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Impedance Optimization for Uncertain Contact
Interactions Through Risk Sensitive Optimal Control

Bilal Hammoud!? , Majid Khadiv? and Ludovic Righetti'+?

Abstract—This paper addresses the problem of computing
optimal impedance schedules for legged locomeotion tasks in-
volving complex contact interactions. We formulate the problem
of impedance regulation as a trade-off between disturbance
rejection and measurement uncertainty. We extend a stochastic
optimal control algorithm known as Risk Sensitive Control
to take into account measurement uncertainty and propose a
formal way to include such uncertainty for unknown contact
locations. The approach can efficiently generate optimal state
and control trajectories along with local feedback control gains,
i.e. impedance schedules. Extensive simulations demonstrate the
capabilities of the approach in generating meaningful stiffness
and damping modulation patterns before and after contact
interaction. For example, contact forces are reduced during early
contacts, damping increases to anticipate a high impact event
and tracking is automatically traded-off for increased stability.
In particular, we show a significant improvement in performance
during jumping and trotting tasks with a simulated quadruped
robot.

Index Terms—Humanoid and Bipedal Locomotion, Legged
Robots, Motion Control, Optimization and Optimal Control.

I. INTRODUCTION

TATE of the art locomotion controllers include a model

predictive control scheme that computes trajectories of
some reduced model. This model predictive scheme is then
realized through a pre-designed impedance controller or a
QP based inverse dynamics solver. These strategies have
proven to be successful in completely structured and controlled
environments. However, current robot control strategies still
lack the ability to reason about uncertainty in the environment.
High stiffness feedback controllers are usually used to track
precise trajectories. This approach is usually limiting for a
robot in multi-contact scenarios where the robot depends on
intermittent contact interactions to move itself or some object
around. Contact interactions increase the complexity of the
control design problem. A stiff controller will counteract an
unpredicted contact by increasing the control input to ensure
tracking, which might generate high contact forces that desta-
bilize the system. On the other hand, excessive compliance
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could lead to large deviations from the desired task. Studies
from the field of neuroscience suggest that human beings
modulate their impedance during contact interactions [1], [2].
Other studies suggest that sensorimotor commands are the
result of an optimal feedback control mechanism that controls
a trade-off between accuracy and stability [3]. A more recent
study [4] suggests that this impedance “sweet spot” is a result
of reasoning not only about the desired task, but also the
uncertainties present during contact interactions.

Impedance control for robotics was postulated and derived
by Hogan [5]. Hogan [6] also demonstrated experimentally
that this controller is capable of stabilizing contact inter-
actions if proper impedance parameters were to be chosen.
Following the results presented by Hogan, Park [7] used
a similar approach to design a bipedal walking controller.
The results show a biped capable of walking on uneven
terrain. The results achieved through impedance control have
proven to be superior for control strategies involving contact
interactions [8]. However, the mentioned approaches design
the impedance schedules through an exhaustive trial and error
process. It remains an open question on how to systematically
optimize impedance profiles for robotic tasks involving contact
interactions.

Optimal feedback control theory has many promising as-
pects that could help approach this problem. Mayne [9]
introduced an algorithm that computes local quadratic approx-
imations of both the dynamics and the cost functions and
then iteratively solves the nonlinear optimal control problem.
This algorithm is commonly known as the Differential Dy-
namic Programming Algorithm (DDP). It has the advantage
of providing an optimal control trajectory together with local
feedback controller. Many variations of DDP appeared later
in the literature [10], [11], [12], [13], [14], [15]. However,
all the mentioned variations are deterministic in nature and
favor tracking over stability, making them prone to failure in
situations where tracking cannot be perfectly achieved, and in
attempting to do so, the controller can destabilize the system,
uncertain contact interactions being a clear example.

