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Variable Horizon MPC with Swing Foot Dynamics

for Bipedal Walking Control

Elham Daneshmand1,2, Majid Khadiv1, Felix Grimminger1, Ludovic Righetti1,3

Abstract—In this paper, we present a novel two-level variable
Horizon Model Predictive Control (VH-MPC) framework for
bipedal locomotion. In this framework, the higher level computes
the landing location and timing (horizon length) of the swing
foot to stabilize the unstable part of the center of mass (CoM)
dynamics, using feedback from the CoM states. The lower
level takes into account the swing foot dynamics and generates
dynamically consistent trajectories for landing at the desired time
as close as possible to the desired location. To do that, we use a
simplified model of the robot dynamics projected in swing foot
space that takes into account joint torque constraints as well
as the friction cone constraints of the stance foot. We show the
effectiveness of our proposed control framework by implementing
robust walking patterns on our torque-controlled and open-
source biped robot, Bolt. We report extensive simulations and
real robot experiments in the presence of various disturbances
and uncertainties.

Index Terms—Humanoid and Bipedal Locomotion, Legged
Robots, Motion Control, Optimization and Optimal Control.

I. INTRODUCTION

HUMANOID robots should be able to walk robustly on

different terrains in the presence of various uncertainties.

Hence, the main goal of a walking controller is to find an

optimal set of contact schedule and feasible contact forces to

robustly achieve a desired task. However, since the system is

hybrid, nonlinear and highly constrained, solving the problem

holistically is extremely hard [1], [2]. That is why most

approaches based on optimal control use simplified dynamic

models and solve multi-stage optimization to enable real-time

computations. The main paradigm to break down the problem

is to first decide the optimal contact sequence [3], [4], [5]

and then optimize over the contact forces [6], [7] sometimes

together with step location and timing adaptation [8].

For bipedal walking on regular surfaces, there is no ambi-

guity in contact sequence, i.e. the role of the stance and swing

foot switches at each walking phase. Therefore, a walking
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controller should decide where and when to step and how

to control highly constrained interaction forces to generate a

desired walking behaviour and reject disturbances. Using the

linear inverted pendulum model (LIPM), a walking controller

can be written as a linear quadratic program that can be solved

quickly [9]. Therefore, Linear Model predictive control (MPC)

has become a powerful tool for controlling bipedal walking

[10], [11], [12], [13], [14]. The optimal control problem (OCP)

solved at each control cycle in these approaches focuses on

the center of mass (CoM) dynamics and investigates how to

stabilize it using force modulation, for predefined or adaptive

step locations and timings. They all consider some proxy

constraints to guide roughly the swing foot to touch the ground

at the desired time and location. However, in order to make

sure that this is the case, one needs to generate a feasible

swing foot trajectory that establishes contact at the desired

time and location, and be consistent with the CoM trajectory

and planned step location and time.

Establishing contact is equivalent to imposing a state depen-

dent switching constraint at a certain time, i.e. the swing foot

should touch the ground at that time. This can be formalized

using a variable horizon MPC (VH-MPC) framework [15],

[16] where the main goal is to establish contact at a certain

time (the horizon length which is a decision variable). In

the VH-MPC framework, a terminal constraint (and cost) is

considered at the end of the horizon, but rather than having

a moving horizon with a fixed duration, the horizon length

changes such that the switching constraint at a certain time

remains a terminal constraint. In the special case where the

time of the terminal constraint is fixed, this frameworks

becomes similar to a shrinking horizon MPC [17], [18].

We argue that VH-MPC is a suitable framework to control

walking of legged robots for two reasons. First, using VH-

MPC, we can stabilize the CoM dynamics by only looking

at the end of the current step (switching surface/manifold),

optimizing both step location and timing, without a need to

consider several steps (switches) in the horizon [13]. Second,

the swing foot should land on the ground at a designed time

and this is a final-value problem after which the swing foot

becomes stance with different control objectives (modulate

force to control the CoM). It is important to note that there

is no reason in general to track a swing foot trajectory, the

only thing that matters is landing at a certain time at a desired

location. That is why VH-MPC with terminal constraints is a

suitable approach to control the swing foot motion.

