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Abstract—This paper investigates the problem of efficient
computation of physically consistent multi-contact behaviors.
Recent work showed that under mild assumptions, the problem
could be decomposed into simpler kinematic and centroidal
dynamic optimization problems. Based on this approach, we
propose a general convex relaxation of the centroidal dyna-
mics leading to two computationally efficient algorithms based
on iterative resolutions of second-order cone programs. They
optimize centroidal trajectories, contact forces, and importantly
the timing of the motions. We include the approach in a kino-
dynamic optimization method to generate full-body movements.
Finally, the approach is embedded in a mixed-integer solver to
further find dynamically consistent contact sequences. Extensive
numerical experiments demonstrate the computational efficiency
of the approach, suggesting that it could be used in a fast receding
horizon control loop. Executions of the planned motions on
simulated humanoids and quadrupeds and on a real quadruped
robot further show the quality of the optimized motions.

I. INTRODUCTION

The computation of multi-contact motions remains a dif-
ficult yet important challenge for legged locomotion and
manipulation in order to afford more versatile behaviors in
complex environments. Of particular interest are methods
that can compute such motions in real-time without making
restrictive assumptions on the solution set. Indeed, they can
provide the necessary adaptive behavior required in uncertain
environments without trading-off motion versatility.

Very successful walking pattern generators often rely on
simplified linear models of the dynamics [1] as they offer
important computational advantages that make them suitable
for receding horizon control [2—4]. Unfortunately, these mod-
els are fundamentally restricted to locomotion patterns with
predefined gaits on quasi-flat grounds. While extensions of
such models can enable the use of hands to maintain balance
[5], they make substantial assumptions on the admissible gaits
and are thus limited by the range of gaits they can generate.

Complete rigid body dynamics models including interaction
dynamics, in principle, afford the synthesis of a wider range of
behaviors for more complex motion tasks. Despite the inherent
computational challenges, very impressive motions can be
computed [6-16]. However such approaches are often limited
for receding horizon control as they require the resolution
of nonconvex, high dimensional optimization problems, often
with complex nonlinear constraints such as complementarity
constraints for contact dynamics.
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Middle-complexity options that decouple the pattern gen-
eration problem into simpler sub-problems have also been
studied. They typically assume that a sequence of contact
configuration is provided first, typically using efficient search
algorithms for contact sequences [17-21]. Of special interests
are methods based on the centroidal dynamics of the robot
[1], [22], [23] which have become very popular recently [24—
26]. Indeed, under mild assumptions on the kinematic and
actuation feasibility, this model provides sufficient conditions
to plan dynamically consistent full-body motions with multiple
contacts. This model is simple enough to be amenable to
online resolution and at the same time, expressive to plan
complex behaviors [27-31]. It is then possible to combine mo-
mentum dynamics with a full kinematic model to plan highly
dynamic motions [25]. This decomposition between centroidal
dynamics and kinematics models was, for example, leveraged
to create an alternating algorithm that efficiently computes
full-body motions in multi-contact by iteratively solving two
separate optimization problems until they reach consensus
[26], [31]. This connection has then been further explored in
[32], which proposed a method to optimize both centroidal
and full-body motions using an Alternating Direction Method
of Multipliers formulation.

While promising, approaches based on the centroidal mo-
mentum dynamics are inherently nonconvex and thus still
challenging to solve efficiently. This led researchers to focus
on the mathematical structure of the problem to derive more
efficient methods. For example, convex bounds on the angular
momentum rate (that maximizes the contact wrench cone
margin) are used to minimize a worst-case bound on the [;
angular momentum norm via convex optimization [33]. In
[27], [28], the bilinear terms of the momentum dynamics and
timings are handled by a dedicated multiple-shooting solver
and, proxy constraints are used for handling whole-body limits
based on an offline learning method. [30] exploits a linear
approximation of the momentum dynamics based on a lower-
dimensional space projection and an adaptive method for tim-
ing optimization to control a robot in multi-contact scenarios in
a receding horizon fashion. In [34], [35], the interpretation of
friction cones as dual twists allows computing online cones of
feasible CoM accelerations. The resulting bilinear constraints
are decoupled into linear pairs via a conservative trajectory-
wide contact-stability criterion for online motion generation.
Timings between contact switches are optimized online by
solving an easy-to-solve nonlinear problem.

In [26], we further studied the problem structure and
proposed an analytic decomposition of positive and negative
definite terms of the problem Lagrangian based on the de-
composition of angular momentum nonconvex terms. This
led to a solver with improved convergence properties. In our



previous work [36], we proposed a convex relaxation of the
problem that suggested the use of a proxy function to minimize
angular momentum, namely the sum of the squares of the
terms composing the nonconvex part of the dynamics. While
computationally very efficient, this approach was limited as
it did not allow the inclusion of an explicit target angular
momentum in the cost function, therefore severely limiting the
space of solutions. Moreover, the approach could not be used
with the alternating full-body motion optimization method
discussed above.

In this paper, extending our preliminary work [37], we study
a general convex relaxation of the problem that allows the ex-
plicit inclusion of angular momentum objectives and naturally
extends to the optimization of timing, a feature missing in
most contributions on centroidal dynamics optimization. The
main contributions of the paper are*

1 Exploiting the structure of the centroidal dynamics op-
timization problem, we propose two computationally ef-
ficient algorithms formulated as a sequence of convex
second-order cone programs to compute physically con-
sistent center of mass, angular momentum, and contact
force trajectories and demonstrate how timing optimiza-
tion can be efficiently included.

2 We show how our approach can be efficiently used with
the kino-dynamic optimization method proposed in [31]
to generate full-body physically-consistent movements.
We further extend the approach to also include actuation
limit constraints.

3 We extend the approach in a mixed-integer program
to find dynamically consistent contact sequences and
locations.

4 Finally, we evaluate the capabilities and limitations of our
approach in simulation on several multi-contact scenarios
for a biped and a quadruped robot, we study the benefits
of timing optimization to extend the range of possible
behaviors and demonstrate the execution of these move-
ments on a real quadruped robot.

The software implementation of the algorithms presented in
this paper is open-source and freely available [38]. We state
the problem and present background material in Section II. In
Section III, we detail the motion optimization approach and in
Section IV the contacts planning approach using mixed integer
programming. We present simulation and real robot results
in Section V and discuss the features and limitations of our
proposed framework in Section VI. Finally, we conclude in
Section VII.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we introduce the centroidal dynamics
optimization problem for multi-contact locomotion in the
larger context of full-body optimization. First, we provide an
overview of the larger kino-dynamic optimization problem,
present the structured approach used in our architecture to

*Part of the material was presented at the 2018 IEEE-RAS International
Conference on Robotics and Automation [37]. Contribution 1 is an extension
of this work, Contributions 2 and 3 are novel, Contribution 4 extends
simulation results to Contribution 2 and 3 and presents real robot experiments.
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Fig. 1: Our architecture maps a high-level task description into
functional motions. The initial state ry,ly, ko of the robotic platform
(simulated humanoid or a real quadruped robot), a desired CoM
motion Ar, a description of the R surfaces that compose the terrain
and a set of costs @S"(-), pKin(-), ?yn(~),¢fb(~) are used to select
a set of surfaces S (v} that support a dynamic motion, optimize a
kino-dynamic motion over a discrete time horizon N, and synthesize
a set of feedback gains Ky, Kq, K} that define closed-loop behaviors
to be realized by an inverse dynamics controller as in [39-41].

tackle it, and outline the centroidal dynamics optimization
problem, which is the core focus of this paper. Our overall ap-
proach is summarized in Figure 1. From a task description, we
first select a sequence of physically-feasible contact sequences
using mixed-integer programming (Sec. IV). This sequence
is used to optimize time-optimal full-body movements using
our kino-dynamic solver (Fig. 3). These movements are then
tracked with an instantaneous whole-body feedback controller.

