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Variable Horizon MPC with Swing Foot Dynamics
for Bipedal Walking Control
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Abstract—In this paper, we present a novel two-level variable
Horizon Model Predictive Control (VH-MPC) framework for
bipedal locomotion. In this framework, the higher level computes
the landing location and timing (horizon length) of the swing
foot to stabilize the unstable part of the center of mass (CoM)
dynamics, using feedback from the CoM states. The lower
level takes into account the swing foot dynamics and generates
dynamically consistent trajectories for landing at the desired time
as close as possible to the desired location. To do that, we use a
simplified model of the robot dynamics projected in swing foot
space that takes into account joint torque constraints as well
as the friction cone constraints of the stance foot. We show the
effectiveness of our proposed control framework by implementing
robust walking patterns on our torque-controlled and open-
source biped robot, Bolt. We report extensive simulations and
real robot experiments in the presence of various disturbances
and uncertainties.

Index Terms—Humanoid and Bipedal Locomotion, Legged
Robots, Motion Control, Optimization and Optimal Control.

I. INTRODUCTION

UMANOID robots should be able to walk robustly on
different terrains in the presence of various uncertainties.
Hence, the main goal of a walking controller is to find an
optimal set of contact schedule and feasible contact forces to
robustly achieve a desired task. However, since the system is
hybrid, nonlinear and highly constrained, solving the problem
holistically is extremely hard [1], [2]. That is why most
approaches based on optimal control use simplified dynamic
models and solve multi-stage optimization to enable real-time
computations. The main paradigm to break down the problem
is to first decide the optimal contact sequence [3], [4], [5]
and then optimize over the contact forces [6], [7] sometimes
together with step location and timing adaptation [8].
For bipedal walking on regular surfaces, there is no ambi-
guity in contact sequence, i.e. the role of the stance and swing
foot switches at each walking phase. Therefore, a walking
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controller should decide where and when to step and how
to control highly constrained interaction forces to generate a
desired walking behaviour and reject disturbances. Using the
linear inverted pendulum model (LIPM), a walking controller
can be written as a linear quadratic program that can be solved
quickly [9]. Therefore, Linear Model predictive control (MPC)
has become a powerful tool for controlling bipedal walking
[10], [11], [12], [13], [14]. The optimal control problem (OCP)
solved at each control cycle in these approaches focuses on
the center of mass (CoM) dynamics and investigates how to
stabilize it using force modulation, for predefined or adaptive
step locations and timings. They all consider some proxy
constraints to guide roughly the swing foot to touch the ground
at the desired time and location. However, in order to make
sure that this is the case, one needs to generate a feasible
swing foot trajectory that establishes contact at the desired
time and location, and be consistent with the CoM trajectory
and planned step location and time.

Establishing contact is equivalent to imposing a state depen-
dent switching constraint at a certain time, i.e. the swing foot
should touch the ground at that time. This can be formalized
using a variable horizon MPC (VH-MPC) framework [15],
[16] where the main goal is to establish contact at a certain
time (the horizon length which is a decision variable). In
the VH-MPC framework, a terminal constraint (and cost) is
considered at the end of the horizon, but rather than having
a moving horizon with a fixed duration, the horizon length
changes such that the switching constraint at a certain time
remains a terminal constraint. In the special case where the
time of the terminal constraint is fixed, this frameworks
becomes similar to a shrinking horizon MPC [17], [18].

We argue that VH-MPC is a suitable framework to control
walking of legged robots for two reasons. First, using VH-
MPC, we can stabilize the CoM dynamics by only looking
at the end of the current step (switching surface/manifold),
optimizing both step location and timing, without a need to
consider several steps (switches) in the horizon [13]. Second,
the swing foot should land on the ground at a designed time
and this is a final-value problem after which the swing foot
becomes stance with different control objectives (modulate
force to control the CoM). It is important to note that there
is no reason in general to track a swing foot trajectory, the
only thing that matters is landing at a certain time at a desired
location. That is why VH-MPC with terminal constraints is a
suitable approach to control the swing foot motion.

