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Abstract— Linear Model Predictive Control (MPC) has been
successfully used for generating feasible walking motions for
humanoid robots. However, the effect of uncertainties on
constraints satisfaction has only been studied using Robust
MPC (RMPC) approaches, which account for the worst-case
realization of bounded disturbances at each time instant. In
this paper, we propose for the first time to use linear stochastic
MPC (SMPC) to account for uncertainties in bipedal walking.
We show that SMPC offers more flexibility to the user (or a
high level decision maker) by tolerating small (user-defined)
probabilities of constraint violation. Therefore, SMPC can be
tuned to achieve a constraint satisfaction probability that is
arbitrarily close to 100%, but without sacrificing performance
as much as tube-based RMPC. We compare SMPC against
RMPC in terms of robustness (constraint satisfaction) and
performance (optimality). Our results highlight the benefits of
SMPC and its interest for the robotics community as a powerful
mathematical tool for dealing with uncertainties.

I. INTRODUCTION

Control of humanoid robots is challenging due to limiting
constraints on contact forces, and nonlinear switching dy-
namics. Furthermore, guaranteeing safety for humanoids is
critical, as collision with the environment or falling down can
cause severe damage to the robot and its surroundings. Linear
MPC [1][2] is a powerful tool for designing real-time feed-
back controllers subject to state and input constraints, which
makes it a prime candidate for generating a wide range of
feasible reference walking motions for humanoid robots [3],
[4], [5]. However, the theoretical guarantees associated with
MPC (e.g., constraint satisfaction guarantees) can easily be
lost due to external disturbances or the discrepancy between
the nonlinear dynamics of the robot and the linearized model
used in control.

Recently, [6], [7] studied how to account for the bounded
error in constraint satisfaction due to the approximation
of the nonlinear center of mass (CoM) dynamics, and [8]
investigated nonlinear constraints due to step timing adap-
tation. However, 1) they do not account for the closed-loop
tracking errors due to disturbances, 2) there are no robustness
guarantees of constraints satisfaction in the presence of

This work was partially supported by the European Unions Horizon
2020 research and innovation program under Grant Agreement 780684,
the European Research Councils under Grant 637935 and the National
Science Foundation under Grant CMMI-1825993. The authors thank the
International Max Planck Research School for Intelligent Systems (IMPRS-
IS) for the non-financial support of Ahmad Gazar.

1 Max Planck Institute for Intelligent Systems, Tuebingen, Germany.
firstname.lastname@tuebingen.mpg.de

2 Industrial Engineering Department, University of Trento, Italy.
andrea.delprete@unitn.it

3 Tandon School of Engineering, New York University, New York, USA.
ludovic.righetti@nyu.edu

different disturbances, which is critical for generating safe
walking motions.

Linear Robust MPC (RMPC) schemes have been exten-
sively studied in the control literature [9], [10], [11]. Re-
cently, [12] used the well-known tube-based RMPC approach
originally developed in [11] for generating robust walking
motions for humanoid robots, taking into account the effects
of additive compact polytopic uncertainties on the dynamics.
Using a state feedback control policy and a pre-stabilizing
choice of static dead-beat gains, they showed that constraints
are guaranteed to be satisfied for all disturbance realizations
inside the disturbance set. A drawback of RMPC is that the
constraints are designed to accommodate for the worst-case
disturbance, which is quite conservative and sacrifices perfor-
mance (optimality) to guarantee hard constraints satisfaction.

In order to relax the conservativeness of RMPC, SMPC
[13], [14], [15], [16] exploits the underlying probability dis-
tribution of the disturbance realizations. Furthermore, SMPC
offers a flexible framework by accounting for chance con-
straints, where constraints are expected to be satisfied within
a desired probability level. Depending on how critical the
task is, the user can tune the desired probability level between
the two extremes of almost hard constraint satisfaction (as
in RMPC) and complete negligence of disturbances (as in
nominal MPC). This flexibility becomes very practical, since
a humanoid robot needs to move in dynamic environments
where some of the constraints can be more critical than
others. For example, moving through a narrow doorway or
walking in a crowd [17], the robot needs to reduce the sway
motion of its CoM to reduce the probability of collision.
However, for walking on challenging terrains with partial
footholds [18], the robot has to bring the foot center of
pressure (CoP) as close as possible to the center of the
contact area. Many other tasks can be considered somewhere
between those situations. To this end, SMPC can be a
powerful and systematic tool for dealing with constraint
satisfaction in different environments and tasks. Moreover,
small errors are typically more likely to occur in practice.
It might therefore be more appropriate to explicitly consider
the distribution of disturbances instead of treating all of them
equally as in RMPC, which often lead to a conservative
behavior.

