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Abstract: Contacts between robots and environment are often assumed to be rigid for control pur-

poses. This assumption can lead to poor performance when contacts are soft and/or underdamped.

However, the problem of balancing on soft contacts has not received much attention in the literature.

This paper presents two novel approaches to control a legged robot balancing on visco-elastic con-

tacts, and compares them to other two state-of-the-art methods. Our simulation results show that

performance heavily depends on the contact stiffness and the noises/uncertainties introduced in

the simulation. Briefly, the two novel controllers performed best for soft/medium contacts, whereas

“inverse-dynamics control under rigid-contact assumptions” was the best one for stiff contacts. Admit-

tance control was instead the most robust, but suffered in terms of performance. These results shed

light on this challenging problem, while pointing out interesting directions for future investigation.

Keywords: balance control; force control; elastic contacts; optimization-based control; humanoid

robots

1. Introduction

1.1. Problem Overview

Balance control of legged robots is a fundamental problem in robotics and is at the
heart of numerous recent publications in the literature [1]. In this task, depending on
whether the contact between the robot and the environment is rigid or soft, the robot
will behave differently. However, for the sake of simplicity, a large part of studies has
focused on the problem of controlling the balance of a rigid robot in contact with a rigid
environment [2–7]. In this scenario, theoretically, the contact forces between the robot
and the environment can be modified instantaneously. This is no longer possible if the
environment is visco-elastic, or, equivalently, if a visco-elastic element is located between
the robot actuators and the contact points, as in many legged robots which include soft
elements at the ankles or the feet [7–10]. These compliant elements are extremely useful:
they absorb impact during walking/running, protect the mechanical structure, tend to
improve the quality of force measurements, and can make walking more efficient [10].
Moreover, the assumption of rigid contact is always an approximation because in the
real world all contacts are visco-elastic up to a certain extent. In the presence of elasticity,
the contact forces cannot be instantaneously modified, but their derivative—either of
first or second order—can be modified depending on the contact damping (as detailed
in Section 2). Despite the popularity of visco-elastic elements, balancing on visco-elastic
contacts is still an open problem. This question is at the heart of the paper. It is addressed
through the introduction of two new compliant controllers and a comparative study with
existing strategies.
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1.2. State of the Art

The most common approach is to neglect elasticity in the balance controller and
simply assume that contacts are rigid. This method works fine for contacts that are not
too soft and that are sufficiently well damped, as was demonstrated with a passivity-
based controller on the Toro humanoid robot [11]. However, in general, making this
hypothesis results in destabilizing oscillations [1]. Force feedback can then be used for
damping these oscillations. This is usually done by using force feedback to modify the
position references given to a high-gain joint position controller, leading to admittance-
control schemes [5,7,9]. Although this approach proved to be successful in practice, its
lack of theoretical foundations makes it challenging to tune and analyze in a robust and
repeatable way.

A crucial issue of admittance-control schemes is the resulting delay in the force
tracking. To deal with it, two approaches have been proposed so far. The first one [3] is
to prove that the controller is robust to these delays. The second one is to account for the
delay by introducing a 1-st order low-pass filter in the dynamic model used by balance
controller. Our analysis reveals that the force tracking delay is actually not an issue, so
long as the admittance-control gains are properly set.

Instead of relying on admittance control, another approach is to try to change the
contact forces at the next time step [12] since they cannot be changed instantaneously. This
approach exploits a model of the visco-elastic contacts for the controller design. However,
as it mainly relies on contact damping, it cannot be applied if the damping is too low
(see Section 2.1).

Recently, the state-of-the-art Whole-Body Controller [13] has been extended to ensure
consistency to terrain compliance [14]. In this approach the controller incorporated a
soft-contact model and was connected with an online learning algorithm that estimates
the terrain compliance. Though that work focused on the case of well-damped contacts,
we focus here on the underdamped case.

1.3. Contributions

The contribution of this paper is two-fold. First two novel strategies are introduced for
controlling the balance of legged robots under visco-elastic contacts with their environment.
The proposed approach unifies position and force feedback, leading to a simple gain-tuning
procedure for which standard tools from linear system control can be used (e.g., LQR,
pole placement). Second, a thorough comparison of different controllers is proposed for
different kinds of compliant contact and noisy measurements to discuss the efficiency of the
different approaches. More precisely, the two novel controllers that were designed to deal
with visco-elastic contacts are compared in simulation with two state-of-the-art approaches
for the same stabilization task of a model of the lateral dynamics of HRP-2 in double
support and under different contact stiffnesses and noisy conditions. The study highlights
pros and cons of each method according to the different parameters and demonstrates the
performance of the proposed controllers in case of compliant contact.

Even though the paper mainly focuses on legged robots, the results are also of great
interest for manipulation problems for which the control of compliant contacts is required.

