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Abstract— Linear Model Predictive Control (MPC) has been
successfully used for generating feasible walking motions for
humanoid robots. However, the effect of uncertainties on
constraints satisfaction has only been studied using Robust
MPC (RMPC) approaches, which account for the worst-case
realization of bounded disturbances at each time instant. In
this paper, we propose for the first time to use linear stochastic
MPC (SMPC) to account for uncertainties in bipedal walking.
We show that SMPC offers more flexibility to the user (or a
high level decision maker) by tolerating small (user-defined)
probabilities of constraint violation. Therefore, SMPC can be
tuned to achieve a constraint satisfaction probability that is
arbitrarily close to 100%, but without sacrificing performance
as much as tube-based RMPC. We compare SMPC against
RMPC in terms of robustness (constraint satisfaction) and
performance (optimality). Our results highlight the benefits of
SMPC and its interest for the robotics community as a powerful
mathematical tool for dealing with uncertainties.

I. INTRODUCTION

Control of humanoid robots is challenging due to limiting

constraints on contact forces, and nonlinear switching dy-

namics. Furthermore, guaranteeing safety for humanoids is

critical, as collision with the environment or falling down can

cause severe damage to the robot and its surroundings. Linear

MPC [1][2] is a powerful tool for designing real-time feed-

back controllers subject to state and input constraints, which

makes it a prime candidate for generating a wide range of

feasible reference walking motions for humanoid robots [3],

[4], [5]. However, the theoretical guarantees associated with

MPC (e.g., constraint satisfaction guarantees) can easily be

lost due to external disturbances or the discrepancy between

the nonlinear dynamics of the robot and the linearized model

used in control.

Recently, [6], [7] studied how to account for the bounded

error in constraint satisfaction due to the approximation

of the nonlinear center of mass (CoM) dynamics, and [8]

investigated nonlinear constraints due to step timing adap-

tation. However, 1) they do not account for the closed-loop

tracking errors due to disturbances, 2) there are no robustness

guarantees of constraints satisfaction in the presence of
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different disturbances, which is critical for generating safe

walking motions.

Linear Robust MPC (RMPC) schemes have been exten-

sively studied in the control literature [9], [10], [11]. Re-

cently, [12] used the well-known tube-based RMPC approach

originally developed in [11] for generating robust walking

motions for humanoid robots, taking into account the effects

of additive compact polytopic uncertainties on the dynamics.

Using a state feedback control policy and a pre-stabilizing

choice of static dead-beat gains, they showed that constraints

are guaranteed to be satisfied for all disturbance realizations

inside the disturbance set. A drawback of RMPC is that the

constraints are designed to accommodate for the worst-case

disturbance, which is quite conservative and sacrifices perfor-

mance (optimality) to guarantee hard constraints satisfaction.

In order to relax the conservativeness of RMPC, SMPC

[13], [14], [15], [16] exploits the underlying probability dis-

tribution of the disturbance realizations. Furthermore, SMPC

offers a flexible framework by accounting for chance con-

straints, where constraints are expected to be satisfied within

a desired probability level. Depending on how critical the

task is, the user can tune the desired probability level between

the two extremes of almost hard constraint satisfaction (as

in RMPC) and complete negligence of disturbances (as in

nominal MPC). This flexibility becomes very practical, since

a humanoid robot needs to move in dynamic environments

where some of the constraints can be more critical than

others. For example, moving through a narrow doorway or

walking in a crowd [17], the robot needs to reduce the sway

motion of its CoM to reduce the probability of collision.

However, for walking on challenging terrains with partial

footholds [18], the robot has to bring the foot center of

pressure (CoP) as close as possible to the center of the

contact area. Many other tasks can be considered somewhere

between those situations. To this end, SMPC can be a

powerful and systematic tool for dealing with constraint

satisfaction in different environments and tasks. Moreover,

small errors are typically more likely to occur in practice.

It might therefore be more appropriate to explicitly consider

the distribution of disturbances instead of treating all of them

equally as in RMPC, which often lead to a conservative

behavior.

In this letter, we revisit the problem of generating refer-

ence walking motions for humanoid robots using a linear

inverted pendulum model (LIPM) subject to additive uncer-

tainties on the model. Our contributions are the following:

• We introduce linear SMPC to generate stable walking,

taking into account stochastic model uncertainty subject



to individual chance constraints.

