameters of a manually designed loss function, whereas each
new loss function class requires a new teacher network design
and training. In Xu et al. [33], discount and bootstrapping
parameters are learned online to optimize a task-specific meta-
objective. Our method does not require manual design of the
loss function parameterization or choosing particular parameters
that have to be optimized, as our loss functions are learned
entirely from data. Finally, in work by Sung et al. [27] a meta-
critic is learned to provide a task-conditional value function,
used to train an actor policy. Although training a meta-critic in
the supervised setting reduces to learning a loss function as in
our work, in the reinforcement learning setting we show that
it is possible to use learned loss functions to optimize policies
directly with gradient descent.

III. META-LEARNING VIA LEARNED LOSS

In this work, we aim to learn a loss function, which we call
meta-loss, that is subsequently used to train an optimizee, e.g.
a classifier, a regressor or a control policy. More concretely,
we aim to learn a meta-loss function My with parameters ¢,
that outputs the loss value Lieameq Which is used to train an
optimizee fy with parameters 6 via gradient descent:

enew =0- av€£learned7 (2)
where Licamed = M(b(y7 fb’ (JC)) 3)

where y can be ground truth target information in supervised
learning settings or goal and state information for reinforcement
learning settings. In short, we aim to learn a loss function that
can be used as depicted in Algorithm 2. Towards this goal, we
propose an algorithm to learn meta-loss function parameters ¢
via gradient descent.

The key challenge is to derive a training signal for learning
the loss parameters ¢. In the following, we describe our
approach to addressing this challenge, which we call Meta-
Learning via Learned Loss (ML3).

A. ML? for Supervised Learning

We start with supervised learning settings, in which our
framework aims at learning a meta-loss function M, (y, fo(x))
that produces the loss value given the ground truth target y and
the predicted target fo(x). For clarity purposes we constrain
the following presentation to learning a meta-loss network
that produces the loss value for training a regressor fy via
gradient descent, however the methodology trivially generalizes
to classification tasks.

Our meta-learning framework starts with randomly initialized
model parameters 6 and loss parameters ¢. The current loss
parameters are then used to produce loss value Lieameda =



My(y, fo(x)). To optimize model parameters 6 we need to
compute the gradient of the loss value with respect to 8, VoL =
VoM (y, fo(z)). Using the chain rule, we can decompose
the gradient computation into the gradient of the loss network
with respect to predictions of model fy(z) times the gradient

of model f with respect to model parameters?,

VoMe(y, fo(z)) = ViMy(y, fo(x))Vefo(z). 4

Once we have wupdated the model parameters
Onew = 0 — Vg Lieamed Using the current meta-loss network
parameters ¢, we want to measure how much learning progress
has been made with loss-parameters ¢ and optimize ¢ via
gradient descent. Note, that the new model parameters 6., are
implicitly a function of loss-parameters ¢, because changing
¢ would lead to different 6,,y. In order to evaluate 6, and
through that loss-parameters ¢, we introduce the notion of
a task-loss during meta-train time. For instance, we use the
mean-squared-error (MSE) loss, which is typically used for
regression tasks, as a task-loss L7 = (y — fo,., (z))?. We now
optimize loss parameters ¢ by taking the gradient of L5 with
respect to ¢ as follows?:

VoL =V L1V, [0V Onew
= VL1V fo,, V[0 — aVeE [My(y, fo(z))]

&)
(6)

where we first apply the chain rule and show that the gradient
with respect to the meta-loss parameters ¢ requires the new
model parameters 6,.,,. We expand 6, as one gradient step
on 6 based on meta-loss My, making the dependence on ¢
explicit.

Optimization of the loss-parameters can either happen after
each inner gradient step (where inner refers to using the current
loss parameters to update 6), or after M inner gradient steps
with the current meta-loss network M.

The latter option requires back-propagation through a chain
of all optimizee update steps. In practice we notice that updating
the meta-parameters ¢ after each inner gradient update step
works better. We reset 6 after M inner gradient steps. We
summarize the meta-train phase in Algorithm 1, with one
inner gradient step.