In this paper, we propose a two-level VH-MPC framework,

where the high-level MPC adapts the next step location and

timing to stabilize the divergent component of motion (DCM)
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of the CoM dynamics, and the low-level MPC takes into

account the swing foot dynamics to land as close as possible

to the planned location at the desired time. For the swing foot

dynamics, we project the dynamics of the robot to the swing

foot space. Since this dynamic model is nonlinear, we use a

linearized version of it. We also take into account the stance

foot friction cone and joint torque constraints to find bounds

on the actuation force that can be (virtually) applied by the

swing foot. Using the swing foot dynamics and constraint on

this actuation force, we write down a VH-MPC problem that

finds a dynamically consistent trajectory for the swing foot to

land at the desired position at the desired time given by the

high-level MPC. Note that in the swing foot MPC problem,

the horizon is given at each control cycle by the high-level

MPC and is not part of the decision variables.

A similar approach to ours has been adopted for controlling

robotic systems with contact in [19], where they showed suc-

cessful ball-bouncing task. Considering the switching manifold

to be the end of the horizon, they formulated an MPC problem

(named first-exit) up to some set of terminal states, and applied

a final cost at the terminal states equal to the differential

cost-to-go for the infinite-horizon problem. However, they

proposed some domain-specific heuristics to find the terminal

cost. Our approach has fundamental differences with respect

to [19], i.e. 1) We propose a set of viability-based terminal

cost and constraint, where the effects of constraints after the

terminal state are also taken into account 2) We use a two-stage

constrained MPC problem with viability guarantees, compared

to [19] that used unconstrained iLQG 3) we use a highly-

underactuated biped robot, and demonstrate an extensive set

of real-world experiments with various disturbances.

The main contributions of the paper are as follows:

• We propose a two-level VH-MPC framework that takes

into account both the CoM and swing foot dynamics to

control bipedal walking.

• We compare our proposed swing foot trajectory genera-

tion to polynomial based approach used in the literature.

• We demonstrate an MPC walking controller with both

step location and timing adaptation on a real biped robot

with passive ankles.

• We present walking experiments on uneven, soft, and

slippery surfaces using our two-level VH-MPC on a robot

without actuated ankles.

A block diagram of the full control pipeline proposed in this

paper is shown in Fig. 1. The paper is structured as follows:

Section II briefly summarizes the high-level MPC problem

that finds optimal step location and timing. In Section III, we

present the procedure of projecting the robot dynamics to the

swing foot and formulating its corresponding MPC problem.

In Section IV, we summarize the whole control pipeline we

use in the paper. In Section V, we present an extensive set

of simulation and experimental results. Finally, Section VI

concludes the findings.

Fig. 1. Block diagram of the control pipeline

II. FOOT LOCATION AND TIMING ADJUSTMENT

Using the CoM and DCM as states, the LIPM dynamics

can be written as [20]

ċ = ω0(ξ − c) (1a)

ξ̇ = ω0(ξ − u0) (1b)

where c ∈ R
2 is the CoM horizontal position (CoM height

has a fixed value z0), and ξ = (c + ċ/ω0) ∈ R
2 is the 2D-

DCM. u0 ∈ R
2 is the CoP position, and in case of point

contact feet, u0 is identical to the contact point. ω0 is the

natural frequency of the pendulum (ω0 =
√

g/z0, where g
is the gravity constant). Equation (1) explicitly separates the

stable and unstable parts of the LIPM dynamics, where the

CoM converges to the DCM (1a) and the DCM is pushed

away by the CoP (1b).

To stabilize the DCM dynamics, we proposed in [13] to

adapt the next step location and timing of the swing foot based

on the DCM measurement ξmea using

minimize
uT ,Γ,bT

α1‖uT − u0 −
[
lnom
wnom

]

‖2 + α2|Γ− Γnom|2

+ α3‖bT −
[
bx,nom
by,nom

]

‖2 (2a)

s.t.

[
lmin

wmin

]

≤ uT − u0 ≤
[
lmax

wmax

]

(2b)

eω0Tmin ≤ Γ ≤ eω0Tmax (2c)

uT + bT = (ξmea − u0)e
−ω0tΓ + u0 (2d)

Γ ≥ Γ0 e
ω0t (2e)

[
bx,min

by,max,out

]

≤ bT ≤
[

bx,max

by,max,in

]

(2f)

where bT = ξT − uT is the DCM offset, Γ = eω0T is

an exponential transformation of the step time T . u0 and uT

are the current and next step locations, while l and w are the

step length and width, respectively. Γ0 = eω0T0 , where T0 is a

minimum time required for the swing foot to touch the ground,

given its current state (see section III-D for computing Γ0).

Subscript nom stands for the nominal value and in and out
are the inward and outward lateral directions [13].

