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Impedance Optimization for Uncertain Contact

Interactions Through Risk Sensitive Optimal Control

Bilal Hammoud1,2 , Majid Khadiv2 and Ludovic Righetti1,2

Abstract—This paper addresses the problem of computing
optimal impedance schedules for legged locomotion tasks in-
volving complex contact interactions. We formulate the problem
of impedance regulation as a trade-off between disturbance
rejection and measurement uncertainty. We extend a stochastic
optimal control algorithm known as Risk Sensitive Control
to take into account measurement uncertainty and propose a
formal way to include such uncertainty for unknown contact
locations. The approach can efficiently generate optimal state
and control trajectories along with local feedback control gains,
i.e. impedance schedules. Extensive simulations demonstrate the
capabilities of the approach in generating meaningful stiffness
and damping modulation patterns before and after contact
interaction. For example, contact forces are reduced during early
contacts, damping increases to anticipate a high impact event
and tracking is automatically traded-off for increased stability.
In particular, we show a significant improvement in performance
during jumping and trotting tasks with a simulated quadruped
robot.

Index Terms—Humanoid and Bipedal Locomotion, Legged
Robots, Motion Control, Optimization and Optimal Control.

I. INTRODUCTION

S
TATE of the art locomotion controllers include a model

predictive control scheme that computes trajectories of

some reduced model. This model predictive scheme is then

realized through a pre-designed impedance controller or a

QP based inverse dynamics solver. These strategies have

proven to be successful in completely structured and controlled

environments. However, current robot control strategies still

lack the ability to reason about uncertainty in the environment.

High stiffness feedback controllers are usually used to track

precise trajectories. This approach is usually limiting for a

robot in multi-contact scenarios where the robot depends on

intermittent contact interactions to move itself or some object

around. Contact interactions increase the complexity of the

control design problem. A stiff controller will counteract an

unpredicted contact by increasing the control input to ensure

tracking, which might generate high contact forces that desta-

bilize the system. On the other hand, excessive compliance
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could lead to large deviations from the desired task. Studies

from the field of neuroscience suggest that human beings

modulate their impedance during contact interactions [1], [2].

Other studies suggest that sensorimotor commands are the

result of an optimal feedback control mechanism that controls

a trade-off between accuracy and stability [3]. A more recent

study [4] suggests that this impedance ”sweet spot” is a result

of reasoning not only about the desired task, but also the

uncertainties present during contact interactions.

Impedance control for robotics was postulated and derived

by Hogan [5]. Hogan [6] also demonstrated experimentally

that this controller is capable of stabilizing contact inter-

actions if proper impedance parameters were to be chosen.

Following the results presented by Hogan, Park [7] used

a similar approach to design a bipedal walking controller.

The results show a biped capable of walking on uneven

terrain. The results achieved through impedance control have

proven to be superior for control strategies involving contact

interactions [8]. However, the mentioned approaches design

the impedance schedules through an exhaustive trial and error

process. It remains an open question on how to systematically

optimize impedance profiles for robotic tasks involving contact

interactions.

Optimal feedback control theory has many promising as-

pects that could help approach this problem. Mayne [9]

introduced an algorithm that computes local quadratic approx-

imations of both the dynamics and the cost functions and

then iteratively solves the nonlinear optimal control problem.

This algorithm is commonly known as the Differential Dy-

namic Programming Algorithm (DDP). It has the advantage

of providing an optimal control trajectory together with local

feedback controller. Many variations of DDP appeared later

in the literature [10], [11], [12], [13], [14], [15]. However,

all the mentioned variations are deterministic in nature and

favor tracking over stability, making them prone to failure in

situations where tracking cannot be perfectly achieved, and in

attempting to do so, the controller can destabilize the system,

uncertain contact interactions being a clear example.

Todorov [16] added multiplicative process noise to the

optimal control problem violating the certainty equivalence

principle. This led to control policies that are dependent

on the process noise. Li [17] derived similar results for

partially observable systems with control constraints resulting

in control policies that are a function of both process and

measurement uncertainties. Another method to break the cer-

tainty equivalence principle is achieved through an exponential

transformation of the cost function, this was first introduced

by Jacobson [18] for linear systems and later extended for

nonlinear optimal control by Farshidian [19]. This formally
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synthesizes a controller that could obtain risk neutral, risk

sensitive or risk seeking behaviors depending on the parame-

terization of the role of the uncertainty in the cost function.

Medina [20] used the exponential cost transformation with

process noise to perform manipulation tasks through a model

predictive control scheme. The exponential transformation

was extended to accommodate for measurement uncertainties

in [21] obtaining a risk sensitive optimal control algorithm

that accounts for higher order statistics in both process and

measurement models making it a suitable framework for

designing feedback controllers that can trade-off disturbance

rejection and measurement uncertainty. The approach was only

tested on toy problems and never used for more complex

robotic tasks.