A. Kino-dynamic optimization of multi-contact behaviors

To synthesize full-body multi-contact behaviors, we seek to
efficiently solve an optimal control problem of the form

T
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which minimizes a performance cost ¢(-), composed of a
terminal cost ¢, and the integral of a running cost ¢, over
a finite time horizon 7 under a set of physical constraints.
It enforces the equations of motion for a floating-base rigid-
body system (Eq. (1b)), joint and torque limits (Eqgs. (lc)-
(1d)), as well as contact forces, velocity and acceleration
constraints (Eq. (le)). Here, q = [xT qum] denotes the robot
posture composed of x € SE(3), the pose of the floating-base



relative to an inertial frame, and qjy € R", the joint positions,
where n is the number of joints. A(t) € R" are joint torques
and A,(t) € R® is the contact wrench of endeffector e € ecy
(where ey is the set of endeffectors in contact with the envi-
ronment at the time in question). M(q) € R(®+0)*("+6) js the
inertia matrix; h(q,q) € R""% a vector of generalized forces
including Coriolis, centrifugal, gravity and joint friction forces.
S = [0™€I™"] is a selection matrix reflecting the system
under-actuation and J,(q) € RO*(™+9) is the contact Jacobian
of endeffector e. The pre-superscripts min and max for joint
positions qjy; and joint torques A denote their minimum and
maximum limits. The set Q denotes constraints such as friction
or non-sliding contacts, that will be explicitly defined within
the next subsection. Note that additional kinematic constraints
could also be added to the problem without changing the
reasoning below.

The problem described in Eq. (1) is nonlinear, nonconvex,
and computationally intensive and we seek to formulate a more
tractable approximation without sacrificing the versatility of
motion synthesis. The equations of motion can be decomposed
into actuated (superscript a) and unactuated parts (superscript

w

M'(q)d+h"(q,q)= Y Ji(q)" A, (2a)
eCeent

M*(q)§+h*(q.q) = Y J(@)" A +A (2b)
eEecnt

As shown in [39], the actuated part of the dynamics provides
the necessary actuation torques needed to achieve any combi-
nation of desired acceleration { and contact forces A.. Thus,
assuming sufficient actuation A, it is possible to ignore the
actuated part of the equations of motion (Eq. (2b)) and base
the synthesis of multi-contact behaviors only on the unactuated
part (Eq. (2a)). As we will later show in the paper, it is
nevertheless possible to add torque limits in the decoupled
optimization problems. In [41], [42], it has been shown that
the right-hand side of the unactuated part and the gravitational
effects of the vector of nonlinear terms h"(q,q) that relate the
acceleration of the floating-base to external contact forces, are
equivalent to the robot centroidal momentum dynamics

i mg+ Y f.
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From Newton-Euler dynamics

The center of mass position is denoted r and the linear
and angular momentum expressed at the CoM are written as
1 and k. m is the robot mass and g the gravity vector. The
endeffector frame is located at the endeffector position p.,
and it is oriented so that R? € R**! is normal to the contact
surface, and R, Ry € R3*! are aligned with the rectangular
shape of the endeffector support surface in the desired motion
direction. The rotation matrix R, = [R} R{ RZ] € R¥* ro-
tates quantities from endeffector to inertial frame. For instance,
the endeffector force f,, expressed in the inertial frame, is
equivalent in local endeffector coordinates to f, = R,” f.. The
center of pressure (CoP) 3, € R? expressed in local endeffector

Fig. 2: The figure illustrates the representation used in the paper.
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Fig. 3: Schematic of the kino-dynamic optimization approach that
iteratively computes contact force A, and whole-body trajectories
q,q,{ until convergence of the common set of variables: CoM r,
robot momenta l;, k; and endeffector poses p, ;. The vector h, is built
by vertically stacking CoM and robot momenta. The pre superscripts
kin and dyn relate the variables to the problem they are a solution
for. The optimization objective ¢ is assumed to be separable and
composed by (])?yn + qﬂ‘in. Finally, the cost penalties CIDEIYH,CID{““
ensure the consensus of the solutions at convergence.

frame and scalar torque 7, at the CoP complete the description
of the endeffector wrench. They can be equivalently described
by a torque at p, as 7, = (R&” 3.) x f, +RZ% 7. The endeffector
wrench can now be defined as A, = [fg v ]T. Figure 2
depicts coordinate frames and the notation.

It has been shown [22] that the left-hand side of the
unactuated part in Eq. (2a), under an appropriate coordinate
transformation from the floating base to the robot’s CoM,
relates the robot rate of momenta expressed at the robot’s
center of mass (I,k) to the robot velocity ¢ and acceleration
{ via the centroidal momentum matrix M ,,(q) € RO*("+6),

d _ i

S Meou(@)d] = Meon(@)d+Meou(@d = (| @)

From full-body kinematics

At this point, it becomes clear that the problem of finding
feasible multi-contact motions can be reduced to the optimiza-
tion of centroidal dynamics (Eq. (3)) and the optimization of
full-body kinematics (Eq. (4)) as long as the motion-induced
momentum agrees with the dynamic optimization. In [31],



an alternating algorithm to solve the optimal control problem
(1) using this idea was proposed (see Fig. 3). It optimized
centroidal dynamic motions and full-body kinematics sep-
arately but ensured through added cost penalties that both
optimization problems come to an agreement on their common
variables: CoM, momentum, and contact locations.

In this paper, we use the complete architecture shown in
Figure 1 to evaluate our contributions, but our work mostly
focuses on the centroidal dynamics optimization problem,
which is sufficient to synthesize physically consistent motion
behaviors.

B. Dynamic optimization with the centroidal dynamics

We now present in detail the centroidal dynamics optimiza-
tion problem we are interested in, that synthesizes a motion
plan (timing, contact wrenches, and momentum trajectories)
under the momentum dynamics (Eq. (3)) and is optimal in
terms of a desired quadratic performance objective. First, we
discretize the dynamics equations using Euler’s methods and
then seek a local solution for the following problem:
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We minimize a quadratic cost (5a) that includes a running
cost ¢?yn composed by user-defined task costs (such as
reaching a CoM position or moving through a way-point) and
regularization of control variables (such as contact wrenches or
Euler discretization of time A;). When the problem is solved
in the context of the alternating kino-dynamic optimization
procedure, it also includes a consensus cost beyn penalizing
momentum trajectories and contact locations deviating from
the solution of the kinematic optimization step. The problem
is optimized over a discrete time horizon N ~ 7 /°A, computed
using the initial guess for the timestep variable A, that
corresponds to the difference between time at step t and t— 1.

The constraints (defined for all active endeffectors e € ecpt
and timesteps t) include consistency with the centroidal dy-
namics (5b)-(5d). Here, we have formulated the dynamics
using torques at each contact’s center of pressure and added

an extra variable Kk, ; which will facilitate the formulation of
the time optimization algorithm. Other constraints include:
constraints on the endeffector locations to remain on the
assigned contact surface (5e¢) modeled as linear inequality
constraints (cf. Section IV-A for a detailed explanation of
Per EU(S t:¢(e7t)))’ box constraints to restrict the timestep

variable (5f) between a lower ™"A, and upper ™A, limits,
constraints to maintain the CoP of the endeffectors (assumed
to be rectangular) within the support region (5g) defined
by the lower ™"3*Y and ™33*Y upper limits, friction cone
constraints (5h) (with friction coefficient ) and a heuristic
constraint to ensure that the contact locations remain reachable
expressed as a distance from the CoM (5i) that cannot exceed
a predefined value ™ L. A linear time-varying approximation
of the torque limits constraint (5j) along the motion trajectory
*q,*q,"{ optimized in the previous kinematics optimization
problem can also be considered and provides the ability to
adapt contact wrenches to satisfy torque limits.

In its general form, the optimization problem defined in
Eq. (5) is nonconvex. Its nonconvexities are due to the cross
products from the angular momentum dynamics and the bi-
linear terms from the timestep variable. In the next section,
we leverage the structure of the problem and propose two
algorithms based on convex relaxations to efficiently solve it.
We then extend the approach to also optimally select contact
surfaces that support a dynamic motion by embedding the
dynamics model within a custom mixed-integer solver.