Todorov [16] added multiplicative process noise to the
optimal control problem violating the certainty equivalence
principle. This led to control policies that are dependent
on the process noise. Li [17] derived similar results for
partially observable systems with control constraints resulting
in control policies that are a function of both process and
measurement uncertainties. Another method to break the cer-
tainty equivalence principle is achieved through an exponential
transformation of the cost function, this was first introduced
by Jacobson [18] for linear systems and later extended for
nonlinear optimal control by Farshidian [19]. This formally
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synthesizes a controller that could obtain risk neutral, risk
sensitive or risk seeking behaviors depending on the parame-
terization of the role of the uncertainty in the cost function.
Medina [20] used the exponential cost transformation with
process noise to perform manipulation tasks through a model
predictive control scheme. The exponential transformation
was extended to accommodate for measurement uncertainties
in [21] obtaining a risk sensitive optimal control algorithm
that accounts for higher order statistics in both process and
measurement models making it a suitable framework for
designing feedback controllers that can trade-off disturbance
rejection and measurement uncertainty. The approach was only
tested on toy problems and never used for more complex
robotic tasks.

This paper builds on the ideas of Ponton [21] to propose
a systematic method for computing impedance schedules for
legged robots. We extend the algorithm to work with hard
contact transitions and introduce a way to incorporate con-
tact measurement uncertainty into the whole-body optimal
control formulation. This results in systematically optimized
impedance profiles that exhibit desirable stiffness and damp-
ing patterns to handle uncertain, high impact and contact
transitions. Extensive numerical simulations demonstrate the
properties of the approach when compared to usual DDP
algorithms and other measurement noise models. In particular,
we show a significant increase in performance for hard impacts
for jumping and trotting over uneven terrains.

II. BACKGROUND

This section provides background on the robot and contact
models, risk-sensitive stochastic optimal control and its exten-
sion to include measurement uncertainty.

A. Multi-Contact Robot Dynamics

The dynamics of a legged robot in contact with its environ-
ment is described using the following equation

4 el = X ()
dt [v] — [ MY 1 —h+J"Aw)
N——

where ¢ = [z,y,2,q4F,...,48,01,.. .,GnﬂT € SE(3) x R
includes the base cartesian position z, y, 2, the base orientation
parametrized as quaternions ¢” and 0; being j-th joint of the
robot. v € R™ is the vector of generalized velocities with
nv = nj+6 and expressed in the base local frame. M (q) is the
inertial matrix, h (g, v) is the vector combining the nonlinear
terms such as Coriolis acceleration and gravity, ST is the
selection matrix mapping the controls to the actuated degrees
of freedom, A, is the vector of contact forces and J (q) is
the contact Jacobian. The notation indicating the dependence
on ¢ and v will be omitted for the remainder of the text. Let
aT = [¢7,v"] define the state vector, hence the discrete time
state transitions become

T = fi (z, ) = ¢ ® (6t f (2, 0)) @)

———

dxy
Then dx; represents the change in the state vector during a
time interval 6t and @ handles the Lie group composition
operation for the base orientation.

B. Rigid Contact Model

While different contact models can be chosen to compute
the contact forces A.,: [22], a rigid contact model is chosen
for the optimal control computation [23]. Let p, p and p
denote any contact point position, velocity and acceleration
respectively, then during an active contact phase, the rigid
contact assumption can be stated as

p=Jv=0 and j=Jv+Jo=0. (3)

In order to resolve the contact forces that guarantee the
no-motion constraints of all active contacts, the robot
dynamics (1) is projected to the contact space using
(JM=1JT) " M~ = AJM ! to result in

Aewt = —AJv+ ATJM " h — AJM 18T+ 4)

Once ¢, is obtained, the motion vector dz; can be computed
and the state vector x;; can be obtained from (2).