B. ML3? Reinforcement Learning

In this section, we introduce several modifications that
allow us to apply the ML? framework to reinforcement
learning problems. Let M = (S, A, P, R, po,,T) be a finite-
horizon Markov Decision Process (MDP), where S and A
are state and action spaces, P : S x A x S — Ry is
a state-transition probability function or system dynamics,
R:Sx A — R areward function, py : S — R an initial
state distribution, v a reward discount factor, and 7" a horizon.
Let 7 = (sg,a0,-..,8T,ar) be a trajectory of states and
actions and R(7) = ZtT:_Ol ~R(s¢, as) the trajectory return.
The goal of reinforcement learning is to find parameters 6 of a
policy g (als) that maximizes the expected discounted reward
over trajectories induced by the policy: E,[R(7)] where

2 Alternatively this gradient computation can be performed using automatic
differentiation

Algorithm 1 ML? at (meta-train)

1: ¢ <« randomly initialize

2: while not done do

0 < randomly initialize

x,y < Sample task samples from 7
Lieaned = M(y7 fo (I))

Onew < 0 — AV Ez [Lieamed]

¢ < ¢ = VoL (Y, for)

8: end while

Algorithm 2 ML? at (meta-test)

A

M < # of optimizee updates

0 < randomly initialize

for j € {0,..., M} do
x,y < Sample task samples from T
‘Cleumed = M(y7 f9 (I))
0 < 0 — aVg Ez [Lieamed]

end for

A A ol Sl

80 ~ Doy St4+1 ~ P(St4+1]8t,a¢) and ay ~ mo(as|s:). In what
follows, we show how to train a meta-loss network to perform
effective policy updates in a reinforcement learning scenario.
To apply our ML3 framework, we replace the optimizee f
from the previous section with a stochastic policy my(als). We
present two applications of ML3 to RL.

1) ML? for Model-Based Reinforcement Learning: Model-
based RL (MBRL) attempts to learn a policy 7y by first learning
a dynamic model P. Intuitively, if the model P is accurate, we
can use it to optimize the policy parameters 6. As we typically
do not know the dynamics model a-priori, MBRL algorithms
iterate between using the current approximate dynamics model
P, to optimize the policy my such that it maximizes the reward
R under P, then use the optimized policy 7y to collect more
data which is used to update the model P. In this context, we
aim to learn a loss function that is used to optimize policy
parameters through our meta-network M.

Similar to the supervised learning setting we use current
meta-parameters ¢ to optimize policy parameters 6 under the
current dynamics model P: Opey = 0 — aVg [My(T, 9)],

where 7 = (sg,ag,-..,S7,ar) is the sampled trajectory
and the variable g captures some task-specific information,
such as the goal state of the agent. To optimize ¢ we again
need to define a task loss, which in the MBRL setting can be
defined as L7 (g, 79, ) = —Er, . P[Rg(Tnew)], denoting the
reward that is achieved under the current dynamics model P.
To update ¢, we compute the gradient of the task loss L
wrt. ¢, which involves differentiating all the way through
the reward function, dynamics model and the policy that
was updated using the meta-loss M. The pseudo-code in
Algorithm 3 (Appendix A) illustrates the MBRL learning loop.
In Algorithm 5 (Appendix A), we show the policy optimization
procedure during meta-test time. Notably, we have found that in
practice, the model of the dynamics P is not needed anymore
for policy optimization at meta-test time. The meta-network
learns to implicitly represent the gradients of the dynamics
model and can produce a loss to optimize the policy directly.