In this letter, we revisit the problem of generating refer-
ence walking motions for humanoid robots using a linear
inverted pendulum model (LIPM) subject to additive uncer-
tainties on the model. Our contributions are the following:

o We introduce linear SMPC to generate stable walking,

taking into account stochastic model uncertainty subject



to individual chance constraints.

e« We analyze the robustness of SMPC to worst-case
disturbances, drawing an interesting connection between
robust and stochastic MPC, and highlighting their fun-
damental difference.

¢ We compare SMPC, RMPC, and nominal MPC in
terms of robustness (constraints satisfaction) and per-
formance. Our tests focus on stochastic bounded dis-
turbances (generated with a truncated Gaussian distri-
bution), which are a good approximation of real dis-
turbances, such as joint torque tracking errors [19]. We
empirically show that SMPC can achieve hard constraint
satisfaction, while being significantly less conservative
than RMPC.

II. BACKGROUND

A. Notation

o 1y represents the value of z at time ¢, while x;;
denotes the value of z at the future time ¢ + ¢ predicted
at time ¢

o A®B = {a+b|a € A, b € B} refers to the Minkowski
set sum

e AcB={a€ Ala+b € A, Vb € B} refers to the
Pontryagin set difference

o a random variable z following a distribution Q is
denoted as z ~ Q, and E[z] is the expected value of z

B. Linear model of walking robots

The dynamics of the CoM of a walking robot, under
the assumption of rigid contacts with a flat ground, can be
modelled as follows [20]:
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where ¢ € R denotes the CoM position in the lateral
directions of motion *¥. The total mass of the robot is
denoted by my¢, the matrix S = [(1) _01] is a rotation matrix,
with the center of pressure (CoP) p € R being constrained
inside the convex hull of the contact points I/

PoY el. )

Under the assumption of constant CoM height ¢* and
constant angular momentum L, the dynamics (1) can be
simplified to the well-known Linear Inverted Pendulum
Model (LIPM), resulting in the following linear relationship
between the CoM and the CoP

&Y = wi(cw,y _ pw,y)7 (3)
where w,, = /% represents the system’s natural f
n = Tep y ural frequency,

and g* being the norm of the gravity vector along z. From
now on, we will drop #¥ superscripts for convenience.

C. Nominal linear MPC for bipedal locomotion

Consider the discrete-LTI dynamics (3) subject to state and
control constraints:

(4a)
(4b)

Tpyir1 = ATy + Bugy,
Tirir1 € X, Uty €U,
qT .
where the state = = [¢ ¢| € R™, with n = 2, and the
control input v = p € R™, with m = 1. X represents the set
of linear kinematic constraints of the robot, like self collision,
maximum stride length, etc. MPC deals with solving the
following optimal control problem (OCP) at every sampling
time ¢:

m&n JIn(z¢,u) (5a)
s. t.
Tipitie = ATppipe + Bugg), (5b)
Tpyivi|t € X, (5¢)
U gt €U, (5d)
Tt = Tt (5e)
i=0,..,N—1. (5)
u = {w, Ugt1ft, - Uy N1t} denotes the control se-

quence along the prediction horizon N and u*(x;) is the
minimizer of (5) given the current initial condition x;. The
above MPC scheme applies only the first control action
uz‘lt(mt) of the optimal open-loop control sequence. We
avoided using terminal constraints (e.g capturability [21]) in
our comparison, since to the best of our knowledge there
is no systematic way for handling terminal constraints in
SMPC as in nominal MPC and RMPC. One of the options
for generating viable reference walking trajectories using
the above MPC scheme without terminal constraints is to
minimize one of the CoM derivatives, adding it to the cost
function Jy [3][4][20]. With a sufficiently long N a valid
choice of the cost function in (5a) can be

=

In(x,u) = a(e - ét+i|t)2 +B(cf - Ct+z‘\t)2 (6)

[}

i
+ 7P = pegige)®

¢, and ¢! represent desired walking direction and velocity
of the robot respectively. p¢ denotes the desired CoP tracking
position, which is usually chosen to be at the center of U
for robustness. «, 8 and ~y are user-defined weights.

