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Proof-of-Stake Mining Games with Perfect Randomness
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Proof-of-Stake blockchains based on a longest-chain consensus protocol are an attractive energy-friendly
alternative to the Proof-of-Work paradigm. However, formal barriers to “getting the incentives right” were
recently discovered, driven by the desire to use the blockchain itself as a source of pseudorandomness [4].

We consider instead a longest-chain Proof-of-Stake protocol with perfect, trusted, external randomness
(e.g. a randomness beacon). We produce two main results.

First, we show that a strategic miner can strictly outperform an honest miner with just 32.8% of the total
stake. Note that a miner of this size cannot outperform an honest miner in the Proof-of-Work model [21].
This establishes that even with access to a perfect randomness beacon, incentives in Proof-of-Work and
Proof-of-Stake longest-chain protocols are fundamentally different.

Second, we prove that a strategic miner cannot outperform an honest miner with 30.8% of the total stake.
This means that, while not quite as secure as the Proof-of-Work regime, desirable incentive properties of
Proof-of-Work longest-chain protocols can be approximately recovered via Proof-of-Stake with a perfect
randomness beacon.

The space of possible strategies in a Proof-of-Stake mining game is significantly richer than in a Proof-
of-Work game. Our main technical contribution is a characterization of potentially optimal strategies for a
strategic miner, and in particular a proof that the corresponding infinite-state MDP admits an optimal strategy
that is positive recurrent.
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1 INTRODUCTION

Blockchains have been a resounding success as a disruptive technology. However, the most suc-
cessful implementations (including Bitcoin [18] and Ethereum [22]) are built on a concept called
proof-of-work. That is, participants in the protocol are selected to update the blockchain propor-
tionally to their computational power. The consensus protocols underlying Bitcoin and Ethereum
(and many other proof-of-work cryptocurrencies) have been secure in practice, and robust against
strategic manipulation. There is even a theoretical foundation supporting this latter property:
honestly following the Bitcoin protocol is a Nash equilibrium in a stylized model when no miner
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controls more than a®V ~ 0.329 of the total computational power in the network [15, 21] (we

will use the notation a™%! to denote the supremum « such that whenever no miner is selected
to create the next block with probability bigger than e, it is a Nash equilibrium for all miners to
follow the longest-chain protocol in the referenced model).!

However, one major drawback of proof-of-work blockchains is their massive energy consumption.
For example, Bitcoin currently consumes more electricity than all but 26 countries annually.? The
need for specialized hardware and low-cost electricity/cooling/etc. also leads to concentration of
the mining process among the few entities who have access to the necessary technology [1]. One
popular emerging alternative is a paradigm termed proof-of-stake, where participants are selected
proportionally to their stake in the currency itself.

Proof-of-stake cryptocurrencies do not suffer from this drawback, but raise new technical chal-
lenges, especially from the incentives perspective. Indeed, Brown-Cohen et al. [4] identifies several
formal barriers to designing incentive compatible longest-chain proof-of-stake cryptocurrencies
(that is, proof-of-stake protocols “like Bitcoin”). Their work highlights one key barrier: in existing
proof-of-stake protocols, the blockchain itself serves as a source of pseudorandomness, whereas in
proof-of-work protocols the pseudorandom selection of participants is completely independent of the
blockchain. Specifically, they pose a stylized model with No External Randomness and show that it
is never a Nash equilibrium for all miners to honestly follow the longest-chain protocol no matter
how small they are (that is, a?*SNER = (),

In this work, we investigate the incentive compatibility of longest-chain proof-of-stake protocols
with access to perfect external randomness, completely independent of the blockchain, often termed
a randomness beacon [20] (for brevity of notation, we’ll refer to this model simply as PoS). We
provide two main results, which give a fairly complete picture:

e We establish that aF°5 < 0.327 < aP°V. That is, even with access to perfect external randomness,
longest-chain proof-of-stake protocols admit richer strategic manipulation than their proof-of-
work counterparts. We do this by designing a new strategic deviation that we term nothing-
at-stake selfish mining, and establish that it is strictly more profitable than honest behavior
for any miner with g 0.327 of the total stake (Theorem 3.4).

e We prove that @™ 2 0.308 (Theorem 6.1). In particular, this means that access to a ran-
domness beacon fundamentally changes longest-chain proof of stake protocols: without
one a"*SNER = 0, and any miner can profit by deviating. With a randomness beacon, the
incentives are (quantitatively) almost as good as proof-of-work.

We now provide a high-level overview of our model (a significantly more detailed description of
the model appears in Section 2), a brief overview of the key technical highlights, and an overview
of related work.

1.1 Brief Overview of Model

Seminal work of Eyal and Sirer poses an elegant abstraction of the Bitcoin protocol (that we call
the PoW model) [9]. Specifically, the game proceeds in infinitely many discrete rounds. In each
round, a single miner is chosen proportionally to their computational power, and creates a block.
Immediately upon creating a block, the miner must choose its contents (including its predecessor
in the blockchain). The strategic decisions a miner makes are: a) which predecessor to select
when they create a block, and b) when to publish that block to the other miners. The fact that
predecessors must be chosen upon creation of the block captures that the contents of a block created
via proof-of-work are fixed upon creation.

