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Abstract—This paper investigates the problem of efficient
computation of physically consistent multi-contact behaviors.
Recent work showed that under mild assumptions, the problem
could be decomposed into simpler kinematic and centroidal
dynamic optimization problems. Based on this approach, we
propose a general convex relaxation of the centroidal dyna-
mics leading to two computationally efficient algorithms based
on iterative resolutions of second-order cone programs. They
optimize centroidal trajectories, contact forces, and importantly
the timing of the motions. We include the approach in a kino-
dynamic optimization method to generate full-body movements.
Finally, the approach is embedded in a mixed-integer solver to
further find dynamically consistent contact sequences. Extensive
numerical experiments demonstrate the computational efficiency
of the approach, suggesting that it could be used in a fast receding
horizon control loop. Executions of the planned motions on
simulated humanoids and quadrupeds and on a real quadruped
robot further show the quality of the optimized motions.

I. INTRODUCTION

The computation of multi-contact motions remains a dif-

ficult yet important challenge for legged locomotion and

manipulation in order to afford more versatile behaviors in

complex environments. Of particular interest are methods

that can compute such motions in real-time without making

restrictive assumptions on the solution set. Indeed, they can

provide the necessary adaptive behavior required in uncertain

environments without trading-off motion versatility.

Very successful walking pattern generators often rely on

simplified linear models of the dynamics [1] as they offer

important computational advantages that make them suitable

for receding horizon control [2–4]. Unfortunately, these mod-

els are fundamentally restricted to locomotion patterns with

predefined gaits on quasi-flat grounds. While extensions of

such models can enable the use of hands to maintain balance

[5], they make substantial assumptions on the admissible gaits

and are thus limited by the range of gaits they can generate.

Complete rigid body dynamics models including interaction

dynamics, in principle, afford the synthesis of a wider range of

behaviors for more complex motion tasks. Despite the inherent

computational challenges, very impressive motions can be

computed [6–16]. However such approaches are often limited

for receding horizon control as they require the resolution

of nonconvex, high dimensional optimization problems, often

with complex nonlinear constraints such as complementarity

constraints for contact dynamics.
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Middle-complexity options that decouple the pattern gen-

eration problem into simpler sub-problems have also been

studied. They typically assume that a sequence of contact

configuration is provided first, typically using efficient search

algorithms for contact sequences [17–21]. Of special interests

are methods based on the centroidal dynamics of the robot

[1], [22], [23] which have become very popular recently [24–

26]. Indeed, under mild assumptions on the kinematic and

actuation feasibility, this model provides sufficient conditions

to plan dynamically consistent full-body motions with multiple

contacts. This model is simple enough to be amenable to

online resolution and at the same time, expressive to plan

complex behaviors [27–31]. It is then possible to combine mo-

mentum dynamics with a full kinematic model to plan highly

dynamic motions [25]. This decomposition between centroidal

dynamics and kinematics models was, for example, leveraged

to create an alternating algorithm that efficiently computes

full-body motions in multi-contact by iteratively solving two

separate optimization problems until they reach consensus

[26], [31]. This connection has then been further explored in

[32], which proposed a method to optimize both centroidal

and full-body motions using an Alternating Direction Method

of Multipliers formulation.

While promising, approaches based on the centroidal mo-

mentum dynamics are inherently nonconvex and thus still

challenging to solve efficiently. This led researchers to focus

on the mathematical structure of the problem to derive more

efficient methods. For example, convex bounds on the angular

momentum rate (that maximizes the contact wrench cone

margin) are used to minimize a worst-case bound on the l1

angular momentum norm via convex optimization [33]. In

[27], [28], the bilinear terms of the momentum dynamics and

timings are handled by a dedicated multiple-shooting solver

and, proxy constraints are used for handling whole-body limits

based on an offline learning method. [30] exploits a linear

approximation of the momentum dynamics based on a lower-

dimensional space projection and an adaptive method for tim-

ing optimization to control a robot in multi-contact scenarios in

a receding horizon fashion. In [34], [35], the interpretation of

friction cones as dual twists allows computing online cones of

feasible CoM accelerations. The resulting bilinear constraints

are decoupled into linear pairs via a conservative trajectory-

wide contact-stability criterion for online motion generation.

Timings between contact switches are optimized online by

solving an easy-to-solve nonlinear problem.