Remark 1: In general, we can write down the relationship
between the contact forces and the CoM motion in two ways,
1) using the contact wrench sum (CWS) at the CoM and
imposing contact wrench cone (CWC) constraints [33], [35],
[40], [43] 2) using the contact forces (or wrench) at each en-
deffector and imposing directly contact force constraints [26],
[27], [29], [37]. In this paper, we use the second approach. The
main advantage of this approach is the capability of adapting
the contact location of the endeffectors. The main caveat is
that for more than one endeffector in contact (i.e. e > 2),
the number of decision variables (i.e. 6 X e) is more than
the minimal representation of the centroidal wrench (i.e. 6).
However, the cross product term between decision variables
is inherent in the centroidal dynamics and our approach to
dealing with the cross-product (and bilinear terms in general)
is also applicable to a CWC formulation.

III. CENTROIDAL MOMENTUM DYNAMICS OPTIMIZATION

This section presents our approach to solve the centroidal
dynamics optimization based on an analytical decomposition
of nonconvex bilinear expressions as a difference of quadratic
functions, whose known curvature is exploited to design
efficient iterative convex approximations. In the following, we
analyze the nature of nonconvexities of problem (5), propose
two convex relaxations to approximate them and, detail the
optimization procedures and their convergence criteria.

A. Bilinear terms as difference of quadratic functions

Some constraints in problem (5) are affine (5e)-(5g), (5j)
or second-order cones (SOC) (5h)-(5i) and thus convex;
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Fig. 4: Decomposition (as shown in Definition 2) of the bilinear
form B(u) =B([u,”,u,7]") =u, - u, into a difference of quadratic
expressions B(u) = x(u) — {(u) with x(u) = %D(ul +u,) and
¢(u) = §9(u; —u,), where Q(-) is the quadratic function I-113.

others however describe nonconvex constraints such as the
momentum dynamics evolution when considering the timestep
variable A, as an optimization variable (5b) or torque cross
products (5¢)-(5d). Next, we show the common nature of all
the nonlinearities and reformulate them in a way amenable to
efficient approximations using iterative convex models.

The torque cross product £ x f between a length (p, —r) in
(5¢) or REY 3. 1n (5d)) and the force fe_’l can be written as

0 - I x
Ixf= I 0o - 14
- &0 f

b* bY b”
a¥ a”

(6a)

a*

where the superscripts X,y,z reference to the components of
the vectors ¢,f € R3*!, but then they also identify the vectors
a' bl € R**! for i € {x,y,z}, whose scalar product a'-b' is
equivalent to the corresponding element of the cross product
vector (¢ x f). Similarly, we notice that the nonconvexity in
(5b) can be written as a scalar product between the timestep
variable A, and linear momentum I, contact forces f,, and
torque K, variables. It means that all nonconvex constraints
solely include equality constraints with bilinear terms.

Noticing that a'-b' = } Hai —I—biHi— : Hai —bi| ;, we refor-
mulate all the bilinear expressions as differences of convex
quadratic functions with known positive curvature, as was
done in [26] and in the spirit of [44]. In other words, we
can now decompose a bilinear expression with an indefinite
curvature into quadratic terms with known curvature, which
is key for the efficiency of our algorithm. To simplify the
subsequent presentation, we define the following sets

Definition I: Given a real vector space V, we define QF
as the set of quadratic functions V — R with a positive semi-
definite Hessian matrix.

Definition 2: Given a real vector space V, the set oF is

Qiz{%-:V—>R|%(u):x(u)—é(u) for )(,CEQ*} @)

where Figure 4 graphically illustrates this decomposition. In

particular, the set Q% is closed under scalar multiplication,
addition and composition with affine functions,

a(Vov)+B(wow) € QF 8)

for any a,f € R, affine functions v(-),w(-) and ¥(-),W(-) €
QF. Consider for example Equation (5d) and assume for
simplicity that (R7Y 3,,) x £, is represented by the decompo-
sition ¢ x f, then each endeffector torque component becomes
Y., =a -b + (R 7.,)\. The torque component 7., could
also be formulated as a difference of positive components
T="7—"1, where "7,77 >0, as in [13] to embed them
into the decomposition; however, this is not required. Then

€Ot
2 1
-3l

In a similar manner, each endeffector torque component KLA
(5¢), can be decomposed parameterizing its cross product
(pe —r) x f, with vectors ¢' and d' as Kk, =¢'-d' + 7 -

al +bl a'—b'

. 1 2 .
Yer = [1 \ Iz] +RE) T, )

et et

€Q*
cQ* cot
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K, = Z‘cﬂl‘z— Z‘cfd |+ a0
€eQt €eQt

where the vectors ¢!, d' € R?>*! for i € {x,y,z} have been
introduced in a similar fashion to Eq. (6b) to refer to the
vectors whose scalar product ¢' - d' is equivalent to the corre-
sponding component of the cross product ((p, —r) x f,)\. A
similar analysis holds for each of the Cartesian components of
the bilinear expressions within the dynamic constraints (5b),
which can be decomposed into elements of Q as given by

. 1. 2 : 2
l;At:Z I+ A, ," 1 I — A ) (11a)
1 ? 1 ?
Z Kle,nAt =2 Z Kle,t +A| — 2 Z Kle,t —A (11b)
ececnt eCceent 2 SIS 2
1 ? 1 ?
Zfle,nAt:Z ZféﬁAl 7 Zfle,t_At (11c)
eE€€cnt eE€e€cent 2 eCecent 2

In the next section, we show how we can use this structure to
approximate the problem using iterative convex relaxations.

B. Optimization with iterative convex relaxations

We now use the known curvature of the quadratic terms
Q7 to build a convex approximation. We start by isolating the
quadratic expressions into quadratic constraints by introducing
scalar variables a', b' € R. For example, Eq. (9) would become

. . 112 _. . 112
d‘:Ha‘—i—b‘ . b‘:Ha‘—b‘ i (12a)
. 1/ . . .
V=7 (@ -F)+ (R 7, (12b)
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(a) Nonconvex quadratic equality constraint as the intersection of
convex and nonconvex quadratic inequality constraints. In this work,
we use only the convex space of this constraint and a heuristic to
guide solutions towards its boundary.
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(b) Trust- reglon method: We first find a solution within the convex
space Q(p) < a@ (our approximation variable @ can take any value
within the blue region). Then based on this solution, we iteratively
build a trust-region that limits the search space to the boundaries.
The parameter ¢ controls the distance between trust-region and
quadratic constraint, thus the amount of constraint violation.
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(c) Soft-constraint method: We first find a solution within the convex
space Q(p) < a and based on this solution, we iteratively build a
function underestimator, that allows us to include a cost that rewards
selecting values close to it and thus close to the constraint boundary.
Parameter 1 controls the desirability of selecting solutions close to
the underestimator of the convex quadratic inequality constraint.

Fig. 5: Sequential approximation of quadratic expressions Q1 within
its convex space using iterative convex relaxation methods.

where the introduction of the additional scalar variables a', b!
renders the original equation (12b) linear and isolates the
quadratic nonconvex expressions with known curvature into
a pair of additional quadratic constraints (12a), whose very
simple form will benefit the search of efficient convex ap-
proximations.

Figure S5a sketches the hyperplane defined by the noncon-
vex constraint (12a), conceived as the intersection of two
inequalities, a convex a > Hai+biH§ and a concave one
a < Hai—kbiH; While it is difficult to search a solution in
a high dimensional nonconvex space, it is easier to search
within the space defined by the convex inequality and guide
the optimization towards the constraint boundary, approaching
in this way towards solutions with practical feasibility for the
original nonconvex quadratic equality constraint.

To summarize, we systematically isolate all the quadratic
expressions present in the optimization problem and replace
them with new scalar optimization variables in order to render
the original constraints linear. We then add simple equality
constraints between the new variables and the quadratic terms.
This allows us to move all the nonconvex elements of the
problem into simpler terms in the form of quadratic equality
constraints. We now propose two iterative methods based on

SOC programs to deal with each of the quadratic equalities.

1) Trust-region method: In this approach, the main idea is
to use a primal constraint to limit the convex search space
to values close to the boundaries. In mathematical terms, the
trust-region should constrain the problem to values of @ near
Q(p) (for simplicity of notation, we define p = a' + b' and
() = ||||3). During the first iteration, an initial guess of the
optimal problem values is obtained by searching over the entire
relaxed convex search space. From there on, the trust-region is
built based on the optimal problem values from the previous
iteration *p and by reducing the desired allowed amount of
constraint violation ¢, as shown in Figure 5b.