2) ML? for Model-Free Reinforcement Learning: Finally,
we consider the model-free reinforcement learning (MFRL)



case, where we learn a policy without learning a dynamics
model. In this case, we can define a surrogate objective, which
is independent of the dynamics model, as our task-specific
loss [31, 28, 26]:

L7(9,m6,,) = _Emnew [Rg(Tnew) 10g 76,0y, (Tnew)] @)
T—1

= —Er, . [Fg(Thew) Z log g, (at|st) @®)
t=0

Similar to the MBRL case, the task loss is indirectly a function
of the meta-parameters ¢ that are used to update the policy
parameters. Although we are evaluating the task loss on full
trajectory rewards, we perform policy updates from Eq. 2
using stochastic gradient descent (SGD) on the meta-loss with
mini-batches of experience (s;,a;,r;) for i € {0,...,B —
1} with batch size B, similar to Houthooft et al. [11]. The
inputs of the meta-loss network are the sampled states, sampled
actions, task information g and policy probabilities of the
sampled actions: M, (s, a,me(als), g). In this way, we enable
efficient optimization of very high-dimensional policies with
SGD provided only with trajectory-based rewards. In contrast
to the above MBRL setting, the rollouts used for task-loss

evaluation are real system rollouts, instead of simulated rollouts.

At test time, we use the same policy update procedure as in
the MBRL setting, see Algorithm 5 (Appendix A).

C. Shaping ML? loss by adding extra loss information during
meta-train

So far, we have discussed using standard task losses, such

as MSE-loss for regression or reward functions for RL settings.

However, it is possible to provide more information about the
task at meta-train time, which can influence the learning of the
loss-landscape. We can design our task-losses to incorporate
extra penalties; for instance we can extend the MSE-loss with
Lexua and weight the terms with 5 and ~:

ET = ﬂ(y - fﬂ(x))Q + 'Y»Cextra 9

In our work, we experiment with 4 different types of extra
loss information at meta-train time: for supervised learning we
show that adding extra information through Lexw = (6 — 6%)2,
where 6* are the optimal regression parameters, can help shape
a convex loss-landscape for otherwise non-convex optimization
problems; we also show how we can use Ley, to induce
a physics prior in robot model learning. For reinforcement
learning tasks we demonstrate that by providing additional
rewards in the task loss during meta-train time, we can
encourage the trained meta-loss to learn exploratory behaviors;
and finally also for reinforcement learning tasks, we show
how expert demonstrations can be incorporated to learn loss
functions which can generalize to new tasks. In all settings, the
additional information shapes the learned loss function such
that the environment does not need to provide this information
during meta-test time.

IV. EXPERIMENTS

In this section we evaluate the applicability and the benefits
of the learned meta-loss from two different view points. First,

we study the benefits of using standard task losses, such as the
mean-squared error loss for regression, to train the meta-loss in
Section IV-A. We analyze how a learned meta-loss compares to
using a standard task-loss in terms of generalization properties
and convergence speed. Second, we study the benefit of adding
extra information at meta-train time to shape the loss landscape
in Section I'V-B.

A. Learning to mimic and improve over known task losses

First, we analyze how well our meta-learning framework
can learn to mimic and improve over standard task losses for
both supervised and reinforcement learning settings. For these
experiments, the meta-network is parameterized by a neural
network with two hidden layers of 40 neurons each.

1) Meta-Loss for Supervised Learning: In this set of exper-
iments, we evaluate how well our meta-learning framework
can learn loss functions M for regression and classification
tasks. In particular, we perform experiments on sine function
regression and binary classification of digits (see details in
Appendix A). At meta-train time, we randomly draw one task
for meta-training (see Fig. 2 (a)), and at meta-test time we
randomly draw 10 test tasks for regression, and 4 test tasks
for classification (Fig. 2(b)). For the sine regression, tasks are
drawn according to details in Appendix A, and we initialize
our model fy to a simple feedforward NN with 2 hidden layers
and 40 hidden units each, for the binary classification task fy is
initialized via the LeNet architecture [13]. For both experiments
we use a fixed learning rate a = 1 = 0.001 for both inner ()
and outer (n) gradient update steps. We average results across
5 random seeds, where each seed controls the initialization of
both initial model and meta-network parameters, as well as
the the random choice of meta-train/test task(s), and visualize
them in Fig. 2. We compare the performance of using SGD
with the task-loss £ directly (in orange) to SGD using the
learned meta-network M (in blue), both using a learning rate
a = 0.001. In Fig. 2 (c) we show the average performance
of the meta-network M as it is being learned, as a function
of (outer) meta-train iterations in blue. In both regression and
classification tasks, the meta-loss eventually leads to a better
performance on the meta-train task as compared to the task loss.
In Fig. 2 (d) we evaluate SGD using My vs SGD using £ on
previously unseen (and out-of-distribution) meta-test tasks as a
function of the number of gradient steps. Even on these novel
test tasks, our learned M, leads to improved performance as
compared to the task-loss.