• We analyze the robustness of SMPC to worst-case

disturbances, drawing an interesting connection between

robust and stochastic MPC, and highlighting their fun-

damental difference.

• We compare SMPC, RMPC, and nominal MPC in

terms of robustness (constraints satisfaction) and per-

formance. Our tests focus on stochastic bounded dis-

turbances (generated with a truncated Gaussian distri-

bution), which are a good approximation of real dis-

turbances, such as joint torque tracking errors [19]. We

empirically show that SMPC can achieve hard constraint

satisfaction, while being significantly less conservative

than RMPC.

II. BACKGROUND

A. Notation

• xt represents the value of x at time t, while xt+i|t

denotes the value of x at the future time t+ i predicted

at time t

• A⊕B = {a+b | a ∈ A, b ∈ B} refers to the Minkowski

set sum

• A ⊖ B = {a ∈ A | a + b ∈ A, ∀b ∈ B} refers to the

Pontryagin set difference

• a random variable x following a distribution Q is

denoted as x ∼ Q, and E[x] is the expected value of x

B. Linear model of walking robots

The dynamics of the CoM of a walking robot, under

the assumption of rigid contacts with a flat ground, can be

modelled as follows [20]:

px,y = cx,y − mtot c
z c̈x,y − SL̇x,y

mtot(c̈z + gz)
, (1)

where c ∈ R denotes the CoM position in the lateral

directions of motion x,y . The total mass of the robot is

denoted by mtot, the matrix S =
[
0 −1
1 0

]
is a rotation matrix,

with the center of pressure (CoP) p ∈ R being constrained

inside the convex hull of the contact points U

px,y ∈ U . (2)

Under the assumption of constant CoM height cz and

constant angular momentum L, the dynamics (1) can be

simplified to the well-known Linear Inverted Pendulum

Model (LIPM), resulting in the following linear relationship

between the CoM and the CoP

c̈x,y = ω2
n(c

x,y − px,y), (3)

where ωn =
√

gz

cz
represents the system’s natural frequency,

and gz being the norm of the gravity vector along z. From

now on, we will drop x,y superscripts for convenience.

C. Nominal linear MPC for bipedal locomotion

Consider the discrete-LTI dynamics (3) subject to state and

control constraints:

xt+i+1 = Axt+i +But+i, (4a)

xt+i+1 ∈ X , ut+i ∈ U , (4b)

where the state x =
[
c ċ

]⊤ ∈ R
n, with n = 2, and the

control input u = p ∈ R
m, with m = 1. X represents the set

of linear kinematic constraints of the robot, like self collision,

maximum stride length, etc. MPC deals with solving the

following optimal control problem (OCP) at every sampling

time t:

min
u

JN (xt,u) (5a)

s. t.

xt+i+1|t = Axt+i|t +But+i|t, (5b)

xt+i+1|t ∈ X , (5c)

ut+i|t ∈ U , (5d)

xt|t = xt, (5e)

i = 0, ..., N − 1. (5f)

u = {ut|t, ut+1|t, ..., ut+N−1|t} denotes the control se-

quence along the prediction horizon N and u
∗(xt) is the

minimizer of (5) given the current initial condition xt. The

above MPC scheme applies only the first control action

u∗
t|t(xt) of the optimal open-loop control sequence. We

avoided using terminal constraints (e.g capturability [21]) in

our comparison, since to the best of our knowledge there

is no systematic way for handling terminal constraints in

SMPC as in nominal MPC and RMPC. One of the options

for generating viable reference walking trajectories using

the above MPC scheme without terminal constraints is to

minimize one of the CoM derivatives, adding it to the cost

function JN [3][4][20]. With a sufficiently long N a valid

choice of the cost function in (5a) can be

JN (xt,u) =

N−1∑

i=0

α(ċdt − ċt+i|t)
2 + β(cdt − ct+i|t)

2 (6)

+ γ(pdt − pt+i|t)
2.

cdt , and ċdt represent desired walking direction and velocity

of the robot respectively. pdt denotes the desired CoP tracking

position, which is usually chosen to be at the center of U
for robustness. α, β and γ are user-defined weights.