In [26], we further studied the problem structure and

proposed an analytic decomposition of positive and negative

definite terms of the problem Lagrangian based on the de-

composition of angular momentum nonconvex terms. This

led to a solver with improved convergence properties. In our





relative to an inertial frame, and qjnt ∈R
n, the joint positions,

where n is the number of joints. Λ(t) ∈ R
n are joint torques

and λ e(t) ∈ R
6 is the contact wrench of endeffector e ∈ ecnt

(where ecnt is the set of endeffectors in contact with the envi-

ronment at the time in question). M(q) ∈ R
(n+6)×(n+6) is the

inertia matrix; h(q, q̇) ∈ R
n+6 a vector of generalized forces

including Coriolis, centrifugal, gravity and joint friction forces.

S =
[
0n×6 In×n

]
is a selection matrix reflecting the system

under-actuation and Je(q) ∈ R
6×(n+6) is the contact Jacobian

of endeffector e. The pre-superscripts min and max for joint

positions qjnt and joint torques Λ denote their minimum and

maximum limits. The set Ω denotes constraints such as friction

or non-sliding contacts, that will be explicitly defined within

the next subsection. Note that additional kinematic constraints

could also be added to the problem without changing the

reasoning below.

The problem described in Eq. (1) is nonlinear, nonconvex,

and computationally intensive and we seek to formulate a more

tractable approximation without sacrificing the versatility of

motion synthesis. The equations of motion can be decomposed

into actuated (superscript a) and unactuated parts (superscript

u)

Mu(q)q̈+ hu(q, q̇) = ∑
e∈ecnt

Ju
e(q)

T λ e (2a)

Ma(q)q̈+ ha(q, q̇) = ∑
e∈ecnt

Ja
e(q)

T λ e +Λ (2b)

As shown in [39], the actuated part of the dynamics provides

the necessary actuation torques needed to achieve any combi-

nation of desired acceleration q̈ and contact forces λ e. Thus,

assuming sufficient actuation Λ, it is possible to ignore the

actuated part of the equations of motion (Eq. (2b)) and base

the synthesis of multi-contact behaviors only on the unactuated

part (Eq. (2a)). As we will later show in the paper, it is

nevertheless possible to add torque limits in the decoupled

optimization problems. In [41], [42], it has been shown that

the right-hand side of the unactuated part and the gravitational

effects of the vector of nonlinear terms hu(q, q̇) that relate the

acceleration of the floating-base to external contact forces, are

equivalent to the robot centroidal momentum dynamics




l̇

k̇



=





mg+ ∑
e∈ecnt

fe

∑
e∈ecnt

((pe + R
x,y
e ze − r)× fe + Rz

e τe)





︸ ︷︷ ︸

From Newton-Euler dynamics

(3)

The center of mass position is denoted r and the linear

and angular momentum expressed at the CoM are written as

l and k. m is the robot mass and g the gravity vector. The

endeffector frame is located at the endeffector position pe,

and it is oriented so that Rz
e ∈ R

3×1 is normal to the contact

surface, and Rx
e ,R

y
e ∈ R

3×1 are aligned with the rectangular

shape of the endeffector support surface in the desired motion

direction. The rotation matrix Re =
[
Rx

e R
y
e Rz

e

]
∈ R

3×3 ro-

tates quantities from endeffector to inertial frame. For instance,

the endeffector force fe, expressed in the inertial frame, is

equivalent in local endeffector coordinates to fe = Re
T fe. The

center of pressure (CoP) ze ∈R
2 expressed in local endeffector

r

l
k

g

pe

fe
γe

fe
τe

zeRx

Ry

Rz

Fig. 2: The figure illustrates the representation used in the paper.
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Fig. 3: Schematic of the kino-dynamic optimization approach that
iteratively computes contact force λ e and whole-body trajectories
q, q̇, q̈ until convergence of the common set of variables: CoM rt,
robot momenta lt,kt and endeffector poses pe,t. The vector ht is built
by vertically stacking CoM and robot momenta. The pre superscripts
kin and dyn relate the variables to the problem they are a solution
for. The optimization objective φ is assumed to be separable and

composed by φ
dyn
t + φ kin

t . Finally, the cost penalties Φ
dyn
t ,Φkin

t
ensure the consensus of the solutions at convergence.

frame and scalar torque τe at the CoP complete the description

of the endeffector wrench. They can be equivalently described

by a torque at pe as γe =(R
x,y
e ze)× fe+Rz

e τe. The endeffector

wrench can now be defined as λ e =
[
fT
e γT

e

]T
. Figure 2

depicts coordinate frames and the notation.