In this paper, we propose a two-level VH-MPC framework,
where the high-level MPC adapts the next step location and
timing to stabilize the divergent component of motion (DCM)
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of the CoM dynamics, and the low-level MPC takes into
account the swing foot dynamics to land as close as possible
to the planned location at the desired time. For the swing foot
dynamics, we project the dynamics of the robot to the swing
foot space. Since this dynamic model is nonlinear, we use a
linearized version of it. We also take into account the stance
foot friction cone and joint torque constraints to find bounds
on the actuation force that can be (virtually) applied by the
swing foot. Using the swing foot dynamics and constraint on
this actuation force, we write down a VH-MPC problem that
finds a dynamically consistent trajectory for the swing foot to
land at the desired position at the desired time given by the
high-level MPC. Note that in the swing foot MPC problem,
the horizon is given at each control cycle by the high-level
MPC and is not part of the decision variables.

A similar approach to ours has been adopted for controlling
robotic systems with contact in [19], where they showed suc-
cessful ball-bouncing task. Considering the switching manifold
to be the end of the horizon, they formulated an MPC problem
(named first-exit) up to some set of terminal states, and applied
a final cost at the terminal states equal to the differential
cost-to-go for the infinite-horizon problem. However, they
proposed some domain-specific heuristics to find the terminal
cost. Our approach has fundamental differences with respect
to [19], i.e. 1) We propose a set of viability-based terminal
cost and constraint, where the effects of constraints after the
terminal state are also taken into account 2) We use a two-stage
constrained MPC problem with viability guarantees, compared
to [19] that used unconstrained iLQG 3) we use a highly-
underactuated biped robot, and demonstrate an extensive set
of real-world experiments with various disturbances.

The main contributions of the paper are as follows:

o We propose a two-level VH-MPC framework that takes
into account both the CoM and swing foot dynamics to
control bipedal walking.

o We compare our proposed swing foot trajectory genera-
tion to polynomial based approach used in the literature.

o We demonstrate an MPC walking controller with both
step location and timing adaptation on a real biped robot
with passive ankles.

o« We present walking experiments on uneven, soft, and
slippery surfaces using our two-level VH-MPC on a robot
without actuated ankles.

A block diagram of the full control pipeline proposed in this
paper is shown in Fig. 1. The paper is structured as follows:
Section II briefly summarizes the high-level MPC problem
that finds optimal step location and timing. In Section III, we
present the procedure of projecting the robot dynamics to the
swing foot and formulating its corresponding MPC problem.
In Section IV, we summarize the whole control pipeline we
use in the paper. In Section V, we present an extensive set
of simulation and experimental results. Finally, Section VI
concludes the findings.

Minimum Xmea
landing time (9)

Ty
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Fig. 1. Block diagram of the control pipeline

II. FOOT LOCATION AND TIMING ADJUSTMENT
Using the CoM and DCM as states, the LIPM dynamics
can be written as [20]
(1a)
(1b)

c=wy(€ —c)
& = wo(€ — uo)

where ¢ € R? is the CoM horizontal position (CoM height
has a fixed value zp), and £ = (¢ + ¢/wp) € R? is the 2D-
DCM. uo € R? is the CoP position, and in case of point
contact feet, ug is identical to the contact point. wq is the
natural frequency of the pendulum (wo = +/g/z0, Where g
is the gravity constant). Equation (1) explicitly separates the
stable and unstable parts of the LIPM dynamics, where the
CoM converges to the DCM (la) and the DCM is pushed
away by the CoP (1b).