This paper builds on the ideas of Ponton [21] to propose

a systematic method for computing impedance schedules for

legged robots. We extend the algorithm to work with hard

contact transitions and introduce a way to incorporate con-

tact measurement uncertainty into the whole-body optimal

control formulation. This results in systematically optimized

impedance profiles that exhibit desirable stiffness and damp-

ing patterns to handle uncertain, high impact and contact

transitions. Extensive numerical simulations demonstrate the

properties of the approach when compared to usual DDP

algorithms and other measurement noise models. In particular,

we show a significant increase in performance for hard impacts

for jumping and trotting over uneven terrains.

II. BACKGROUND

This section provides background on the robot and contact

models, risk-sensitive stochastic optimal control and its exten-

sion to include measurement uncertainty.

A. Multi-Contact Robot Dynamics

The dynamics of a legged robot in contact with its environ-

ment is described using the following equation

d

dt

[
q

v

]

︸ ︷︷ ︸

ẋ

=

[
v

M−1(τ − h+ JTλext)

]

︸ ︷︷ ︸

f(x,u)

(1)

where q =
[
x, y, z, qB1 , . . . , qB4 , θ1, . . . , θnj

]T
∈ SE(3)×Rnj

includes the base cartesian position x, y, z, the base orientation

parametrized as quaternions qBi and θj being j-th joint of the

robot. v ∈ Rnv is the vector of generalized velocities with

nv = nj+6 and expressed in the base local frame. M (q) is the

inertial matrix, h (q, v) is the vector combining the nonlinear

terms such as Coriolis acceleration and gravity, ST is the

selection matrix mapping the controls to the actuated degrees

of freedom, λext is the vector of contact forces and J (q) is

the contact Jacobian. The notation indicating the dependence

on q and v will be omitted for the remainder of the text. Let

xT =
[
qT , vT

]
define the state vector, hence the discrete time

state transitions become

xt+1 = ft (xt, ut) = xt ⊕ (δtf(x, u))
︸ ︷︷ ︸

dxt

(2)

Then dxt represents the change in the state vector during a

time interval δt and ⊕ handles the Lie group composition

operation for the base orientation.

B. Rigid Contact Model

While different contact models can be chosen to compute

the contact forces λext [22], a rigid contact model is chosen

for the optimal control computation [23]. Let p, ṗ and p̈

denote any contact point position, velocity and acceleration

respectively, then during an active contact phase, the rigid

contact assumption can be stated as

ṗ = Jv = 0 and p̈ = J̇v + Jv̇ = 0. (3)

In order to resolve the contact forces that guarantee the

no-motion constraints of all active contacts, the robot

dynamics (1) is projected to the contact space using
(
JM−1JT

)−1
JM−1 = ΛJM−1 to result in

λext = −ΛJ̇v + ΛJM−1h− ΛJM−1ST τ (4)

Once λext is obtained, the motion vector dxt can be computed

and the state vector xt+1 can be obtained from (2).

C. Risk Sensitive Optimal Control

We consider the stochastic optimal control approach known

as Risk Sensitive Control to explicitly reason about uncer-

tainty. A nonlinear iterative risk sensitive optimal control

formulation [24], [19], [21] explicitly takes into account the

distribution of uncertainty while being numerically efficient for

nonlinear problems. Consider the following dynamics written

as a nonlinear stochastic difference equation

xt+1 = ft (xt, ut) + F (xt, ut)ωt (5)

where ωt ∼ N (0,Ωt) is the process noise which accounts for

unmodeled disturbances and F (xt, ut) maps the noise to the

full state. Consider an objective function of the form

L (X ,U) = lT (xT ) +

T−1∑

0

lt (xt, ut) (6)

where X = [x0, ..., xT ] and U = [u0, ..., uT−1] denote

the state and control trajectories respectively, lT (xT ) is the

terminal cost, and lt (xt, ut) is the cost at time t. Typical

optimal control approaches minimize the expectation of the

objective function, however, risk sensitive optimal control

instead minimizes the expectation of the exponential trans-

formation of the objective. This affords the consideration of

the higher-order statistics of the cost

J ∗ = min
X ,U

E [exp (σL (X ,U))] (7)

where σ is the sensitivity scalar. Farshidian [19] proved that

the cumulant generating function of J can be expressed as

1

σ
logJ = E [L] +

σ

2
µ2 [L] +

σ2

6
µ3 [L] + ... (8)

where µi [L] is the i’th moment of the random variable L. The

risk sensitivity parameter σ then provides a tool to control the

contribution of the higher order moments on the cost. When

σ < 0, the control is risk-seeking and higher cost variances

will be preferred. When σ > 0, the control is risk-averse

since a high variance of the cost distribution will be more

penalized. When σ → 0, the problem reduces to a normal
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(risk-neutral) optimal control problem and only the expectation

of the objective is minimized.

The problem can be solved globally with Riccati-like equa-

tions for linear dynamics and a quadratic objective func-

tion [18], the solution being a linear feedback controller.