It has been shown [22] that the left-hand side of the

unactuated part in Eq. (2a), under an appropriate coordinate

transformation from the floating base to the robot’s CoM,

relates the robot rate of momenta expressed at the robot’s

center of mass (l̇, k̇) to the robot velocity q̇ and acceleration

q̈ via the centroidal momentum matrix Mu
CoM(q) ∈ R

6×(n+6).

d

dt
[Mu

CoM(q)q̇]
︸ ︷︷ ︸

From full-body kinematics

= Mu
CoM(q)q̈+ Ṁu

CoM(q)q̇ =

[

l̇

k̇

]

(4)

At this point, it becomes clear that the problem of finding

feasible multi-contact motions can be reduced to the optimiza-

tion of centroidal dynamics (Eq. (3)) and the optimization of

full-body kinematics (Eq. (4)) as long as the motion-induced

momentum agrees with the dynamic optimization. In [31],



an alternating algorithm to solve the optimal control problem

(1) using this idea was proposed (see Fig. 3). It optimized

centroidal dynamic motions and full-body kinematics sep-

arately but ensured through added cost penalties that both

optimization problems come to an agreement on their common

variables: CoM, momentum, and contact locations.

In this paper, we use the complete architecture shown in

Figure 1 to evaluate our contributions, but our work mostly

focuses on the centroidal dynamics optimization problem,

which is sufficient to synthesize physically consistent motion

behaviors.

B. Dynamic optimization with the centroidal dynamics

We now present in detail the centroidal dynamics optimiza-

tion problem we are interested in, that synthesizes a motion

plan (timing, contact wrenches, and momentum trajectories)

under the momentum dynamics (Eq. (3)) and is optimal in

terms of a desired quadratic performance objective. First, we

discretize the dynamics equations using Euler’s methods and

then seek a local solution for the following problem:

min
ht,∆t,pe,t

fe,t,ze,t,τe,t

N

∑
t=1

[

φ
dyn
t

(
ht,∆t,pe,t,
ze,t, fe,t, τe,t

)

+Φ
dyn
t

(
ht −

kinht

pe,t −
kinpe,t

)]

(5a)

subject to ht =







rt

kt

lt






=







rt−1 +
1
m

lt ∆t

kt−1 + ∑
e∈ecnt

κe,t ∆t

lt−1 +mg ∆t + ∑
e∈ecnt

fe,t ∆t







(5b)

κe,t = (pe,t − rt)× fe,t + γe,t (5c)

γe,t = (R
x,y
e,t ze,t)× fe,t + Rz

e,t τe,t (5d)

pe,t ∈ U(Sr=ϕ(e,t)) (5e)

∆t ∈ [min∆t,
max∆t] (5f)

z
x,y
e,t ∈ [minzx,y,maxzx,y] (5g)
∥
∥f

x,y
e,t

∥
∥

2
≤ µ fze,t, fze,t > 0 (5h)

∥
∥pe,t − rt

∥
∥

2
≤ maxLe (5i)

Λt =
(

Ma(∗q) ∗q̈ + ha(∗q, ∗q̇)

− ∑
e∈ecnt

Ja
e(

∗q)T λ e,t

)
∈ [minΛ,maxΛ]

(5j)

We minimize a quadratic cost (5a) that includes a running

cost φ
dyn
t composed by user-defined task costs (such as

reaching a CoM position or moving through a way-point) and

regularization of control variables (such as contact wrenches or

Euler discretization of time ∆t). When the problem is solved

in the context of the alternating kino-dynamic optimization

procedure, it also includes a consensus cost Φ
dyn
t penalizing

momentum trajectories and contact locations deviating from

the solution of the kinematic optimization step. The problem

is optimized over a discrete time horizon N ≈ T / 0∆t computed

using the initial guess for the timestep variable ∆t, that

corresponds to the difference between time at step t and t−1.

The constraints (defined for all active endeffectors e ∈ ecnt

and timesteps t) include consistency with the centroidal dy-

namics (5b)-(5d). Here, we have formulated the dynamics

using torques at each contact’s center of pressure and added

an extra variable κe,t which will facilitate the formulation of

the time optimization algorithm. Other constraints include:

constraints on the endeffector locations to remain on the

assigned contact surface (5e) modeled as linear inequality

constraints (cf. Section IV-A for a detailed explanation of

pe,t ∈ U(S
r=ϕ(e,t))), box constraints to restrict the timestep

variable (5f) between a lower min∆t and upper max∆t limits,

constraints to maintain the CoP of the endeffectors (assumed

to be rectangular) within the support region (5g) defined

by the lower minzx,y and maxzx,y upper limits, friction cone

constraints (5h) (with friction coefficient µ) and a heuristic

constraint to ensure that the contact locations remain reachable

expressed as a distance from the CoM (5i) that cannot exceed

a predefined value maxLe. A linear time-varying approximation

of the torque limits constraint (5j) along the motion trajectory
∗q, ∗q̇, ∗q̈ optimized in the previous kinematics optimization

problem can also be considered and provides the ability to

adapt contact wrenches to satisfy torque limits.