C. Risk Sensitive Optimal Control

We consider the stochastic optimal control approach known
as Risk Sensitive Control to explicitly reason about uncer-
tainty. A nonlinear iterative risk sensitive optimal control
formulation [24], [19], [21] explicitly takes into account the
distribution of uncertainty while being numerically efficient for
nonlinear problems. Consider the following dynamics written
as a nonlinear stochastic difference equation

i1 = fo (@, ue) + F (2, u) wy @)

where w; ~ N (0, ;) is the process noise which accounts for
unmodeled disturbances and F'(z,u;) maps the noise to the
full state. Consider an objective function of the form

T-1

LXU)=lr (xr) + > 1 (z1,u0) (6)
0

where X = [zg,..,x7] and U = [ug,...,ur—1] denote
the state and control trajectories respectively, I (xr) is the
terminal cost, and [; (z;,u;) is the cost at time ¢. Typical
optimal control approaches minimize the expectation of the
objective function, however, risk sensitive optimal control
instead minimizes the expectation of the exponential trans-
formation of the objective. This affords the consideration of
the higher-order statistics of the cost

T* = min Efexp (o (X)) (7)

where o is the sensitivity scalar. Farshidian [19] proved that
the cumulant generating function of J can be expressed as

1 o o?
EIOgJZE[ﬁ]JFgl@ [£] + s L]+ ... ®)
where p; [£] is the 7’th moment of the random variable £. The
risk sensitivity parameter o then provides a tool to control the
contribution of the higher order moments on the cost. When
o < 0, the control is risk-seeking and higher cost variances
will be preferred. When ¢ > 0, the control is risk-averse
since a high variance of the cost distribution will be more
penalized. When o — 0, the problem reduces to a normal
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(risk-neutral) optimal control problem and only the expectation
of the objective is minimized.

The problem can be solved globally with Riccati-like equa-
tions for linear dynamics and a quadratic objective func-
tion [18], the solution being a linear feedback controller.
However, finding a global minimizer X™*,U/* for the cost
function (7) is generally intractable for nonlinear dynamics
and non quadratic costs. The method presented in this paper
computes locally optimal solutions through iterative lineariza-
tions of the dynamics and a quadratic approximation of the
objective functions, a common technique used in deriving
iterative nonlinear optimal control algorithms [9], [13], [19],
[25]. The local deviations from nominal state and control
trajectories, denoted by superscript n, are written as

bz =z, 0y, 0wy =uy —uy )

with © representing the suitable difference on the state man-
ifold. The system dynamics can be linearized in terms of the
deviations as

637,54.1 = At(s.ft + Bt5ut + tht (10)

where A;, B; and C} are the respective linearization of
fe(6x¢, 0uy) and Fy(dxy, duy) with respect to the state and
control terms. Similarly a quadratic approximation of the cost
function [;(x;,u;) can be obtained. For a linear dynamics and
a quadratic cost under the risk sensitive exponential transfor-
mation, the value function takes the form of an exponential
with a quadratic argument in the state [18]

1
%4 ((51',5) = exp {O’ (26xtTSt5mt + 6$?8t + St) } (11)

Importantly, the value function here holds a completely dif-
ferent form than that of DDP and the principle of optimality
needs to be written in multiplicative form as

V (6xs) = Igltgl { exp [ols (0, du)] E[V (0xiy1)] } (12)

In order to obtain the solution, the expectation of the value
function at time ¢ + 1 must be computed. Finally the value
function at time t is approximated by computing S, s; and
S¢ along with du; recursively backward in time. Since du; is
the argument minimizing a quadratic in dx;, then the locally
optimal controller du; = K dx; + k; is linear in the state
deviations. Here, K is the error feedback gains while k; is
the feedforward command. The solution of the recursive risk
sensitive value function is discussed in details in [18], [19].
The optimized deviations are used to iteratively improve the
solution until convergence is reached. It is important to note
that the control law explicitly incorporates the covariance of
the noise distribution in K; and k; [19].