IKiayias et al. [15] proves that PW 2 0.308, and [21] estimates a®V to high precision as ~ 0.329.
2Source: https://cbeci.org/. Accessed 3/25/2021.
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A key concept in Bitcoin is the longest-chain protocol. Specifically, the longest chain is the
published block with the most ancestors.> Each miner’s reward is equal to the fraction of blocks
they produce in the longest chain (taking a limit as rounds go to o). A miner honestly follows the
longest-chain protocol if: a) they always select the (current) longest chain as the predecessor of any
created node, and b) they publish all created blocks during the round in which it’s created. Eyal
and Sirer [9] establishes that ™V < 1/3 (previously, it was believed that a”*V = 1/2 as proposed
in [18]), and follow-up work further nailed down oV ~ 0.329 [21].

Brown-Cohen et al. [4] modify this model to capture proof-of-stake with no external randomness.
In their model, a random coin is selected in each round independently for each block. That is, for
each round, and each block B, an independent random miner is selected who is eligible to create
a block with B as a predecessor with probability equals to their fraction of all the coins in the
system. This captures that the protocol must use the chain itself as a source of pseudorandomness.
Their work establishes that a?*NFR = : it is never a Nash equilibrium to honestly follow the
longest-chain protocol in their model. This result is entirely driven by the fact that the protocol
has no external randomness, and therefore, miners can make non-trivial predictions about future
pseudorandomness.

Our model lies between these two, and captures proof-of-stake with perfect external randomness.
Specifically, in each round a single coin is chosen to create a block. Thus a single miner is chose
to create a block (just as in PoW) with probability proportional to their fraction of the coins in
the system. The strategic decisions are now better phrased as: a) when to publish a created block,
and b) which predecessor to select when publishing. Our model captures the following: perfect
external randomness allows the protocol to select a random miner independently of all previous
selected miners and all previously published blocks. The distinction to proof-of-work is that it is
now computationally tractable to set the contents of the block, including its predecessor, at any
point before it is published.

Note that our model does stipulate that the winner of round ¢ can publish a single block with
timestamp t. In a proof-of-stake protocol, there is no technical barrier to creating and publishing any
number of blocks using the same timestamp (indeed, this is precisely because it is computationally
efficient to produce blocks in proof-of-stake). However, it will be immediately obvious to the rest of
the network that a miner has deviated from the longest-chain protocol in this specific way, and it
will be immediately obvious which miner cheated.* A common solution to strongly disincentivize
such behavior is a slashing protocol: any miner can include pointers to two blocks created using
the same timestamp and the cheating miner will be steeply fined. While we will not rigorously
model the incentives induced by a slashing protocol, our model implicitly assumes a sufficiently
strong disincentive for miners to publish multiple blocks (and capture this in our model by simply
hard-coding that miners must publish at most a single block with each timestamp).

To get intuition for the types of protocols our stylized model aims to capture, below is a sample
(simplified) protocol to have in mind:>

3 An ancestor is any block that can be reached by following a path of predecessors. Observe that because each block has a
single predecessor, there is a single path of predecessors out of any block.

4Observe that deviations from the longest-chain protocol that select strategic predecessors or publish at strategic times
cannot be definitively attributed to a cheating miner, as these deviations have an innocent explanation: latency. That is,
perhaps the reason a miner chose the wrong predecessor is because news of the true longest chain had not yet reached
them. Alternatively, perhaps the miner tried to publish their block during the correct round, but it only propagated through
the network several rounds later due. Like all prior work, we do not rigorously model latency, and stick to the elegant model
proposed in [9].

5We are not claiming that this protocol is secure in a rich model, nor will we reason formally about properties of the
proposed slashing mechanism. We provide this just to give intuition for why our stylized model captures the salient features
of a longest-chain protocol with trusted external randomness.
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e In order to be eligible to mine, a coin must be frozen for (large) T rounds, along with a deposit
equal to (large) L times its value (that is, the coin and its deposit must be owned by the same
miner for T rounds in a row).

o After being used for mining, a coin and its deposit must be frozen for T rounds.

e During each round ¢, the randomness beacon outputs a random number. This is mapped to a
random eligible coin, and its owner is the selected miner at round ¢. The selected miner can
create blocks with timestamp ¢.

o If a miner ever publishes distinct blocks with the same timestamp, any other miner can
include pointers to those two blocks in a block of their own. This will cause the deviant miner
to lose their entire deposit (if desired, a 1 — ¢ fraction of it can be destroyed, and an ¢ fraction
can be awarded to the altruistic miner).

Importantly, we are claiming neither that randomness beacons exist (either in theory or in practice),
nor that slashing protocols that perfectly disincentivize detectable cheating (without affecting
any other incentives) exist. Theorem 3.4 shows that even if these primitives existed, a longest-
chain proof-of-stake protocol assuming them would still be (slightly) more vulnerable to strategic
manipulation than a proof-of-work protocol. On the other hand, Theorem 6.1 establishes in some
sense a reduction from proof-of-stake protocols that nearly match the incentive guarantees of
proof-of-work protocols to the design of randomness beacons and slashing protocols.

1.2 Brief Technical Overview

Theorem 3.4 (S < 0.327) follows by designing our nothing-at-stake selfish mining strategy, and
analyzing its expected payoff. While the insights to design our strategy are novel, the analysis is
similar to those used in prior work to analyze the payoff of the resulting Markov Decision Process
(MDP). We defer to Section 3 a description of our strategy and intuition for why it succeeds.

The proof of Theorem 6.1 is the bulk of our technical work. To start, we observe that our model
admits an infinite-state MDP (just as in [21]). However, the space of strategies available to a
miner in our setting is significantly richer than in the PoW model. We provide several examples
demonstrating why counterintuitive behavior (such as orphaning one’s own blocks) could a priori
be part of an optimal strategy. So our main technical results characterize possible optimal strategies
for this infinite-state MDP, culminating in a strong enough characterization to lower bound the
optimal payoff for Theorem 6.1 and concluding ™5 > 0.308.