In its general form, the optimization problem defined in

Eq. (5) is nonconvex. Its nonconvexities are due to the cross

products from the angular momentum dynamics and the bi-

linear terms from the timestep variable. In the next section,

we leverage the structure of the problem and propose two

algorithms based on convex relaxations to efficiently solve it.

We then extend the approach to also optimally select contact

surfaces that support a dynamic motion by embedding the

dynamics model within a custom mixed-integer solver.

Remark 1: In general, we can write down the relationship

between the contact forces and the CoM motion in two ways,

1) using the contact wrench sum (CWS) at the CoM and

imposing contact wrench cone (CWC) constraints [33], [35],

[40], [43] 2) using the contact forces (or wrench) at each en-

deffector and imposing directly contact force constraints [26],

[27], [29], [37]. In this paper, we use the second approach. The

main advantage of this approach is the capability of adapting

the contact location of the endeffectors. The main caveat is

that for more than one endeffector in contact (i.e. e ≥ 2),

the number of decision variables (i.e. 6 × e) is more than

the minimal representation of the centroidal wrench (i.e. 6).

However, the cross product term between decision variables

is inherent in the centroidal dynamics and our approach to

dealing with the cross-product (and bilinear terms in general)

is also applicable to a CWC formulation.

III. CENTROIDAL MOMENTUM DYNAMICS OPTIMIZATION

This section presents our approach to solve the centroidal

dynamics optimization based on an analytical decomposition

of nonconvex bilinear expressions as a difference of quadratic

functions, whose known curvature is exploited to design

efficient iterative convex approximations. In the following, we

analyze the nature of nonconvexities of problem (5), propose

two convex relaxations to approximate them and, detail the

optimization procedures and their convergence criteria.

A. Bilinear terms as difference of quadratic functions

Some constraints in problem (5) are affine (5e)-(5g), (5j)

or second-order cones (SOC) (5h)-(5i) and thus convex;







further discuss and compare the described methods.

C. Numerical optimization

In this section, we describe numerical aspects such as

convergence criteria and algorithmic implementation details

for both optimization problems.

1) Convergence criteria: The amount of constraint viola-

tion ε is used as the measure to decide upon convergence.

It is defined as the supremum among the average errors of

the state trajectory variables (15d), which are computed by

comparing the values of the optimization variables (rt, lt, kt)

that solve the approximate problem and the values obtained by

integrating endeffector wrenches (seqrt,
seqlt,

seqkt) that satisfy

exactly all of the nonconvex constraints, as follows

seqlt= l0+
t

∑
i=1

[

mg+ ∑
e∈ecnt

fe,i

]

∆i (15a)

seqrt=r0+
1

m

t

∑
j=1

[

l0 +
j

∑
i=1

(

mg+ ∑
e∈ecnt

fe,i

)

∆i

]

∆j (15b)

seqkt=k0+
t

∑
i=1

[

∑
e∈ecnt

(pe,i+R
x,y
e,i ze,i−

seqri)×fe,i+Rz
e,i τe,i

]

∆i

(15c)

ε=sup

{
N

∑
t=1

‖rt −
seqrt‖

2
2

N
︸ ︷︷ ︸

εr

,
N

∑
t=1

‖lt −
seqlt‖

2
2

N
︸ ︷︷ ︸

ε l

,
N

∑
t=1

‖kt −
seqkt‖

2
2

N
︸ ︷︷ ︸

εk

}

(15d)

When the errors ε fall below a certain threshold for the

constraint violation to be considered negligible for practical

purposes, we consider that the algorithm has converged.

2) Algorithmic implementation details: To approximate the

solution of problem (5), we iteratively solve an approximate

problem (using an interior point solver for SOC programs

based on [45]), where each nonconvex constraint (5b)-(5d) has

been replaced by a convex approximation. At each iteration,

we update the approximation (based on the optimal values of

the previous iteration) and its parameters to reduce the con-

straint violation amount. The procedure is then repeated until

convergence. For the trust-region method, the parameter σ is

decreased using iteratively increasing powers of a value less

than one, i.e. σ ∝ νk, where ν < 1.0 and k denotes the iteration

number. In a similar fashion, for the soft-constraint method, a

value for the penalty parameter η is selected according to the

desired precision to be achieved (typically within the range

[1e4,1e6]) and higher relative to other objectives, so that it is

prioritized.