1.4. Paper Structure

Section 2 introduces the visco-elastic contact model and the robot dynamics. Section 3
summarizes two state-of-the-art methods. The first one (Section 3.1) is classically used
for rigid contacts (TSID-Rigid [4]). The second one (Section 3.2) is an admittance-control
scheme (Adm-Ctrl) relying on joint position control [8]. Section 4 presents an extension of
Adm-Ctrl (TSID-Adm), while Section 5 proposes a novel approach to balance on elastic
contacts (TSID-Flex-K). Section 6 presents simulation results comparing the four methods.
Finally, Section 7 concludes the paper.
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2. Background: Dynamics and Contact Model

2.1. Visco-Elastic Contact Model

Consider a robot in contact with the environment at k contact points. We assume that
the contact surfaces are visco-elastic, or, equivalently, the robot is equipped with visco-
elastic elements between each contact point and the last actuator of the corresponding
kinematic chain. In the latter case, we can model the part of the robot after the visco-
elastic element as part of the environment, and the contact point as the last point of the
robot before the visco-elastic element. We also assume that each contact force fi ∈ R

3 is
proportional to the induced contact position pi ∈ R

3 and velocity ṗi ∈ R
3:

fi = Ki(p0
i − pi)− Bi ṗi, ∀i ∈ [1..k] (1)

where Ki, Bi ∈ R
3×3 are the positive-definite diagonal stiffness and damping matrices,

respectively, and p0
i ∈ R

3 is the contact position corresponding to a null force. Stacking all
contact forces together we can rewrite (1) as:

f = K(p0 − p)− Bṗ (2)

Given that contacts are unilateral, this model is valid as long as normal forces are
positive (i.e., pushing). Since the contact forces are function of the robot configuration,
we cannot change them instantaneously as in the rigid contact case, because of the finite
maximum acceleration of the actuation. However, if B 6= 0, we can affect their time
derivative through the contact point accelerations p̈:

ḟ = −Kṗ − Bp̈ (3)

If instead B ≈ 0, we can only affect the second time derivative of f :

f̈ = −Kp̈ (4)

2.2. Importance of Stiffness vs. Damping

Our main interest lies in the underdamped case—which is more challenging in our
experience—which means that B ≪ 2

√
K (B = 2

√
K correspond to the critically damped

case). In these cases, relying on (3) to control ḟ may not be convenient because very large
values of p̈ (hence motor commands) may be required.

Appendix C includes an order-of-magnitude analysis that supports this claim for the
usual dynamics of humanoid robots and illustrates why we prefer to rely on (4) rather than
on (3) for our controller design.

2.3. Centroidal Dynamics

To balance a legged robot, we must control its CoM c and its angular momentum l.
The dynamics of these two quantities is described by the Newton–Euler equations, where
all quantities are expressed in an arbitrary inertial frame with z aligned with gravity:

m c̈ =
k

∑
i=1

fi + mg (5)

l̇ =
k

∑
i=1

(pi − c)× fi (6)

where m ∈ R is the robot mass, and g = (0, 0,−9.81) is the gravity acceleration. We can
write (5) and (6) in matrix form as:
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[
m c̈

l̇

]

︸ ︷︷ ︸

ẍ

=

[
I3 . . . I3

(p1 − c)× . . . (pk − c)×

]

︸ ︷︷ ︸

A






f1
...
fk






︸ ︷︷ ︸

f

+

[
mg
03

]

︸ ︷︷ ︸

b

, (7)

where y× ∈ R
3×3 is the cross-product matrix associated with y.

2.4. Whole-Body Dynamics

The dynamics of a floating-base robot with n joints is described by the following
equations:

Mv̇ + h − J⊤ f = S⊤τ, (8)

where M ∈ R
(n+6)×(n+6) is the mass matrix, v ∈ R

n+6 is the robot velocity vector,
h ∈ R

n+6 contains the gravitational, centrifugal and Coriolis forces, J ∈ R
3k×(n+6) is

the contact Jacobian, S =
[
0n×6 In×n

]
∈ R

n×(n+6) is the selection matrix of the actuated
joints, and τ ∈ R

n are the joint torques. The same dynamics can be expressed by splitting
the first 6 rows, which correspond to the unactuated floating base, from the last n rows,
which correspond to the actuated joints:

Muv̇ + hu − J⊤u f = 0 (9)

Mav̇ + ha − J⊤a f = τ (10)

Equation (9) is equivalent to the centroidal dynamics [15] and is sufficient to ensure
dynamic consistency in the controllers based on Task-Space Inverse Dynamics (TSID) [4].
Finally, the relationship between the accelerations of the contact points and the robot
configuration is given by:

p̈ = Jv̇ + J̇v (11)

This expression is obtained by derivative of the kinematic related to the contact point
p: ṗ = Jv.

3. State of the Art

3.1. Inverse Dynamics with Rigid Contacts (TSID-Rigid)

This section summarizes the classic approach for balancing a legged robot in rigid
contact with the environment [4].