2) Learning Reward functions for Model-based Reinforce-
ment Learning: In the MBRL example, the tasks consist of a
free movement task of a point mass in a 2D space, we call this
environment PointmassGoal, and a reaching task with a 2-link
2D manipulator, which we call the ReacherGoal environment
(see Appendix A for details). The task distribution p(7)
consists of different target positions that either the point mass
or the arm should reach. During meta-train time, a model of the
system dynamics, represented by a neural network, is learned
from samples of the currently optimal policy. The task loss
during meta-train time is £7(0) = E,, p[R(7)], where R(T)
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in orange, (d) average performance of meta-loss on meta-test tasks as a function of the number of gradient update steps
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trained on the blue trajectories and tested on the orange ones for the PointmassGoal task. ML? loss also significantly speeds up
learning when compared to the task loss at meta-test time on the PointmassGoal (b) and the ReacherGoal (c) environments.

is the final distance from the goal g, when rolling out 7y, in
the dynamics model P. Taking the gradient VyE,, . [R(7)]
requires the differentiation through the learned model P (see
Appendix 3). The input to the meta-network is the state-
action trajectory of the current roll-out and the desired target
position. The meta-network outputs a loss signal together with
the learning rate to optimize the policy. Fig. 3a shows the
qualitative reaching performance of a policy optimized with
the meta loss during meta-test on PointmassGoal. The meta-loss
network was trained only on tasks in the right quadrant (blue
trajectories) and tested on the tasks in the left quadrant (orange
trajectories) of the x,y plane, showing the generalization
capability of the meta loss. Figure 3b and 3c show a comparison
in terms of final distance to the target position at test time. The
performance of policies trained with the meta-loss is compared
to policies trained with the task loss, in this case final distance
to the target. The curves show results for 10 different goal
positions (including goal positions where the meta-loss needs
to generalize). When optimizing with the task loss, we use the
dynamics model learned during the meta-train time, as in this
case the differentiation through the model is required during

test time. As mentioned in Section III-B1, this is not needed
when using the meta-loss.

3) Learning Reward functions for Model-free Reinforce-
ment Learning: In the following, we move to evaluating on
model-free RL tasks. Fig. 4 shows results when using two
continuous control tasks based on OpenAl Gym MuJoCo
environments [22]: ReacherGoal and AntGoal (see Appendix A
for details)® Fig. 4a and Fig. 4b show the results of the
meta-test time performance for the ReacherGoal and the
AntGoal environments respectively. We can see that ML? loss
significantly improves optimization speed in both scenarios
compared to PPO. In our experiments, we observed that on
average ML? requires 5 times fewer samples to reach 80% of
task performance in terms of our metrics for the model-free
tasks.

To test the capability of the meta-loss to generalize across
different architectures, we first meta-train My on an archi-
tecture with two layers and meta-test the same meta-loss

30ur framework is implemented using open-source libraries Higher [9] for
convenient second-order derivative computations and Hydra [34] for simplified
handling of experiment configurations.
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on architectures with varied number of layers. Fig. 4 (c+d)
show meta-test time comparison for the ReacherGoal and the
AntGoal environments in a model-free setting for four different
model architectures. Each curve shows the average and the
standard deviation over ten different tasks in each environment.
Our comparison clearly indicates that the meta-loss can be
effectively re-used across multiple architectures with a mild
variation in performance compare to the overall variance of
the corresponding task optimization.