1.3 Related Work

The most related work is already overviewed above: Eyal and Sirer [9] provide the PoW model,
develop the selfish mining attack, and prove that a®®¥ < 1/3. Sapirshtein et al. [21] estimates
a?WV x 0.329 by solving the associated MDP to high precision, and Kiayias et al. [15] prove that
a®W 2 0.308. Brown-Cohen et al. [4] study a related proof-of-stake model with no external
randomness, and show that a"*NER = 0. Other works also study similar questions in variants of
this model (e.g. [5, 19]).

There is a rapidly-growing body of work at the intersection of mechanism design and cryptocur-
rencies [1, 6, 10, 13, 17]. Some of these works further motiviate the consideration of proof-of-stake
cryptocurrencies [1], while others motivate the choice to restrict attention to Bitcoin’s proportional
reward scheme [6, 17], but there is otherwise little overlap between our works.

In practice, implementing a random beacon is a complex task [2, 3, 7] and is outside the scope
of this paper. As previously noted, our results can be viewed either as a reduction to designing
a randomness beacon (Theorem 6.1), or an impossibility result even under the assumption of a
randomness beacon (Theorem 3.4).
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Finally, it is worth noting that many existing proof-of-stake protocols fit the longest-chain
paradigm [8, 12, 16], while others are fundamentally different [11]. Protocols based on Byzantine
consensus are a growing alternative to the longest-chain paradigm, although both paradigms are
well-represented in theory and in practice. Byzantine consensus protocols are outside the scope of
our analysis.

1.4 Roadmap

Section 2 provides a very detailed description of our model, along with examples to help illustrate
its distinction from proof-of-work. Section 3 provides our nothing-at-stake selfish mining, and
Theorem 3.4. Sections 5 and 4 narrow the space of optimal strategies through a series of reductions.
Section 6 overviews Theorem 6.1. Various helpful examples and all omitted proofs are in the
appendix.

2 MODEL

A mining protocol is a Nash equilibrium if no miner wishes to unilaterally change their strategy
provided all miners are following the intended protocol. Thus it suffices to consider a two-player
game between Miner 1 and Miner 2. Think of Miner 2 as the “rest of the network”, which is
honestly executing the longest-chain protocol, and think of Miner 1 as the “potential attacker” that
optimizes his strategy provided Miner 2 is honest. Following [9, 15, 21] and subsequent works, the
game proceeds in discrete time steps (abstracting away the exponential rate at which blocks are
found) which we call rounds, and the rounds are indexed by N,. The state B of the game is a tuple
(TreE(B), U1(B), U2(B), T1(B), T»(B)) (each of these terms will be explained subsequently).

Rounds. During every round n, a single miner creates a new block, and we denote that miner
by yn € {1,2}. We denote by y := (yn)nen, the full ordered list of miners for each round. In
an execution of the game, each y, is drawn i.i.d., and equal to 1 with probability « < 1/2. We
let T; := {n | yn, = i} as the rounds during which Miner i creates a new block. T;(B) denotes
all blocks created by Miner i at state B. We abuse notation and might refer to n as the state at
round n (after block n is created and all actions are taken, but before round n + 1 starts). That is,
(TreE(n), U1 (n), U(n), T1(n), Tz(n)) is the state at round n.

Blocks. The second basic element is a block. Each block has a label in N. Blocks are totally ordered
by their labels and we say block s was created before block v if s < v. We overload notation and
also use n to refer to the block produced in round n. All blocks are initially unpublished, and can
later become published due to actions of the miners. Once a block n is published, it has a pointer to
exactly one predecessor n’ created earlier (that is n’ < n) and we write n — n’.

Block Tree. Because all published blocks have a pointer to an earlier block, this induces, at all
rounds, a block tree TREE. We will also refer to V, E as the nodes and edges in TReg = (V, E). Here,
the nodes are all blocks which have been published. Every node has exactly one outgoing (directed)
edge towards its predecessor. Before the game begins, the block tree contains only block 0, which
we refer to as the genesis block and not created by Miner 1 nor Miner 2. We let U; denote the set of
blocks which have been created by Miner i, but are not yet published. We refer to

By :=(({0},0),0,0,0,0) (2.1)

as the initial state before any blocks are created and the block tree contains only the genesis block.

Ancestor Blocks. We say that block a is an ancestor of block b € V if there is a directed path from
b to a (so b is an ancestor of itself). We write A(b) to denote the set of all ancestors of b (observe
that a block can never gain new ancestors, so this is well-defined without referencing the particular
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state S, or the round, etc.). We use h(b) := |A(b)| — 1 as short-hand for the height of block b (the
genesis block is the only block with height 0).

Longest Chain. The longest chain C := arg maxpey {h(b)} is the leaf in V with the longest path
to the genesis block, breaking ties in favor of the first block published, and then in favor of the
earliest-indexed block. We use H; to refer to the block in v € A(C) with height i and we refer to
A(C) as the longest path. We say a block q is forked (or orphaned) when g € A(C), but a new block
C’ becomes the longest chain and g ¢ A(C").

Successor blocks. We say block a is a successor of block b € V if a # b is in the unique path from
C to b. We write Succ(b) to denote the set of successors of b.