The three cost terms in (2a) try to bring the gait variables to

their nominal values which correspond to a desired walking

velocity. Constraints (2b) , (2c) are box constraints on the

location and (exponential of) time of the step. Equation (2d)

is the DCM dynamics which is linear as a function of next step
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location and (exponential of) time and DCM offset. (2e) is a

new constraint we define in this paper to prevent the planner to

ask for an instantaneous step in the presence of uncertainties.

Finally, (2f) is the viability constraint on the DCM offset which

is implemented in practice as a soft constraint to make sure

that the program always find a feasible solution, even if the

system is not viable [13]. Note that since we consider contact

switch as the terminal state of (2) (and not a fixed horizon

starting from the current time), the tail of the optimal control

problem can be written using only the boundary of the gait

values, i.e. Tmin and lmax to find viability bounds bmin/max.

Hence, we can write state-independent viability constraint at

the end of the horizon which ensures viability (weak forward

invariance) of the gait.

The last cost term and constraint on the DCM offset have

crucial role in our walking controller. The former incentivizes

the DCM offset toward a desired offset that corresponds to

a desired walking velocity, while the latter ensures viability

of the gait, i.e. there exist at least a set of feasible steps into

the future by which the robot can prevent a fall. Solving (2)

at each control cycle using the current measurement of the

DCM yields the next step location and timing that should be

realized by the swing foot trajectory. Since the step time is

a decision variable, the horizon can be potentially adapted to

preserve viability. Hence, (2) as the high-level MPC problem

of our framework is a VH-MPC.

III. PROJECTED SWING FOOT DYNAMICS

In this section, we examine the structure of the robot

dynamics projected to the swing foot space. The main goal is

to find a dynamic model with minimum simplification based

on which we adapt the swing foot trajectories in real-time.

The dynamics of a floating-base system can be written as

M(q)v̇ + h(q,v) = Bτ + JT
c λ (3)

where M ∈ R
(n+6)×(n+6) is the robot mass matrix, q ∈

SE (3) × R
n denotes the configuration space, v ∈ R

n+6

encodes the vector of generalized velocities (or more precisely

quasi-velocities [21]), h ∈ R
n+6 is a concatenation of non-

linear terms including centrifugal, Coriolis and gravitational

effects. B ∈ R
(n+6)×n is a selection matrix that separates the

actuated and unactuated Degrees of Freedom (DoFs), τ ∈ R
n

is the vector of actuating torques, Jc ∈ R
3m×(n+6) is the

Jacobian of m foot in contact, and finally λ ∈ R
3m is the

vector of contact forces (here we assume point-contact feet).

For bipedal walking, we assume one of the robot’s feet is in

stationary contact with the ground. With this assumption, we

can write down the constraint-consistent projected dynamics

of the robot to the swing foot as [22]

Λcẍ
︸︷︷︸

Inertia

+Λc(JM
−1
c Ph− (J̇ + JM−1

c Ṗ )v)
︸ ︷︷ ︸

nonlinear terms

= f (4)

where x ∈ R
3 is the swing foot position and P is the

orthogonal projection operator I−J†
cJc (where † stands for the

Moore-Penrose inverse) which is a mapping to the nullspace

of the contact constraint and Ṗv = −J†
c J̇cv. Note that J ∈

R
3×(n+6) is the swing foot Jacobian which is different from

Jc (the stance foot Jacobian). The constraint inertia matrix is

denoted by Mc = PM + I −P and Λc = (JM−1
c PJT )−1 is

the apparent mass at the swing foot. In this equation, f is the

the swing foot actuation force, i.e. if the swing foot were to

apply a force (virtually) to the environment, how much force

it could exert without violating the stance foot constraints and

it can be derived as

f = ΛcJM
−1
c PBτ (5)

Given the friction cone constraints of the stance foot and joint

torque limits, the actuation force to move the swing foot is

constrained. In the sequel we find an approximation of these

constraints and a simplified dynamics of the swing foot that

can be used to generate dynamically consistent swing foot

trajectories.

A. Simplified swing foot dynamics

The swing foot dynamics (4) is highly nonlinear as a

function of the robot configuration. As a result, using this

dynamic model in MPC leads to a nonlinear and non-convex

optimization problem that needs several iterations to be solved

and it might get stuck in undesired local minima. However,

we need to be able to regenerate the swing foot trajectory

quickly based on the updated landing location and time from

the high-level DCM planner. Hence, we resort to a simplified

linear dynamics of the foot in the reachable area of the swing

foot.