B. Shaping loss landscapes by adding extra information at
meta-train time

This set of experiments shows that our meta-learner is able to
learn loss functions that incorporate extra information available
only during meta-train time. The learned loss will be shaped
such that optimization is faster when using the meta-loss
compared to using a standard loss.

1) Illustration: Shaping loss: We start by illustrating the loss
shaping on an example of sine frequency regression where we
fit a single parameter for the purpose of visualization simplicity.

For this illustration we generate training data
D = {z,,yn}N,N = 1000, by drawing data samples
from the ground truth function y = sin(vz), for x = [—1,1].

We create a model f,(z) = sin(wz), and aim to optimize
parameter w on D, with the goal of recovering value v. Fig. 5a
(bottom) shows the loss landscape for optimizing w, when
using the MSE loss. The target frequency v is indicated by
a vertical red line. As noted by Parascandolo et al. [23], the
landscape of this loss is highly non-convex and difficult to
optimize with conventional gradient descent.

Here, we show that by utilizing additional information about
the ground truth value of the frequency at meta-train time,
we can learn a better shaped loss. Specifically, during meta-
train time, our task-specific loss is the squared distance to the
ground truth frequency: (w —v)? that we later call the shaping
loss. The inputs of the meta-network M, (y, §) are the training
targets y and predicted function values § = f, (), similar
to the inputs to the mean-squared loss. After meta-train time
commences our learned loss function M produces a convex
loss landscapes as depicted in Fig. Sa(top).

To analyze how the shaping loss impacts model optimization
at meta-test time, we compare 3 loss functions: 1) directly using
standard MSE loss (orange), 2) ML? loss that was trained via
the MSE loss as task loss (blue), and 3) ML? loss trained via

formance metric

(c) ReacherGoal
Fig. 4: ML? for model-free RL: results are averaged across 10 tasks. (a+b) Policy learning on new task with ML? loss compared to PPO
objective performance during meta-test time. The learned loss leads to faster learning at meta-test time. (c+d) Using the same ML? loss, we
can optimize policies of different architectures, showing that our learned loss maintains generality.

(d) AntGoal

the shaping loss, Fig. 5b. When comparing the performance
of these 3 losses, it becomes evident that without shaping the
loss landscape, the optimization is prone to getting stuck in a
local optimum.

2) Shaping loss via physics prior for inverse dynamics
learning: Next, we show the benefits of shaping our ML?
loss via ground truth parameter information for a robotics
application. Specifically, we aim to learn and shape a meta-
loss that improves sample efficiency for learning (inverse)
dynamics models, i.e. a mapping u = f(q, 4, aes), Where: g,
g, (ges are vectors of joint angular positions, velocities and
desired accelerations; u is a vector of joint torques.

Rigid body dynamics (RBD) provides an analytical solution
to computing the (inverse) dynamics and can generally be
written as:

M(q)§+ F(q,4) =u

where the inertia matrix M (q), and F(q,q) are computed
analytically [6]. Learning an inverse dynamics model using
neural networks can increase the expressiveness compared to
RBD but requires many data samples that are expensive to
collect. Here we follow the approach in [15], and attempt to
learn the inverse dynamics via a neural network that predicts
the inertia matrix My(q). To improve upon sample efficiency
we apply our method by shaping the loss landscape during
meta-train time using the ground truth inertia matrix M (q)
provided by a simulator. Specifically, we use the task loss
L1 = (Mg(q) — M(q))? to optimize our meta-loss network.
During meta-test time we use our trained meta-loss shaped with
the physics prior (the inertia matrix exposed by the simulator)
to optimize the inverse dynamics neural network. In Fig. 5-c we
show the prediction performance of the inverse dynamics model
during meta-test time on new trajectories of the ReacherGoal
environment. We compare the optimization performance during
meta-test time when using the meta-loss trained with physics
prior, the meta loss trained without physics prior (i.e via MSE
loss) to the optimization with MSE loss. Fig. 5-d shows a
similar comparison for the Sawyer environment - a simulator
of the 7 degrees-of-freedom Sawyer anthropomorphic robot
arm. Inverse dynamics learning using the meta loss with physics
prior achieves the best prediction performance on both robots.
ML?2 without physics prior performs worst on the ReacherGoal
environment, in this case the task loss formulated only in
the action space did not provide enough information to learn

(10)
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the performance of training simply on the behavioral cloning objective and testing on test targets.

a Lieamea useful for optimization. For the Sawyer training
with MSE loss leads to a slower optimization, however the
asymptotic performance of MSE and ML3 is the same. Only
ML?3 with shaped loss outperforms both.