We also highlight that the formulation of torques γe,t in

Eq. (5d) separately of κe,t in Eq. (5c) is required only when

the torque limits constraint (5j) is used, as it depends on the

contact wrench λ e,t =
[
fT
e,t γT

e,t

]T
. Otherwise, the torques γe,t

in Eq. (5d) can be directly embedded within the torque κe,t

in Eq. (5c), thus generating a problem of smaller size.

IV. OPTIMIZATION OF CONTACT PLANS

In this section, we explain how contact locations can be

optimized within problem (5) when they are considered opti-

ω
1
rω

2
r

ω
3
r

ω
4
r

Nr
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S r

Fig. 6: The description of a terrain surface Sr comprises a set of

coplanar corners ω i
r ∈ R

3×1, where in this case i∈ [1,4]. Out of them

the following quantities can be computed: surface normal Nr ∈ R
3×1,

surface rotation R(Sr) ∈ R
3×3 (whose third column points in the

direction of the surface normal), any surface point surfωr = ω i
r and a

membership constraint ω̄ ∈ U(Sr),∀ω̄ ∈ Sr, that simply defines the

set of points ω̄ ∈ R
3×1 that lie on the terrain surface.

mization variables that belong to a given contact surface. We

also describe an algorithm based on mixed-integer program-

ming to efficiently select a sequence of terrain surfaces and

contact locations consistent with the centroidal dynamics.

A. Membership of contact locations to terrain surfaces

Given a description of the terrain surface Sr (over which it

is safe to make contact), a contact location can be optimized

by including its membership constraint to surface Sr to the

optimization problem. A terrain surface Sr (as defined in

Fig. 6) is such that any contact point pe, selected from its

interior, guarantees that the entire endeffector is in contact. The

expression pe ∈ U(Sr) that constrains an endeffector position

pe to belong to surface Sr is defined as follows

pe ∈ U(Sr)
def
=





Ξr

Nr

−Nr



pe ≤





ξ r

Nr ·
surfωr

−Nr ·
surfωr



 (16)

Equation (16) defines a set of halfspaces, whose intersection

constrains a contact point pe to lie on a safe contact surface.

For instance, Ξr pe ≤ ξ r denote the halfspaces that define

lateral limits of the terrain surface, while Nr · pe = Nr ·
surfωr

implies that the normal distance from the plane should be zero,

i.e. the contact point has to lie on the terrain surface. Note that

the row-size of the matrix Ξr and vector ξ r depends on the

number of halfspaces required to define the terrain region Sr,

while the column size of the matrix Ξr is as pe, namely 3.

B. Dynamics-based contacts planning

Thus far, we have assumed that to solve problem (5) a

set of terrain surfaces, from where contacts are selected,

was given. Alternatively, a contact sequence could also be

given by for example a contact planner such as [17], [46].

In the following, we propose a mixed-integer formulation that

enables the selection of terrain surfaces and contact sequences

based on a measure of dynamical robustness.

1) Terrain description and contact model: We now describe

how a terrain is modeled and how contacts are selected within

this description of the terrain using the notation of [20].

The terrain consists of a set of R convex, obstacle free re-

gions Sr where r∈{1, · · · ,R} and we consider the selection of



a sequence of M contact locations pm where m ∈ {1, · · · ,M}.

We note that the mapping between index m of the selected

contact location pm and, endeffector e and the range of

timesteps t, in which endeffector location pe,t is active, is

predefined. For instance, we could optimize M = 4 contacts

with M/2 contacts for each foot in a locomotion task, or we

could optimize a larger number of contacts M = 6, where the

2 additional contacts are free slots to select hand contacts.

Note that stance and flight timings can later be changed within

the dynamics problem. Also r= ϕ(e, t) maps e, t to surface r

chosen for contact m.

The matrix of binary variables H ∈ {0,1}(M−M0)×R (in-

dexed by contact m ∈ {1, · · · ,M − M0} and terrain surface

r ∈ {1, · · · ,R}) defines the terrain surface Sr, whose domain

contains the contact location pm (M0 are contacts initially

active and thus with a predefined pose). The model is defined

as follows

Hm,r =⇒ pm ∈ U(Sr) (17a)

∑
r

Hm,r

{

= 1, for feet contacts

≤ 1, for hands contacts
(17b)

1−∑
r

Hm,r =⇒ (fe,t = 0), for hands (17c)

Hm,r =⇒ coneF µR(Sr) fe,t ≤ 0, friction cone (17d)

An element Hm,r being one implies the membership constraint

pm ∈ U(Sr) as shown in Eq. (17a). Thus, Hm,r decides

upon the terrain region from where a contact location can

be selected. Integrality constraints (17b) enforce membership

of a contact location to at most one terrain surface. When

no contact region is selected (e.g. no hand contact), control

variables such as contact forces should be inactive (Eq. (17c)).