III. TUBE-BASED ROBUST MPC (RMPC)

Two Tube-based linear RMPC versions were first intro-

duced in [9] and [10]. We follow the approach of [9] as it

has been more commonly used in the control community,

and recently in [12] for bipedal locomotion. Note however

that our qualitative results and comparison with SMPC would

still hold for [10].



A. Robust OCP formulation and control objective

Consider the following discrete-LTI prediction model sub-

ject to additive stochastic disturbance wt:

xt+i+1|t = Axt+i|t +But+i|t + wt+i, (7a)

xt+i+1|t ∈ X , (7b)

ut+i|t ∈ U . (7c)

Assumption 1. (Bounded disturbance) wt+i ∈ W for i =
0, 1, 2, ... is a disturbance realization, with W denoting a

polytopic compact (closed and bounded) disturbance set

containing the origin in its interior.

Consider the nominal state st evolving as

st+i+1|t = Ast+i|t +Bvt+i|t, (8)

under the control action vt+i|t. The main control objective of

Tube-based RMPC is to bound the evolution of the closed-

loop state error et = xt−st using an auxiliary state feedback

control law

ut+i|t = vt+i|t(xt) +K(xt+i|t − st+i|t), (9)

where K ∈ R
m×n is a fixed pre-stabilizing feedback gain

for (7a), and vt+i|t(st) is the decision variable of the MPC

program. By subtracting (8) from (7a), and applying the

control law in (9), the error dynamics is

et+i+1 = AKet+i + wt+i, (10)

with AK
∆
= A + BK being Schur (eigenvalues inside unit

circle). The propagation of the closed-loop error dynamics

(10) converges to the bounded set

Ω =

∞⊕

t=0

At
KW. (11)

Hence the limit set of all disturbed state trajectories xt lie

within a neighborhood of the nominal trajectory st known

as a tube of trajectories. It is clear that if W = {0} →
Ω = {0}, and the tube of trajectories collapses to a single

trajectory, which is the solution of (8). In set theory, Ω is

called the minimal Robust Positive Invariant (mRPI) set, or

Infinite Reachable Set. We recall some standard properties

of disturbance invariant sets that will be used to design

tightened constraint sets in the next subsection.

Property 1. Positive Invariance

A set Z is said to be a robust positively invariant (RPI) set

[22] for the system (7a) iff

AKZ ⊕W ⊆ Z, (12)

i.e. if e0 ∈ Z ⇒ et ∈ Z ∀t ≥ 0. In simple words, once

the error is driven to Z it will remain inside Z for all future

time steps if subject to the bounded disturbance wt+i ∈ W .

Property 2. Minimal Robust Positive Invariance (mRPI)

The mRPI set Ω (11) of (7a) is the RPI set in R
n that is

contained in every closed RPI set of (7a).

An outer-approximation of the mRPI set Ω can be com-

puted using the approach of [23]. The size of Ω depends on

the system’s eigenvalues, the choice of K, and W .

B. State and control back-off design

Using the mRPI set Ω, and the stabilizing feedback gains

K, the state and control constraint sets are tightened as

st+i+1|t ∈ X ⊖ Ω, (13a)

vt+i|t ∈ U ⊖KΩ. (13b)

The new tightened state and control constraint sets are

often called backed-off constraints. Satisfying the backed-

off constraints (13a)-(13b) using the control law (9), ensures

the satisfaction of (7b)-(7c).

Remark 1. Following the choice of dead-beat pre-stabilizing

feedback gains K proposed in [12], we get KΩ = KW ,

which allows us to compute KΩ exactly (whereas usually

this needs to be approximated using numerical techniques).

The dead-beat gains are also a practical choice, since they

lead to the smallest control back-off KΩ [12].

C. Tube-based RMPC algorithm

The tube-based RMPC scheme solves the OCP in (7) by

splitting it into two layers;

1) MPC layer: computes feasible feedfoward reference

control actions v
∗(st) every MPC sampling time t

subject to the backed-off state and control constraints

as follows

min
v

JN (st,v) = (6) (14a)

s. t.

st+i+1|t = Ast+i|t +Bvt+i|t, (14b)

st+i+1|t ∈ X ⊖ Ω, (14c)

vt+i|t ∈ U ⊖KΩ, (14d)

st|t = xt, (14e)

i = 0, 1, ..., N − 1. (14f)

2) State feedback control layer: employs the auxiliary

state feedback control law (9) that regulates the feed-

forward term v∗
t|t(st) such that the closed-loop error et

is bounded inside Ω, which guarantees hard constraint

satisfaction of (7b) - (7c).