The desired momentum rate of change is typically computed with a simple PD
control law:

ẍd =

[
mc̈d

l̇d

]

=

[

mc̈∗ + Kcom
d ėc + Kcom

p ec

l̇∗ + Kam
d ėl + Kam

p el

]

, (12)

where ec and el are the tracking error of the linear and angular part of the centroidal state,
respectively. Often, the proportional part of the angular momentum feedback is neglected,
but we use it here to ensure stability [6]. The contact forces and the robot accelerations are
computed by solving the following least-squares problem:

minimize
v̇, f

‖A f − ẍd + b‖2 + w f || f − f ∗||2+ wpost||v̇post − v̇||2

subject to Muv̇ + hu = J⊤u f

Jv̇ + J̇v = 0

|Mav̇ + ha − J⊤a f | ≤ τmax

B f ≤ 0,

(13)

where w f ∈ R is the weight and f ∗ ∈ R
3k is the reference of the force regularization task,

wpost ∈ R is the weight of the postural task, the first constraint represents the centroidal
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dynamics, the second one is the rigid-contact constraint, the third constraint represents
the joint torque limits, and the last one represents the friction cone limits. The reference
postural task accelerations are:

v̇post = K
post
p eq(q

∗, q)− K
post
d v, (14)

where K
post
p , K

post
d ∈ R

(n+6)×(n+6) are positive-definite diagonal gain matrices,
q∗ ∈ SE(3) × R

n is a given reference posture, and eq(q1, q2) is an error function map-
ping two configurations q1, q2 ∈ SE(3)×R

n to the log of their relative displacement. Once
the optimal contact forces fd and robot accelerations v̇d are found, we compute the desired
joint torques using (10). Please note that this approach does not require (nor exploit) any
force measurement.

3.2. Admittance Control (Adm-Ctrl)

A classic way to control the contact wrenches in case of flexible contacts is to rely on
admittance control. Several versions of admittance control exist and have been shown to
perform well on real humanoid robots [7,8,16,17]. We decided to use the version with the
minimum number of gains to simplify the gain-tuning procedure.

First, we compute the desired contact forces fd as:

minimize
f

||A f − ẍd + b||2

subject to B f ≤ 0,
(15)

where ẍd is defined as in (12). We then compute the reference velocity of the contact points
according to the force tracking error:

ṗd = −K f ( fd − f ) (16)

This reference velocity is directly used in an inverse kinematics (IK) algorithm to
compute reference joint velocities. The IK is computed on each limb independently:

q̇jd = (JS⊤)† ṗd (17)

These joint velocities are then integrated and given to the high-gain position controller,
which computes the joint torque commands:

τd = K
j
p(qjd − qj)− K

j
d q̇j (18)

4. Inverse Dynamics Admittance Control (TSID-Adm)

To improve the performance of admittance control we suggest integrating it with
an inverse dynamics control law. Once we have computed ṗd with (16), we compute the
desired contact point accelerations as:

p̈∗ = Kadm
d ( ṗd − ṗ) (19)

Finally, we rely on an inverse-dynamics control law to track these contact point
accelerations:

minimize
v̇

‖Jv̇ + J̇v − p̈∗‖2 + wpost||v̇post − v̇||2

subject to Muv̇ + hu = J⊤u f̂

|Mav̇ + ha − J⊤a f̂ | ≤ τmax

(20)

5. Flexible TSID (TSID-Flex-K)

This section presents an original control formulation, which consists of a standard
feedback linearization. In the case of visco-elastic contacts we cannot directly control f ,
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but only its first or second derivative. As already mentioned, since we are mainly interested
in underdamped contacts, we assume we can only control f̈ . Thus, we differentiate (7)
twice and use (4) to express x(4) as a function of p̈:

x(4) = A f̈ + 2Ȧ ḟ + Ä f =

= (A f − AK)
︸ ︷︷ ︸

AK

p̈ + 2Ȧ ḟ − Äc f
︸ ︷︷ ︸

aK

, (21)

where:

Äc ,

[
03 . . . 03

c̈× . . . c̈×

]

A f ,

[
03 . . . 03

f1× . . . fk×

]

(22)

5.1. Feedback Linearization

We can find the accelerations v̇ that track at best the desired x
(4)
d by solving the

following least-squares problem [4]:

minimize
v̇

‖AK Jv̇ + AK J̇v + aK − x
(4)
d ‖2+

wpost||v̇post − v̇||2

subject to Muv̇ + hu = J⊤u f̂

|Mav̇ + ha − J⊤a f̂ | ≤ τmax

(23)

where f̂ ∈ R
3k are the measured/estimated contact forces. Once we have the optimal

accelerations v̇d, we can compute the desired joint torques using (10) with v̇ = v̇d and
f = f̂ .

5.2. Accounting for Force Variations during the Time Step

Since we can only update the motor commands at discrete time steps, there is always
an error due to state variations in between time steps. Normally, these errors are negligible
because small state variations result in small variations of the quantities in (9) and (10).
However, when the robot is in contact with a stiff environment, small displacements of
the contact points lead to large variations of the contact forces. Therefore, we can improve
performance by accounting for the variation of f during the time step, assuming the
following approximated time evolution:

f (t) = f + t ḟ t ∈ [0, δt], (24)

where δt is the controller time step. Under this assumption the accelerations v̇ vary during
the time step. To get the desired average value of v̇ during the time step the controller must
compensate for the average value of f , which is:

f avg = f̂ +
δt

2
ˆ̇f (25)

In (23) we can thus replace f̂ with f̂ + δt
2

ˆ̇f .