However, finding a global minimizer X ∗,U∗ for the cost

function (7) is generally intractable for nonlinear dynamics

and non quadratic costs. The method presented in this paper

computes locally optimal solutions through iterative lineariza-

tions of the dynamics and a quadratic approximation of the

objective functions, a common technique used in deriving

iterative nonlinear optimal control algorithms [9], [13], [19],

[25]. The local deviations from nominal state and control

trajectories, denoted by superscript n, are written as

δxt = xt ⊖ xn
t , δut = ut − un

t (9)

with ⊖ representing the suitable difference on the state man-

ifold. The system dynamics can be linearized in terms of the

deviations as

δxt+1 = Atδxt +Btδut + Ctωt (10)

where At, Bt and Ct are the respective linearization of

ft(δxt, δut) and Ft(δxt, δut) with respect to the state and

control terms. Similarly a quadratic approximation of the cost

function lt(xt, ut) can be obtained. For a linear dynamics and

a quadratic cost under the risk sensitive exponential transfor-

mation, the value function takes the form of an exponential

with a quadratic argument in the state [18]

V (δxt) = exp

{

σ

(
1

2
δxT

t Stδxt + δxT
t st + s̄t

)}

(11)

Importantly, the value function here holds a completely dif-

ferent form than that of DDP and the principle of optimality

needs to be written in multiplicative form as

V (δxt) = min
δut

{

exp [σlt (δxt, δut)] E [V (δxt+1)]
}

(12)

In order to obtain the solution, the expectation of the value

function at time t + 1 must be computed. Finally the value

function at time t is approximated by computing St, st and

s̄t along with δut recursively backward in time. Since δut is

the argument minimizing a quadratic in δxt, then the locally

optimal controller δut = Ktδxt + kt is linear in the state

deviations. Here, Kt is the error feedback gains while kt is

the feedforward command. The solution of the recursive risk

sensitive value function is discussed in details in [18], [19].

The optimized deviations are used to iteratively improve the

solution until convergence is reached. It is important to note

that the control law explicitly incorporates the covariance of

the noise distribution in Kt and kt [19].

D. Including Measurement Uncertainty

The formulation presented above does not integrate the

uncertainty coming from a nonlinear measurement model

yt+1 = g (xt, ut) +H (xt, ut) γt (13)

where γt ∼ N (0,Γt) is the measurement noise. Measure-

ment uncertainty is crucial for our approach as we need

to take into account the uncertainty about contact locations.

Speyer [26] incorporated measurement noise into the risk

sensitive formulation by introducing a state vector that grows

at each time step to include the entire history of the states.

Recently, Ponton [21] suggested that this could be avoided

by augmenting the linearized system dynamics with that of

an Extended Kalman Filter (EKF). Assuming an observable

system, an EKF can be used to compute the estimate deviations

δx̂t along the nominal trajectory at each iteration. Let Ft and

Dt be the linear approximations of g (xt, ut) and H (xt, ut)
from (13) respectively. Then we can compute the Kalman

gains Gt during the forward pass of the iterative algorithm (i.e.

when updating the nominal state and control trajectories) and

use them to define an augmented linear system, which includes

both the real, δxt, and estimated, δx̂t, states of the system.

With the extended state δx̃t = [δxt, δx̂t], the augmented

system dynamics becomes
[
δxt+1

δx̂t+1

]

=

[
Atδxt +Btδut

Atδxt +Btδut +GtFt (δxt − δx̂t)

]

+

[
Ct 0
0 GtDt

] [
ωt

γt

]

(14)

This augmented linear dynamical system is used, in place of

(10), to solve the risk sensitive problem. The resulting locally

optimal control policy is then

δu∗
t = kt +

[
Kx

t K x̂
t

]
δx̃t (15)

As the true state deviations δxt are unknown, then following

Li [17] and Ponton [21], we take the expectation of δu∗
t with

δxt conditioned on δx̂t to give the optimal policy

Eδxt|δx̂t
[δu∗

t ] = kt +
(
Kx

t +K x̂
t

)
δx̂t (16)

Detailed derivations of the complete recursive algorithm fol-

low the work of Ponton [21] and can be found together with

our software implementation in our open-source repository1.

It is also important to note that the backward recursion has the

same complexity as that of DDP. The only added complexity

is the computation of the estimator gains in the forward pass.

The convergence of iterative risk sensitive solvers is studied

in the work of Roulet [27].

III. MULTI-CONTACT RISK SENSITIVE CONTROL

Now we detail how we use the risk-sensitive optimal control

algorithm including measurement uncertainties to optimize

motions and impedance schedules for legged robots.

A. Including Multiple Contact Switching

For the rigid contact model (3), a contact switch causes a

change in the dimensions of the contact Jacobian J . Given

a predefined contact sequence and timing we can define the

switching in the overall system dynamics denoted fn where the

subscript n indicates a predefined contact phase. The contact

switching sequence is obtained with an initial guess for the

open-loop optimal trajectory using an existing kino-dynamic

optimizer [28]. The contact transitions are also aligned with

1https://github.com/machines-in-motion/risk sensitive control