Remark 2. The above tube-based RMPC algorithm is often

called closed-loop (CL) MPC, since the initial state st|t = xt

is the measured state xt of the system [1][11][12]. However,

due to disturbances, CL-MPC is not guaranteed to be recur-

sively feasible (i.e. if the OCP problem is feasible at t = 0,

it will remain feasible for all future time steps). One way to

deal with recursive feasibility is to use st|t = xt|t whenever

the OCP problem (14) is feasible, which is known as Mode

1. In case of infeasibility, we switch to a backup control

strategy (Mode 2), where we use st|t = st+1|t−1, namely the

current state from the previously optimized feasible trajectory

[24]. In this case, recursive feasibility is guaranteed, and the

resulting RMPC is not a purely state-feedback, but a feedback

controller comprising an extended state based on feasibility

i.e. ut+i|t = vt+i|t(xt, st+1|t−1) +K(xt+i|t − st+i|t).



IV. STOCHASTIC MPC WITH STATE AND CONTROL

CHANCE CONSTRAINTS (SMPC)

The main objectives of SMPC are to deal with computa-

tionally tractable stochastic uncertainty propagation for cost

function evaluation, and to account for chance constraints,

where constraints are expected to be satisfied within a desired

probability level. With an abuse of notation, we will use some

of the notations defined in Section III in a stochastic setting.

A. Stochastic (OCP) formulation and control objectives

Consider the following discrete-LTI prediction model sub-

ject to additive stochastic disturbance wt:

xt+i+1|t = Axt+i|t +But+i|t + wt+i, (15a)

Pr[Hjxt+i+1|t ≤ hj ] ≥ 1− βxj
, j = 1, 2, ..., nx (15b)

Pr[Gjut+i|t ≤ gj ] ≥ 1− βuj
, j = 1, 2, ..., nu (15c)

Assumption 2. (Stochastic disturbance) wt+i ∼ N (0,Σw)
for i = 0, 1, 2, ... is a disturbance realization of identically

independent distributed (i.i.d.), zero mean random variables

with normal distribution N . The disturbance covariance

Σw ∈ R
n×n = diag(σ2

w)
1 is a diagonal matrix, with

σw ∈ R
n.

Eq. (15b)/(15c) denote individual point-wise (i.e. inde-

pendent at each point in time) linear state/control chance

constraints with a maximum probability of constraint viola-

tion βxj
/βuj

. Since the disturbed state xt in (15a) is now

a stochastic variable, it is common to split its dynamics

xt+i|t = st+i|t + et+i|t into two terms: a deterministic term

st+i|t = E[xt+i|t]; and a zero-mean stochastic error term

et+i|t ∼ N (0,Σxt+i|t
), which evolve as

st+i+1|t = Ast+i|t +Bvt+i|t, st|t = xt (16a)

et+i+1|t = AKet+i|t + wt+i, et|t = 0. (16b)

Notice that in contrast to the closed-loop error evolution in

RMPC (10), the propagation of the predicted error et+i|t in

SMPC is independent of xt+i|t due to the assumption of

zero initial error, which enables a closed-loop approach. The

evolution of the state covariance

Σxt+i+1|t
= AKΣxt+i|t

A⊤
K +Σw, Σxt|t

= 0 (17)

is independent of the control. In the same spirit as [16][14],

the control objective is to bound the stochastic predicted error

by employing the following control law:

ut+i|t = vt+i|t(xt) +K(xt+i|t − st+i|t). (18)

K ∈ R
m×n is a fixed stabilizing dead-beat feedback gains

(see remark 1) for (15a), and vt+i|t is the decision variable

of the MPC program. In what follows, we present a deter-

ministic reformulation of the individual chance constraints

(15b) - (15c) that will be used in the SMPC algorithm.

1σ2
w

∈ R
n =

[

σ2

1
, σ2

2
, ..., σ2

n

]

⊤
denotes the element-wise square

operator of the standard deviation vector σw .