5.3. Linear Feedback Regulator

The least-squares problem (23) allows us to directly impose x(4)—if it is compatible
with the problem constraints. Thus, the resulting dynamics is a 4-th order integrator. We de-
fine x as the centroidal state x = (mc, lΣ), where lΣ ∈ SO(3) should be the integral of the
angular momentum. However, since this is not a measurable quantity [18], we approximate
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it with the orientation of the base link (which is typically the heaviest link), scaled by the
3D robot inertia. We then regulate x through a linear feedback control law:

x
(4)
d =Km

p ex(x∗, x) + Km
d (ẋ∗ − ẋ)+

Km
a (ẍ∗ − ẍ) + Km

j (
...
x ∗ − ...

x ) + x(4)∗,
(26)

where x∗(t) is a reference centroidal trajectory, and ex(x1, x2) is an error function mapping
two centroidal states x1, x2 ∈ SE(3) to the log of their relative displacement. The diagonal
positive-definite feedback gain matrices Km

p , Km
d , Km

a , Km
j ∈ R

6×6 need to be chosen so that

the closed-loop system be stable.

5.4. Friction Force Constraints

The inverse-dynamics least-squares problem typically contains a linear approximation
of the force friction cone constraints. This is no longer possible in the case of visco-elastic
contacts, because the contact forces are not a problem variable. However, we can still try to
satisfy the friction cone constraints by bounding the contact force accelerations, which are
affine functions of v̇. This problem is similar to trying not to hit the joint position bounds by
constraining the joint accelerations [19]. The friction cone constraints can be approximated
by a set of linear constraints [4] of the form:

b⊤ fi ≤ 0 (27)

Using the approach of [19], given a bound on the force accelerations f̈max ∈ R
3

(i.e., | f̈i| ≤ f̈max), we can compute the maximum ḟi in direction b such that it is possible to
satisfy (27) in the future:

b⊤ ḟi ≤
√

−2|b⊤ f̈max|(b⊤ fi) (28)

Even though f̈max depends on q, the method that we use [19] assumes constant
acceleration bounds. Therefore, f̈max should be seen here as a user parameter that defines
how conservative the algorithm should be. Putting together all the friction cone constraints
as B f ≤ 0 we can bound the force accelerations to ensure that (28) be satisfied at the next
time step:

B f̈ ≤ bmax
f , (29)

where bmax
f is a function of f and ḟ [19]. Finally, this constraint can be expressed as a

function of v̇:
−BK(Jv̇ + J̇v) ≤ bmax

f (30)

5.5. Summary

The controller is finally obtained by adding (30) as a constraint to (23), with x
(4)
d

computed by (26).

6. Results

This section presents simulation results to compare the different approaches discussed
in the paper:

• TSID-Rigid: a state-of-the-art approach, see Section 3.1.
• Adm-Ctrl: a state-of-the-art approach, see Section 3.2.
• TSID-Adm: a novel approach, see Section 4.
• TSID-Flex-K: a novel approach, see Section 5.

6.1. Simulation Environment

We have carried out all our simulations using a simple 2D biped robot (see Figure 1),
which moves in the YZ plane. The robot is composed by two legs and a torso, and it has 4
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6.2. Gain Tuning

For tuning the momentum gains we have used the gain-tuning procedure described
in Appendix A for all controllers (except Adm-Ctrl) and for 7 values of a user-specified
parameter (wu) that defines the trade-off between tracking and control effort. The other
task gains and weights have been tuned by hand and are reported in Table 2. We have
set the weight of the postural task so that it would not significantly affect the primary
momentum task.

Table 2. Controller Parameters. diag(M0) is the diagonal part of the mass matrix evaluated at q(0).

Symbol Controller Meaning Value

wpost TSID-Flex-K Postural task weight 0.3
wpost TSID-Adm Postural task weight 1 × 10−3

wpost Adm-Ctrl Postural task weight 1 × 10−3

wpost TSID-Rigid Postural task weight 1 × 10−2

w f TSID-Rigid Force regularization weight 1 × 10−4

Km
p Adm-Ctrl Proportional momentum gain 30.7

Km
d Adm-Ctrl Derivative momentum gain 10.3

K
j
p Adm-Ctrl Proportional joint position gain 104 diag(M0)

K
j
d

Adm-Ctrl Derivative joint position gain 200 diag(M0)

K f Adm-Ctrl Proportional force gain 8 × 10−3

K
post
p All Proportional posture gain 10

K
post
d

All Derivative posture gain 6

6.3. Test Description

Our tests aim to evaluate the ability of each controller to balance the robot on visco-
elastic contacts. To do so, we start the simulation with a non-zero CoM velocity, and we
observe whether and how each controller can decelerate the CoM and bring it back to its
initial position.

We start by performing three tests, each of which focuses on one specific controller.
In our first test (Test A) we show how TSID-Rigid struggles with soft contacts. Then, in Test
B, we examine TSID-Flex-K and TSID-Adm, which work well with soft contacts, but get
unstable for stiff contacts. Test C shows that Adm-Ctrl remains stable in both cases. Finally,
in Test D, we show a comprehensive comparison of all controllers in different situations.