Trust-Region Approximation of QO+ Expressions

In the case of QT expressions, thanks to the positive
curvature of the constraint’s hessian, a linear inequality
constraint suffices to constrain the problem as desired.

Q(p)=a~{Q(P)+V2) 5 (r—"p) +0> @

The linear constraint is built based on the optimal values
of p found in the previous iteration *p and o is a positive
threshold, big enough to provide a feasible interior to the
intersection of the constraints, but also small enough so
as to achieve the desired precision at convergence.

(13)

The benefits of constraining the problem in this way are
twofold: firstly, we can easily refine the solution with values
of p around *p that satisfy the amount of desired constraint
violation o, and secondly, it provides a method to iteratively
increase the approximation accuracy by reducing the value
of o, as required by convergence tolerances. We further note
that if the hessian of this constraint were an indefinite matrix,
this trust-region would lead to unbounded regions instead of
constraining the problem as desired.

2) Soft-constraint method: Alternatively, a hard restriction
of the search space could be replaced with a cost that biases
the optimizer towards finding solutions close to the boundary
of the constraint by pulling optimization variables towards a
function underestimator, as shown in Figure Sc.

Soft-Constraint Approximation of Q" Expressions

A cost heuristic is used to reward the selection of values
for the variable @ close to the function underestimator
QCp) +VA(p)|+p - (p —*p)), hyperplane that supports
the function and was built based the optimal values of p
found in the previous iteration *p.

Qp) <a
n]1QCp)+VQME)p-(p—p) a3

1 defines the desirability of selecting optimization values
close to the underestimator, and thus enjoy practical
feasibility for the nonconvex constraint.

Q(p)=a — (14)

Remark 2: As shown in Fig. 5, both methods iteratively ap-
proximate the problem as SOC programs, efficiently solvable
with polynomial-time methods. In section sec. VI-B, we will



further discuss and compare the described methods.

C. Numerical optimization

In this section, we describe numerical aspects such as
convergence criteria and algorithmic implementation details
for both optimization problems.

1) Convergence criteria: The amount of constraint viola-
tion € is used as the measure to decide upon convergence.
It is defined as the supremum among the average errors of
the state trajectory variables (15d), which are computed by
comparing the values of the optimization variables (r,, 1, k;)
that solve the approximate problem and the values obtained by
integrating endeffector wrenches (**dr,, **d1,, **dk,) that satisfy
exactly all of the nonconvex constraints, as follows

Seq1_10+z mg+ Y f, (15a)
eEecnt
¥ =1+ — Z 10+): mg+ Y £ | A (15b)
€Ceent
Seqkt:ko‘f‘z Z Pe, 1+Re1 dei— ) xf +RE; Te |4
i=1|e€ecnt
(15¢)
_seq 1 seql k. _seqk
e—sup 3 Ir ==l Z 1 —<a13 Z e — >k
t=1
& g £
(15d)

When the errors € fall below a certain threshold for the
constraint violation to be considered negligible for practical
purposes, we consider that the algorithm has converged.

2) Algorithmic implementation details: To approximate the
solution of problem (5), we iteratively solve an approximate
problem (using an interior point solver for SOC programs
based on [45]), where each nonconvex constraint (5b)-(5d) has
been replaced by a convex approximation. At each iteration,
we update the approximation (based on the optimal values of
the previous iteration) and its parameters to reduce the con-
straint violation amount. The procedure is then repeated until
convergence. For the trust-region method, the parameter o is
decreased using iteratively increasing powers of a value less
than one, i.e. 6 o< V¥, where v < 1.0 and k denotes the iteration
number. In a similar fashion, for the soft-constraint method, a
value for the penalty parameter 7] is selected according to the
desired precision to be achieved (typically within the range
[le4, 1e6]) and higher relative to other objectives, so that it is
prioritized.

We also highlight that the formulation of torques ¥, in
Eq. (5d) separately of k. in Eq. (5¢) is required only when
the torque limits constraint (5j) is used, as it depends on the
contact wrench let = [ it yet] Otherwise, the torques 7,
in Eq. (5d) can be directly embedded within the torque Ke t
in Eq. (5¢), thus generating a problem of smaller size.

V. OPTIMIZATION OF CONTACT PLANS

In this section, we explain how contact locations can be
optimized within problem (5) when they are considered opti-

Fig. 6: The description of a terrain surface S, comprises a set of
coplanar corners @k € R3*!, where in this case i € [1,4]. Out of them
the following quantities can be computed: surface normal N, € R3*1
surface rotation R(S,) € R3*3 (whose third column pomts in the
direction of the surface normal), any surface point “"Ta) = w, and a
membership constraint @ € U(S.),Vd € S, that 51mply defines the
set of points @ € R3*! that lie on the terrain surface.

mization variables that belong to a given contact surface. We
also describe an algorithm based on mixed-integer program-
ming to efficiently select a sequence of terrain surfaces and
contact locations consistent with the centroidal dynamics.

A. Membership of contact locations to terrain surfaces

Given a description of the terrain surface S (over which it
is safe to make contact), a contact location can be optimized
by including its membership constraint to surface S, to the
optimization problem. A terrain surface S, (as defined in
Fig. 6) is such that any contact point p,, selected from its
interior, guarantees that the entire endeffector is in contact. The
expression p, € U(S,) that constrains an endeffector position
p. to belong to surface S, is defined as follows

Et T
N | pe < N, o, (16)
o mt _mt . surfw

pcU(S,) X

T

Equation (16) defines a set of halfspaces, whose intersection
constrains a contact point p, to lie on a safe contact surface.
For instance, E.p, < &, denote the halfspaces that define
lateral limits of the terrain surface, while 91, - p, = N, - "o,
implies that the normal distance from the plane should be zero,
i.e. the contact point has to lie on the terrain surface. Note that
the row-size of the matrix =, and vector &, depends on the
number of halfspaces required to define the terrain region S,

—

while the column size of the matrix &, is as p,, namely 3.

B. Dynamics-based contacts planning

Thus far, we have assumed that to solve problem (5) a
set of terrain surfaces, from where contacts are selected,
was given. Alternatively, a contact sequence could also be
given by for example a contact planner such as [17], [46].
In the following, we propose a mixed-integer formulation that
enables the selection of terrain surfaces and contact sequences
based on a measure of dynamical robustness.

1) Terrain description and contact model: We now describe
how a terrain is modeled and how contacts are selected within
this description of the terrain using the notation of [20].

The terrain consists of a set of R convex, obstacle free re-
gions S, where t € {1,--- R} and we consider the selection of



a sequence of M contact locations p,, where m € {1,--- ,M}.
We note that the mapping between index m of the selected
contact location p,, and, endeffector e and the range of
timesteps t, in which endeffector location p., is active, is
predefined. For instance, we could optimize M = 4 contacts
with M/2 contacts for each foot in a locomotion task, or we
could optimize a larger number of contacts M = 6, where the
2 additional contacts are free slots to select hand contacts.
Note that stance and flight timings can later be changed within
the dynamics problem. Also v = ¢(e,t) maps e,t to surface t
chosen for contact m.

The matrix of binary variables H € {0,1}M~Mo)*xR (jp.
dexed by contact m € {1,---,M — M, } and terrain surface
ve{1,---,R}) defines the terrain surface S, whose domain
contains the contact location p,, (M, are contacts initially
active and thus with a predefined pose). The model is defined
as follows

Hue = P €U(S,) (17a)

Z M =1, for feet contacts (17b)

. " | <1, for hands contacts

1-Y H,. = (f.,=0), for hands (17¢)
T

,Hmn: . cone]:‘um(st) fe7t <0, friction cone (17d)

An element H,, . being one implies the membership constraint
Pm € U(S,) as shown in Eq. (17a). Thus, H, . decides
upon the terrain region from where a contact location can
be selected. Integrality constraints (17b) enforce membership
of a contact location to at most one terrain surface. When
no contact region is selected (e.g. no hand contact), control
variables such as contact forces should be inactive (Eq. (17c)).
When a contact region is selected, local endeffector forces
R(S)T £, must satisfy friction cone constraints, as in (17d).
F is a matrix function of u such that its product with
the local force, returns a vector of negative values.