III. TUBE-BASED ROBUST MPC (RMPC)

Two Tube-based linear RMPC versions were first intro-
duced in [9] and [10]. We follow the approach of [9] as it
has been more commonly used in the control community,
and recently in [12] for bipedal locomotion. Note however
that our qualitative results and comparison with SMPC would
still hold for [10].



A. Robust OCP formulation and control objective

Consider the following discrete-LTI prediction model sub-
ject to additive stochastic disturbance w;:

Tqipr)t = Ay + By + wigs, (72)
Tiyip1)t € A, (7b)
Ui € U. (7c)

Assumption 1. (Bounded disturbance) wey; € W for i =
0,1,2,... is a disturbance realization, with VV denoting a
polytopic compact (closed and bounded) disturbance set
containing the origin in its interior.

Consider the nominal state s; evolving as

Styitift = ASiripe + Buegie, (8)
under the control action v ;;. The main control objective of
Tube-based RMPC is to bound the evolution of the closed-

loop state error e, = x; — s; using an auxiliary state feedback
control law

Uppift = Vgt (Te) + K (@qife — Sqeift) 9

where K € R™*" is a fixed pre-stabilizing feedback gain
for (7a), and vy ,¢(s;) is the decision variable of the MPC
program. By subtracting (8) from (7a), and applying the
control law in (9), the error dynamics is

Ctrit1 = Agepyi + Wiy, (10)

with Ag 24 + BK being Schur (eigenvalues inside unit
circle). The propagation of the closed-loop error dynamics
(10) converges to the bounded set

Q= é/xﬁ(w.
t=0

Hence the limit set of all disturbed state trajectories x; lie
within a neighborhood of the nominal trajectory s; known
as a tube of trajectories. It is clear that if W = {0} —
Q) = {0}, and the tube of trajectories collapses to a single
trajectory, which is the solution of (8). In set theory, 2 is
called the minimal Robust Positive Invariant (mRPI) set, or
Infinite Reachable Set. We recall some standard properties
of disturbance invariant sets that will be used to design
tightened constraint sets in the next subsection.

(1)

Property 1. Positive Invariance
A set Z is said to be a robust positively invariant (RPI) set
[22] for the system (7a) iff

AxZdW C Z, (12)
ie. ifeg € Z = e; € Z Vit > 0. In simple words, once

the error is driven to Z it will remain inside Z for all future
time steps if subject to the bounded disturbance w;y; € W.

Property 2. Minimal Robust Positive Invariance (mRPI)
The mRPI set Q2 (11) of (7a) is the RPI set in R™ that is
contained in every closed RPI set of (7a).

An outer-approximation of the mRPI set {2 can be com-
puted using the approach of [23]. The size of {2 depends on
the system’s eigenvalues, the choice of K, and W.

B. State and control back-off design
Using the mRPI set €2, and the stabilizing feedback gains
K, the state and control constraint sets are tightened as

St—‘,—i—‘—l\t S X @ Q,
Ut+i|t € U @ KQ

(13a)
(13b)

The new tightened state and control constraint sets are
often called backed-off constraints. Satisfying the backed-
off constraints (13a)-(13b) using the control law (9), ensures
the satisfaction of (7b)-(7¢).

Remark 1. Following the choice of dead-beat pre-stabilizing
feedback gains K proposed in [12], we get KQ = KW,
which allows us to compute KX exactly (whereas usually
this needs to be approximated using numerical techniques).
The dead-beat gains are also a practical choice, since they
lead to the smallest control back-off K [12].