Actions. During round n, Miner i knows y, for all £ < n, and can take the following actions:

(1) Wait: wait for the next round, and do nothing.
(2) PublishSet(V’, E’): publish a set of blocks V’ with pointers E’. This adds V' to V, E’ to E, and
changes all blocks in V’ from unpublished to published. To be valid, it must be that:
e V' C U; (Miner i actually has blocks V” to publish).
e Forallv - v' € E',v e V', v’ € VUV’ (syntax check for edges in E’).
e Forallv — v’ € E’, v > v’ (pointers are to earlier blocks).
e Forall v € V', there is exactly one outgoing edge in E’ (every block has exactly one pointer).

Clarifying Order of Operations. At the beginning of round n, there is a block tree TREE =
TREE(n — 1), and each miner i has a set of unpublished blocks U; = U;(n — 1). Then:

(1) yn is drawn, and equal to 1 with probability «, and 2 with probability 1 — a. This updates
U,, = Uy, (n— 1)U {n}. For the other miner, Us_, := Us_,, (n - 1).

(2) Miner 2 takes an action. If that action is PublishSet(V’, E’), add the nodes V' and edges E’ to
TREE, and update U, := U, \ V.

(3) Miner 1 takes an action. If that action is PublishSet(V’, E’), add the nodes V' and edges E’ to
TREE, and update U; = U; \ V.

(4) At this point, round n is over, so TREE(n) := TREE, U;(n) := U;, etc.

Predecessor state. For state B, we define BHALF as the state prior to B before Miner 1 took
their most recent action and after Miner 2 took their most recent action. Similarly, we define
(TREE™AM (n), UPAF (n), U (n), CHAF(n)) as the subsequent state to (TREE(n—1), Uy (n—1), Up(n—
1), C(n — 1)) after block n was created, Miner 2 takes their action and before Miner 1 takes their
action.

Recall that Miner 2 acts first in every round, so the second tie-breaker in deciding what is the
longest chain is only used to distinguish between two blocks of Miner 1 published during the same
round, and will never be invoked in a “reasonable” strategy for Miner 1 (see Observation 4.3).%
Like Kiayias et al. [15], we use FRONTIER to refer to the honest strategy, which never forks and it
will be Miner 2’s strategy.

DEFINITION 2.1 (FRONTIER STRATEGY). During all rounds n, the FRONTIER strategy for miner i
does the following:

o Ify, # i, Wait.
o Ifyn =i, PublishSet({n}, {n — C}) (publishes the new block pointing to the longest chain).

DEFINITION 2.2 (REWARDS). For any two states B and B’, define Miner k’s reward as the integer-
valued function r* from state B to B’ as the difference between the number of blocks created by Miner

®Eyal and Sirer [9] also considers the case where Miner 1 wins a tie-breaking with probability . In principle, our model
can easily accommodate any f € [0, 1], but we focus on the case f = 0 since it is the most pessimistic for the attacker.
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k in the longest path at state B’ and B. That is,
r*(B,B') = |A(C(B")) N Te(B)| - |A(C(B)) N Tx(B)|. (2.2)

Payoffs. As in [9] and follow-up work, miners receive steady-state revenue proportional to their
fraction of blocks in the longest chain. Recall that in our notation, C(n) denotes the longest chain
after the conclusion of round n, A(C(n)) denotes the ancestors of C(n), and T; denotes all blocks
created by Miner i. Therefore, we define the payoff to Miner 1, when Miner i uses strategy 7; as:
|ACC(n) N T
h(C(n))

where the expectation is taken over y, recalling that each y,, is i.i.d. and equals to 1 with probability
a, and 2 with probability 1 — a.

We will study in particular the payoff of strategies 7; against FRONTIER. For simplicity of nota-
tion later, we will refer to U := U, (because FRONTIER has no unpublished blocks, so U is unnec-
essary), 7 := 71 (because 7, := FRONTIER). We will also list all states only as (TREg(n), U(n), Ty (n))
(because the other variables can be inferred from these, conditioned on m, := FRONTIER). We
further define:

Rev{”(m1) = Rev\” (7, FRONTIER), REv(m) := REV(r;, FRONTIER). (2.3)

A strategy n* is optimal if REV(7r*) = max,; REV(x). Thus FRONTIER is a Nash equilibrium if
FRONTIER is an optimal strategy for Miner 1.

Proof-of-Work vs. Proof-of-Stake. Our model, as stated, captures Proof-of-Stake protocols with
perfect/trusted external randomness. Importantly, this means that once a miner knows they created
a block during round n, they do not need to decide precisely the contents of that block until they
publish it (because there is no computational difficulty to produce a block). In Proof-of-Work and
the model of Eyal and Sirer [9], the miner of block n must decide in round n the contents of that
block (because the contents are locked in as soon as the miner succeeds in proving work). Crucially,
the miner must decides the ancestor of block n during time ¢ = n while in our model, the miner
decides the ancestor of block n any time ¢ > n before block n is published. This is the only difference
between the two models. Observe that any Proof-of-Work strategy is also valid in our model: this
would just be a strategy which chooses the pointer for block n in round n, and does not change it
when publishing later. Example 2.3 helps illustrate this distinction.