When a contact region is selected, local endeffector forces

R(S)T fe,t must satisfy friction cone constraints, as in (17d).
coneF µ is a matrix function of µ such that its product with

the local force, returns a vector of negative values.
2) Reachability constraints: Reachability constraints be-

tween footstep locations are selected based on kinematic

reachability using linear inequalities such as in [47] for

forward or lateral motions or, based on the intersection of

SOC constraints [20] for more general settings. They can be

described in a convex form using linear inequalities based on

kinematic reachability such as in

min∆p ≤ |pm − pm−1| ≤
max∆p (18)

where two subsequent contacts are restricted to be within the

bounds min∆p and max∆p. Reachability constraints can also be

described as in [20] using an intersection of SOC constraints

∑
h∈H

secSh,m = ∑
h∈H

secCh,m = 1 (19a)

secSh,m =⇒

{
sinΘh ≤ θ m ≤ sinΘh+1
sinsm = sinuh θ m + sinvh

(19b)

secCh,m =⇒

{
cosΘh ≤ θ m ≤ cosΘh+1
coscm = cosuh θ m + cosvh

(19c)

∥
∥
∥
∥

[
px

m

p
y
m

]

−

([
px

m−1

p
y
m−1

]

+

[
coscm − sinsm
sinsm

coscm

]

P1,2

)∥
∥
∥
∥
≤ D1,2 (19d)

In the latter case e.g., a piecewise affine approximation of

sine and cosine functions is used to model footsteps rotation

θm ∈ R in a convex form. The matrices of binary variables
secS, secC ∈ {0,1}H×Mf (indexed by affine approximation h ∈
[1,H] and contact m ∈ [1,Mf] ) are used to select the active

affine approximation of sine or cosine h for each footstep m.

H denotes the number of affine functions used to approximate

sine and cosine, and Mf the number of footstep contacts to

be selected out of the total number of contacts M. As shown

before, integrality constraints (Eq. (19a)) guarantee that only

one approximation is active at each footstep m.

An element secSh,m,
secCh,m being one implies the acti-

vation of a single affine approximation for sine and cosine

functions, as shown in (19b)-(19c). Each affine approximation

is defined by a region of validity of the footstep rotation

angle θ m ∈ [sinΘh,
sinΘh+1] (for sine) or θ m ∈ [cosΘh,

cosΘh+1]
(for cosine) and, the corresponding affine approximation
sinsm = sinuh θ m + sinvh (for sine) or coscm = cosuh θ m + cosvh
(for cosine), where sinuh,

sinvh,
cosuh,

cosvh ∈R are parameters

that define slope and intercept values of each affine approxi-

mation. The footstep rotation angle θ m, sine sinsm and cosine
cossm of this angle constitute optimization variables.

Finally, these variables are used to model the range of

available positions for the next footstep (Eq. (19d)) based on

the current footstep position and yaw angle as the intersection

of two SOC constraints, parameterized by a pair of points

P1,2 ∈ R
2×1 (located sideways of the footstep position m−1

and rotated by the yaw angle), and a pair of distances D1,2 ∈R.

3) Dynamics model and objective function: To keep com-

putational complexity low, in the mixed-integer approach to

select contact sequences, we use a light version of problem

(5), where we do not consider the endeffector torques γe,t (in

other words, a point contact model is assumed), we use a linear

approximation of the friction cones and, either a centroidal

momentum dynamics model with fixed or non-fixed timings.

The objective function φ cnt
t similarly to (5a) regularizes states

and controls and also incorporates user-defined objectives.

4) Numerical optimization: To evaluate the performance

of our method at synthesizing contact plans and selecting

contact surfaces, we implement a custom mixed-integer solver

able to solve a sequence of SOC programs. It relies on two

functions to bound the optimal value of a given search space.

The lower bound comes from a relaxation of the search

space binary variables and the upper bound by any solution

where the binary variables are actually binary. The rest of the

constraints are treated using the iterative models previously

described. The feasible search space is partitioned into convex

sets and each partition bounded. The algorithm converges once

global lower and upper bounds are close enough, otherwise,

the partitions are refined and the search process is repeated.