To be able to compare the effects of different terms in (4),

we used the approach in [13] and generated different swing

foot trajectories using polynomials in simulation for different

walking velocities. Note that we did all the simulations on

the robot we study in this paper, Bolt (the robot weight

is roughly 12.5N). We exerted to the robot CoM random

disturbances at the start of each step, −2N < Fx, Fy < 2N
and −1N < Fz < 1N, and reset the simulation if the robot

would fall down. We used the whole body controller (WBC)

in [23] to map the trajectories to joint torques and apply them

in simulation. With this strategy, We generated 1300 samples

(corresponding to 50 walking steps with different timings) to

approximate the swing foot dynamics. For these experiments,

we set the following bounds for steps : lmin = −0.12m,

lmax = 0.12m, wmin = −0.1m, wmax = 0.3m, Tmin =
0.1 s, Tmax = 0.3 s. Furthermore, we randomly changed the

nominal step time in the range Tmin < Tnom < Tmax. Due

to the exerted random disturbances, the robot needs to step in

different directions while respecting the kinematic constraints.

Using the state trajectories at each time, we compute the

effects of different terms. In Fig. 2 we show the contribution of

the inertia and nonlinear terms to the swing foot dynamics for

50 different swing phase (different landing location and time).

As we can see in Fig. 2, inertia is the main effect in swing

foot dynamics while the nonlinear terms remain relatively

constant. In an effort to simplify the swing foot dynamics,

we approximate all the nonlinear terms with a constant term

hc.

Now, we inspect further the swing foot mass matrix struc-

ture and plot its variation as a function of the robot con-

figuration, in the range of swing foot motion that we are
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interested in. As the mass matrix is symmetric, we only need

to examine the diagonal and upper(or lower)-triangular part

of the matrix. In Fig. 3, we plotted the components of the

swing foot mass matrix, for the same set of motions we used

to compare inertial and nonlinear effects. As we can see in this

figure, the projected mass matrix components do not change

significantly during one step, hence we propose to use the

following linear dynamics to be used inside a linear MPC

problem for the swing foot.

f = Λẍ+ hc (6)

where the components of Λ and hc are constant.

Fig. 2. inertial vs nonlinear effects at the swing foot for a set of 50 different
landing location and time

Fig. 3. Mass matrix elements for 50 different landing location and time; the
mean value of each component is specified by red.

B. Constraints on the swing foot actuation force

In this section, we use the intermediate variable swing foot

actuation force f to denote the feasible actuation that can be

applied to the swing foot, given the joint torque limits and the

stance foot friction cone constraints. By defining this variable,

we would like to emphasise that the mass matrix projected to

the swing foot is not diagonal in general (as we have seen

in Section III-A) and enforcing constraints on the swing foot

acceleration in different directions does not account for this.

In fact, a linear combination of the swing foot accelerations

should be limited, where this coupling is given by the swing

foot mass matrix.

The idea is to use the set of different configurations we

considered in the previous section and construct the following

Linear program (LP) to find the boundaries of the forces that

can be applied by the swing foot without violating any of the

constraints at each configuration

minimize
τ

cost , sTf = sTΛcJM
−1
c PBτ (7a)

s.t. ρz + ηz ≥ 0 (7b)

|(ρx + ηx)| ≤
√
2

2
µ(ρz + ηz) (7c)

|(ρy + ηy)| ≤
√
2

2
µ(ρz + ηz) (7d)

τmin ≤ τ ≤ τmax (7e)

In this equation, ρ = −(JT
c )†(I − P )((I −MM−1

c P )h +
MM−1

c Ṗv) and η = −(JT
c )†(I−P )(I−MM−1

c P )Bτ [24].

µ is the friction coefficient and s ∈ R
3 in (7a) is a selection

vector whose one of elements is either +1 or −1, and the rest

are zero. By iterating over all six possibilities, we can compute

the maximum and minimum actuation force at the swing foot

in each direction, for a given configuration. The constraints of

the problem are unilaterality of contact (7b), linearized friction

cone constraints of the stance foot (7c), (7d), and the joint

torque limits (7e).

We solved (7) for the same set of trajectories we used in

Section III-A. Figure 4 shows the time history of the maximum

and minimum of the swing foot actuation force in each

direction. We also found the worst-case of the approximate

bounds in (7) over all explored configurations and specified

by red lines in Fig. 4. The computed state-independent bounds

on the maximum and minimum forces will be used inside

an MPC problem in the next subsection to generate swing

foot trajectories. Note that for solving (7) we set the friction

coefficient to µ = 0.5, and the minimum and maximum joint

torques to −2N.m and 2N.m which are robot-dependent.