We have tested the controllers both in an ideal simulation (no noise, modeling errors,
and perfect state estimation) and in more realistic conditions by introducing:

• realistic encoder quantization errors and white Gaussian noise on force sensing and
gyroscope (see Table 3);

• an Extended Kalman Filter (explained in Appendix B) to estimate the robot state, with
the covariances specified in Table 4;

• limited torque bandwidth by filtering the desired joint torques with a first-order low-
pass filter with a cut frequency of 30 Hz. The best torque-tracking bandwidths that
have been reported for high-performance actuators are between 40 Hz and 60 Hz (e.g.,
40 Hz for hydraulic actuators [2], 46 Hz for electric motors with harmonic drives [21],
60 Hz for series elastic actuators [22]).

• joint Coulomb friction of about 1% of the maximum joint force/torque (0.4 Nm for
hip joints, and 4 N for knee joints, which are prismatic).
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The interested reader is invited to watch the accompanying video for more details
about the simulation results.

7. Conclusions

This paper presented two novel control methods for balancing a legged robot on visco-
elastic contacts: TSID-Flex-K and TSID-Adm. To ensure a fair comparison between novel
and state-of-the-art methods we have used a unified gain-tuning procedure (except for
Adm-Ctrl, which we have tuned by hand). We have performed several tests in simulation
using a simple 4-DoF robot.

The presented results depict a broad picture of performance for 4 controllers, across
3 contact stiffnesses and 7 gain sets each (except for Adm-Ctrl, for which we have tested
only one gain set). We highlight here the main pros and cons of each controller, which are
also summarized in Table 5.

Table 5. Summary of main features of each controller.

PROS CONS

TSID-Flex-K and TSID-Adm
• Easy to tune (unified pos-force feedback). • Need high frequency for hard contacts.
• Best for soft/medium contact. • Unstable for hard contact with noise.

TSID-Rigid
• Ok for hard/medium contacts. • Unstable for soft contacts.
• Easy to tune (assuming perfect joint torque
tracking).

• Undesired oscillations (no force feedback).

Adm-Ctrl
• Always stable. • Hard to tune/analyze.
• Good for soft contacts. • Never the best.

The novel controllers presented in this paper (TSID-Flex-K and TSID-Adm) perform
well for soft contacts, reasonably well for medium contacts, but they have showed instability
for stiff contacts and noisy simulations.

TSID-Rigid has unsurprisingly shown the opposite trend, getting unstable for soft
contacts (even though it was able to regain stability when introducing joint Coulomb
friction), but then becoming more and more competitive as the contact stiffness increased.
This is actually reasonable because the higher the contact stiffness, the more the system
behaves as if contacts were rigid, which is a key assumption in TSID-Rigid.

One of the main advantages of the novel controllers is their ease of gain tuning, which
allows for a unified tuning of force and position feedback gains (as acceleration/jerk gains
can be seen as force gains). However, the novel controllers have demonstrated a remarkable
sensitivity to uncertainties. We believe that this is due to the attempt to compensate for the
contact forces, which are rapidly changing (especially for stiff contacts), thus easily leading
to destabilizing compensation errors. This makes these methods sensitive to low control
frequencies and actuation delays, such as the ones introduced by limited joint torques
bandwidth and joint Coulomb friction.

Adm-Ctrl has been the only controller that was always stable, making it the most
robust of them all. Despite its superior robustness, in no condition Adm-Ctrl has outper-
formed all the other controllers. Moreover, its gain tuning remains a heuristic procedure,
and its convergence properties are not yet clearly understood. All of this makes this
controller hard to use in practice, highlighting the need for more work on this subject.

Overall, the case of stiff contacts was the hardest for the tested controllers: only TSID-
Rigid and Adm-Ctrl remained stable, but they resulted in oscillatory trajectories, which
are (at best) unpleasant on real hardware. These oscillations are due to the small contact
damping, which combined with the high contact stiffness makes it hard for the controller
to damp the high-frequency force oscillations.
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Finally, these results show that controllers that are well supported by theoretical
results and perform exquisitely in ideal conditions, can then fail miserably in realistic
simulations. Thus, working on robustness issues seems paramount for future work.

We believe that the subject of balance control on visco-elastic contacts still requires
investigation. We are especially interested in improving the robustness of the proposed
controllers, in the hope to find a better trade-off between performance and robustness.
Another interesting direction could be to understand better the theoretical properties of
Adm-Ctrl, which has clearly showed great robustness in our tests, but it remains unclear
whether these capabilities can somehow be guaranteed in general.
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Abbreviations

The following abbreviations are used in this manuscript:

TSID Task-Space Inverse Dynamics

CoM Center of Mass

Adm-Ctrl Admittance Control

Appendix A. Gain Tuning

The performance of each controller strongly depends on how well its gains are tuned.
However, this is seldom considered in comparisons. Therefore, the ability of the user in
tuning a specific controller (e.g., because of experience) may bias the results. To avoid this,
this section presents a unified approach for tuning the controllers presented above. The key
idea is to write down the closed-loop dynamics of the centroidal state as:

u(t) = −K̄(θ)y(t)