C. Tube-based RMPC algorithm
The tube-based RMPC scheme solves the OCP in (7) by
splitting it into two layers;

1) MPC layer: computes feasible feedfoward reference
control actions v*(s;) every MPC sampling time ¢
subject to the backed-off state and control constraints

as follows

m‘}n JIn(st,v) = (6) (14a)

s. t.
Stqivift = ASipije + Bugy, (14b)
Staisi € X OQ, (14c)
Vepip €U S KQ, (14d)
St|¢ = Tt, (14e)
i=0,1,.,N —1. (14f)

2) State feedback control layer: employs the auxiliary
state feedback control law (9) that regulates the feed-
forward term v;, (s;) such that the closed-loop error e;
is bounded inside (2, which guarantees hard constraint
satisfaction of (7b) - (7c).

Remark 2. The above tube-based RMPC algorithm is often
called closed-loop (CL) MPC, since the initial state s, = x
is the measured state x; of the system [1][11][12]. However,
due to disturbances, CL-MPC is not guaranteed to be recur-
sively feasible (i.e. if the OCP problem is feasible at t = 0,
it will remain feasible for all future time steps). One way to
deal with recursive feasibility is to use sy = xy; whenever
the OCP problem (14) is feasible, which is known as Mode
1. In case of infeasibility, we switch to a backup control
strategy (Mode 2), where we use sy; = Sy11)4—1, hamely the
current state from the previously optimized feasible trajectory
[24]. In this case, recursive feasibility is guaranteed, and the
resulting RMPC is not a purely state-feedback, but a feedback
controller comprising an extended state based on feasibility

ie. Ut it = Ut+i|t($t7 3t+1|t71> + K($t+i|t - St+i\t)~



IV. StoCcHASTIC MPC WITH STATE AND CONTROL
CHANCE CONSTRAINTS (SMPC)

The main objectives of SMPC are to deal with computa-
tionally tractable stochastic uncertainty propagation for cost
function evaluation, and to account for chance constraints,
where constraints are expected to be satisfied within a desired
probability level. With an abuse of notation, we will use some
of the notations defined in Section III in a stochastic setting.

A. Stochastic (OCP) formulation and control objectives

Consider the following discrete-LTI prediction model sub-
ject to additive stochastic disturbance w;:

Typig1)e = AT + Bugpip + Wi, (15a)
Pr[Hjxt+i+l\t < h]] >1- /Bwjv j = 17277nw(15b)
Pr(Gjurie < g51 > 1= Bu,, §=1,2,...,n, (15¢)

Assumption 2. (Stochastic disturbance) wyy; ~ N(0,%,,)
for v =0,1,2,... is a disturbance realization of identically
independent distributed (i.i.d.), zero mean random variables
with normal distribution N'. The disturbance covariance
Yw € R™" = diag(o2)' is a diagonal matrix, with
ow € R™

Eq. (15b)/(15c) denote individual point-wise (i.e. inde-
pendent at each point in time) linear state/control chance
constraints with a maximum probability of constraint viola-
tion (3;,/B,,. Since the disturbed state x; in (15a) is now
a stochastic variable, it is common to split its dynamics
Tipilt = St4ift T C44)¢ INLO twO terms: a deterministic term
S¢4it = E[zy4y); and a zero-mean stochastic error term

errile ~ N (0,2, ,,,), which evolve as
Sttit1|t = ASipie + Buegipe,  Sipp =1 (16a)
Crpivift = AxeCrpilt + Weyi, e =0.  (16b)

Notice that in contrast to the closed-loop error evolution in
RMPC (10), the propagation of the predicted error e;;|; in
SMPC is independent of x;;; due to the assumption of
zero initial error, which enables a closed-loop approach. The
evolution of the state covariance

.
E$t+7‘,+1\t = AKZIt+i\tAK + Zw, Zﬂcﬂf, =0 17

is independent of the control. In the same spirit as [16][14],
the control objective is to bound the stochastic predicted error
by employing the following control law:

Ut tilt = ’Ut+i\t(33t) + K(z4i0 — 5t+i\t)~ (18)

K € R™*" is a fixed stabilizing dead-beat feedback gains
(see remark 1) for (15a), and vy 44 is the decision variable
of the MPC program. In what follows, we present a deter-
ministic reformulation of the individual chance constraints
(15b) - (15c) that will be used in the SMPC algorithm.