To stabilize the DCM dynamics, we proposed in [13] to
adapt the next step location and timing of the swing foot based

on the DCM measurement &,,., using

e lnom 2 2
_ _ Ir-r
Il:llLI;I}lEI)I;:Zre a1 |lur — ug [wnom] I* 4+ 2] nom|
bz nom
+ Oég”bT — |:b ’ :l ||2 (2a)
y,nom
S,t, lmin < ’U,T _ ’U,O < lmuw (Zb)
Wmin | T | Wmaa
ewoTmin <Ir< ewoTmax (2¢)
ur + bT = (gmea - u0)67WOtr +uo (Zd)
[ >Tge! (2e)
be mi b
z,min <bp< |: z,max :| 2f)
|:by7ma;v7out:| by,ma%in

where by = &£ — ur is the DCM offset, I' = e“oT s
an exponential transformation of the step time 7'. ug and ur
are the current and next step locations, while [ and w are the
step length and width, respectively. I'y = e<°70, where T} is a
minimum time required for the swing foot to touch the ground,
given its current state (see section III-D for computing T'y).
Subscript nom stands for the nominal value and in and out
are the inward and outward lateral directions [13].

The three cost terms in (2a) try to bring the gait variables to
their nominal values which correspond to a desired walking
velocity. Constraints (2b) , (2c) are box constraints on the
location and (exponential of) time of the step. Equation (2d)
is the DCM dynamics which is linear as a function of next step
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location and (exponential of) time and DCM offset. (2¢) is a
new constraint we define in this paper to prevent the planner to
ask for an instantaneous step in the presence of uncertainties.
Finally, (2f) is the viability constraint on the DCM offset which
is implemented in practice as a soft constraint to make sure
that the program always find a feasible solution, even if the
system is not viable [13]. Note that since we consider contact
switch as the terminal state of (2) (and not a fixed horizon
starting from the current time), the tail of the optimal control
problem can be written using only the boundary of the gait
values, i.e. Tpyipn and Iy, to find viability bounds by, /ma -
Hence, we can write state-independent viability constraint at
the end of the horizon which ensures viability (weak forward
invariance) of the gait.

The last cost term and constraint on the DCM offset have
crucial role in our walking controller. The former incentivizes
the DCM offset toward a desired offset that corresponds to
a desired walking velocity, while the latter ensures viability
of the gait, i.e. there exist at least a set of feasible steps into
the future by which the robot can prevent a fall. Solving (2)
at each control cycle using the current measurement of the
DCM yields the next step location and timing that should be
realized by the swing foot trajectory. Since the step time is
a decision variable, the horizon can be potentially adapted to
preserve viability. Hence, (2) as the high-level MPC problem
of our framework is a VH-MPC.

III. PROJECTED SWING FOOT DYNAMICS

In this section, we examine the structure of the robot
dynamics projected to the swing foot space. The main goal is
to find a dynamic model with minimum simplification based
on which we adapt the swing foot trajectories in real-time.

The dynamics of a floating-base system can be written as

M(q)d + h(q,v) = BT + JX X (3)

where M e R(+6)x(n+6) i the robot mass matrix, g €
SE(3) x R™ denotes the configuration space, v € R"*6
encodes the vector of generalized velocities (or more precisely
quasi-velocities [21]), h € R™*% is a concatenation of non-
linear terms including centrifugal, Coriolis and gravitational
effects. B € R("t6)x7 i5 a selection matrix that separates the
actuated and unactuated Degrees of Freedom (DoFs), 7 € R™
is the vector of actuating torques, J. € R3™*("+6) ig the
Jacobian of m foot in contact, and finally A € R3™ is the
vector of contact forces (here we assume point-contact feet).

For bipedal walking, we assume one of the robot’s feet is in
stationary contact with the ground. With this assumption, we
can write down the constraint-consistent projected dynamics
of the robot to the swing foot as [22]

A+ A(JM7'Ph— (J+ M Pyw) = f (4
~—

Inertia nonlinear terms

where € R3 is the swing foot position and P is the
orthogonal projection operator I —.J.J. (where T stands for the
Moore-Penrose inverse) which is a mapping to the nullspace
of the contact constraint and Pv = —J} J.v. Note that J €
R3*(7+6) {5 the swing foot Jacobian which is different from

J. (the stance foot Jacobian). The constraint inertia matrix is
denoted by M, = PM +1—Pand A, = (JM7'PJT)"1is
the apparent mass at the swing foot. In this equation, f is the
the swing foot actuation force, i.e. if the swing foot were to
apply a force (virtually) to the environment, how much force
it could exert without violating the stance foot constraints and
it can be derived as

f=AJM 'PBT (5)

Given the friction cone constraints of the stance foot and joint
torque limits, the actuation force to move the swing foot is
constrained. In the sequel we find an approximation of these
constraints and a simplified dynamics of the swing foot that
can be used to generate dynamically consistent swing foot
trajectories.