D. Including Measurement Uncertainty
The formulation presented above does not integrate the
uncertainty coming from a nonlinear measurement model

Yeir1 = g (x4, ) + H (@4, ur) 1 (13)

where 7 ~ N (0,T;) is the measurement noise. Measure-
ment uncertainty is crucial for our approach as we need

to take into account the uncertainty about contact locations.
Speyer [26] incorporated measurement noise into the risk
sensitive formulation by introducing a state vector that grows
at each time step to include the entire history of the states.
Recently, Ponton [21] suggested that this could be avoided
by augmenting the linearized system dynamics with that of
an Extended Kalman Filter (EKF). Assuming an observable
system, an EKF can be used to compute the estimate deviations
0%+ along the nominal trajectory at each iteration. Let F; and
D; be the linear approximations of g (x¢,u;) and H (x4, uy)
from (13) respectively. Then we can compute the Kalman
gains GG; during the forward pass of the iterative algorithm (i.e.
when updating the nominal state and control trajectories) and
use them to define an augmented linear system, which includes
both the real, dz;, and estimated, §z;, states of the system.
With the extended state 0%; = [dxy,d2;], the augmented
system dynamics becomes

(51’t+1 . At(SIL't + Btéut
5i't+1 B At(Sxt + Bt5ut -+ GtFt ((S"Et - (Sft)

Cf 0 Wt

4| ¢

5 o) [5]

This augmented linear dynamical system is used, in place of

(10), to solve the risk sensitive problem. The resulting locally
optimal control policy is then

Suj =k, + [KP K7 6%

(14)

5)

As the true state deviations dz; are unknown, then following
Li [17] and Ponton [21], we take the expectation of du; with
dx; conditioned on §z; to give the optimal policy

Eby, |64, [0u;] = ke + (K7 + K7 63 (16)

Detailed derivations of the complete recursive algorithm fol-
low the work of Ponton [21] and can be found together with
our software implementation in our open-source repository’.
It is also important to note that the backward recursion has the
same complexity as that of DDP. The only added complexity
is the computation of the estimator gains in the forward pass.
The convergence of iterative risk sensitive solvers is studied
in the work of Roulet [27].

IIT. MULTI-CONTACT RISK SENSITIVE CONTROL

Now we detail how we use the risk-sensitive optimal control
algorithm including measurement uncertainties to optimize
motions and impedance schedules for legged robots.

A. Including Multiple Contact Switching

For the rigid contact model (3), a contact switch causes a
change in the dimensions of the contact Jacobian J. Given
a predefined contact sequence and timing we can define the
switching in the overall system dynamics denoted f,, where the
subscript n indicates a predefined contact phase. The contact
switching sequence is obtained with an initial guess for the
open-loop optimal trajectory using an existing kino-dynamic
optimizer [28]. The contact transitions are also aligned with

Uhttps://github.com/machines-in-motion/risk_sensitive_control
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the collocation points such that the objective function and
dynamics of the problem can be written as

N T
5I)r<l’i§1U]E lexp <01T (oxp)+ 0 Z% ; Iy (0, 5ut)>] a7

s.t. (51’t+1 = fn (5$t, (S’U,t) (18)

where 0 X and 0U are the trajectories of the state and control
deviations respectively. N is the number of contact switches
along the trajectory, and 7' is the horizon of each phase.
This procedure avoids non-smooth switches in the contacts
by solving the optimal control problem on multiple smooth
intervals. Consistency at the transition between the switching
intervals is ensured through the forward integration of the
trajectory along with high penalty on tracking the switching
states. In particular, we compute analytical derivatives for all
the quantities, including the contacts, using the Pinocchio and
Crocoddyl libraries [29], [25].

B. Error State Kalman Filter on Smooth Manifolds

It is desired to design an EKF to augment the linearized
dynamics of the robot at each time step, hence, the same
dynamical model f, is used, i.e. at each time step, the
predefined contact sequence defines the dynamical model of
choice. Let the discrete time EKF of the state deviations 63
take the form of the second row of (14), then following [21]
the error dynamics de;q1 = dxp41 — 0Ty iS given by

depy1 = (A — GiFy) dey + Cywy — GeDyy, (19)

This is the simplest estimator of choice and can be replaced
with any other estimator as long as it can be written locally as
a linear dynamical system. The optimal estimation gains are
then given by

-1
Gy = A5 F! (RS F + DI, DY) (20)

where X, is the error dynamics covariance. As legged robots
have a free floating base modeled as an SE(3) element,
the proper Lie group operations must be utilized during the
propagation of the covariance of the local error dynamics. A
full treatment of EKFs on Lie groups can be found in [30].