T .
'05, e R* = [U%,O’g,...,a’%] denotes the element-wise square

operator of the standard deviation vector .

B. Chance constraints back-off design

Using the knowledge of the statistics of z;1,; in (16a)
- (16b), individual state chance constraints can be rewritten
as:

PrHjs;ip1e < hj — Hjeppipape > 1= B4, (19)

We seek the least conservative deterministic upper bound

Nz tipr)e SUch that by imposing

Hj8t+i+1\t < hj T N ritrer

we can guarantee that (19) be satisfied. The smallest bound
N iipq)e Can then be obtained by solving n, IV linear inde-
pendent chance-constrained optimization problems offline:

min 7, (20)
N

PriHje;ivape < ne] > 1= By

Using the disturbance assumption (2), one can solve such
programs easily since there exist a numerical approximation
of the cumulative density function (CDF) ¢(1, ., ) =
1 — f;; for normal distribution. Hence, 7., ,, can be
computed using the inverse of the CDF ¢~1(1 — Be;) of
the random variable Hje;;;1);- Contrary to RMPC, the
state back-offs grow contractively along the horizon, taking
into account the predicted evolution of the error covariance.
Similarly, we reformulate the individual control chance con-
straints in (15¢) using (16a)-(16b), and the control law (18):

Najepivae —

s. t.

Pr[GjUt+i|t <gj— GjK€t+i|t] >1- ,Buj (21)

The individual control constraints back-off magnitudes
Tu; .., €an be computed along the horizon using the inverse
CDF ¢~ !(1 — f,,) of the random variable G;Ke; ;.

C. SMPC with chance constraints algorithm

The SMPC scheme with individual chance constraints
computes feasible reference control actions v*(z;) at every
MPC sampling time ¢ subject to individual state and control
backed-off constraints as follows

min  E[Jy(z:,v)] = (6) (22a)
s. t.
Sttivift = ASepije + Bupge, (22b)

Hjst-‘ri—b—l\t < h] _n1t+i+1\t’ .7 = 01]-7"‘7nz (220)
Givesile < 05 = Murs (22d)
St|t = Tt, (22e)
i=0,1,...,N —1. (22f)
Note that since the above SMPC algorithm works purely with

state-feedback (s;; = x), The linear feedback term in (18)
is only used to predict the variance of the future error e;.

1=0,1,...,n4

Remark 3. The above CL-SMPC algorithm is not guar-
anteed to be recursively feasible due to the fact that the
disturbance realization wy; ~ N(0,%,) is unbounded.
To tackle this practically, disturbance realizations wyy,; are
assumed to have a bounded support VW [25]. There have



been recent efforts on recursive feasibility for SMPC using
different ingredients of cost functions, constraint tightening
and terminal constraints as in [16] [26]. However, recursive
feasibility guarantees for SMPC is out of this paper’s scope.

V. WORST-CASE ROBUSTNESS OF SMPC

SMPC ensures constraint satisfaction with a certain prob-
ability, while RMPC ensures it under bounded disturbances.
When comparing the two approaches, one could think that
SMPC is equivalent to bounding stochastic disturbances in-
side a confidence set and then applying RMPC. This section
clarifies that this is not the case. In particular, we answer the
following question: when using SMPC, what are the bounded
disturbance sets under which we can still guarantee constraint
satisfaction? Considering a single inequality constraint and
hyper-rectangle disturbance sets, we show how to compute
the size of such sets, and that they shrink along the control
horizon. Since the disturbance set is instead fixed in RMPC,
we conclude that the two approaches are fundamentally
different.