A. Simplified swing foot dynamics

The swing foot dynamics (4) is highly nonlinear as a
function of the robot configuration. As a result, using this
dynamic model in MPC leads to a nonlinear and non-convex
optimization problem that needs several iterations to be solved
and it might get stuck in undesired local minima. However,
we need to be able to regenerate the swing foot trajectory
quickly based on the updated landing location and time from
the high-level DCM planner. Hence, we resort to a simplified
linear dynamics of the foot in the reachable area of the swing
foot.

To be able to compare the effects of different terms in (4),
we used the approach in [13] and generated different swing
foot trajectories using polynomials in simulation for different
walking velocities. Note that we did all the simulations on
the robot we study in this paper, Bolt (the robot weight
is roughly 12.5N). We exerted to the robot CoM random
disturbances at the start of each step, —2N < Fj, F), < 2N
and —1N < F, < 1IN, and reset the simulation if the robot
would fall down. We used the whole body controller (WBC)
in [23] to map the trajectories to joint torques and apply them
in simulation. With this strategy, We generated 1300 samples
(corresponding to 50 walking steps with different timings) to
approximate the swing foot dynamics. For these experiments,
we set the following bounds for steps : [ = —0.12m,
lmae = 0.12m, Wi = —0.1m, Wpee = 0.3m, Thyp =
0.1s, Thnaz = 0.3s. Furthermore, we randomly changed the
nominal step time in the range Tinin < Thom < Thmaz- Due
to the exerted random disturbances, the robot needs to step in
different directions while respecting the kinematic constraints.

Using the state trajectories at each time, we compute the
effects of different terms. In Fig. 2 we show the contribution of
the inertia and nonlinear terms to the swing foot dynamics for
50 different swing phase (different landing location and time).
As we can see in Fig. 2, inertia is the main effect in swing
foot dynamics while the nonlinear terms remain relatively
constant. In an effort to simplify the swing foot dynamics,
we approximate all the nonlinear terms with a constant term
he.

Now, we inspect further the swing foot mass matrix struc-
ture and plot its variation as a function of the robot con-
figuration, in the range of swing foot motion that we are
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interested in. As the mass matrix is symmetric, we only need
to examine the diagonal and upper(or lower)-triangular part
of the matrix. In Fig. 3, we plotted the components of the
swing foot mass matrix, for the same set of motions we used
to compare inertial and nonlinear effects. As we can see in this
figure, the projected mass matrix components do not change
significantly during one step, hence we propose to use the
following linear dynamics to be used inside a linear MPC
problem for the swing foot.

f=A&+ he (6)

where the components of A and h. are constant.

Time [s]

Fig. 2. inertial vs nonlinear effects at the swing foot for a set of 50 different
landing location and time

[0, 0] [0,1] [0,2]

0.0 0.1 0.2 0.0 0.1 0.2 0.0 0.1 0.2
Time [s] Time [s] Time [s]

Fig. 3. Mass matrix elements for 50 different landing location and time; the
mean value of each component is specified by red.

B. Constraints on the swing foot actuation force

In this section, we use the intermediate variable swing foot
actuation force f to denote the feasible actuation that can be
applied to the swing foot, given the joint torque limits and the
stance foot friction cone constraints. By defining this variable,
we would like to emphasise that the mass matrix projected to

the swing foot is not diagonal in general (as we have seen
in Section III-A) and enforcing constraints on the swing foot
acceleration in different directions does not account for this.
In fact, a linear combination of the swing foot accelerations
should be limited, where this coupling is given by the swing
foot mass matrix.