B. Chance constraints back-off design

Using the knowledge of the statistics of xt+i|t in (16a)

- (16b), individual state chance constraints can be rewritten

as:

Pr[Hjst+i+1|t ≤ hj −Hjet+i+1|t] ≥ 1− βjx . (19)

We seek the least conservative deterministic upper bound

ηxj,t+i+1|t
such that by imposing

Hjst+i+1|t ≤ hj − ηxj,t+i+1|t
,

we can guarantee that (19) be satisfied. The smallest bound

ηxj,t+i+1|t
can then be obtained by solving nxN linear inde-

pendent chance-constrained optimization problems offline:

ηxj,t+i+1|t
= min

ηx

ηx (20)

s. t. Pr[Hjet+i+1|t ≤ ηx] ≥ 1− βxj
.

Using the disturbance assumption (2), one can solve such

programs easily since there exist a numerical approximation

of the cumulative density function (CDF) φ(ηxj,t+i+1|t
) ≥

1 − βxj
for normal distribution. Hence, ηxj,t+i+1|t

can be

computed using the inverse of the CDF φ−1(1 − βxj
) of

the random variable Hjet+i+1|t. Contrary to RMPC, the

state back-offs grow contractively along the horizon, taking

into account the predicted evolution of the error covariance.

Similarly, we reformulate the individual control chance con-

straints in (15c) using (16a)-(16b), and the control law (18):

Pr[Gjvt+i|t ≤ gj −GjKet+i|t] ≥ 1− βuj
. (21)

The individual control constraints back-off magnitudes

ηuj,t+i|t
can be computed along the horizon using the inverse

CDF φ−1(1− βuj
) of the random variable GjKet+i|t.

C. SMPC with chance constraints algorithm

The SMPC scheme with individual chance constraints

computes feasible reference control actions v
∗(xt) at every

MPC sampling time t subject to individual state and control

backed-off constraints as follows

min
v

E[JN (xt,v)] = (6) (22a)

s. t.

st+i+1|t = Ast+i|t +Bvt+i|t, (22b)

Hjst+i+1|t ≤ hj − ηxt+i+1|t
, j = 0, 1, ..., nx (22c)

Gjvt+i|t ≤ gj − ηut+i|t
, j = 0, 1, ..., nu (22d)

st|t = xt, (22e)

i = 0, 1, ..., N − 1. (22f)

Note that since the above SMPC algorithm works purely with

state-feedback (st|t = xt), The linear feedback term in (18)

is only used to predict the variance of the future error et.

Remark 3. The above CL-SMPC algorithm is not guar-

anteed to be recursively feasible due to the fact that the

disturbance realization wt+i ∼ N (0,Σw) is unbounded.

To tackle this practically, disturbance realizations wt+i are

assumed to have a bounded support W [25]. There have



been recent efforts on recursive feasibility for SMPC using

different ingredients of cost functions, constraint tightening

and terminal constraints as in [16] [26]. However, recursive

feasibility guarantees for SMPC is out of this paper’s scope.

V. WORST-CASE ROBUSTNESS OF SMPC

SMPC ensures constraint satisfaction with a certain prob-

ability, while RMPC ensures it under bounded disturbances.

When comparing the two approaches, one could think that

SMPC is equivalent to bounding stochastic disturbances in-

side a confidence set and then applying RMPC. This section

clarifies that this is not the case. In particular, we answer the

following question: when using SMPC, what are the bounded

disturbance sets under which we can still guarantee constraint

satisfaction? Considering a single inequality constraint and

hyper-rectangle disturbance sets, we show how to compute

the size of such sets, and that they shrink along the control

horizon. Since the disturbance set is instead fixed in RMPC,

we conclude that the two approaches are fundamentally

different.

Consider an individual chance constraint

Pr[q⊤xt+i+1|t ≤ g] ≥ 1− β, where q ∈ R
n, g ∈ R.

Given the corresponding back-off magnitude ηt+i+1|t (20),

we seek the maximum hyper-rectangle disturbance set

Wt+i ⊂ R
n = {w : |w| ≤ wmax

t+i } such that the constraint

q⊤xt+i+1|t ≤ g is satisfied for any w ∈ Wt+i:

ηt+i+1|t = max
e

q⊤e (23)

s. t. e ∈
i⊕

j=0

A
j
KWt+i.