Consider an individual chance constraint
Prig @it < g >1— B, where ¢ € R", g € R.
Given the corresponding back-off magnitude 7;4,,1); (20),
we seek the maximum hyper-rectangle disturbance set
Wi CR® = {w: |w| <wf}$"} such that the constraint
qTxHi_H‘t < g is satisfied for any w € W, ;:

Mevirile = max ¢’ e (23)
s.t. ec€ EBAi(Wt+7:-
j=0
This problem has a simple solution
. T max
Nitit1le = Z b | witd, (24)
§=0

where b £ ¢ A% and || is the element-wise absolute

norm. From the SMPC derivation we know that 74,1
is computed via the inverse CDF of qTetH_,_l‘t, which re-
turns a value proportional to its standard deviation oy ;41|
Therefore we can write

Nevitife = K(B) (25)

i b Suby,
§=0

Ot4it+1|t

where x(8) is a coefficient that depends nonlinearly on .
By substituting (24) in (25) and exploiting the fact that
¥, = diag(c?) > € R™*", we infer

Z bl diag(b;

(26)

Zlb "W).

T .
205, e R* = [U%,O’g,...,a’%] denotes the element-wise square

operator of the standard deviation vector .

TABLE I: Modelling and simulation parameters.

CoM height (h) 0.88 (m)

gravity acceleration (g*) 9.81 (m/s2)

foot support polygon along x direction (/%) [—0.05, 0.10] (m)

foot support polygon along y direction (U4Y) [—0.05, 0.05] (m)

bounded disturbance on CoM position (WV,) [—o0.0016, 0.0016] (m)

bounded disturbance on CoM velocity (WW,..) [—0.016, 0.016] (m/5s)

disturbance std-dev of CoM position (o) 0.0008 (m)
disturbance std-dev of CoM velocity (o¢) 0.008 (m/s)
MPC sampling time (At) 0.1 (s)
whole-body tracking controller sampling time 0.002 (s)
MPC receding horizon (V) 16

Solving for w;nj’; has infinitely many solutions. However,
we can get a unique solution by imposing a ratio (+y; € R

between w3 and o, as follows:

max

Wi = 27)

Ct+z‘ Ow-

Substituting back in (26) and solving for (;4; we get:

N Z] Ob]Tdiag(bj)a?U
i = is i = . (28
Gt = K(B)V o i) (28)

The series «; is bounded 0 < «; < 1, Vi > 0, since
the sum of squares (numerator) is less than or equal to the
square of the sum of positive numbers (denominator). In
Appendix A, we prove that «; is monotonically decreasing
(i.e. a;1+1 < ) for the case of 1D systems (n = 1). We
confirmed this result numerically for the multi-variate case
by randomly generating schur stable closed-loop matrices
A+ BK subject to the same covariance of the disturbance
>, for fairness. Since «; is bounded and monotonically
decreasing, then it is convergent. This implies that, as i
grows, (;; decreases, and so does the disturbance set W, ;
until it converges in the limit. We conclude that, when using
SMPC, the disturbance sets for which we have guaranteed
constraint satisfaction shrink along the control horizon.

VI. SIMULATION RESULTS

In this section, we present simulation results of the gener-
ated walking motions of a Talos robot [27] subject to additive
persistent disturbances on the lateral CoM dynamics. We
compare the motions generated using SMPC subject to state
and control chance constraints against nominal MPC and
tube-based RMPC. The lateral CoM position is constrained
inside a box —0.04 < ¢ < 0.04 to avoid collision of
the external parts of the robot with walls as it navigates
through a narrow hallway with fixed contact locations as
shown in Fig. 5. The CoM trajectories generated using MPC
are tracked with a Task-Space Inverse Dynamics (TSID)
controller using a hard contact model for generating the
control commands [19]. We use the Pinocchio library [28]
for the computation of rigid-body dynamics. We show an
empirical study comparing robustness w.r.t. performance of
SMPC against tube-based RMPC and nominal MPC when
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Fig. 1: Simulation of 6 initial conditions (red crosses) at the
vertices of the outer-e approximation of the mRPI set 2 for
50 time steps subject to w;4; € W.

subject to the same disturbance realizations. The robot model
and simulation parameters are defined in Table I.

A. Hard constraints satisfaction in tube-based RMPC

First, we compute offline the state and control back-off
magnitudes to tighten the constraint sets for RMPC.