The idea is to use the set of different configurations we
considered in the previous section and construct the following
Linear program (LP) to find the boundaries of the forces that
can be applied by the swing foot without violating any of the
constraints at each configuration

minimize cost £ sT f = sTACJMglPBT (7a)
T
st. p,+1n,>0 (7b)
V2
|(pz + 7796)| < 7:“’(,0,2 + 77z) (7¢)
V2
[(py +ny)| < 7#(% +12) (7d)
Tmin S T S Tmax (76)

In this equation, p = —(JI)I(I — P)(I - MM 'P)h +
MM Pv)and n = —(JI)I (I - P)(I— MM P)Bt [24].
1 is the friction coefficient and s € R3 in (7a) is a selection
vector whose one of elements is either +1 or —1, and the rest
are zero. By iterating over all six possibilities, we can compute
the maximum and minimum actuation force at the swing foot
in each direction, for a given configuration. The constraints of
the problem are unilaterality of contact (7b), linearized friction
cone constraints of the stance foot (7c¢), (7d), and the joint
torque limits (7e).

We solved (7) for the same set of trajectories we used in
Section III-A. Figure 4 shows the time history of the maximum
and minimum of the swing foot actuation force in each
direction. We also found the worst-case of the approximate
bounds in (7) over all explored configurations and specified
by red lines in Fig. 4. The computed state-independent bounds
on the maximum and minimum forces will be used inside
an MPC problem in the next subsection to generate swing
foot trajectories. Note that for solving (7) we set the friction
coefficient to p = 0.5, and the minimum and maximum joint
torques to —2N.m and 2 N.m which are robot-dependent.

Remark 1: What we did in Section III-A and III-B is
similar to [25] in that we simulate the robot using a candidate
controller and use the generated data to find interpretable
heuristics. However, as opposed to [25] that extracts heuristics
to regularize the optimization problem cost function for dif-
ferent desired behaviors, we find a linear model in the swing
foot space (with corresponding constraints) and use it to find
dynamically consistent swing foot trajectories. Furthermore, in
this paper we are tackling the bipedal locomotion problem with
passive ankles which is far more unstable than a quadruped
locomotion problem. Hence, it is crucial to control the swing
foot landing location and time precisely to have a stable gait.

C. Proposed foot trajectory generator

In this section, we formulate the swing foot reactive trajec-
tory generation problem as a VH-MPC. The main goal of this
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fy [N]

f2 [N]

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

0.00 0.05 0.10 0.15 0.20 0.25
Time [s]

Fig. 4. Maximum and minimum actuation force at the swing foot for 50
different landing location and time; the worst case of these approximated
upper/lower bounds is specified by red.

MPC is to bring the swing foot on the ground at the desired
time computed by (2) and to be as close as possible to the
desired foot location.

We use the simplified swing foot dynamics in (6) and the
approximation of the force boundaries computed based on (7).
We write then the following VH-MPC to find optimal force
applied to the swing foot to land on the ground at a desired
time and as close as possible to the desired location

N
minJicmize Z arl|fi 17 + azllen —xp||* + ...

! =1

. . T
asllen — & f]* + aqllz(5) = Zmidll” (8)

s.t. x; = Aimmea + Z AZ_JB((f] - hc)Ac_l)T (Sb)

j=1
fmingfigfmax ’ V’L:L,N (80)
Zmin S Zi S Zmaz ) vl - ].7 ...7N. (8d)
2p=0,2;=0 (8e)

where A and B are obtained, writing (6) in standard discrete
state space form. f; is the applied force at the swing foot at
i’th node in the horizon, = = [z,y,2|T and & = [, 7, 2|7
are the swing foot position and velocity and subscripts f and
mea stand for the end of the current step (horizon) and the
measured value, respectively. z,,;q4 is the desired step height.
Note that in this program, only the terminal state of the swing
foot in vertical direction is a constraint which ensures landing
at the desired time.