2) Reachability constraints: Reachability constraints be-
tween footstep locations are selected based on kinematic
reachability using linear inequalities such as in [47] for
forward or lateral motions or, based on the intersection of
SOC constraints [20] for more general settings. They can be
described in a convex form using linear inequalities based on
kinematic reachability such as in

MPAD < [Py — Py | < ™ Ap (18)

where two subsequent contacts are restricted to be within the
bounds ™"Ap and ™**Ap. Reachability constraints can also be
described as in [20] using an intersection of SOC constraints

Z SecGh,m — Z secc:th =1 (193)
heH heH
sin® <0 <sin®
> h—="m—= h+1
BT {Sins "y gy (19b)
m h m b
COSE). < 9 < 5@
Oy = b= n= Thi (19¢)
) coscm — cosuh em +COSUh

P} p:_ cos.  _sing
H[Pﬂ_qpiﬂ*{ﬂnsi s | P12 ||| < D1z (199)

In the latter case e.g., a piecewise affine approximation of
sine and cosine functions is used to model footsteps rotation
Om € R in a convex form. The matrices of binary variables
e, scg € {0, 1}H*Mt (indexed by affine approximation h €
[1,H] and contact m € [1,M;] ) are used to select the active
affine approximation of sine or cosine h for each footstep m.
H denotes the number of affine functions used to approximate
sine and cosine, and M; the number of footstep contacts to
be selected out of the total number of contacts M. As shown
before, integrality constraints (Eq. (19a)) guarantee that only
one approximation is active at each footstep m.

An element ***Gy ,*°C,  being one implies the acti-
vation of a single affine approximation for sine and cosine
functions, as shown in (19b)-(19¢). Each affine approximation
is defined by a region of validity of the footstep rotation
angle 0, € [Si“G)b,Si“@bH] (for sine) or 6, € [0, Oy ]
(for cosine) and, the corresponding affine approximation
sinsm — sinuh em +Sin'nh (for sine) or COSCm — cosuh em _’_cosmrJ
(for cosine), where S‘“uh , S‘“Uh,“’su ;“®vy € R are parameters
that define slope and intercept values of each affine approxi-
mation. The footstep rotation angle 8., sine *"s_, and cosine
€oSg, of this angle constitute optimization variables.

Finally, these variables are used to model the range of
available positions for the next footstep (Eq. (19d)) based on
the current footstep position and yaw angle as the intersection
of two SOC constraints, parameterized by a pair of points
Pise R2*! (located sideways of the footstep position m — 1
and rotated by the yaw angle), and a pair of distances D, , € R.

3) Dynamics model and objective function: To keep com-
putational complexity low, in the mixed-integer approach to
select contact sequences, we use a light version of problem
(5), where we do not consider the endeffector torques ¥, (in
other words, a point contact model is assumed), we use a linear
approximation of the friction cones and, either a centroidal
momentum dynamics model with fixed or non-fixed timings.
The objective function ¢{™ similarly to (5a) regularizes states

and controls and also incorporates user-defined objectives.

4) Numerical optimization: To evaluate the performance
of our method at synthesizing contact plans and selecting
contact surfaces, we implement a custom mixed-integer solver
able to solve a sequence of SOC programs. It relies on two
functions to bound the optimal value of a given search space.
The lower bound comes from a relaxation of the search
space binary variables and the upper bound by any solution
where the binary variables are actually binary. The rest of the
constraints are treated using the iterative models previously
described. The feasible search space is partitioned into convex
sets and each partition bounded. The algorithm converges once
global lower and upper bounds are close enough, otherwise,
the partitions are refined and the search process is repeated.
The implementation of the custom mixed-integer solver is
based on a branch and bound method for global nonconvex
optimization, as detailed in [48]. In simple scenarios, we use
linear reachability constraints, and SOC constraints in more
complex ones, as will be shown in Section V.



(a) Simulated humanoid robot (b) Real quadruped robot

Fig. 7: Robotic platforms used throughout the experimental section.
Left, a simulated humanoid robot with 32 torque-controlled degrees
of freedom is used in the SL simulation environment [49]. It has 7
degrees of freedom in each limb and 3 in the torso. Right, we show
the quadruped robot ’Solo” with 8 torque-controlled joints [50].

(b) Down-Up

(a) Rough terrain (c) Walking stairs  (d) Up stairs

(e) Using hands (f) Up with hands (g) Tilted terrain (h) Narrow path

Fig. 8: Examples of time-optimized dynamic movement plans.

V. EXPERIMENTAL RESULTS

In this section, we show experimental results about the
optimization of contact and movement plans using the algo-
rithms previously described. We have tested them in several
challenging multi-contact scenarios using simulated humanoid
and quadruped robots and a real quadruped robot (Fig. 7a).
The resulting motions are visible in the accompanying video.

A. On the optimization of movement plans

In this section, we analyze solutions of problem (5) in
terms of convergence to feasibility (measured by the amount of
constraint violation € of the solution) and time complexity to
converge to the desired feasibility threshold. We also present
results regarding the qualitative improvement of motions that
include time and/or contact locations in the optimization.
Finally, we will show how full-body motions can be optimized
using a kino-dynamic approach, how actuation limits can
be included in the dynamics optimization, and the tracking
performance of time-optimized movement plans.

1) Convergence to feasibility and time complexity: To ana-
lyze convergence properties and computational complexity of
the algorithm, we use a set of 8 optimized motions (shown
in Fig. 8) to gather statistics about its performance. Table
I shows a typical cost function and the relative importance
of the weighted costs used to optimize a motion. In Fig. 9,
we present statistics about time complexity, convergence to
feasibility, and relative cost reduction when using the same
objective function but a different number of discretization

Cost Functional Form Scaling Order
CoM terminal cost Q(ry — (ro+Ar)) le+4
Time regularization Y 2(A—A) le+3
Momenta terminal cost Q(hy) le+2
Endeffector consensus cost | ¥ Q(pe, — ki“pe#l) le+0
Momenta consensus cost Y Q(h,—Xh) le+0
Momenta rate cost Y. Q(h) le—1
Momenta running cost Y. Q(h) le—2
Force running cost Y Q(fey) le—3
Torque running cost Y Q(Tey) le—3

TABLE I: Example composition of the main components of the cost
Yol ?y" + CIJ?y") used to synthesize the walking motion of Figure 8d.
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Fig. 9: Top: Roughly linear-time complexity of movement plans
within the shown range of timesteps N: with or without time opti-
mization Time — Mom, using soft-constraint or trust-region heuristics
Sc —Tr, and with or without optimization of contact locations Cnt.
Center: Corresponding normalized convergence errors or amount
of constraint violation € as given by (15d) and Botfom: numerical
relative cost reduction of motions optimized including time and/or
contact locations with respect to motions using fixed contacts and
timings. Each datapoint averages information from 8 experiments
(shown in Fig. 8) optimized using the same objective function but
different number of timesteps N and heuristics.

timesteps and algorithmic settings. In particular, we look at
what happens when the optimization includes or not time
as an optimization variable Time vs. Mom, includes or not
optimization of contact locations Cnt, uses the soft-constraint
or trust-region relaxation approaches Sc vs. Tr. As an exam-
ple, MomSc refers to a motion optimized with fixed timings,
fixed contacts, and using the soft-constraint heuristic, while
TimeTrCnt refers to a motion optimized including timings,
contact locations, and using the trust-region heuristic.

First of all, in the center plot, we show the amount of
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Fig. 10: Average number of iterations required to solve an optimiza-
tion problem with or without time optimization for different number
of discretization timesteps and, average time to solve each iteration.
Each datapoint is based on 32 experiments, with different heuristic
Sc—Tr and with our without optimization of contacts Cnt.

constraint violation € of the optimized solutions, as measured
by (15d). We note that the algorithm converges when € or its
reduction from one iteration to another €; — &,_, fall below
a desired threshold (typically in the order of le —4) and, as
visible on the plot, our method converges in all experiments
to the desired feasibility thresholds in all settings.