REvg,")(m, M) = , and REV(7y, 13) := B} h,?L i£f REvg,")(m, )|,

Fig. 1. Diagram representing the mining game
in Example 2.3. We use double circles for blocks
owned by Miner 1 and single circles for blocks
owned by Miner 2. The genesis block - i.e., block
0 - is not owned by neither Miner 1 nor Miner 2.
The time stamps near the solid edges represent
the round where the edge was published, and
the number inside the circle represents the round
when the block was created. The dashed edges
represent some edges that could have been cre-
ated (edges from any nodes in {4, 5} to any nodes
in {0,1, 2,3} are also feasible — i.e., any edge from
a later node to an earlier node is feasible).
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ExAMPLE 2.3 (PROOF-OF-WORK VS PROOF-OF-STAKE). Consider the following 6-round example
where Miner 1 creates blocks 1, 4 and 5, and Miner 2 create blocks 2, 3 and 6 as depicted in Figure 1.
If Miner 1 was following the Selfish Mining strategy [9] (Definition 3.1), they would decide to create
and withhold 1 — 0 (at time t = 1). Miner 2 would then publish 3 — 2 — 0. At this point, Miner 1
would never attempt to publish 1 — 0 and we say block 1 becomes permanently orphan. Next, Miner 1
creates and withhold4 — 3 (att = 4) and 5 — 4 (att = 5). When Miner 2 publishes 6 — 3, Miner 1
publishes5 — 4 — 3 (at t = 6), forking block 6 from the longest path. This nets 2 blocks in the longest
path for Miner 1, and 2 for Miner 2.

Here is a viable strategy in the Proof-of-Stake mining game: Miner 1 still withholds block 1 (but
does not yet decide where it will point), and it is still initially orphaned when Miner 2 publishes
blocks 2 and 3. When Miner 1 creates block 4, they withhold it (but does not yet decide where it will
point). When they create block 5, they decide to publish block 4 (deciding only now to point to block
1) and block 5 (deciding only now to point to block 4). This creates a new longest path. Miner 2 then
publishes 6 — 5. This nets 3 blocks in the longest path for Miner 1, and 1 for Miner 2.

Importantly, observe that in the proof-of-work model, it would be exceptionally risky for Miner 1 to
pre-emptively decide to point block 4 to block 1 at time t = 4 without knowing that they will create
block 5 (because maybe Miner 2 creates block 5, and then they would be an additional block behind).
But in the proof-of-stake model, Miner 1 can wait to gather more information before deciding where to
point. In particular, if they happened to instead create block 6 but not 5, they could have published
6 — 4 — 3. In proof-of-stake, Miner 1 has the flexibility to make this decision later. In proof-of-work,
they have to decide immediately whether to have block 4 pointing to 1 or 3.

Reminder of Notation. Table ?? in Appendix ?? is a reminder of our notation.

2.1 Payoff as Fractional of Blocks in the Longest Path

Eyal and Sirer [9] motivates the use of the fraction of blocks as a miner’s utility due to the difficulty
adjustment in Bitcoin’s PoW protocol: Bitcoin adjusts PoW difficult so that, on expectation, miners
create one block every 10 minutes and the creator of each block receives new Bitcoins as block
reward. Thus a miner maximizes their expected number of blocks in the longest path up to time T
by maximizing their expected fraction of blocks in the longest path up to time T.

For PoS, a random beacon outputs a random string at a fixed rate, independent of the blockchain
state.” Although difficult adjustment is absent in proof-of-stake, the probability of a miner creating
the next block is proportional to a, their fraction of coins in the system. Although « is approximately
constant over short time horizons, over long time horizons, ¢ will depend on the fraction of block
rewards Miner 1 collects. Thus, in the long-term, Miner 1 will maximize block rewards by maximizing
their fraction of blocks in the longest path.

In Figure 2, we simulate the fraction of coins owned by Miner 1 overtime when Miner 1 follows
FRONTIER or the Nothing-at-Stake Selfish Mining (NSM in Definition 3.3) and Miner 2 follows
FRONTIER. From the simulation, we observe NSM allows Miner 1 to add a higher fraction of blocks
in the longest path when compared with FRONTIER as long as Miner 1 owns more than 32.8% of
the coins. We confirm this empirical result in Theorem 3.4. This allows Miner 1 to eventually own
an arbitrarily large fraction of the coins. Thus the security of a longest chain proof-of-stake protocol
depend on a formal guarantees that no strategy is more profitable than FRONTIER when a profit
maximizing miner is maximizing their fraction of blocks in the longest path. We accomplish this
task in Theorem 6.1.

"The National Institute of Standards and Technology (NIST) random beacon outputs 512 bits every 60 seconds [14].
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. Dynamic Stake Fig. 2. Simulation of Miner 1’s dynamic
—— FRONTIER (a = 0.328) stake over one million rounds when Miner
NSM (a = 0.333) 1 either follow FRONTIER or the Nothing-
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0.0 . T :

the coins, but NSM is not profitable when
time x10° Miner 1 owns less than 32.77%, as we find
in Theorem 3.4.

2.2 Capitulating a State

For some states of the game, Miner 1 might follow a strategy that will never fork some blocks from
the block tree. Then, it is safe to say that Miner 1 deletes those blocks from the state (or treats the
one with highest height as the new genesis block) and consider a trimmed version of the state
variable. As example, define By ; where Miner 2 creates and publishes block 1. Thus

Bo1 == (({0,1},{1 — 0}),0,0). (2.4)

If Miner 1 never forks block 1, then it is safe to say that in the view of Miner 1 state By ; is equivalent
to state By (after treating block 1 as the new genesis block). Then, we say Miner 1 capitulates from
state By 1 to By. Since Miner 1 can induce the mining game to return to prior states, it is convenient to
think of Miner 1 optimizing an underlying Markov Decision Process. Next, we provide a definition
and formalize the payoff of the MDP in Appendix ??.