ẏ(t) = Āy(t) + B̄u(t) + r(y(t)) ≈ H(θ)y(t)
(A1)

where y is a function of the robot state (q, v) that contains (at least) the centroidal state x
and its first derivative ẋ, H , Ā − B̄K̄ is the closed-loop transfer matrix, which is a function
of the gain parameters θ, and r(y) is the residual nonlinear part of the dynamics. Our
goal will be to derive (A1) for each controller such that r(y) is as small as possible (ideally
null), so that we can neglect it and tune the gains for the resulting linear system. Once we
have (A1) we can look for a value of θ that solves the following optimal control problem:

minimize
θ,y(t),u(t)

∫ T

0
[y(t)⊤Qy(t) + u(t)⊤Ru(t)]dt

subject to ẏ(t) = Āy(t) + B̄u(t) ∀t ∈ [0, T]

u(t) = −K̄(θ)y(t) ∀t ∈ [0, T]

y(0) = y0,

(A2)
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where Q, R, T and y0 are provided by the user. In the following we will assume that:

• the robot dynamical model is perfect,
• w f and wpost are sufficiently small not to significantly affect the momentum task,

• the inequality constraints (e.g., friction cones) are not active.

Thanks to the last two assumptions, we can approximate the desired contact forces
computed by (13) and (15) as:

fd = A†
0(ẍd − b), (A3)

where A0 is the value of A computed at a reference configuration q0.

Appendix A.1. TSID-Flex-K

This controller performs an exact feedback linearization, therefore the closed-loop
dynamics of x is a 4-th order integrator, as shown by (26). Consequently, we can find the
gain parameters θ = (Km

p , Km
d , Km

a , Km
j ) using LQR.

Appendix A.2. Admittance Control

We could not find a proper way of linearizing the closed-loop dynamics for this case,
so we have simply tuned the controller by hand.

Appendix A.3. TSID-Admittance

Let us define the state of the system as y = (x, ẋ, f , ḟ ). The matrices Ā, B̄, K̄ are
defined as:

Ā =







0 I 0 0
0 0 A0 0
0 0 0 I
0 0 0 0







B̄ =







0
0
0
I







K̄ =
[

K1 A†
0Km

p K1 A†
0Km

d K1 Ka
d

]

(A4)

where: K1 , KKa
dK f . The gain parameters are θ = (Ka

d, Km
p , Km

d , K f ). Since we cannot freely

choose K̄ we should rely on global optimization to find θ. However, if we focus on the
CoM only (i.e., neglecting the angular momentum), we can derive a simpler expression of
the closed-loop dynamics, which allows us to use LQR. First, we assume that:

• contact damping is negligible: B ≈ 0;

• Kadm
d and KK f are diagonal matrices;

• all entries of Kadm
d , and KK f corresponding to the same direction (X, Y, Z) have the

same value; for instance, the admittance gain Kadm
d in direction Z must be the same for

all contact points.

We can then define each of these matrices in terms of the 3d diagonal matrices Ka3
d ,

and K3
f :

Kadm
d = diag(

[
Ka3

d , . . . , Ka3
d

]
)

KK f = diag(
[

K3
f , . . . , K3

f

]

)
(A5)

We define the state as y = (c, ċ, c̈,
...
c ), and we get the following closed-loop dynamics:

Ā =







0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 0







B̄ =







0
0
0
I







K̄ =
[

K3
f Ka3

d Km
p K3

f Ka3
d Km

d K3
f Ka3

d Ka3
d

]

(A6)



Appl. Sci. 2021, 11, 353 20 of 23

This closed-loop dynamics is equivalent to the one obtained by TSID-Flex-K (26), thus,
we can find the desired gains using LQR.

Appendix A.4. TSID-Rigid

Since TSID-Rigid is a control scheme for a second-order system we define the state as
y = (x, ẋ), and we get the following closed-loop dynamics:

Ā =

[
0 I
0 0

]

B̄ =

[
0
I

]

K̄ =
[

Km
p Km

d

]
(A7)

Appendix A.5. Cost Function

Ideally we would like to tune the gains of all controllers based on the same cost
function. However, we do not have the same state for all controllers, in particular:

• for TSID-Flex-K, y = (x, ẋ, ẍ,
...
x ) and u = x(4),

• for TSID-Adm, y = (c, ċ, c̈,
...
c ) and u = c(4),

• for TSID-Rigid, y = (x, ẋ) and u = ẍ.