Remark 1: What we did in Section III-A and III-B is

similar to [25] in that we simulate the robot using a candidate

controller and use the generated data to find interpretable

heuristics. However, as opposed to [25] that extracts heuristics

to regularize the optimization problem cost function for dif-

ferent desired behaviors, we find a linear model in the swing

foot space (with corresponding constraints) and use it to find

dynamically consistent swing foot trajectories. Furthermore, in

this paper we are tackling the bipedal locomotion problem with

passive ankles which is far more unstable than a quadruped

locomotion problem. Hence, it is crucial to control the swing

foot landing location and time precisely to have a stable gait.

C. Proposed foot trajectory generator

In this section, we formulate the swing foot reactive trajec-

tory generation problem as a VH-MPC. The main goal of this
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Fig. 4. Maximum and minimum actuation force at the swing foot for 50
different landing location and time; the worst case of these approximated
upper/lower bounds is specified by red.

MPC is to bring the swing foot on the ground at the desired

time computed by (2) and to be as close as possible to the

desired foot location.

We use the simplified swing foot dynamics in (6) and the

approximation of the force boundaries computed based on (7).

We write then the following VH-MPC to find optimal force

applied to the swing foot to land on the ground at a desired

time and as close as possible to the desired location

minimize
f

i

N∑

i=1

α1‖f i‖2 + α2‖xN − xf‖2 + ...

α3‖ẋN − ẋf‖2 + α4‖z(
T

2
)− zmid‖2 (8a)

s.t. xi = Aixmea +
i∑

j=1

Ai−jB
(
(f j − hc)Λ

−1
c

)T
(8b)

fmin ≤ f i ≤ fmax , ∀i = 1, ..., N. (8c)

zmin ≤ zi ≤ zmax , ∀i = 1, ..., N. (8d)

zf = 0 , żf = 0 (8e)

where A and B are obtained, writing (6) in standard discrete

state space form. f i is the applied force at the swing foot at

i’th node in the horizon, x = [x, y, z]T and ẋ = [ẋ, ẏ, ż]T

are the swing foot position and velocity and subscripts f and

mea stand for the end of the current step (horizon) and the

measured value, respectively. zmid is the desired step height.

Note that in this program, only the terminal state of the swing

foot in vertical direction is a constraint which ensures landing

at the desired time.

D. The minimum landing time

Depending on the current state of the swing foot, a mini-

mum time can be computed that ensures landing the foot on

the ground, given the constraints on the swing foot actuation

force. This minimum time is used in (2e) to make sure that

(2) does not ask for a contact time that is not possible to be

realized by the swing foot in (8). We compute this minimum

time using the following program

minimize
f

i
,i

i (9a)

s.t. xi = Aixmea +

i∑

j=1

Ai−jB
(
(f j − hc)Λ

−1
c

)T
(9b)

fmin ≤ f i ≤ fmax , ∀i = 1, ..., N. (9c)

zf = 0 , żf = 0 (9d)

Equation (9) is a very simple mixed-integer program (i
is an integer variable) that can be solved very fast. In our

experiments, we used a simple approach to solve this program;

we start from zero and increase i and solve (9) until the

program becomes feasible. In our experiments, such a brute-

force approach to solve (9) took in worst case around 1µs.

IV. FULL CONTROL PIPELINE

In this section, we summarize the full control pipeline we

use in this paper. The main parts of our control pipeline are

two VH-MPC problems (2) and (8) that reactively update the

next contact location and time, and accordingly the swing foot

trajectory (see Fig. 1). The generated trajectories then are fed

into a WBC to compute the joint torques. We used in this

paper the task-space impedance controller we proposed in [23]

as a WBC. Note that we use the coordinate frame attached to

the stance foot as the reference frame and conduct all the

computations in this frame at each step.

After specifying the desired walking velocity and nominal

gait parameter (step length, width, time, ...), the first step of our

framework uses (9) to compute the minimum time required for

the swing foot to land on the ground. Then, (2) is executed to

find the optimal step location and timing of the step, given the

current measurement of the DCM. This stage is formulated as

a VH-MPC where the MPC horizon (step timing) is a decision

variable. The resulting step location and timing are then used

to generate a swing foot trajectory using the swing foot MPC

(8). The goal in the swing foot MPC is to realize landing

of the foot at the time that is planned by the first stage, as

close as possible to the desired position. In this stage we

also have a VH-MPC, but the horizon is not decided by the

MPC itself and it is set by the first stage MPC. Finally, the

resulting trajectories are passed to the WBC [23] to compute

joint torques (see Fig. 1).