Markov Decision Process. A Markov Decision Process (MDP) for the mining game where Miner
1 follows strategy « and Miner 2 follows FRONTIER is a sequence (X;);>o where X; is a random
variable representing the state by the end of round ¢ and before any actions have been take in round
t + 1. Unless otherwise stated, we initialize Xy = By (Equation 2.1). The game transitions from state
X, to X;41 once the next block is created followed by Miner 2 taking their action followed by Miner
1 taking their action.

For a mining game (X;); o that starts at state X, = By, let

7 := min{t > 1 : State X, is equivalent to state B in the view of Miner 1} (2.5)

be the first time step Miner 1 capitulates to state By. Similary, let 7’ be the second time step Miner
1 capitulates to state By. Then, the sequences of rewards

rk(XOs Xl), rk(XlaXZ)s ceey rk(XT—lsX‘[) rk(XT,XT+l)a rk(XT+lsX‘[+2)a LS aXT’—lsX‘[')

are independent and identically distributed for k = 1, 2. One fundamental question is to understand
if B[r] < oo when Miner 1 is following an optimal strategy (that is, does Miner 1 capitulate to state
By at some point with probability 1?). In the proof-of-stake setting, this is not obviously true, and
Example 2.3 gives some intuition why: while a proof-of-work Selfish Miner capitulates to state By
at round 3 (allowing Miner 2 to keep block 2 in the longest path), a Proof-of-Stake miner might
prefer to wait for an opportunity to use block 1, and it is not a priori clear at what point it is safe to
conclude that any optimal strategy would have given up on block 1 by now.
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2.3 Recurrence

DEFINITION 2.4 (RECURRENCE). Consider a mining game starting at state X, = By where Miner 1
follows strategy 7. Let E be the event Miner 1 capitulates to state By at some time t < co. We say 7 is
o Transient if Pr [E] < 1.
e Recurrent if Pr[E] = 1.
o Null recurrent if it is recurrent and E [r] = co.
e Positive recurrent if it is recurrent and E [7] < oo.

Observe Miner 1 never forks the longest chain when using FRONTIER. Thus Miner 1 capitulates
to state By at every time step and 7 = 1.

OBSERVATION 2.5. FRONTIER is positive recurrent.

For Proof-of-Work mining games, Kiayias et al. [15] and Sapirshtein et al. [21] assumes Miner 1
will always follow a positive recurrent strategy. To motivate this technical assumption, they assume
Miner 1 will never fork a block published by himself, which is sensible because Miner 1 can only
mine on a single branch of the blockchain. This is not the case for Proof-of-Stake blockchains, and
it is not a priori clear that Miner 1 will never fork a block that they created themselves. To see why
this may occur, consider the following example.

First, define By o, for k > 0, as the state where Miner 1 creates and withhold blocks {1, 2,...,k} =
[k]. Thus

By,o == (({0}, 0), [k], [K]). (2.6)
Then define B; ; as the state after B; o where Miner 2 creates block 2 and publishes 2 — 0. Thus
By1 = (({0,2}, {2 — 0}), {1}, {1}). (2.7)

ExaMPpLE 2.6. Consider a game at state By 1. After round 2, Miner 2 creates blocks 3,4, .. .,9, 10,12
and publishes 12 — 10 — 9... — 4 — 3 — 2 and Miner 1 creates and withholds blocks
11,13,14,...,24. At time step 13, Miner 1 publishes 13 — 11 — 10 (this follows the classical
selfish mining strategy: it gives up on block 1, but publishes 11 — 10 and 13 — 11 to fork block 12).
This is reasonable, because it is unlikely that Miner 1 can add block 1 to longest path and Miner 1 risks
losing blocks 11 and 13 if Miner 2 creates and publishes block 14. However, in the event Miner 1 is lucky
and creates blocks 14, 15, . . ., 24, Miner 1 can fork all blocks from the current longest path (including
his own blocks 11 and 13), resulting in a new longest path with blocks 1,14, 15, ..., 24 (consisting
entirely of Miner 1’s blocks). Indeed, upon creating block 14, Miner 1 need not immediately decide
whether to make its predecessor 13, or whether to wait and see if they get an extremely lucky run to
override the entire chain.

Note that we are not claiming that this is the optimal decision for Miner 1 from this state, or even
that an optimal strategy may ever find itself in this state® However, this example helps demonstrate
that a significantly richer space of strategies are potentially optimal in our model, as compared to
proof-of-work.

This example shows that we must be careful to not exclude optimal strategies when claiming
any restrictions on strategies considered by Miner 1. We will eventually address this by introducing
the notion of a checkpoint, Section 5.1, and prove that there are some conditions that allow us to
claim that any optimal strategy for Miner 1 will not fork a checkpoint (however, we do not prove
that Miner 1 will never consider forking their own blocks).

8For example, if this were the optimal decision from this state, it would likely be because « is small, and Miner 1 should just
take whatever opportunities they have to publish blocks. However, if « is small, that may mean it is better for Miner 1 to
just be honest, and they would never find themselves in this situation. The point is that some quantitative comparison is
necessary in order to determine whether the optimal strategy for Miner 1 would ever take this action.
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3 ENHANCING SELFISH MINING WITH NOTHING-AT-STAKE

In this section, we show explicitly an strategy that outperforms FRONTIER even when a = 0.3277.
From Sapirshtein et al. [21], FRONTIER is optimal for Proof-of-Work mining games when Miner 1
has mining power & < 0.329 (i.e., @™V ~ 0.329). Thus our strategy witnesses that Proof-of-Stake
mining games admits strategies that are more profitable than any strategy in a Proof-of-Work
mining game - that is, will establish S < "W,

Our strategy will be a subtle modification from the Selfish Mining strategy of Eyal and Sirer [9]
that leverages the Nothing-at-Stake vulnerability in Proof-of-Stake blockchains.’