Therefore, we start from a cost function for TSID-Adm defined by (Q, R):

Q =







I3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







R = wu I3, (A8)

where wu ∈ R is a user-defined hyper-parameter. Now we must find the equivalent cost
functions for the other controllers. To do so, we introduce a matrix P that projects the
state-control pair (y, u) of a given controller to the state-control pair of TSID-Adm. Once P
is defined we can use it in the cost function of (A2):

[
y⊤ u⊤]P⊤

[
Q 0
0 R

]

P

[
y
u

]

(A9)

For TSID-Flex-K we have:

P = m−1diag(
[
I3×6 I3×6 I3×6 I3×6 I3×6

]
) (A10)

where I3×6 is a matrix that selects the first 3 elements of a 6d vector. Unfortunately, for TSID-
Rigid it is not possible to have the same cost function because its state does not contain
high-order derivatives as the other controllers, so we will use a different cost function:

Q =

[
I3 0
0 0

]

R = wu I3 (A11)

For TSID-Flex-K and TSID-Adm we have used values of wu evenly spaced in logarith-
mic scale between 10−12 and 10−6. For TSID-Rigid instead we have used values between
10−3.5 and 10−1.5.

Appendix B. Estimation

The control method TSID-Flex-K requires an estimation of the CoM position, its first
three derivatives, the angular momentum, and its first two derivatives. To estimate these
quantities, we suggest relying on an Extended Kalman Filter (EKF), which is an extension
of the approach presented in [23]. We define the state of the system as:

s = (c, ċ, l, f , ḟ ) (A12)
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The continuous time system dynamics is:

ṡ =









0 I 0 0 0

0 0 0 m−1 Ik 0
0 0 0 (p − c)× 0

0 0 0 0 Ik

0 0 0 0 0

















c
ċ
l
f

ḟ









+









0
wc̈ − g

0
0

u + wu









, (A13)

where wc̈ and wu are the process noise on the CoM acceleration and the force accelerations,
respectively, and:

Ik =
[
I3 . . . I3

]

(p − c)× =
[
(p0 − c)× . . . (pk−1 − c)×

] (A14)

The system dynamics is linear, except for the angular momentum. The choice of
modeling a noise on the CoM acceleration is motivated by the fact that the robot might get
pushed, so we need to account for disturbances acting directly at the CoM acceleration
level. The measurement model is:

smeas =







I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0















c
ċ
l
f

ḟ









+







wc

wċ

wl

w f







(A15)

Of course c, ċ and l are not directly measured, but they are computed from the encoder
measurements and the floating-base state estimation. The estimation of the floating-
base state typically relies on the IMU measurements and the kinematics of the limbs in
contact [24]. Once we have an estimate of the state s, we can easily compute the quantities
c̈,

...
c , l̇, and l̈, which are needed by our controller. Please note that assuming the contact

damping B is sufficiently small, the contact point positions needed in (A13) can be directly
computed from the contact force measurements as:

p = p0 − K−1 f (A16)

Appendix C. Order-of-Magnitude Analysis on Importance of Stiffness vs. Damping

Let us assume that the desired CoM trajectory c∗(t) is a sinusoid with frequency ωc
2π

Hz and amplitude ψ.
c∗(t) = ψ sin(ωct) (A17)

Since the CoM acceleration c̈ is an affine function of the contact forces f , their time
derivatives are also linearly related.

ḟ ∗(t) ∝
...
c ∗(t) = −ψω3

c cos(ωct)

f̈ ∗(t) ∝
....
c ∗(t) = ψω4

c sin(ωct)
(A18)

Thus, relying on (3) to control ḟ we would get:

p̈∗(t) ∝ B−1 ḟ ∗(t) ∝ B−1ψω3
c (A19)

If we relied instead on (4) (i.e., neglecting the contact damping) we would get:

p̈∗(t) ∝ K−1 f̈ ∗(t) ∝ K−1ψω4
c (A20)
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The latter approach results in smaller values of p̈∗ if this condition is satisfied:

K−1ψω4
c < B−1ψω3

c

ζ <

√
K

2ωc
,

(A21)

where the damping ratio ζ is defined as the ratio between B and the critical damping (i.e.,
B , ζ2

√
K). Since typically K > 104, while ζ < 1 and ωc < 30, this condition is usually

satisfied. For this reason, we prefer to rely on (4) rather than on (3) for our controller design.

References

1. Wieber, P.B.; Tedrake, R.; Kuindersma, S. Modeling and Control of Legged Robots. In Handbook of Robotics, 2nd ed.; Siciliano, B.,

Oussama, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Chapter 48.

2. Boaventura, T.; Semini, C.; Buchli, J.; Frigerio, M.; Focchi, M.; Caldwell, D.G. Dynamic torque control of a hydraulic

quadruped robot. In Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MI,

USA, 14–18 May 2012; pp. 1889–1894.

3. Englsberger, J.; Ott, C.; Albu-Schäffer, A. Three-Dimensional Bipedal Walking Control Based on Divergent Component of Motion.

IEEE Trans. Robot. 2015, 31, 355–368. [CrossRef]

4. Herzog, A.; Rotella, N.; Mason, S.; Grimminger, F.; Schaal, S.; Righetti, L. Momentum control with hierarchical inverse dynamics

on a torque-controlled humanoid. Auton. Robot. 2016, 40, 473–491. [CrossRef]

5. Lim, H.O.; Setiawan, S.A.; Takanishi, A. Balance and impedance control for biped humanoid robot locomotion. In Proceedings of

the IEEE International Conference on Intelligent Robots and Systems, Maui, HI, USA, 29 October–3 November 2001; Volume 1,

pp. 494–499.