D. The minimum landing time

Depending on the current state of the swing foot, a mini-
mum time can be computed that ensures landing the foot on
the ground, given the constraints on the swing foot actuation
force. This minimum time is used in (2e) to make sure that
(2) does not ask for a contact time that is not possible to be

realized by the swing foot in (8). We compute this minimum
time using the following program

minimize ¢ (9a)
i | i . )
st @y = A'Tpea + 3 ATIB((f; —he)AZT)T (9D)
j=1
f?nin Sfigf’maw ’ \V/’L:L,N (90)
zp=0,2;,=0 (9d)

Equation (9) is a very simple mixed-integer program (i
is an integer variable) that can be solved very fast. In our
experiments, we used a simple approach to solve this program;
we start from zero and increase ¢ and solve (9) until the
program becomes feasible. In our experiments, such a brute-
force approach to solve (9) took in worst case around 1 ys.

IV. FULL CONTROL PIPELINE

In this section, we summarize the full control pipeline we
use in this paper. The main parts of our control pipeline are
two VH-MPC problems (2) and (8) that reactively update the
next contact location and time, and accordingly the swing foot
trajectory (see Fig. 1). The generated trajectories then are fed
into a WBC to compute the joint torques. We used in this
paper the task-space impedance controller we proposed in [23]
as a WBC. Note that we use the coordinate frame attached to
the stance foot as the reference frame and conduct all the
computations in this frame at each step.

After specifying the desired walking velocity and nominal
gait parameter (step length, width, time, ...), the first step of our
framework uses (9) to compute the minimum time required for
the swing foot to land on the ground. Then, (2) is executed to
find the optimal step location and timing of the step, given the
current measurement of the DCM. This stage is formulated as
a VH-MPC where the MPC horizon (step timing) is a decision
variable. The resulting step location and timing are then used
to generate a swing foot trajectory using the swing foot MPC
(8). The goal in the swing foot MPC is to realize landing
of the foot at the time that is planned by the first stage, as
close as possible to the desired position. In this stage we
also have a VH-MPC, but the horizon is not decided by the
MPC itself and it is set by the first stage MPC. Finally, the
resulting trajectories are passed to the WBC [23] to compute
joint torques (see Fig. 1).

Remark 2: The main reason behind splitting the problem
into two MPC problems is that one holistic MPC that finds
both the swing foot trajectory and optimal step location and
timing would result in either a mixed-integer program or a
non-convex problem. A mixed-integer program is not suitable
for real-time applications because of its combinatorial com-
plexity. A non-convex optimization needs several iterations to
converge and may get stuck in a poor local minimum. We
prefer our two-level MPC despite the fact that it is sub-optimal,
because 1) it can be solved in real-time inside MPC 2) it
always finds a feasible solution using the minimum time (9)
as a constraint in (2).
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V. RESULTS

In this section, we first present a comparison between our
proposed approach for swing foot trajectory generation to a
polynomial-based trajectory generation approach. Then, we
show an extensive set of real robot experiments demonstrating
the capability of our framework in generating robust walking
motions in the presence of various disturbances and uncertain-
ties. For all the experiments, we ran our proposed two-level
MPC at 100 Hz and the WBC at 1kHz.

A. Swing foot trajectories comparison

1) Case study: To compare qualitatively the performance of
our proposed MPC-based swing foot trajectory generation (8)
to a standard polynomial-based one [13], we consider a push
recovery scenario in simulation. We did a simulation where
the robot steps in place and is pushed laterally by an impulse
of 10N.s, at t = 0.6s.