Remark 2: The main reason behind splitting the problem

into two MPC problems is that one holistic MPC that finds

both the swing foot trajectory and optimal step location and

timing would result in either a mixed-integer program or a

non-convex problem. A mixed-integer program is not suitable

for real-time applications because of its combinatorial com-

plexity. A non-convex optimization needs several iterations to

converge and may get stuck in a poor local minimum. We

prefer our two-level MPC despite the fact that it is sub-optimal,

because 1) it can be solved in real-time inside MPC 2) it

always finds a feasible solution using the minimum time (9)

as a constraint in (2).
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V. RESULTS

In this section, we first present a comparison between our

proposed approach for swing foot trajectory generation to a

polynomial-based trajectory generation approach. Then, we

show an extensive set of real robot experiments demonstrating

the capability of our framework in generating robust walking

motions in the presence of various disturbances and uncertain-

ties. For all the experiments, we ran our proposed two-level

MPC at 100Hz and the WBC at 1 kHz.

A. Swing foot trajectories comparison

1) Case study: To compare qualitatively the performance of

our proposed MPC-based swing foot trajectory generation (8)

to a standard polynomial-based one [13], we consider a push

recovery scenario in simulation. We did a simulation where

the robot steps in place and is pushed laterally by an impulse

of 10N.s, at t = 0.6 s.
All components of the control pipeline are exactly the

same, except the swing foot trajectory generation part. For the

polynomial-based swing foot trajectory generation, we param-

eterize the trajectories in horizontal directions using minimum-

jerk (5th order) polynomials and find the unique coefficients

that connect the current position, velocity and acceleration of

the swing foot to the end position with zero velocity and

acceleration. For the vertical direction, we construct a QP

with inequality constraints (the foot height should remain in

a certain bound) to find the coefficients of the polynomial. In

the case that the corresponding problem gets infeasible, we

use the solution of the previous iteration and shift it by one

sample time. Compared to the heuristics used in [13] that we

would not update the gait values at the instances close to the

end of the step, here we use this simple but more systematic

and practical strategy of shifting the previous solutions and

this was enough to always have a feasible solution in our

experiments.

Figure 5 compares the resulting swing foot tracking perfor-

mance of the two approaches. As we can see, after the push is

exerted at t = 0.6 s, the next step location is updated using (2).

Since the polynomial-based swing foot trajectory generation

(left figure) gets infeasible at this time, the solution in the

previous iteration is used. This causes a discrepancy between

the desire landing point asked by (2) and the end point of

the trajectory. This is enough for the robot to get unstable and

fall down. However, using our novel MPC-based approach (8),

the swing foot is adapted after the disturbance as much as the

constraints allow and the robot is able to recover from the

disturbance.

2) Systematic comparison: To compare systematically the

two approaches, we conducted 450 walking steps simulation

with different pushes sampled inside the range of ±1.5N.s
for the horizontal directions and ±0.75N.s in the vertical

direction. Note that this range is small compared to the

disturbance we exerted in the previous subsection (10N.s). In

case of large disturbances, the robot might lose its balance and

this would make it difficult to compare the landing location and

time of the swing foot between two approaches. We already

showed in the previous subsection that in the case of a large

Fig. 5. Comparison between swing foot trajectories in the y direction
generated using polynomials (left) and proposed MPC (8) (right).

disturbance, our approach clearly outperforms the polynomial-

based trajectory generation approach.

As we can see in Fig. 6, in both x and y directions,

the error in landing location of our approach is less than

the polynomial-based trajectory generation. Note that error in

landing location can not only cause a degradation in velocity

tracking (performance), but it may also jeopardize stability.

More important than landing location error, landing time error

of the swing foot in our approach is significantly lower than

polynomial-based approach (see Fig. 7). Landing time error

has a very important role on realization of the gait, i.e. early

landing can cause high impact forces, while late landing can

cause high acceleration of the foot once the gait phase changes,

given that the controller is not event-based.

Fig. 6. Landing location error for 450 walking steps simulation with random
pushes sampled inside the range of ±1.5N.s for the horizontal directions and
±0.75N.s for the vertical direction. The mean values for each approach are
shown by dashed lines with the same colour.

B. Real robot experiment

We implemented our proposed framework shown in Fig.

1 on Bolt, our new open-source biped robot. Bolt has been

designed and fabricated using the 3D-printing technology and

proprioceptive actuator concept that gives transparency in the

drive system for torque-control proposed in [23]. Each leg of

Bolt has 3 active DoFs (2 in hip and one in knee) together

with a passive ankle joint similar to [26].
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Fig. 7. Landing time error for 450 walking steps simulation with random
pushes sampled inside the range of ±1.5N.s for the horizontal directions
and ±0.75N.s for the vertical direction. The mean values for each approach
are shown by dashed lines with the same colour.