Let’s first define the states of interest for our strategy. Recall By is the state where the block
tree contains only the genesis block; By g is the state after Miner 1 creates and withholds block 1
(Equation 2.6); B, g is the state after Miner 1 creates and withholds blocks 1 and 2 (Equation 2.6);
By, is the state after Miner 2 publishes 1 — 0 (Equation 2.4); By ; is the state after By ¢ if Miner 2
publishes 2 — 0 (Equation 2.7). Additionally, define the following states.

e B is the state after By ; if Miner 2 creates block 3 and publishes 3 — 2:

By :=(({0,2,3},{3 > 2 > 0}), {1}, {1}). (3.1)
e By, is the state after By 3 if Miner 1 creates and withhold block 4:
By = (({0,2,3},{3 - 2 — 0}),{1,4}, {1,4}). (3.2)

These and other relevant states are depicted in Figure 3.

DEFINITION 3.1 (SELFISH MINING [9]). Let (X;);:>0 be a mining game starting at state X, = B,.
Miner 1 uses the Selfish Mining (SM) strategy, Figure 4, which takes the following actions:
o Wait at states By and By,.
o At state By 1, capitulate to state By.
9The nothing-at-stake vulnerability refers to the fact the algorithm for which a miner can verify a block validity is

computationally efficient. Thus miners have no cost to choosing the block content (including its ancestor) at the moment
the block is about to be published .
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o If X, = By,; and Miner 1 creates block 3, publishes 3 — 1 — 0, then capitulates to state By.

o If X, = By,; and Miner 2 creates block 3 and publishes 3 — 2, then Miner 1 capitulates to state
By.

o If Xy = By, Miner 1 plays Wait until the first time step T > 3 where |T2(X;)| = |Ti(X;)| — 1.
At time step T, Miner 1 publishes all of U(X;) = T1(X;) pointing to 0 and forking T»(X,), then
capitulates to state By.

Fig. 4. Markov chain representing the Selfish Mining strategy (left) and the Nothing-at-Stake Selfish Mining
strategy (right).

THEOREM 3.2 (EQUATION 8 IN [9]). For the selfish mining strategy

2042
a“(4a® — 9a + 4)
Rev(SM) = ad—2a2—a+1"

Moreover, REV(SM) > a = REV(FRONTIER) for a > 1/3.

Our Nothing-at-Stake Selfish Mining is similar, with one key difference: In Selfish Mining, Miner 1
capitulates immediately after a loss (specifically, if Miner 2 creates block 3 and publishes 3 — 2 from
state B 1, Miner 1 immediately accepts that block 1 is now permanently orphaned and capitulates
to By). Nothing-at-Stake Selfish Mining instead remembers this orphaned block, and considers
bringing it back later. Importantly, Nothing-at-Stake Selfish Mining can wait to see whether it finds
many blocks (in which case it will try to publish the block 1) or not (in which case it will let block
1 remain orphaned) before deciding what to do. Below is a formal description.

DEFINITION 3.3 (NOTHING-AT-STAKE SELFISH MINING). Let (X;);»0 be a mining game starting at
state Xo = By. Miner 1 uses the Nothing-at-Stake Selfish Mining (NSM) strategy , right of Figure 4,
which takes the following actions:

e Wait at states By, By, and By 2.

o At state By, 1, capitulate to state By.

e IfX; = By,1 and Miner 1 creates block 3, publishes 3 — 1 — 0, then capitulates to state By.

e IfX; = By 2 and Miner 2 creates block 4 and publishes 4 — 3, then Miner 1 capitulates to state
Bo.

o If X, = By 5 and Miner 1 creates block 5, publishes 5 — 4 — 1 — 0, then Miner 1 capitulates to
state By.

e IfX; = By 2 and Miner 2 creates block 5 and publishes 5 — 3, Miner 1 capitulates to state By ;.
That is, Miner 1 allows Miner 2 to walk away with blocks 2 and 3 and forgets about unpublished
block 1, but remembers unpublished block 4 in the hope of forking block 5 in the future. The
resulting state is equivalent to By ; since we can relabel block 3 as 0, 4 as 1 and 5 as 2.

o If X, = By, Miner 1 plays Wait until the first time step T > 3 where |To(X;)| = |Ti(X;)| — 1. At
time step T, Miner 1 publishes all of U(X;) = Ty(X;) pointing to 0 forking blocks T>(X;), then
Miner 1 capitulates to state By.
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Let’s quickly understand why this strategy is not possible in the proof-of-work model. Zero in
on Miner 1’s behavior at By ;. If Miner 1 creates block 5, Miner 1 publishes blocks 1,4, 5, and in
particular has their block 4 point to block 1. However, if Miner 2 creates block 5, Miner 1 capitulates
to state By ;. From here, if Miner 1 creates block 6, they immediately publish 4 and 6, having block 4
point to block 3.