All components of the control pipeline are exactly the
same, except the swing foot trajectory generation part. For the
polynomial-based swing foot trajectory generation, we param-
eterize the trajectories in horizontal directions using minimum-
jerk (5th order) polynomials and find the unique coefficients
that connect the current position, velocity and acceleration of
the swing foot to the end position with zero velocity and
acceleration. For the vertical direction, we construct a QP
with inequality constraints (the foot height should remain in
a certain bound) to find the coefficients of the polynomial. In
the case that the corresponding problem gets infeasible, we
use the solution of the previous iteration and shift it by one
sample time. Compared to the heuristics used in [13] that we
would not update the gait values at the instances close to the
end of the step, here we use this simple but more systematic
and practical strategy of shifting the previous solutions and
this was enough to always have a feasible solution in our
experiments.

Figure 5 compares the resulting swing foot tracking perfor-
mance of the two approaches. As we can see, after the push is
exerted at ¢ = 0.6 s, the next step location is updated using (2).
Since the polynomial-based swing foot trajectory generation
(left figure) gets infeasible at this time, the solution in the
previous iteration is used. This causes a discrepancy between
the desire landing point asked by (2) and the end point of
the trajectory. This is enough for the robot to get unstable and
fall down. However, using our novel MPC-based approach (8),
the swing foot is adapted after the disturbance as much as the
constraints allow and the robot is able to recover from the
disturbance.

2) Systematic comparison: To compare systematically the
two approaches, we conducted 450 walking steps simulation
with different pushes sampled inside the range of +1.5N.s
for the horizontal directions and £0.75N.s in the vertical
direction. Note that this range is small compared to the
disturbance we exerted in the previous subsection (10 N.s). In
case of large disturbances, the robot might lose its balance and
this would make it difficult to compare the landing location and
time of the swing foot between two approaches. We already
showed in the previous subsection that in the case of a large

E —0.6 left_des
= -0
right_des
=08 —— left
104 — right
= next_step
-12 T T T T T F T T T T T
000 025 050 075 100 125 0.00 025 050 075 1.00 1.25
Time [s] Time [s]
Fig. 5. Comparison between swing foot trajectories in the y direction

generated using polynomials (left) and proposed MPC (8) (right).

disturbance, our approach clearly outperforms the polynomial-
based trajectory generation approach.

As we can see in Fig. 6, in both x and y directions,
the error in landing location of our approach is less than
the polynomial-based trajectory generation. Note that error in
landing location can not only cause a degradation in velocity
tracking (performance), but it may also jeopardize stability.
More important than landing location error, landing time error
of the swing foot in our approach is significantly lower than
polynomial-based approach (see Fig. 7). Landing time error
has a very important role on realization of the gait, i.e. early
landing can cause high impact forces, while late landing can
cause high acceleration of the foot once the gait phase changes,
given that the controller is not event-based.
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Fig. 6. Landing location error for 450 walking steps simulation with random
pushes sampled inside the range of 1.5 N.s for the horizontal directions and
40.75 N.s for the vertical direction. The mean values for each approach are
shown by dashed lines with the same colour.

B. Real robot experiment

We implemented our proposed framework shown in Fig.
1 on Bolt, our new open-source biped robot. Bolt has been
designed and fabricated using the 3D-printing technology and
proprioceptive actuator concept that gives transparency in the
drive system for torque-control proposed in [23]. Each leg of
Bolt has 3 active DoFs (2 in hip and one in knee) together
with a passive ankle joint similar to [26].
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Fig. 7. Landing time error for 450 walking steps simulation with random
pushes sampled inside the range of +1.5N.s for the horizontal directions
and £0.75 N.s for the vertical direction. The mean values for each approach
are shown by dashed lines with the same colour.

Bolt is capable of very dynamic movements and fast step-
ping, which renders the swing foot dynamics non negligible.
We believe that this was the main reason we were not
able to implement the polynomial-based swing foot trajectory
generation on the real robot. In fact, as the statistical compar-
ison showed in the previous subsection, the polynomial-based
swing foot trajectory generation introduces large errors in the
landing location and time of the swing foot which can explain
our failure to implement it on the inherently highly unstable
biped robot Bolt. Hence, in this subsection we only present and
analyze different real robot demonstrations with the approach
presented in the paper.