C. Uncertainty in Contact Interactions

Consider a robot during a dynamic contact scenario as
depicted in Fig. 1. A control algorithm computes actuation
torques based on the perception of the robot’s own states
along with its surrounding environment. Both the perception of
the robot environment and its states are susceptible to sensor
noise and perception errors, introducing uncertainty in the
measurements. We propose to model the contact uncertainty
as an uncertainty at the tip of the swing foot I'. as shown in
the ellipsoid in Fig. 1. This has the advantage of avoiding
the need to keep track of the environment model or the
next contact location in the state vector. We then map this
uncertainty back to the space where the full state covariance
matrix I'y, is defined. Adding both covariances results in the
total uncertainty in the contact interaction.

)
- <
——

Fig. 1: Uncertainty in Contact Interactions
A deviation in the swinging end-effector of the robot can
be linearly mapped to a deviation in its state vector through

-1 2

As

21

where J; is the jacobian of the swinging foot. Then the
minimum norm change in the state vector corresponding to
a change in the end-effector is given by

] =115
ov 510p
where Al = AT (AS.Az)fl is the Moore-Penrose inverse of
Aj. Different norms could be chosen using a weighted inverse
if desired. Now that the deviations of the end-effector are in the
same vector space as the full state errors, it is possible to add
the noise resulting from the robot states such as joint encoders
along with the contact uncertainty. However, a deviation in the
swing foot might induce a deviation in the feet that are actively
in contact and break our rigid constraint assumption in (3). To
avoid inconsistency, the deviations of the swing foot must be
projected to the null space of the feet actively in contact using
the null space projector P.. The final form of the deviations
transformation can then be written as

5q o t t (5p
M = oA A M
PC

(22)

(23)

where A, is similar in structure to A; however containing
the Jacobians of the active contacts described in (3).This
transformation maps the mean of the deviations in a certain
end-effector frame to that of the full state vector of the robot.
Since our noise model is Gaussian, the covariance matrix can
also be transformed using the affine property of Gaussians.
The total covariance of the state vector becomes

[ =Ty, + P.AIT ATPT (24)

In summary, we define Gaussian noise models both in end-
effector and state space, with respective covariance I'. and
T'ts. We combine them using (24). This approach allows to
modulate uncertainty at the feet just before and after contact.

IV. SIMULATIONS RESULTS

To demonstrate the capabilities of the proposed method
for controlling multi-contact interactions under contact un-
certainty, we present three different simulation experiments
using an accurate model of our open-source quadruped robot
Solo [31]. In the first experiment, we study the effect of dif-
ferent measurement noise models on the computed impedance
profiles and resulting impact forces when encountering an
unexpected contact. With the second experiment, we explore
how the trade-off between stiffness and damping changes
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when using our risk-sensitive control approach when compared
to standard DDP methods. Finally, in the third experiment,
we systematically quantify how the stability of the system is
favored relative to the accuracy of the controller in the risk
sensitive case during locomotion tasks.

The DDP controller used as a baseline in the presented
experiments is from [25]. The kino-dynamic optimizer de-
scribed in [28] is used to generate reference trajectories around
which both iterative controllers DDP and Risk Sensitive are
initialized. A linear spring damper contact model is used for
the simulations with an explicit Euler integration scheme [32]
at a time step dtg;,,, = le—4s with a spring stiffness parameter
of Kk = 1e5N/m and a spring damping parameter of b =
3e2Ns/m. The coefficient of static friction used in simulation
is 4 = 0.7. The simulated feedback control frequency runs
at 1kHz and the discretization step for the optimal control
problems is set to dt,,+ = le—2s. Moreover, the legs of
the robot will be referred to as F'L, FR, HL, HR denoting
FrontLeft, FrontRight, HindLeft and HindRight respectively.
Each leg of the robot in turn consists of three joints as it can
be seen in Fig. 1.