On the top, we show statistics about the time-complexity of
the algorithm for convergence to the desired feasibility thres-
holds; in particular, this shows evidence of linear complexity in
the number of timesteps for momentum and time optimization
problems. We notice that for fixed-time optimization problems,
neither heuristics nor the optimization of contact locations
affect the solving time performance. Similar behavior can be
seen for time optimization problems with the difference that
the trust-regions are slightly faster than the soft-constraints.

Finally, on the bottom plot, we show numerically the
relative reduction of the cost when optimizing time and contact
locations. In orange tones, we see the reference normalized
costs of momentum optimization problems using fixed con-
tact locations and timings for trust-region and soft-constraint
heuristics, namely MomSc and TimeSc. As expected both
achieve a similar minimum and have thus the same normalized
cost of one. As shown above, considering contact locations as
optimization variables (in the form of linear constraints and
over a given terrain surface) has minimum impact on solving
time performance, yet it significantly reduces the objective
value (between 35 and 40 percent) because this degree of
freedom allows the optimizer to select motions with lower
momentum values, e.g. motions with less lateral sway of the
CoM (see MomScCnt and MomTrCnt in red tones).

The effect of time optimization on the objective value is
dependent on the problem time horizon (or the number of
timesteps N). For simplicity, we can assume that the value of
one timestep is 0.1 seconds (which is the discretization time
we use for fixed time optimization), and thus the horizontal
axis spans between 2 and 20 seconds. For instance, in prob-
lems with short-time horizons such as those at the leftmost
side, the cost difference between motions that consider or not
time as an optimization variable is modest, but as the look-
ahead horizon increases (right side) time optimization becomes
a powerful way of shaping the motion to achieve lower costs.

We notice that in this case the soft-constraint heuristic (timeSc
and timeScCnt) finds in average slightly lower local minima
than the trust-region heuristic (timeTr and timeTrCnt).

In Fig. 10, we show the average number of iterations
required to solve a momentum or time optimization problem
for a varying number of timesteps, as well as the average
time required to solve each of these iterations. For instance,
momentum optimization problems require 2-3 iterations, while
time optimization problems 7-10. However, the difference in
solving times of one iteration is small, e.g. for a time horizon
of 2 seconds (N = 20) the solving times are 80 and 100 [ms]
for momentum and time optimization problems respectively.
This suggests that the approach could be used in a receding
horizon setting. In such a setting, the optimizer could be warm-
started from the previous solution to significantly increase
resolution time (typically one would only need to solve one
iteration of the problem for a short look-ahead horizon).

2) Qualitative improvement of solutions: Here, we discuss
qualitative results that cannot be described from the statistical
analysis above. We, therefore, restrict our analysis to specific
instances of the problem. In Fig. 11 we show time-optimal
results for a walking up tilted stairs motion traversed with
two different values of the friction coefficient y. In the first
case (U = 0.35), the tendency is to increase the value of
timestep variables A; during double supports to have enough
time to slowly accelerate the CoM while respecting physical
constraints, resembling statically stable motions. In an environ-
ment with flat surfaces, the same approach would be valid even
if the friction coefficient is further reduced (e.g. u = 0.25).
However, in a terrain with tilted surfaces, such a strategy is
not viable. In such a setting, even the fixed-time version of our
algorithm cannot find a dynamically feasible solution. Yet, our
time optimization approach is able to find a solution, whose
main strategy is to quickly traverse the tilted surfaces to get to
the uppermost flat contact surfaces. During this phase, lateral
contact forces are exploited to the limit, and then a similar
strategy to the previous case is found.

In Fig. 12, we show a walking upstairs motion using hand
contacts. In our experiments, in such multi-contact scenarios,
time optimization does not significantly change motion ti-
mings, as can be seen in the bottom plot (that graphically illus-
trates endeffector activations ecy) by comparing the timings of
a fixed-time optimization problem (Mom) and those of a time
optimization problem (Time). However, optimizing contact
locations allows us to find motions with less CoM sway. This is
visible, for example, in the CoM trajectories for a momentum
optimization without optimization of contact locations MomSc
or even a time optimization without optimization of contacts
TimeSc and a momentum or time optimization that includes
optimization of contact locations such as MomScCnt and
TimeScCnt respectively. These motions are more energetically
efficient and arguably easier to control with only a small
additional computational cost in the optimization. Note that
the top plot in Fig. 12 is a top view of the walking upstairs
movement using hands, not to be confused with a planar
motion.

3) Kino-dynamic full-body optimization: In this section, we
show how our algorithm can be used in the kino-dynamic
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Fig. 11: Comparison of optimal normalized endeffector forces and
timing results for two different values of friction coefficient u.
Timings ?A, are the initial ones and *A, the final optimized ones.

approach described in Section II, and illustrated in Figure 3,
to generate whole-body time-optimal motions.

First, we use the climbing uneven stairs motion depicted in
Fig. 8d to illustrate algorithmic convergence of our method to
kino-dynamic consistency. In Fig. 13, we graphically compare
(on the top 3 plots) kinematic X"h and dynamic momentum
trajectories ¥"h at the end of each dynamics optimization.
We use dark colors to show dynamic trajectories “Y"h, and
the same, but light color, for kinematic ones kinp - Solid lines
correspond to motions optimized using soft-constraints and
dashed lines to motions optimized using trust-regions. It can be
seen from the plots that they qualitatively converge to similar
solutions, as it is difficult to distinguish them from each other.

On the bottom plot, we show how quantitatively the norms
€, and g, that compare momentum trajectories obtained from
optimal controls and the momentum trajectory variables that
track desired kinematic momentum trajectories, decrease until
convergence at each kino-dynamic iteration. Note that the
first dynamics optimization (shown in red) takes the longest
to converge and that trajectories optimized in subsequent
iterations without using any information from previous ones
converge faster (see e.g. how solid and dashed lines from the
first iteration compare to those at subsequent iterations). In
practice, however, by warm-starting the heuristics of dynamic
optimizations with the results and information of previous
iterations, the optimization problems can be solved much faster
and with fewer iterations, as shown in dotted trajectories. Des-
pite that at each iteration kinematic and dynamic momentum
trajectories match, in practice, we use at least two iterations to
converge to a motion easily executable on a physical simulator.

Note as well how linear momentum converges fast to high
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Fig. 12: Comparison between CoM and normalized linear momen-
tum in the lateral direction for a walking upstairs motion using
hands. The squares, circles, diamonds, and stars show the endeffector
locations p,; optimized under different settings, as shown in the
legend. Bottom plot shows the contact activation of endeffectors over
the time horizon for momentum (Mom) and time (Time) optimization
problems (low value is inactive and high value is active).

levels of precision, while angular momentum does it only
to modest levels. See, for example, how solid and dashed
lines achieve in 4 iterations the required precision for linear
momentum errors &, while it takes around 8 for angular
momentum errors €,. This is due to the fact that on the one
hand angular momentum depends on the CoM and can only
achieve a higher precision once this variable has converged,
and on the other hand due to the fact that given a CoM
trajectory, angular momentum can be further optimized along
it by exploiting the control degrees of freedom left.

Finally, we present results on a simulated quadruped robot,
where we show in Fig. 14 the kino-dynamic trajectories of a
galloping motion, very difficult to optimize due to the presence
of simultaneous flight phases for all endeffectors, where only
gravity is acting on the system. Despite this challenge, kino-
dynamic trajectories converge qualitatively well thanks to the
exploitation of optimal timing for all available endeffector
forces.

4) Execution of movement plans: In this section, we show
that optimal motion plans optimized in the previous section
using a kino-dynamic approach can be executed in a physical
simulator using the architecture described in Fig. 1.

In Fig. 15, we first show the tracking of an optimized
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Fig. 15: Tracking of desired momentum trajectories for the climbing
up stairs motion (shown in Fig. 8d) using time optimization.

movement plan for a robot climbing uneven stairs using
inverse dynamics controllers [39] that realize closed-loop
behaviors based on risk-sensitive feedback design [51] that
explicitly considers process and measurement noise [52] to
compute time-varying feedback gains. In our experience,
such a controller leads to overall lower impedance gains in
comparison to typical LQR design, which is beneficial to
increase compliance at contact with an environment that differs
from the ideal scenario used for planning. Note that such
a feedback controller is important in this case, as the kino-
dynamic optimizer is not used in a receding horizon fashion.
The top three plots show the optimized momentum trajectories
(Y1, YK in blue) as well as their tracking (%*°1,°k in red).
At the bottom left corner, endeffectors activation over time ecp
are shown, as given by the optimal timings *A, at the bottom
right corner.

