


II. RELATED WORK

A. Coupling forward and inverse models

Wolpert et al. present in [38] an architecture for multiple

paired inverse and forward models, the pairs are coupled

and trained jointly. The predictions of the forward models

determine which inverse model to use. [18] extends this for

a manipulator. [30] present results on coupled learning of

kinematic models for tool use. In [23] the authors present a

deep neural network that structures the learning of a manip-

ulator’s dynamics model following Lagrangian mechanics.

The trained model can be used for forward as well as inverse

dynamics computation, but does not directly connect the

models. Most similar to our work is [16], where the authors

show the benefits of using a ‘distal teacher’ for training the

inverse model on a 2 link 2D arm. Their approach is based on

a stochastic gradient, computed by comparing the observed

states with the desired state. In contrast to these approaches,

we present an iterative method to train the models jointly.

Our experiments are conducted on two different robots, in

3D, and present a loss function that considers the forward

model prediction error during controller learning. We show

in Section III how our approach mathematically differs from

[16], and in Section IV that it achieves significantly better

results on higher dimensional systems. In particular, our

approach can easily include contact interactions.

B. Using model prediction error for learning

The idea of using model prediction error during learning

has been explored within the reinforcement learning liter-

ature mostly form the perspective of intrinsically motivated

agents. For example, [3], [32], [33] propose rewarding agents

to minimize prediction errors of sensory events to explore

the state space. This work is limited to low-dimensional

and discrete state-and-action spaces. More recently [5], [19],

[27], [36] present results on higher dimensional systems,

however this work focuses on model free reinforcement

learning where the learned models are purely used to provide

an additional learning signal to train a policy. In contrast

to this work, our approach uses forward model prediction

error during learning in a setting where the learned model is

actually used to learn a motor control task.

C. Improving model learning in model based approaches

Fewer works have included additional learning signals

during model based learning. [31] proposes a measure of

disagreement in an ensemble of forward models as an

exploration signal. [4] shows that including the predictive

uncertainty of the forward model during controller opti-

mization could improve forward model learning. In [22],

an empirical measure of learning progress in included on

a low dimensional discrete MDP. Similarly, self correcting

forward models were proposed in [34], [35] but the consid-

ered problem remains low dimensional. While it is widely

acknowledged that model quality is of crucial importance in

model based approaches, to the best of our knowledge this

problem is seldom tackled for high dimensional systems.

D. Learning models including force measurements

Learning models that include non-trivial contact interac-

tions is especially challenging as contacts create discontin-

uous force measurements and control actions. In [40] the

authors use force measurements as an additional input to their

model for a manipulator. However, the measurements are not

used for controller learning but only to discriminate between

different tasks. In [20] multimodal input signals, including

forces, are used to train an embedding for a downstream

model free reinforcement learning task that takes as input

the learned embedding but does not use the learned model

during policy learning. Even with accurate physical models,

the conception of inverse dynamics controllers is challenging

with changing contacts [12] as special care is necessary

at each contact transitions, i.e. typically involving manual

design of switching events or advanced constraint switching

strategies [15]. We show in Section IV how our approach

enables to learn a walking controller for a quadruped by

including measured contact forces not only as inputs, but

also as predictions during controller learning. Importantly,

the learned controller seamlessly handles contact switches

without any additional assumptions as it learns to predict

contact switches using the forward model.

III. PROBLEM FORMULATION AND APPROACH

The goal of model based learning control is to learn a

forward model f of the dynamics of the robot and a con-

troller, or inverse model, g. In general, g can be learned from

data but can also be optimized using trajectory optimization

algorithms see [4], [9], [21] for a variety of approaches of

iteratively learning a model and a controller.

In this work, we propose an algorithm inspired by the

concept of connected forward and inverse models, while

still being able to iteratively collect data and update the

models. We learn a forward model fθ that performs one

step prediction of the form st+1 = fθ(st, τt), where θ are

the parameters of the forward model, st and τt the state

and action at time t. We also learn a controller gβ that

predicts τt = gβ(st, s
∗

t+1), given the current state st and

the desired state s∗t+1. β are the parameters of the controller

and s∗ can be the immediate desired next state, or a final

goal state. We learn both models from data collected on

the robot,while alternating between model learning and data

collection. Algorithm 1 shows the training procedure. We

create a direct connection between fθ and gβ by using the

action predicted by g as an input to f . Since st+1θ,β =
fθ(st, gβ(st, s

∗

t+1)), the next state is a function not only of

the parameters of f but also of g. This means that, using

st+1θ,β we can formulate a loss that enables us to compute

a gradient to update the parameters β of g.

In Figure 1 the coupling of the forward and the inverse

model is illustrated. Using st+1θ,β has the advantage of

representing the actual effect that the action, that was pre-

dicted by g has. In contrast to learning g in a supervised

fashion from collected data, this approach is conceptually

more sound as the correct or desired supervision signal for



the action is usually not available. However the goal of the

task, s∗t+1, is available in the state space.