For all the experiments, the same cost function, weights and
reference trajectories are used for both DDP and Risk Sensitive
Control. All the planning and control is designed for perfectly
flat floor in all three experiments. This results in the same
whole body trajectories x; and the same feedforward torque
control profiles 7 for both DDP and Risk Sensitive control in
each experiment. The sensitivity parameter is set to o = 10 for
the Risk Sensitive solver, leaving the uncertainty models as the
only variable in the experiments. The only differences in the
optimized plans are the impedance profiles (i.e. the feedback
gains Kj).

For all the experiments presented, the uncertainty param-
eters can be described as follows. The process noise ; =
diag(le—6) through out the whole experiment. The full state
measurement noise I' r; = diag(5e—3) for all the experiments.
T'. = 0 during any lift off phase of the foot. For the landing
phase I'. is increased to 5e—4 for the diagonal elements
corresponding to p and le—4 for the diagonal elements cor-
responding to p.

A. Effect of Noise Models on Impedance Regulation

In this experiment, the task is to swing a single leg forward
with a maximum height of 10 cm and a step length of 8cm
similar to what is shown in Fig. 1. A 3 cm high block is added
at the next contact location to simulate an unpredicted contact
of 9.2% of the total leg length. The contact with the block
occurs at t = 0.43 s whereas the contact with flat ground was
planned for ¢t = 0.55s.

The first uncertainty model, Risk-Uniform, is simply a
diagonal matrix with equal variance on all of its entries. In
the second uncertainty model, Risk-SwingJoints, the variance
terms on the joints of the swinging foot are increased. In the
third model, Risk-Unconstrained, we add a contact noise term
similar to (22) without using the nullspace projection due to
the active contacts. The last model, Risk-Contact, includes the
projection of the swing contact uncertainty into the null space
of the active contacts (23).

1.4{ — ppP i
—-==- Risk_Uniform !
------ Risk_Swing]oints H
—-= Risk_Unconstrained H
—— Risk_Contact H

i

i

0.0 02 0.4 06 0.0 02 0.4 0.6
time [s] time [s]

(a) Position error norm (b) Velocity error norm
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" . 5
. _— .

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
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(c) Stiffness norm (d) Damping norm

Fig. 2: Tracking error and feedback norms for uncertainty
models and DDP. The grey zone corresponds to the time
between the unexpected contact and the planned one.

--=- ref
1000 _ op
— 75| ™7 Risk_Uniform
£ || Risk_Swingjoints R
W 50| == Risk_Unconstrained S e
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2.5 ’ '.\ /o ;'/'
'. y=a i
0.0 - .
0.0 0.1 0.2 0.3 0.4 0.5 0.6

time [s]

0.0 0.1 0.2 0.3 0.4 0.5 0.6
time [s]

Fig. 3: Front feet normal forces for different uncertainty
models and DDP.

Figure 2 compares the tracking behavior of each control
scheme. The state error is divided into the error in the config-
uration d¢q ( Fig. 2a) and the error in the velocity tracking dv
(Fig. 2b). Similarly the optimized feedback gains are divided
into the feedback gains associated to the configuration K,
and the feedback gains from the velocity K 4. Their norms are
shown in Fig. 2c and Fig. 2d respectively. The vector norm
[lv]| = VvTw is used to compute the state error norms whereas
the Frobenius Norm ||M||p = /Trace (MMT) is used to
compute the feedback norms.

We notice in Fig. 2 that the risk sensitive control with
Risk-Uniform and Risk-SwingJoint noise models diverge after
the unexpected impact. DDP also diverges but accumulates
less error than these two risk sensitive schemes. All three



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED FEBRUARY, 2021

controllers have high gain norms at the time of impact
|Kp| ~ 400 and a stiffness to damping ratio at 15»1/|kd| = 20.
It is important to note that such gains are too high and would
not be usable on the real robot [31]. The maximum reduction
in the overall stiffness and damping is obtained by using the
Contact uncertainty model where |KpPoprl/|Kpcontact] = 10
and Kdoorl/|Kdeontact] A 4. With this reduction in the
impedance magnitudes, a less accurate tracking is observed
for both Unconstrained and Contact earlier in time ¢ = 0.3s.
However, thanks to the less aggressive feedback gains, the
robot can handle the unpredicted impact. Importantly, these
reduced gains fit well within ranges acceptable for execution
on the real robot.