This problem has a simple solution

ηt+i+1|t =





i∑

j=0

∣
∣bj

∣
∣
⊤



wmax
t+i , (24)

where b⊤j , q⊤A
j
K and |.| is the element-wise absolute

norm. From the SMPC derivation we know that ηt+i+1|t

is computed via the inverse CDF of q⊤et+i+1|t, which re-

turns a value proportional to its standard deviation σt+i+1|t.

Therefore we can write

ηt+i+1|t = κ(β)

√
√
√
√

i∑

j=0

b⊤j Σwbj

︸ ︷︷ ︸
σt+i+1|t

, (25)

where κ(β) is a coefficient that depends nonlinearly on β.

By substituting (24) in (25) and exploiting the fact that

Σw = diag(σ2
w)

2 ∈ R
n×n, we infer

κ2(β)

i∑

j=0

b⊤j diag(bj)σ
2
w = (

i∑

j=0

|bj |⊤wmax
t+i)

2. (26)

2σ2
w

∈ R
n =

[

σ2

1
, σ2

2
, ..., σ2

n

]

⊤
denotes the element-wise square

operator of the standard deviation vector σw .

TABLE I: Modelling and simulation parameters.

CoM height (h) 0.88 (m)

gravity acceleration (gz) 9.81 (m/s2)

foot support polygon along x direction (Ux) [−0.05, 0.10 ] (m)

foot support polygon along y direction (Uy) [−0.05, 0.05 ] (m)

bounded disturbance on CoM position (Wc) [−0.0016, 0.0016 ] (m)

bounded disturbance on CoM velocity (Wċ) [−0.016, 0.016 ] (m/s)

disturbance std-dev of CoM position (σc) 0.0008 (m)

disturbance std-dev of CoM velocity (σċ) 0.008 (m/s)

MPC sampling time (∆t) 0.1 (s)

whole-body tracking controller sampling time 0.002 (s)

MPC receding horizon (N ) 16

Solving for wmax
t+i has infinitely many solutions. However,

we can get a unique solution by imposing a ratio ζt+i ∈ R

between wmax
t+i and σw as follows:

wmax
t+i = ζt+i σw. (27)

Substituting back in (26) and solving for ζt+i we get:

ζt+i = κ(β)
√
αi, αi ,

∑i

j=0
b⊤j diag(bj)σ

2
w

(
∑i

j=0
|bj |⊤σw)2

. (28)

The series αi is bounded 0 < αi ≤ 1, ∀i ≥ 0, since

the sum of squares (numerator) is less than or equal to the

square of the sum of positive numbers (denominator). In

Appendix A, we prove that αi is monotonically decreasing

(i.e. αi+1 ≤ αi) for the case of 1D systems (n = 1). We

confirmed this result numerically for the multi-variate case

by randomly generating schur stable closed-loop matrices

A + BK subject to the same covariance of the disturbance

Σw for fairness. Since αi is bounded and monotonically

decreasing, then it is convergent. This implies that, as i

grows, ζt+i decreases, and so does the disturbance set Wt+i

until it converges in the limit. We conclude that, when using

SMPC, the disturbance sets for which we have guaranteed

constraint satisfaction shrink along the control horizon.

VI. SIMULATION RESULTS

In this section, we present simulation results of the gener-

ated walking motions of a Talos robot [27] subject to additive

persistent disturbances on the lateral CoM dynamics. We

compare the motions generated using SMPC subject to state

and control chance constraints against nominal MPC and

tube-based RMPC. The lateral CoM position is constrained

inside a box −0.04 ≤ cy ≤ 0.04 to avoid collision of

the external parts of the robot with walls as it navigates

through a narrow hallway with fixed contact locations as

shown in Fig. 5. The CoM trajectories generated using MPC

are tracked with a Task-Space Inverse Dynamics (TSID)

controller using a hard contact model for generating the

control commands [19]. We use the Pinocchio library [28]

for the computation of rigid-body dynamics. We show an

empirical study comparing robustness w.r.t. performance of

SMPC against tube-based RMPC and nominal MPC when