6. Nava, G.; Romano, F.; Nori, F.; Pucci, D. Stability Analysis and Design of Momentum-based Controllers for Humanoid

Robots. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Deajeon, Korea,

9–14 October 2016.

7. Takenaka, T.; Matsumoto, T.; Yoshiike, T.; Hasegawa, T.; Shirokura, S.; Kaneko, H.; Orita, A. Real time motion generation and

control for biped robot-4 th report: Integrated balance control. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, St. Louis, MO, USA, 11–15 October 2009; pp. 1601–1608.

8. Kajita, S.; Morisawa, M.; Miura, K.; Nakaoka, S.; Harada, K.; Kaneko, K.; Kanehiro, F.; Yokoi, K. Biped walking stabilization

based on linear inverted pendulum tracking. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Taipei, Taiwan, 18–22 October 2010; pp. 4489–4496.

9. Li, Z.; Zhou, C.; Zhu, Q.; Xiong, R. Humanoid Balancing Behavior Featured by Underactuated Foot Motion. IEEE Trans. Robot.

2017, 33, 298–312. [CrossRef]

10. Reher, J.; Cousineau, E.A.; Hereid, A.; Hubicki, C.M.; Ames, A.D. Realizing dynamic and efficient bipedal locomotion on the

humanoid robot DURUS. In Proceedings of the IEEE International Conference on Robotics and Automation, Stockholm, Sweden,

16–21 May 2016; pp. 1794–1801.

11. Henze, B.; Roa, M.A.; Ott, C. Passivity-based whole-body balancing for torque-conrolled humanoid robots in multi-contact

scenarios. Int. J. Robot. Res. 2016, 35, 1522–1543. [CrossRef]

12. Azad, M.; Mistry, M.N. Balance control strategy for legged robots with compliant contacts. In Proceedings of the IEEE

International Conference on Robotics and Automation, Seattle, WA, USA, 26–30 May 2015; pp. 4391–4396.

13. Fahmi, S.; Mastalli, C.; Focchi, M.; Semini, C. Passive Whole-Body Control for Quadruped Robots: Experimental Validation over

Challenging Terrain. IEEE Robot. Autom. Lett. 2019, 4, 2553–2560. [CrossRef]

14. Fahmi, S.; Focchi, M.; Radulescu, A.; Fink, G.; Barasuol, V.; Semini, C. STANCE: Locomotion Adaptation over Soft Terrain. IEEE

Trans. Robot. 2020, 36, 443–457. [CrossRef]

15. Orin, D.E.; Goswami, A.; Lee, S.H. Centroidal dynamics of a humanoid robot. Auton. Robot. 2013, 35, 161–176. [CrossRef]

16. Hirai, K.; Hirose, M.; Haikawa, Y.; Takenaka, T. The development of Honda humanoid robot. In Proceedings of the IEEE

International Conference on Robotics and Automation, Leuven, Belgium, 16–20 May 1998.

17. Caron, S.; Kheddar, A.; Tempier, O. Stair Climbing Stabilization of the HRP-4 Humanoid Robot using Whole-body Admittance

Control. arXiv 2018, arXiv:1809.07073.

18. Saccon, A.; Traversaro, S.; Nori, F.; Nijmeijer, H. On Centroidal Dynamics and Integrability of Average Angular Velocity. IEEE

Robot. Autom. Lett. 2017, 2, 943–950. [CrossRef]

19. Del Prete, A. Joint Position and Velocity Bounds in Discrete-Time Acceleration/ Torque Control of Robot Manipulators. IEEE

Robot. Autom. Lett. 2018, 3, 281–288. [CrossRef]

20. Kaneko, K.; Kanehiro, F. Design of prototype humanoid robotics platform for HRP. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Lausanne, Switzerland, 30 September–4 October 2002.

21. Dallali, H.; Medrano-Cerda, G.A.; Focchi, M.; Boaventura, T.; Frigerio, M.; Semini, C.; Buchli, J.; Caldwell, D.G. On the use of

positive feedback for improved torque control. Control. Theory Technol. 2015, 13, 266–285. [CrossRef]



Appl. Sci. 2021, 11, 353 23 of 23

22. Paine, N.; Oh, S.; Sentis, L. Design and Control Considerations for High-Performance Series Elastic Actuators. IEEE/ASME Trans.

Mechatron. 2014, 19, 1080–1091. [CrossRef]

23. Rotella, N.; Herzog, A.; Schaal, S.; Righetti, L. Humanoid momentum estimation using sensed contact wrenches. In Proceedings

of the IEEE-RAS International Conference on Humanoid Robots, Seoul, Korea, 3–5 November 2015; pp. 556–563.

24. Flayols, T.; Del Prete, A.; Wensing, P.; Mifsud, A.; Benallegue, M.; Stasse, O. Experimental Evaluation of Simple Estimators for

Humanoid Robots. In Proceedings of the IEEE International Conference on Humanoid Robots (Humanoids), Birmingham, UK,

15–17 November 2017; pp. 889–895.