Xy Z 516283

B
100 I
10
FR— HAA

[ I 5
|| |
Nl so |
FR — HFE

Xy 2 6162683 XYy Z 6182683

FL — HAA
FL - HFE
FL - KFE

Kp - DDP Kp-Contact

Vv,V 00, o,

| N |
|1 0 0
FR - KFE || o |
HL — HAA 10
HL — HFE - -5
HL — KFE B s
HR - HAA I_ 20 I
HR — HFE I _10
-100
HR - KFE _30
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VeV V, @y 0, Ve VY, 00y 0
FL - HAA 8 2
FL - HFE
FL - KFE 6 05
FR - HAA 1 B
FR-HFE [l 4
FR - KFE | 0.0
HL = HAA 5 mo |
HL - HFE |l
HL — KFE o ||
HR = HAA -1 -0.5

-2
HR - KFE -

HR - HFE || I

Kd - DDP Kd-Unconstrained Kd-Contact

(b) Base Damping

Fig. 4: Part of the feedback gains mapping base errors to
joint torques at the time of unexpected impact t = 0.43s

The effect of the controllers is clearer when looking at the
normal contact forces (Fig. 3) where the impact force on the
swinging leg F'L after ¢ = 0.43s is lowest for Risk-Contact.
Additionally, the impact force propagates its effect to the
front right leg for DDP, Risk-Uniform and Risk-SwingJoints.
Whereas for the case where the uncertainty about the contact is
included (Risk-Unconstrained and Risk-Contact), we see that
the robot absorbs the impact force and we do not notice any
propagation of the disturbance to the other feet.

Inspecting the structure of the feedback matrices computed
at the time of impact can shed light on these differences in
behavior. The blocks of the feedback matrix that map the base
states to the control are depicted in Fig. 4. Risk Sensitive
control changes the structure of the gain matrices, where the
base error is modulated mainly through the feet on the ground
namely FR, HL and HR, which is expected. The advantage
of Risk-Contact is observed in the portion of the feedback
matrix that maps the joint errors to the control commands
(Fig. 5). DDP has aggressive Kp gain to track the motion of
the swinging foot FL, that is the first three diagonal elements
of Kp-DDP relative to the remaining diagonal elements cor-
responding to the remaining joints. Unlike Kp-DDP and Kp-
Unconstrained, Kp-Contact has lower gains on the joints of
FL relative to the joints of the support feet FR and HL. This

allows the swing foot to behave as a soft spring relative to
the support feet which explains the significantly lower impact
force observed and the good tracking of the contact forces
on the other feet. These results underline the importance of
choosing appropriate noise models and supports the choice of
the Risk-Contact noise model.

FL FR HL HR | FL FR HL HR
E I E 0.2
< b o1

0
~ ~
= .= o
% I § B -1
Kp - DDP Kd - DDP

FL FR HL HR 12 FL FR HL HR
E 1.00 E .. 006
= 075 g 0.04
= 050 M~ 0.02
E 0.25 E 0.00

0.00
% -o.zs% 002
Kp - Unconstrained Kd - Unconstrained

FL FR HL HR FL FR HL HR
& 08 w3 0.03
~ 0.6 o In.oz
E 0.4 E 0.01
~ 029 0.00
o 00 » -0.01
& 02 X ’
T * = L-0.02

Kp - Contact Kd - Contact

Fig. 5: Part of the feedback gains mapping joint errors to
joint torques at time of unexpected impact ¢ = 0.43s

B. Stiffness vs. Damping & Impact Forces

We now only consider the Risk-Contact noise model. This
experiment discusses how the introduced model results in an
improvement of the performance of an extremely dynamic
motion, a jump of a total height of 0.5m. Halfway through
the flight phase, a block of 3 cm height is placed on the floor.