3) Shaping Loss via intermediate goal states for RL:
We analyze loss landscape shaping on the MountainCar
environment [20], a classical control problem where an under-
actuated car has to drive up a steep hill. The propulsion force
generated by the car does not allow steady climbing of the
hill, thus greedy minimization of the distance to the goal often
results in a failure to solve the task. The state space is two-
dimensional consisting of the position and velocity of the car,
the action space consists of a one-dimensional torque. In our
experiments, we provide intermediate goal positions during
meta-train time, which are not available during the meta-test
time. The meta-network incorporates this behavior into its loss
leading to an improved exploration during the meta-test time
as can be seen in Fig. 6-a, when compared to a classical iLQR-
based trajectory optimization [29]. Fig. 6-b shows the average
distance between the car and the goal at last rollout time step
over several iterations of policy updates with ML3 with and
without extra information and iLQR. As we observe, ML? with
extra information can successfully bring the car to the goal in

a small amount of updates, whereas iLQR and ML? without
extra information is not able to solve this task.

4) Shaping loss via expert information during meta-train
time: Expert information, like demonstrations for a task, is
another way of adding relevant information during meta-
train time, and thus shaping the loss landscape. In learning
from demonstration (LfD) [24, 21, 4], expert demonstrations
are used for initializing robotic policies. In our experiments,
we aim to mimic the availability of an expert at meta-test
time by training our meta-network to optimize a behavioral
cloning objective at meta-train time. We provide the meta-
network with expert state-action trajectories during train
time, which could be human demonstrations or, as in our
experiments, trajectories optimized using iLQR. During meta-
train time, the task loss is the behavioral cloning objective
£7(0) = B[S (Mo (arlse) — Tepenlals)]?]. Fig. 6d
shows the results of our experiments in the ReacherGoal
environment.

V. CONCLUSIONS

In this work we presented a framework to meta-learn a
loss function entirely from data. We showed how the meta-
learned loss can become well-conditioned and suitable for an



efficient optimization with gradient descent. When using the
learned meta-loss we observe significant speed improvements in
regression, classification and benchmark reinforcement learning
tasks. Furthermore, we showed that by introducing additional
guiding information during training time we can train our meta-
loss to develop exploratory strategies that can significantly
improve performance during the meta-test time.

We believe that the ML? framework is a powerful tool to
incorporate prior experience and transfer learning strategies
to new tasks. In future work, we plan to look at combining
multiple learned meta-loss functions in order to generalize over
different families of tasks. We also plan to further develop
the idea of introducing additional curiosity rewards during
training time to improve the exploration strategies learned by
the meta-loss.
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APPENDIX
Algorithm 3 ML3 for MBRL (meta-train)

1: ¢, randomly initialize parameters

2: Randomly initialize dynamics model P

3: while not done do

4: 0 < randomly initialize parameters

7 < forward unroll 7y using P

Ty < Optimize(T, Mgy, g, R)

Tnew <— forward unroll 7, using P
Update ¢ to maximize reward under P:
¢ — ¢ - nvqﬁ[’T(Tnew)

10:  Typeqr < roll out mg, on real system

11: P < update dynamics model with 7,4
12: end while

R A A

Algorithm 4 ML? for MFRL (meta-train)

1: I < # of inner steps

2: ¢ < randomly initialize parameters
3: while not done do

4: 0o < randomly initialize policy
5: T < sample training tasks

6: 70, Ro < roll out policy g,

7. foriec{0,...,I} do

8

9

mg,,, < optimize(mq,, Mg, s, R;)