In model based approaches, forward models and con-

trollers are inherently intertwined: during the training phase,

the forward model predicts the possible next state, and the

controller is learned based on this prediction. The controller

is the acting component of the loop, facilitating data col-

lection on the robot that is used to update the models. It

becomes clear here, that if the forward model prediction is

inaccurate, controller training will fail and the collected data

might not be meaningful for the current task. This brings us

back to one of the major challenges of model based learning,

which is to learn models that are accurate enough to use to

act on a robot.

In the next section, we introduce a new loss function as

well as other, more standard, losses used as comparison. We

propose a loss function for controller learning that ultimately

reduces model bias, by including forward model prediction

error for learning control. As a result, this improves model

prediction and task performance.

A. Learning control via coupled models with joint loss

Our approach (Algorithm 1) alternates between model

learning and data collection. g and f are randomly initialized

at the beginning of the learning loop. Each iteration collects

data using the controller g for the duration of a predefined

horizon T . After the roll-out, the collected data is used to

update both the forward model f and the controller g.

Algorithm 1 Learning control with Coupled Models

1: D ← motor babbling data(st, ut, st+1)
2: fθ ← initialize forward model
3: gβ ← initialize inverse model
4: train model fθ on D
5: train model gβ on D
6: while i < iter do
7: Dnew ← rollout gθ on system(st, ut, st+1)
8: D = D ∪Dnew

9: train model fθ on D with Loss from (1)
10: train model gβ on D with Loss from (2) or (4)
11: end while

To update the forward model, we use a regular supervised

learning objective representing the model prediction error

Lsup(θ) = (fθ(st, τt)− st+1)
2 (1)

where st+1 is the next state observed on the robot and

fθ(st, τt) is the next state predicted by f .

To learn gβ , we propose a loss function joint loss that

trades-off actual robot behavior and control performance

prediction using the forward model. We compare it with two

other, simpler, approaches: one, task loss that only improves

control performance prediction using the forward model and

a supervised approach that does not use the forward model.

1) Comparison - updating g with task loss : The task loss

computes a learning objective by comparing the prediction of

the forward model (that was coupled with the output of gβ):

st+1θ,β = fθ(st, gβ(st, s
∗

t+1)) with the desired next state

s∗t+1

Ltask loss (β) = (fθ(st, gβ(st, s
∗

t+1))− s∗t+1)
2 (2)

This loss evaluates how well the action of g will be able to

achieve the desired state s∗t+1 by using f to predict the next

state. Intuitively, this will lead to the desired behaviour only

if the prediction of the forward model is accurate enough,

making the learned controller susceptible to model-bias and

inaccuracies.
2) Comparison - updating g with supervised loss: Alter-

natively, a general supervised learning loss can be used, of

the form

Linverse sup(β) = (gβ(st, st+1)− τ runt )2 (3)

where st+1 is the observed next state when executing τ runt

on the robot, and τ runt is the output of gβ(st, s
∗

t+1). This loss

is the most common in the literature, especially for inverse

dynamics learning [7], [27]. Linverse sup(β) uses the observed

data to update the controller. In contrast to the task loss and

also our joint loss , this loss is not goal oriented, but purely

tries to learn the state-control relationship by fitting observed

data.
3) Updating g with joint loss : Our proposed joint loss

accounts for the quality of the dynamics model, by adding a

term that compares the predicted next state with the actual

next state.

Ljoint loss (β) = (fθ(st, gβ(st, s
∗

t+1))− s∗t+1)
2

+(fθ(st, gβ(st, s
∗

t+1))− st+1)
2

(4)

where st+1 is the next state observed on the robot. The joint

loss thus evaluates not only how well τβ was able to achieve

the desired next state (as predicted by the forward model),

but also how good the predictive performance of the forward

model actually is. This essentially creates a trade-off between

controller and forward model performance, shifting the data

distribution seen during roll-out towards a solution that is

desirable in reality. In all cases, the parameters of gβ are

then optimized with gradient descent by taking the gradient

∇βL(β).
In the next section, we analyse in details the task loss

and the joint loss . We show why adding the forward model

prediction error benefits the controller, and as a consequence,

also forward model learning. We then experimentally com-

pare in Section IV these losses with the supervised loss, and

show the benefits of our joint loss .

B. Theoretical analysis of loss functions

To show the benefit of including the forward model

prediction error during inverse model learning let’s consider

a simplified 1D example: sp = fθ(s, gβ(s, sd)). Where sp
is the prediction of the forward model fθ, s is the current

state, sa is the actual next state observed on the robot and

sd is the desired next state. gβ computes the action for given

s and sd. In order to update parameters β of g the gradients

that have to be computed are

∇βLtask loss = 2
δfθ

δgβ

δgβ

δβ
(sp − sd) (5)
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