In Fig. 16, we show that actuation limits are not always
satisfied if they are not explicitly considered. For instance,
on the left column, we analyze torques in the climbing
up stairs motion (Fig. 8d). Here, the knee flexion-extension
(KFE) joint torque exceeds its limit by 30 Nm (bottom-left in
blue). To enforce torque limits, the solution of the kinematics
problem (*q,*q,"*q) is used to build a linear approximation
of Eq. (2b) along the motion trajectory (used to build the
constraint of Eq. (5j)). This constraint relates contact wrenches
Ae(t) = [Yer fei] Ve € een and torques A(t), making it pos-
sible to adapt contact wrenches to satisfy torque limits. The



top three left plots show how the right foot’s wrench can be
adapted from a motion that does not satisfy torque limits
(NoTrgLimPlan in blue) to one that does (TrqLimPlan in
orange). Further, in green, the torque limit satisfied during
execution is shown. Another way to satisfy torque limits
is by redistribution of contact forces among the available
endeffectors (Fig. 16 right). In this case, timesteps were kept
constant, and the optimizer distributed contact forces in such
a way that the left leg is supported by the left hand in order
to synthesize a motion within the leg actuation limits. Joint
torques plotted correspond to those degrees of freedom of left
limbs that control the endeffector position. Furthermore, Fig.
17 shows the effect of torque limits on solve time performance.

Remark 3: While we only demonstrated the ability of our
approach to include joint actuation limits in the dynamic
optimization problem, it would also be straightforward to add
such limits in the kinematic optimization problem. Indeed, it
would be possible to add linear joint acceleration constraints
using Eq. (2b) and the solution of the dynamic optimization
problem to approximate the contact forces.

Finally, Fig. 18 compares the ability of the algorithm at
synthesizing a dynamically feasible solution under different
initial and final conditions. Initial conditions include varying
CoM velocities in the horizontal plane and distinct contact
supports (one or two feet), while the final condition is a contact
configuration as the initial one (single or double support).
A solution is colored in orange if, after one step, a motion
trajectory with momentum values under a small threshold has
not been found. The experiment suggests that optimal timings
can significantly extend the regions where a feasible dynamical
solution is attainable, under given physical conditions and ob-
jective function, as well as that timing adaptation is important
beyond known results for flat-ground walking [53].

B. On the optimization of contact plans

This subsection discusses results on the surface selection
and contacts planning algorithm using a mixed-integer pro-
gram that makes use of a dynamics model to measure the
quality of the motion induced by the selected contacts plan.

Figure 19 shows a schematic of the experiment setup, av-
erage timing results, and a comparison between cost decrease
and solving time increase for each iteration of the problem
internally solved. In the experiment a robot traverses an uneven
terrain from the initial stepping stone (in orange) to the desired
position forward using the desired number of contacts M.
Further, the number of terrain stepping stones is adapted as
shown in the statistics table on the number of regions axis.
On the figure’s top, the mean and one standard deviation of
solving times are shown for several configurations of surfaces
and number of contacts to optimize. Note how short contact
plans can be quickly solved, while longer ones require more
computational effort. In those cases, more efficient techniques
for contact planning can be used [17]. For example, a predic-
tive neural network could be used to speed up the evaluation
of dynamically feasible contact sequences as in [54].

Finally, Fig. 19 (bottom-left) shows the cost evolution of a

contacts optimization problem (Y, ¢ in blue) as well as the
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under different number of stepping regions and horizon of the number
of contacts. It further compares the cost improvement and increment
in solving time for different number of iterations Z.

time required to solved it (in red) as a function of the number
of iterations Z used to approximate the dynamic constraints.
These values have been normalized by the values correspond-
ing to Z =1, such that both curves depict the cost decrease
and time increase factors relative to those that use only one
iteration. Notice how initially two additional iterations (Z = 3)
reduce the cost by ~15% while increasing the solving time by
a factor 4. Towards the end, however, an additional iteration
increases the solving time linearly but reduces the cost only
minimally. This suggests that solving the problem to high-
precision optimality (e.g. Z = 10) is impractical because of the
large required solving time; however, a sub-optimal solution
(e.g. Z =1) is reasonable and can provide a good initialization
contact plan for the motion optimization. The functional form
of the cost function ¢¢™ and importance weights are defined
similarly to Table L.

C. Real robot experiments

This section presents the execution of kino-dynamic motion
plans on our quadruped Solo [50]. Our main goal is to demon-
strate that these plans are of sufficient quality to be executed
on a real robot using only an instantaneous feedback controller
and no re-planning. We use a passivity-based controller to
track the optimized motions. The controller tracks desired
CoM, angular momentum, base orientation, feet trajectories
and also uses the desired feedforward centroidal wrench from
the planner. This controller is described in detail in [50].

We consider three different scenarios to show the capability
of the planner to generate feasible motions. In the first sce-
nario, we provide the kino-dynamic planner with a periodic

sequence of contact points to generate a trotting motion. In
the second scenario, we consider a jumping motion with
a flight phase. Finally, in the third scenario, we present a
motion that combines a nontrivial sequence of contacts and
a jumping motion. In all scenarios, we use the approach
presented in Section II and III to generate kino-dynamically
feasible motions. Note that for all the experiments we iterated
only once between kinematic and dynamic optimizers. Note
also that some of the motions presented here are the same
motions used in [50] to evaluate the control law. We reproduce
them here for completeness and focus our analysis on the
motion plans not discussed in [50].

1) Scenario 1, trot: In the first scenario, we give a periodic
contact sequence to the planner, where diagonal feet move for-
ward as much as a step length in a specified time (Fig. 20, top
row). Since the robot does not have the abduction/adduction
hip joint, it is very important that the planner generates stable
motions taking into account the robot full dynamics and that
can be tracked by the controller without step adjustment. In
our experiments, we noticed the importance of having fully
consistent motion plans (and not solely centroidal dynamic
motions), especially during contact transitions. Furthermore,
it was also important to have a feedback controller explicitly
tracking the desired centroidal wrench and feet trajectory. We
were able to successfully execute trotting motions at various
speeds. Moreover, in order to test the sensitivity of the motion
plans to moderate environmental uncertainty, we planned a
flat ground trot and successfully executed it on a seesaw. This
result suggests that the optimized motions are sensitive neither
to model mismatch nor small environmental changes. It is
particularly interesting to note that we were able to execute
rather long motions of around 10 [s] without re-planning.

2) Scenario 2, jump: To show the capability of the planner
to generate highly dynamic motions, in this scenario we
provide the planner with contact sequences with a flight phase.
First, we implemented a jump in place (Fig. 21, top row),
where the robot only needed to generate vertical thrust. In this
scenario, the robot was able to jump 65 cm, while the robot’s
height in its natural standing phase is 24 cm. The generated
plan is good enough such that the feedback controller is able
to track the desired linear momentum in the vertical direction
and realize the desired jump in place. We then implemented
a forward jump on an 18 cm box (Fig. 21, bottom row). In
this case, the planner needs to generate linear momentum in
both vertical and horizontal directions to jump 60 cm forward
and around 30 cm upward at the apex of the flight phase
while ensuring that the generated angular momentum at take-
off enables landing with the proper orientation.

3) Scenario 3, step and jump on obstacle: In this scenario,
we present a motion that is a combination of transition
between different multi-contact sequences, and a flight phase
for jumping on an obstacle (Fig. 22). Here, our main goal
is to showcase the capability of the planner in generating
highly constrained multi-contact motion together with a highly
dynamic motion. To step on the obstacle, the planner exploits
the high range of motion of the robot hip joint and step on
the obstacle without the need to change the base orientation
to avoid collision of the front legs with the obstacle. Then,



Fig.