Tit1, R;41 < roll out polic_y o,
10: Lt + compute task-loss L% (Ti+1, Ri+1)
11: end for

122 L7+ E[LY]
13: ¢ d—nVeLlr
14: end while

Algorithm 5 ML? for RL (meta-test)

1: 0 < randomly initialize policy

2: for j € {0,..., M} do

3: 7, R < roll out g

4 g +— optimize(mg, My, T, R)
5: end for

We notice that in practice, including the policy’s distribution parameters
directly in the meta-loss inputs, e.g. mean p and standard deviation o of a
Gaussian policy, works better than including the probability estimate 7o (als),
as it provides a direct way to update the distribution parameters using back-
propagation through the meta-loss.

The forward model of the dynamics is represented in both cases by a neural
network, the input to the network is the current state and action, the output is
the next state of the environment.

The Pointmass state space is four-dimensional. For PointmassGoal
g:c, ysz', y) are the 2D positions and velocities, and the actions are accelerations
Z,9).

The ReacherGoal environment for the MBRL experiments is a lower-
dimensional variant of the MFRL environment. It has a four dimensiona] state,
consisting of position and angular velocity of the joints [01, 02, 61, 02] the
torque is two dimensional |1, 72] The dynamics model P is updated once
every 100 outer iterations with the samples collected by the policy from the
last inner optimization step of that outer optimization step, i.e. the latest policy.

The ReacherGoal environment is a 2-link 2D manipulator that has to reach a
specified goal location with its end-effector. The task distribution (at meta-train
and meta-test time) consists of an initial link configuration and random goal
locations within the reach of the manipulator. The performance metric for
this environment is the mean trajectory sum of negative distances to the goal,
averaged over 10 tasks. As a trajectory reward Rg(7) for the task-loss (see
Eq. 7) we use Ry (1) = —d+1/(d+0.001) — |a¢| , where d is the distance
of the end-effector to the goal g specified as a 2-d Cartesian position. The
environment has eleven dimensions specifying angles of each link, direction
from the end-effector to the goal, Cartesian coordinates of the target and
Cartesian velocities of the end-effector.

The AntGoal environment requires a four-legged agent to run to a goal
location. The task distribution consists of random goals initialized on a circle
around the initial position. The performance metric for this environment is the

mean trajectory sum of differences between the initial and the current distances
to the goal, averaged over 10 tasks. Similar to the previous environment we
use Ry(17) = —d+5/(d + 0.25) — |a¢| , where d is the distance from the
center of the creature’s torso to the goal g specified as a 2D Cartesian position.
In contrast to the ReacherGoal this environment has 33 # dimensional state
space that describes Cartesian position, velocity and orientation of the torso
as well as angles and angular velocities of all eight joints. Note that in both
environments, the meta-network receives the goal information g as part of the
state s in the corresponding environments. Also, in practice, including the
policy’s distribution parameters directly in the meta-loss inputs, e.g. mean p
and standard deviation o of a Gaussian policy, works better than including
the probability estimate 7y (als), as it provides a more direct way to update
6 using back-propagation through the meta-loss.

For the sine task at meta-train time, we draw 100 data points from function
y = sin (x — ), with € [—2.0, 2.0]. For meta-test time we draw 100 data
points from function y = Asin (z — w), with A ~ [0.2,5.0], w ~ [—, pi]
and x € [—2.0,2.0]. We initialize our model fy to a simple feedforward NN
with 2 hidden layers and 40 hidden units each, for the binary classification task
fo is initialized via the LeNet architecture. For both regression and classification
experiments we use a fixed learning rate o = 1 = 0.001 for both inner ()
and outer (7)) gradient update steps. We average results across 5 random seeds,
where each seed controls the initialization of both initial model and meta-
network parameters, as well as the the random choice of meta-train/test task(s),
and visualize them in Fig. 2. Task losses are Lregression = (¥ — fo(x))?
and Lginclass = CrossEntropyLoss(y, fg(z)) for regression and classification
meta-learning respectively.

“In contrast to the original Ant environment we remove external forces
from the state.