The implementation of the custom mixed-integer solver is

based on a branch and bound method for global nonconvex

optimization, as detailed in [48]. In simple scenarios, we use

linear reachability constraints, and SOC constraints in more

complex ones, as will be shown in Section V.















Fig. 20: Snapshots of the experiments in scenario 1; top) trot on flat surface, bottom) trot on seesaw

Fig. 21: Snapshots of the experiments in scenario 2; top) jump in place, bottom) jump on a box

Fig. 22: Snapshots of the experiments in scenario 3; step and jump on an obstacle

through generating enough thrust on a non-coplanar set of

contact points and in a nontrivial endeffectors configuration,

the robot jumps on top of the obstacle. Finally, through another

multi-contact set of changes in contact configuration, it brings

back the joint configuration to the default one. This experiment

scenario further illustrates the versatility of our optimizer to

generate motions in complex environments.

VI. DISCUSSION

A. Time and computational complexity

In general, finding a solution to the dense version of any

of the convex approximations we solve, requires a polynomial

time algorithm (of order O(ν
1
2 [ν + ι ]ι2)≈O(ν

3
2 ), ν being

the number of quadratic constraints and ι its size) [55].

However, within the problem size ranges of interest to us

and thanks to the exploited problem sparsity patterns (e.g. due

to time indexing), we observe (Fig. 9) that the problem has

approximately linear time complexity. It is possible to note

this linear tendency for both momentum and time optimization

problems, despite their different rates of growth due to distinct

problem sizes and even problems that consider actuation limits

show this linear tendency (Fig. 17).

When considering torque limits the doubled computational

effort due to the addition of 2nN inequality constraints for a

problem with N timesteps and robot with n joints (≈ 32 in our

case) can be reduced by considering only the weakest joints or

only those involved in the motion. All in all, computation times

are still lower than the planned horizon, making it possible to

run the algorithm online (for example the next plan can be

computed, while the current one is being executed).

B. On limitations and comparison of the approximations

Problem (5) is nonconvex and thus hard to solve. The

proposed heuristics lighten to some extent the effort required

to find a solution by searching for an approximate one within

the convex space of the problem. This however comes with

certain limitations. For instance, when using trust-regions, they

might be inappropriately built leading to non-optimal solutions

or even unsuitably initialized which could render the interior

of the convex cone empty leading to primal infeasibility.

For the soft-constraint method, the difficulty lies in finding

an appropriate trade-off between two competing objectives:

the amount of constraint violation and problem conditioning.

An adaptive solution that iteratively reduces the value of

the allowed amount of constraint violation σ works well for

the trust-region heuristic, though care is required to slowly

converge from the relaxed to the approximate problem without

rendering the problem infeasible due to excessive reduction



of σ . For the soft-constraint method, a value high enough to

prioritize the soft-constraint over the rest of the cost terms

works well.

We have used both methods to synthesize a relatively high

number of motions, so as to be able to successfully train a

neural network [54]. From this experience, we highlight that

both methods work equally well. However, we would like to

remark on two cases where one would be more appropriate

than the other. The first case would be when a certificate of

optimality or infeasibility matters, e.g. to compute a viable

set to be used as a terminal set constraint. In this case, the

trust-region method is more appropriate as the slack or degree

of constraint violation is controlled using a primal constraint

and the certificate is valid for the given precision. The second

case would be when the solver is to be warm-started not from

information from previous iterations, but using a predictive

model (e.g. a neural network). In this case, the soft-constraint

method would not run into the risk of infeasibility due to an

invalid initialization, making it a more appropriate approach

to handle this case.

Notice that a single timeline was used to parameterize

and optimize motions in eq. (5). However, this might be a

limitation for more general and complex motions that require

an independent timeline for each endeffector. Finally, notice

that while the method is very general in nature and works

well to solve problem (5), it is the case, as with any other

nonlinear optimization method such as sequential quadratic

programming [56], that it might not be appropriate or fail with

other problem instances.

C. Stability of the computed motions

Our method generates dynamically feasible motions that

satisfy general contact stability criteria such as [43]. If the

final position of the robot has zero velocity, then we are

guaranteed that the motion (if perfectly executed) will lead

to a stable behavior, i.e. a behavior that will lead to the robot

to stop and remain stabilized. Additionally, the construction

of the feedback controllers ensures that the controlled motion

will be locally stable, i.e. it will reject small perturbations.