Fig. 22: Snapshots of the experiments in scenario 3; step and jump on an obstacle

through generating enough thrust on a non-coplanar set of
contact points and in a nontrivial endeffectors configuration,
the robot jumps on top of the obstacle. Finally, through another
multi-contact set of changes in contact configuration, it brings
back the joint configuration to the default one. This experiment
scenario further illustrates the versatility of our optimizer to
generate motions in complex environments.

VI. DISCUSSION
A. Time and computational complexity

In general, finding a solution to the dense version of any
of the convex approximations we solve, requires a polynomial
time algorithm (of order O(V%[v-i-l]lz) ~ O(v%), v being
the number of quadratic constraints and 1 its size) [55].
However, within the problem size ranges of interest to us
and thanks to the exploited problem sparsity patterns (e.g. due
to time indexing), we observe (Fig. 9) that the problem has
approximately linear time complexity. It is possible to note
this linear tendency for both momentum and time optimization
problems, despite their different rates of growth due to distinct
problem sizes and even problems that consider actuation limits
show this linear tendency (Fig. 17).

When considering torque limits the doubled computational
effort due to the addition of 2nN inequality constraints for a

problem with N timesteps and robot with n joints (= 32 in our
case) can be reduced by considering only the weakest joints or
only those involved in the motion. All in all, computation times
are still lower than the planned horizon, making it possible to
run the algorithm online (for example the next plan can be
computed, while the current one is being executed).

B. On limitations and comparison of the approximations

Problem (5) is nonconvex and thus hard to solve. The
proposed heuristics lighten to some extent the effort required
to find a solution by searching for an approximate one within
the convex space of the problem. This however comes with
certain limitations. For instance, when using trust-regions, they
might be inappropriately built leading to non-optimal solutions
or even unsuitably initialized which could render the interior
of the convex cone empty leading to primal infeasibility.
For the soft-constraint method, the difficulty lies in finding
an appropriate trade-off between two competing objectives:
the amount of constraint violation and problem conditioning.
An adaptive solution that iteratively reduces the value of
the allowed amount of constraint violation ¢ works well for
the trust-region heuristic, though care is required to slowly
converge from the relaxed to the approximate problem without
rendering the problem infeasible due to excessive reduction



of o. For the soft-constraint method, a value high enough to
prioritize the soft-constraint over the rest of the cost terms
works well.

We have used both methods to synthesize a relatively high
number of motions, so as to be able to successfully train a
neural network [54]. From this experience, we highlight that
both methods work equally well. However, we would like to
remark on two cases where one would be more appropriate
than the other. The first case would be when a certificate of
optimality or infeasibility matters, e.g. to compute a viable
set to be used as a terminal set constraint. In this case, the
trust-region method is more appropriate as the slack or degree
of constraint violation is controlled using a primal constraint
and the certificate is valid for the given precision. The second
case would be when the solver is to be warm-started not from
information from previous iterations, but using a predictive
model (e.g. a neural network). In this case, the soft-constraint
method would not run into the risk of infeasibility due to an
invalid initialization, making it a more appropriate approach
to handle this case.

Notice that a single timeline was used to parameterize
and optimize motions in eq. (5). However, this might be a
limitation for more general and complex motions that require
an independent timeline for each endeffector. Finally, notice
that while the method is very general in nature and works
well to solve problem (5), it is the case, as with any other
nonlinear optimization method such as sequential quadratic
programming [56], that it might not be appropriate or fail with
other problem instances.

C. Stability of the computed motions

Our method generates dynamically feasible motions that
satisfy general contact stability criteria such as [43]. If the
final position of the robot has zero velocity, then we are
guaranteed that the motion (if perfectly executed) will lead
to a stable behavior, i.e. a behavior that will lead to the robot
to stop and remain stabilized. Additionally, the construction
of the feedback controllers ensures that the controlled motion
will be locally stable, i.e. it will reject small perturbations.
While we do not have any guarantees on the size of the region
of stability, our experimental evaluations demonstrate that the
motions are good enough to be executed in a simulator or on
a real robot with substantially different dynamics. We noticed
in our real-robot experiments that the synergy between the
feedback controller and the motion plan is important and that
none of them is solely responsible for successful execution
of the motions, especially when executing a 10s long multi-
contact motion.

Ideally, it would be desirable to use the optimizer in a
receding horizon manner, raising the issue of closed-loop
stability of the optimizer. Several methods have been proposed
to ensure stability of model predictive control problems such
as the use of a terminal equality constraint [57], terminal
cost [58], terminal constraint set [59] or terminal cost and
constraint set [60]. In this work, we use a terminal cost
that keeps the terminal state within a viable set to generate
balanced motions (see table I). This should thus lead to closed-
loop stable behaviors.

Moreover, our approach exploits sequential convex approx-
imations (cf. section III) to achieve polynomial-time conver-
gence and provide a certificate of optimality or infeasibility
for the motion to the desired precision. We highlight that
these features do not come for free in any off-the-shelf
solver. For instance, an off-the-shelf interior point method
for general nonlinear problems will not take advantage of the
structure of the problem as we do. This will result in a poor
approximation of the nonconvex constraints unable to capture
the global convex part of the problem, thus leading to slower
convergence. Lastly, the certificate of optimality certifies that
problem constraints are satisfied to the desired precision.

D. Cost definition and importance weights

As pointed out throughout this work, efficiency is a key
concern. Consequently, the cost function (used to synthesize
motions) is composed using convex quadratic expressions, as
shown in Table I. The set of importance weights for these
costs is, however, expected as an input (see Fig. 1), as it gives
the user the flexibility to shape solutions using the knowledge
about the particular robot and application. For instance, it
allows expressing different preferences of endeffector force
distributions in humanoid and quadruped robots. Similarly, a
preference for highly dynamic and aggressive motions such as
jumping (Fig. 14) over more conservative and slow motions
(Fig. 8) can be expressed by lower penalties over control
variables. However, automatically computing appropriate cost
weights to generate desired behaviors remains an open re-
search problem.

E. Comparison to other approaches

In [27], the motion and timings for a walking on stairs
using a handrail scenario, given a sequence of contacts, are
optimized in less than 5.5s. However, the multiple shooting
solver used in this approach is closed-source to the best
of our knowledge. In our approach, such a motion can be
optimized in around 4.8s. In [9], one iteration of a multi-
contact motion of 0.5s duration can be optimized within 0.05s.
Thus, extrapolating, one iteration for a 7s motion could be
optimized within 0.7s. This approach, however, does not take
into account hard constraints. In our approach, the cost of
such an iteration is around 0.61s. In [29], a bipedal motion
of 4.4s is optimized within 4.1s together with the contact
sequence but uses a simplified dynamics model, assuming for
example a constant locked inertia tensor at the CoM. Our
method would achieve a comparable time by optimizing 4
contacts within a time horizon of 5s. Our contacts planning
approach based on mixed-integer programming is competitive
only for small problems that optimize a few contacts, due to
the combinatorial complexity of mixed-integer programs. For
longer contact sequences, other state of the art approaches are
more competitive, but typically use simplified dynamics to test
for contact transition feasibility [17], [61], [62]. Note, how-
ever, that the kino-dynamic optimizer can be used to generate
data and learn how to predict dynamic contact feasibility and
significantly speed up contact search [54].



These few examples highlight the competitiveness of the
presented method while enabling the resolution of the problem
without simplifications. However, we are not yet capable to
compute solutions for model predictive control (e.g. at 50Hz
rate or above) and thus we require a feedback controller to
stabilize the motion in between plan computations. Bringing
such approaches to real-time rates while enabling full-body
optimization remains an open problem, likely to require the
design of dedicated numerical solvers and smart warm-start
procedures. Lastly, we note that the receding horizon control
of whole-body motions ensuring stability, robustness, and
recursive feasibility, remains an open and exciting research
problem.

VII. CONCLUSION

We have presented a structured and efficient algorithm for
generating time-optimal motion plans for robots with arms
and legs, as well as an approach to select a set of contact
surfaces from a terrain description that supports such a motion.
Finally, we have shown experimental evidence on a physical
simulator and on a real quadruped robot that the algorithm is
capable of efficiently generating dynamically feasible motion
plans. Future work will include the extension of the algorithm
to receding horizon control. The open-source repository [38]
offers fully functional kino-dynamic demos, examples of tasks
descriptions, and implementation details.
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