Both DDP and Risk-Contact feedback policies achieve
the desired jump height with a slightly better performance
for the DDP controller. However, inspecting the tracking and
impedance profiles reveals a more natural behavior emerging
in the Risk Sensitive case. During the flight phase between
t = 1s and ¢ = 1.5s both controllers exhibit a significant
decrease in both the base and joint stiffness as shown in
Fig. 6. For the damping portion of the feedback matrix, the
base damping also shows a decrease during the flight phase.
Remarkably, we notice a stark difference in the damping
modulation of the joints. DDP significantly decreases damping
on the joints while Risk Sensitive significantly increases it.
This substantial increase in the joint damping allows to more
quickly absorb the unexpected impact, i.e. an abrupt change
in the velocity of the feet. As a result, we notice 20% lower
impact forces (Fig. 8), which in turn avoids the bouncing
behavior observed with the DDP controller (Fig. 9). This
comes however at the cost of larger deviations for the joint
positions. When measuring the stiffness to damping ratio of
both the base and the joints, we notice that during active
contact phases the base stiffness to damping ratio is relatively
the same for DDP and risk sensitive. However, for the joints,
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Fig. 6: Stiffness norm and position errors.

during the support phase, the stiffness to damping ratio of risk
sensitive is 1.5 times higher than that of DDP, explaining the
good tracking with lower overall gain profiles.
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Fig. 7: Damping and Velocity Errors
C. Trade-off between Stability & Accuracy

In this experiment, we study the capabilities of our con-
troller when trotting on unknown terrain. Both DDP and
risk sensitive policies are optimized to track a trotting gait
including a total of 14 contact switches. During simulations,
we introduce unexpected blocks at contact locations (Fig. 10)
in order to study the policies robustness. An execution is
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Fig. 9: Base and Foot Height Comparison

successful if the robot manages to reach the desired terminal
base configuration and velocity without falling.

We conduct 1000 simulations, divided into two batches.
In the first batch, the contact disturbances are sampled to
represent up to 14% of the total leg length, which is quite
aggressive. In the second batch, the maximum contact varia-
tion is 11% of the leg length. The results are summarized in
Table 1. In both cases, we observe a significant increase in
trotting performance when using the risk sensitive controller.
Moreover, the magnitude of the gains of the DDP controller
are outside of the range of gains admissible on the real
robot while the risk sensitive controller gains are not (based
on our preliminary investigations on the real robot). This
result demonstrates that the risk-sensitive controller effectively
improves the robustness to contact uncertainties.

For successful executions, we show the distribution of base
position tracking errors in Fig. 11. When successful, the risk
sensitive control policy finishes the trotting gait with larger
deviations in the base configuration to generate higher number
of stable execution, underlying the trade-off between accurate
tracking and robustness to contact uncertainty.

Experiment 1 Experiment 2

# of Simulations 500 500
Maximum # of blocks 14 14
Maximum block height 45 mm 34 mm

% of leg length 14 % 11 %

Method DDP Risk DDP Risk
# of Successful Sim. 237 325 358 458
% of Successful Sim. 474% | 65% | 72.6% | 91.6%

TABLE I: Parameters and results of the trotting experiments
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Fig. 10: Snapshots of the trotting gait and the contact disturbances.
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V. CONCLUSION

In this paper, we extend the idea of risk sensitive optimal

control with measurement uncertainty to legged locomotion

pro
noi

blems. We show the importance of the choice of the
se models to generate meaningful impedance modulation

patterns. Through extensive simulations, we demonstrate that
our approach can generate stiffness and damping profiles that
lead to better responses in face of hard impacts and contact
uncertainty when compared to typical DDP algorithms. The
computed gains are significantly smaller, and within ranges
that are realistically executable on the real robot. Our approach

pro

vides a systematic approach to automatically compute

optimal impedance modulations, at the same computational

cos
rob.
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