Bolt is capable of very dynamic movements and fast step-

ping, which renders the swing foot dynamics non negligible.

We believe that this was the main reason we were not

able to implement the polynomial-based swing foot trajectory

generation on the real robot. In fact, as the statistical compar-

ison showed in the previous subsection, the polynomial-based

swing foot trajectory generation introduces large errors in the

landing location and time of the swing foot which can explain

our failure to implement it on the inherently highly unstable

biped robot Bolt. Hence, in this subsection we only present and

analyze different real robot demonstrations with the approach

presented in the paper.

We considered 5 different scenarios for our experiments that

we will explain briefly in the following. Note that we use the

exact same controller parameters for all these experiments.

The snapshots of the experiments are shown in Fig. 8. The

accompanying video illustrates the experiments.

1) Forward/Backward walking: The robot is commanded

to walk forward and backward on a flat surface with a desired

velocity. Through this test we showed that our feedback con-

trol based on simplified models is robust enough to stabilize

walking motion for a long time. As it can be seen in the video,

the robot is able to walk forward and backward for 10 minutes

without any problem.

2) Walking on uneven surfaces: We commanded stepping

in place (zero desired velocity) on an uneven surface where

the surface height is varied up to 4 cm. The walking controller

does not have any notion of the height variations; however,

thanks to the adaptation of the step location and time and

compliance due to torque-control, the robot can successfully

step on surfaces with unknown heights.

3) Walking on soft surfaces: Bolt performs in-place step-

ping on a soft surface (sponge, see the video). This surface is

specially challenging, as the stance foot does not remain fixed

but oscillates due to the surface compliance. These oscillations

would magnify shaking of the robot due to the structural

flexibility. Although the robot would start shaking at some

instances of the motion, the controller was able to damp them

and the robot could successfully step on this surface without

any instability.

4) Push recovery: In this scenario, we exert external forces

to the robot’s pelvis in different direction, at different times

of a step and in different directions. Thanks to the fast update

of the control loop, the robot quickly reacts to the pushes and

adapts both step location and timing to recover. We performed

push recovery scenarios both in sagittal and lateral directions.

5) Slippage recovery: In the last scenario, the robot per-

forms stepping on a surface that can slide on the ground. We

disturbed this surface in different directions randomly during

stepping, and the robot again was able to adapt the landing

location and time of the swing foot to preserve its balance.

Finally, in Fig. 9, we show the statistics of the error between

the desired and measured landing locations for all the walking

steps of the experiments through a box plot for both frontal and

lateral directions. Note that since the data were skewed (i.e.

they are far from being normally distributed), we used a box

and whisker plot. As we can see in the figure, the medians for

all the tests in both directions are below 20 mm which shows

the good performance of our controller (the robot leg length

in fully stretched configuration is roughly 450 mm).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a two-level variable horizon

MPC to control bipedal walking. In the high level, given the

current state of the CoM, the landing location and time of

the swing foot is decided. In the the lower level, the swing

foot trajectory is adapted such that the swing foot lands on

the ground at the desired time, as close as possible to the

desired location. We integrated this two-level VH-MPC with

an impedance-based WBC to compute torque commands to

the robot. We conducted an extensive set of simulations and

experiments through which we demonstrated the capabilities

and robustness of our proposed control framework.

In future work, we plan to generalize our proposed approach

to more general motions, i.e. 3D walking and running on

more challenging terrains (e.g. stepping stones with different

heights). We propose two different approaches to do this. The

first approach is to perform a wider range of motions including

walking and running on different surfaces in simulation and

estimate the swing foot dynamics using the same approach we

used in this paper. An alternative approach is to use the step

location and time from the first stage and use a whole body

MPC problem [27] with the given contact properties as the

terminal constraint/cost.

Extending our framework by adding collision avoidance to

the swing foot MPC problem is another interesting direction

to investigate. Since we are solving an MPC with the position

of the foot as decision variable in the QP, collision avoidance

can be dealt with using inequality constraints on the states at

all times in the horizon.

Another interesting extension of the current work is alter-

nating between the two levels of the MPC such that they come
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Fig. 8. Snapshots of the experiments, from left to right: 1) forward walking, 2) uneven surface, 3) soft surface, 4) push recovery, 5) slippage
recovery.