While we do not have any guarantees on the size of the region

of stability, our experimental evaluations demonstrate that the

motions are good enough to be executed in a simulator or on

a real robot with substantially different dynamics. We noticed

in our real-robot experiments that the synergy between the

feedback controller and the motion plan is important and that

none of them is solely responsible for successful execution

of the motions, especially when executing a 10s long multi-

contact motion.

Ideally, it would be desirable to use the optimizer in a

receding horizon manner, raising the issue of closed-loop

stability of the optimizer. Several methods have been proposed

to ensure stability of model predictive control problems such

as the use of a terminal equality constraint [57], terminal

cost [58], terminal constraint set [59] or terminal cost and

constraint set [60]. In this work, we use a terminal cost

that keeps the terminal state within a viable set to generate

balanced motions (see table I). This should thus lead to closed-

loop stable behaviors.

Moreover, our approach exploits sequential convex approx-

imations (cf. section III) to achieve polynomial-time conver-

gence and provide a certificate of optimality or infeasibility

for the motion to the desired precision. We highlight that

these features do not come for free in any off-the-shelf

solver. For instance, an off-the-shelf interior point method

for general nonlinear problems will not take advantage of the

structure of the problem as we do. This will result in a poor

approximation of the nonconvex constraints unable to capture

the global convex part of the problem, thus leading to slower

convergence. Lastly, the certificate of optimality certifies that

problem constraints are satisfied to the desired precision.

D. Cost definition and importance weights

As pointed out throughout this work, efficiency is a key

concern. Consequently, the cost function (used to synthesize

motions) is composed using convex quadratic expressions, as

shown in Table I. The set of importance weights for these

costs is, however, expected as an input (see Fig. 1), as it gives

the user the flexibility to shape solutions using the knowledge

about the particular robot and application. For instance, it

allows expressing different preferences of endeffector force

distributions in humanoid and quadruped robots. Similarly, a

preference for highly dynamic and aggressive motions such as

jumping (Fig. 14) over more conservative and slow motions

(Fig. 8) can be expressed by lower penalties over control

variables. However, automatically computing appropriate cost

weights to generate desired behaviors remains an open re-

search problem.

E. Comparison to other approaches

In [27], the motion and timings for a walking on stairs

using a handrail scenario, given a sequence of contacts, are

optimized in less than 5.5s. However, the multiple shooting

solver used in this approach is closed-source to the best

of our knowledge. In our approach, such a motion can be

optimized in around 4.8s. In [9], one iteration of a multi-

contact motion of 0.5s duration can be optimized within 0.05s.

Thus, extrapolating, one iteration for a 7s motion could be

optimized within 0.7s. This approach, however, does not take

into account hard constraints. In our approach, the cost of

such an iteration is around 0.61s. In [29], a bipedal motion

of 4.4s is optimized within 4.1s together with the contact

sequence but uses a simplified dynamics model, assuming for

example a constant locked inertia tensor at the CoM. Our

method would achieve a comparable time by optimizing 4

contacts within a time horizon of 5s. Our contacts planning

approach based on mixed-integer programming is competitive

only for small problems that optimize a few contacts, due to

the combinatorial complexity of mixed-integer programs. For

longer contact sequences, other state of the art approaches are

more competitive, but typically use simplified dynamics to test

for contact transition feasibility [17], [61], [62]. Note, how-

ever, that the kino-dynamic optimizer can be used to generate

data and learn how to predict dynamic contact feasibility and

significantly speed up contact search [54].



These few examples highlight the competitiveness of the

presented method while enabling the resolution of the problem

without simplifications. However, we are not yet capable to

compute solutions for model predictive control (e.g. at 50Hz

rate or above) and thus we require a feedback controller to

stabilize the motion in between plan computations. Bringing

such approaches to real-time rates while enabling full-body

optimization remains an open problem, likely to require the

design of dedicated numerical solvers and smart warm-start

procedures. Lastly, we note that the receding horizon control

of whole-body motions ensuring stability, robustness, and

recursive feasibility, remains an open and exciting research

problem.

VII. CONCLUSION

We have presented a structured and efficient algorithm for

generating time-optimal motion plans for robots with arms

and legs, as well as an approach to select a set of contact

surfaces from a terrain description that supports such a motion.

Finally, we have shown experimental evidence on a physical

simulator and on a real quadruped robot that the algorithm is

capable of efficiently generating dynamically feasible motion

plans. Future work will include the extension of the algorithm

to receding horizon control. The open-source repository [38]

offers fully functional kino-dynamic demos, examples of tasks

descriptions, and implementation details.
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