The state constraints back-off magnitude is computed
using an outer € approximation of the mRPI set 2 using
the procedure in [23], with an accuracy of ¢ = 1076, In
Fig. 1, we test the positive invariance property (1) of 2, by
simulating 6 initial conditions starting at the set vertices for
50 time steps, and applying randomly sampled disturbance
realizations from the disturbance set YV. As shown, the
evolution of each initial condition (red dots), is kept inside
Q) (the tube section) when subject to disturbance realizations
Wiy, € W = [WC WC-] . Using the same choice of
pre-stabilizing dead-beat gains K = [3.386 0.968] as in
[12], the robust control back-off magnitude K2 is computed
exactly without resorting to numerical approximation K2 =
KW = [—0.02257 0.0225}. In Fig. 2, we plot the CoM
position and CoP of 200 trajectories obtained using tube-
based RMPC. The robot takes the first two steps in place
before entering the hallway. In the third and fourth steps, no
disturbances were applied showing that the CoM position
c trajectories back off conservatively from the constraint
bounds with the magnitude of the mRPI set on the CoM
position .. Finally, we randomly apply sampled Gaussian
disturbance realizations Wi ~ N(0,%,,) with finite support
W, where ¥, = [UOC :2], for the rest of the motion,
showing that both state and control constraints are satisfied
as expected. Note that when the worst-case disturbance is
persistently applied on one direction, the state constraint
is saturated in that direction as expected. This shows that
tube-based RMPC anticipates for a persistent worst-case
disturbance to guarantee a hard constraint satisfaction, which
is quite conservative and sub-optimal when the nature of the
disturbances is stochastic as in this scenario.

B. Chance-constraints satisfaction in SMPC

This subsection presents the results of SMPC. Contrary to
RMPC, the state and control back-off magnitudes (1, , ,,»

0.10 4

0.05 4

0.00 4

v, Z (m)

0.05 4

—0.10

Fig. 2: 200 simulations of tube-based RMPC with w;;; € W.

Tu,.,;) vary along the horizon, and are computed based on
the propagation of the predicted state covariance (17), pre-
stabilizing feedback gain K, disturbance covariance X,
and the desired probability level of individual state and
control constraint violation 3., and 3,, respectively. We
set B, = 5% , and B3,, = 50%, which corresponds
to satisfying the nominal CoP constraints. Using the same
choice of stabilizing feedback gains K as in RMPC, we
simulate 200 trajectories using SMPC in Fig. 3b. In the first
two steps, the robot steps in place and the CoM constraints
are not active. For the rest of the motion, we randomly apply
sampled Gaussian disturbance realizations wy; ~ N (0,3,,)
with finite support W. In Fig. 3a, we show the empirical
number of CoM position constraint violations out of the 200
simulated trajectories. The maximum number of constraint
violations is obtained at time instance 4.3s is 5(< 10), which
respects the designed probability level of CoM constraint
violations 3, = 5% as expected.

To test robustness of constraint satisfaction and optimality
of SMPC, we ran an empirical study of the same eight step
walking motion (200 trajectories) comparing SMPC with
varying B,, € [0.00001%, 50%] and fixed B,, = 50%
against tube-based RMPC and nominal MPC in Fig. 4.
We plot the empirical number of CoM position constraint
violations at ¢ = 2.7s, against the averaged cost performance
(of 200 trajectories) ratio between different MPC schemes
and nominal MPC. As before, disturbance realizations are
sampled from N (0, X,,) with finite support WW. As expected,
the higher the probability level of constraint satisfaction in
SMPC, the lower the amount of constraint violations (higher
robustness). The highest number of constraint violations is
obtained at ﬁm]. = 50%, which is equivalent to nominal MPC.
Zero constraint violations were obtained when ﬁmj < 1%,
as for RMPC. An advantage of SMPC with §,, < 1%
over RMPC, is the lower average cost. This gives the user
the flexibility to design the controller for different task
constraints, by tuning the probability level of constraint
satisfaction without sacrificing performance as in tube-based
RMPC or sacrificing robustness as in nominal MPC.
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Fig. 3: 200 SMPC simulations with w; ; ~ N(0,%,,) € W.

VII. DISCUSSION AND CONCLUSIONS

This paper compared the use of SMPC with RMPC to
account for uncertainties in bipedal locomotion. Many SMPC
and RMPC algorithms exist. We decided to focus on two
particular instances of tube-based approaches, which have
the same online computational complexity as nominal MPC.
Indeed, all the extra computation takes place offline, and
consists in the design of tightened constraints (back-offs)
based on a fixed pre-stabilizing feedback gain K.