Fig. 9. Box plot of the error between the desired and measured step locations
for all the walking steps of the tests for both frontal and lateral directions

to a consensus in terms of contact location and timing at each

control cycle. Finally, our approach with contact switch as a

terminal constraint can be easily generalized to an event-based

controller where the switch in the gait phase is triggered at the

detection of swing foot contact.
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N. Mansard, “An efficient acyclic contact planner for multiped robots,”
IEEE Transactions on Robotics, vol. 34, no. 3, pp. 586–601, 2018.

[5] Y.-C. Lin, B. Ponton, L. Righetti, and D. Berenson, “Efficient humanoid
contact planning using learned centroidal dynamics prediction,” in 2019

International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 5280–5286.

[6] H. Dai and R. Tedrake, “Planning robust walking motion on uneven
terrain via convex optimization,” in Humanoid Robots (Humanoids),

2016 IEEE-RAS 16th International Conference on. IEEE, 2016, pp.
579–586.

[7] J. Carpentier and N. Mansard, “Multicontact locomotion of legged
robots,” IEEE Transactions on Robotics, vol. 34, no. 6, pp. 1441–1460,
2018.

[8] B. Ponton, M. Khadiv, A. Meduri, and L. Righetti, “Efficient multi-
contact pattern generation with sequential convex approximations of the
centroidal dynamics,” IEEE Transactions on Robotics, pp. 1–19, 2021.

[9] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa, “Biped walking pattern generation by using preview
control of zero-moment point,” in Robotics and Automation (ICRA),

IEEE International Conference on. IEEE, 2003, pp. 1620–1626.

[10] P. B. Wieber, “Trajectory free linear model predictive control for stable
walking in the presence of strong perturbations,” in 2006 6th IEEE-

RAS International Conference on Humanoid Robots. IEEE, 2006, pp.
137–142.

[11] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and
M. Diehl, “Online walking motion generation with automatic footstep
placement,” Advanced Robotics, vol. 24, no. 5-6, pp. 719–737, 2010.

[12] S. Feng, X. Xinjilefu, C. G. Atkeson, and J. Kim, “Robust dynamic
walking using online foot step optimization,” in Intelligent Robots and

Systems (IROS), 2016 IEEE/RSJ International Conference on. IEEE,
2016, pp. 5373–5378.

[13] M. Khadiv, A. Herzog, S. A. A. Moosavian, and L. Righetti, “Walk-
ing control based on step timing adaptation,” IEEE Transactions on

Robotics, 2020.
[14] H. Jeong, I. Lee, J. Oh, K. K. Lee, and J.-H. Oh, “A robust walking

controller based on online optimization of ankle, hip, and stepping
strategies,” IEEE Transactions on Robotics, vol. 35, no. 6, pp. 1367–
1386, 2019.

[15] R. C. Shekhar and J. M. Maciejowski, “Robust variable horizon mpc
with move blocking,” Systems & Control Letters, vol. 61, no. 4, pp.
587–594, 2012.

[16] G. Mirzaeva and G. C. Goodwin, “Harmonic suppression and delay com-
pensation for inverters via variable horizon nonlinear model predictive
control,” International Journal of Control, vol. 88, no. 7, pp. 1400–1409,
2015.

[17] S. S. Farahani, R. Majumdar, V. S. Prabhu, and S. Soudjani, “Shrinking
horizon model predictive control with signal temporal logic constraints
under stochastic disturbances,” IEEE Transactions on Automatic Control,
vol. 64, no. 8, pp. 3324–3331, 2018.

[18] H. Farooqi, L. Fagiano, P. Colaneri, and D. Barlini, “Shrinking horizon
parametrized predictive control with application to energy-efficient train
operation,” Automatica, vol. 112, p. 108635, 2020.

[19] P. Kulchenko and E. Todorov, “First-exit model predictive control of fast
discontinuous dynamics: Application to ball bouncing,” in 2011 IEEE

International Conference on Robotics and Automation. IEEE, 2011,
pp. 2144–2151.

[20] J. Englsberger, C. Ott, and A. Albu-Schaffer, “Three-dimensional bipedal
walking control based on divergent component of motion,” IEEE Trans-

actions on Robotics, vol. 31, no. 2, pp. 355–368, 2015.
[21] H. Baruh, Analytical dynamics. WCB/McGraw-Hill Boston, 1999.
[22] M. Mistry and L. Righetti, “Operational space control of constrained and

underactuated systems,” Robotics: Science and systems VII, pp. 225–232,
2012.

[23] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich,
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