We considered 5 different scenarios for our experiments that
we will explain briefly in the following. Note that we use the
exact same controller parameters for all these experiments.
The snapshots of the experiments are shown in Fig. 8. The
accompanying video illustrates the experiments.

1) Forward/Backward walking: The robot is commanded
to walk forward and backward on a flat surface with a desired
velocity. Through this test we showed that our feedback con-
trol based on simplified models is robust enough to stabilize
walking motion for a long time. As it can be seen in the video,
the robot is able to walk forward and backward for 10 minutes
without any problem.

2) Walking on uneven surfaces: We commanded stepping
in place (zero desired velocity) on an uneven surface where
the surface height is varied up to 4 cm. The walking controller
does not have any notion of the height variations; however,
thanks to the adaptation of the step location and time and
compliance due to torque-control, the robot can successfully
step on surfaces with unknown heights.

3) Walking on soft surfaces: Bolt performs in-place step-
ping on a soft surface (sponge, see the video). This surface is
specially challenging, as the stance foot does not remain fixed
but oscillates due to the surface compliance. These oscillations
would magnify shaking of the robot due to the structural

flexibility. Although the robot would start shaking at some
instances of the motion, the controller was able to damp them
and the robot could successfully step on this surface without
any instability.

4) Push recovery: In this scenario, we exert external forces
to the robot’s pelvis in different direction, at different times
of a step and in different directions. Thanks to the fast update
of the control loop, the robot quickly reacts to the pushes and
adapts both step location and timing to recover. We performed
push recovery scenarios both in sagittal and lateral directions.

5) Slippage recovery: In the last scenario, the robot per-
forms stepping on a surface that can slide on the ground. We
disturbed this surface in different directions randomly during
stepping, and the robot again was able to adapt the landing
location and time of the swing foot to preserve its balance.

Finally, in Fig. 9, we show the statistics of the error between
the desired and measured landing locations for all the walking
steps of the experiments through a box plot for both frontal and
lateral directions. Note that since the data were skewed (i.e.
they are far from being normally distributed), we used a box
and whisker plot. As we can see in the figure, the medians for
all the tests in both directions are below 20 mm which shows
the good performance of our controller (the robot leg length
in fully stretched configuration is roughly 450 mm).

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a two-level variable horizon
MPC to control bipedal walking. In the high level, given the
current state of the CoM, the landing location and time of
the swing foot is decided. In the the lower level, the swing
foot trajectory is adapted such that the swing foot lands on
the ground at the desired time, as close as possible to the
desired location. We integrated this two-level VH-MPC with
an impedance-based WBC to compute torque commands to
the robot. We conducted an extensive set of simulations and
experiments through which we demonstrated the capabilities
and robustness of our proposed control framework.

In future work, we plan to generalize our proposed approach

to more general motions, i.e. 3D walking and running on
more challenging terrains (e.g. stepping stones with different
heights). We propose two different approaches to do this. The
first approach is to perform a wider range of motions including
walking and running on different surfaces in simulation and
estimate the swing foot dynamics using the same approach we
used in this paper. An alternative approach is to use the step
location and time from the first stage and use a whole body
MPC problem [27] with the given contact properties as the
terminal constraint/cost.
Extending our framework by adding collision avoidance to
the swing foot MPC problem is another interesting direction
to investigate. Since we are solving an MPC with the position
of the foot as decision variable in the QP, collision avoidance
can be dealt with using inequality constraints on the states at
all times in the horizon.

Another interesting extension of the current work is alter-
nating between the two levels of the MPC such that they come
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Fig. 8. Snapshots of the experiments, from left to right: 1) forward walking, 2) uneven surface, 3) soft surface, 4) push recovery, 5) slippage
recovery.
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Fig. 9. Box plot of the error between the desired and measured step locations
for all the walking steps of the tests for both frontal and lateral directions

to a consensus in terms of contact location and timing at each
control cycle. Finally, our approach with contact switch as a
terminal constraint can be easily generalized to an event-based
controller where the switch in the gait phase is triggered at the
detection of swing foot contact.
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