Our comparison focused on the trade off between robust-
ness and optimality. Our tests show that, while SMPC does
not provide hard guarantees on constraint satisfaction, in
practice we did not observe any constraint violation with
sufficiently low 8, (< 1%). This comes with the advantage of
less conservative control, i.e. it results in better performance
as measured by the cost function. This is reasonable because
RMPC behaves conservatively, expecting a persistent worst-
case disturbance, which in practice is extremely unlikely
to happen. SMPC instead reasons about the probability of
disturbances. In Section (V) we showed that we can compute
the maximum disturbance sets to which SMPC ensures
robustness. We showed that these sets shrink contractively
as time grows. Loosely speaking, SMPC can be thought as a
special kind of RMPC that considers shrinking disturbance
sets along the horizon.

Our empirical results are specific to the choice of dead-

., = 50%/MPC, 0, =0.00017
B, = 40%, 7, =0.000167
30%, 0, =0.000163
B, = 20%, 0, =0.000159
B, = 10%, 0, =0.000157

1.6x 10° 5
3,
3,
3,
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3,
3,
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3,
3,

1.5x 100

1.4 % 10° L]
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, = 0.01%, o, =0.000182

4, = 0.001%, o, =0.000193
B, = 0.0001%, o, =0.000204
B, = 0.00001%, o, =0.000213
e RMPC, o,, =0.0022

12 x10°

11x100| @

average Jy / average Jy nominal MPC

] 10 20 30 40 50 60 70 80
number of CoM position constraint violations att=2.7 s

Fig. 4: SMPC with varying (3;; vs RMPC of 200 simulations
with wyy; ~ N(0,5,) € W. The dotted line denotes the
optimal ratio of one (nominal MPC)

beat feedback gains used in both algorithms. These gains
were computed in [12] by minimizing the back-off magni-
tude on the CoP constraints. This is sensible because the
CoP is usually more constrained than the CoM in bipedal
locomotion. Other feedback gains could be used, such as
LQR gains, resulting in back-off magnitudes that are a trade-
off between state and control constraints. While changing
the gains would affect our quantitative results, it would not
affect the qualitative differences between SMPC and RMPC
that we highlighted in the paper.

In conclusion, SMPC offers an opportunity for the control
of walking robots that affords trading-off robustness to
uncertainty and performance. For Future work, we intend to
investigate nonlinear versions of RMPC and SMPC [29],[30]
to enable the use of more complex models of locomotion.

APPENDIX

A. Proof that «; is monotonically decreasing (1D case):
We would like to show that a; 11 < o, Vi > 0. Given
Z] =0 b? . Z;+}) b‘? 02

Y=g e YT T
(50 [bilow)?

(ijo |b |Uw)

where b; = T A% can be written as ga’, with a 2 Ag,
la| < 1. After simplifying o, then a;1 < «; reads as:

, (29)
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By substituting the analytical expressions of the following
series in (30)
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Fig. 5: TALOS robot walking through a narrow hallway using nominal MPC subject to additive disturbances on the lateral
CoM dynamics. The Red color corresponds to the robot colliding with the wall.

and cross multiplication, we get [13]
1— |a|z’+1 ) [14]
3 i+1 <
i al la[t <
1— a2(i+l) ) 1— |a|i+1 [15]
2 i+1
_ a 2 _ 32
q T lga"™"| + 2]q] = (32)
[16]
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By multiplying both sides of (32) by E e We have

1 — g2G+1D) ; ;
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= (1+ |a|)(|a|i+1 _ a2i+2) < (14 ‘a|i+l)(_‘a|i+l _ |a|i+2 +92)
= |a|i+1 I ‘a|i+2 _ |a|2i+3 <24 |a‘i+1 _ |a|i+2 _ |a|2i+3

=2 —2a|'" >0,

la| (1 = Ja[t)? < (171

(18]

(33)

which always holds because |a| < 1. This concludes the 1ol
proof. |
[20]
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