That is, while using this strategy, Miner 1 does not decide where block 4 will point upon mining
it, but only upon publishing it. In a Proof-of-Work blockchain, Miner 1 must commit to the ancestor
of block 4 at time step 4, so this strategy cannot be used. Intuitively, a nothing-at-stake selfish miner
remembers an orphaned block to see if they might get lucky in the future. Importantly, in the PoS
model they can still wait to decide whether to try and bring this block into the longest chain even
after finding their next block (but before deciding where to publish it). This extra power enables not
only a slight improvement over standard selfish mining but also a strategy the is strictly better
than any other valid strategies for the Proof-of-Work mining game.

THEOREM 3.4. For the nothing-at-stake selfish mining strategy,

REVINSM) a?(3a” — 130 + 18a° — 4a* — 12a3 + 150 — 12a + 4)
E = .
3a° — 17a8 + 4007 — 50a% + 3605 — 14a* + a3 + a2 — 2 + 1

Moreover REV(NSM) > a for a > 0.3277.

Recall Sapirshtein et al. [21] estimates a”°" ~ 0.329. Thus Theorem 3.4 implies
al*® <0.3277 < 0.329 ~ oW,

Interestingly, Nothing-at-Stake Selfish Mining is not better than Selfish Mining for all «. In
Figure 6, by plotting the difference REv(NSM) — REV(SM) as a function of «, we observe Selfish
Mining is better than Nothing-at-Stake Selfish Mining for o > 0.44.

To get intuition why this happens, consider how SM and NSM differs in the event Miner 1 creates
blocks 1, 4, 5 and Miner 2 creates blocks 2 and 3. By the end of the 5-th round, SM is at state Bz o
while NSM just moved from state By ; to By. The main intuition is that being at state B, ¢ is a highly
profitable for Miner 1 when « is large. In the proof of Theorem 3.2, Appendix ??, we show Miner 1
creates, on expectation, =% blocks from the moment the game reaches state B o until the moment
the game first returns to state By. Moreover, SM has a bigger probability of being at state B, ¢ than
NSM because SM capitulates to state By once it reaches state By ; but NSM does not.

4 TRIMMING THE STRATEGY SPACE

Analyzing the revenue of all possible strategies for Miner 1 is quite unwieldy. Therefore, our
first goal is to reduce the space of possible strategies to ones which are simpler to analyze while
guaranteeing that this simpler space still contains an optimal strategy. We accomplish this through a
series of reductions. This section provides a series of three “elementary” reductions which build
upon each other. That is, the conclusions in each section should not be surprising, although it is
challenging to rigorously prove this (examples throughout Appendix ?? are used to highlight the
challenges). Sections 4.1 through 4.3 provide our three reductions. Section 4.4 provides the main
theorem statement of this section: there is an optimal trimmed strategy. Many proofs are omitted,
and can be found in Appendix ??.

4.1 Step 1: Timeserving

We first show that, w.l.o.g., every strategy only publishes blocks which will be ancestors of the
longest chain at the end of that round.
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DEFINITION 4.1 (TIMESERVING). The action PublishSet(V’, E’) is Timeserving if all blocks in V'
immediately enter the longest chain (formally: if the action is taken during round n, then V' C A(C(n))).
A strategy is Timeserving if when played against FRONTIER, with probability 1, all PublishSex(V',E")
actions it takes are Timeserving.

It is easy to see that FRONTIER is itself Timeserving: it publishes at most a single block at a time,
and that block is the new unique longest chain. We first argue that there exists an optimal strategy
against FRONTIER which is also Timeserving.

THEOREM 4.2 (TIMESERVING). For any strategy m, there is a strategy 7 that is Timeserving, takes a
valid action at every step, and satisfies REvg,")(ﬁ) = REV(Y")(JT) forally andn € N.

We now state three basic properties of Timeserving strategies.

OBSERVATION 4.3. If 7« is Timeserving, then

(i) Whenever r publishes blocks, it publishes a single path. Formally, whenever r takes action
PublishSet(V',E’) in round n, with V' = {b1,...,br} (b; < bj+1 for alli), then E’ contains an
edgebiy1 — b; foralli € [k — 1], and an edge by — b for someb € V.

(ii) There are never two leaves of the same height. Formally, for all leaves q # § € V, h(q) # h(q).

(iii) Whenever t forks, it publishes at least two blocks. Formally, whenever m takes the action
PublishSet(V', E") which removes the old longest chain from the longest path, then |V'| > 2.

Observation 4.3 gives us some nice structure about Timeserving strategies (and Theorem 4.2
asserts that it is w.l.o.g. to study such strategies). In particular, we only need to consider strategies
which publish a single path at a time. Formally, we may w.l.o.g. replace the action PublishSet(V’, E)
with the action:

DEFINITION 4.4 (PUBLISHPATH). Taking action PublishPath(V',u) withu € V and V' C U is
equivalent to taking action PublishSet(V',E"), where E' contains an edge from the minimum element
of V' tou, and an edge from v to the largest element of V' strictly less than v, for all otherv € V’.
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4.2 Step 2: Orderly

Section 4.1 provides structure on when we may assume blocks are announced, but it does not yet
provide structure on which blocks are announced. Specifically, for all we know right now it could
still be that when a strategy chooses to take action PublishPath(V’, u), and |V’| = k, the precise k
blocks it chooses to publish matter (e.g. in state B, ¢ it could choose to publish 2 — 0 versus 1 — 0).
Our next reduction shows that it is without loss to consider only strategies which are Orderly, and
always publish the earliest legal blocks. Intuitively, this gives the strategy more flexibility later
on. For simplicity of notation, we introduce the terms min®{S} C S to refer to the min{k, |S|}
smallest elements in S and max®¥){S} C S to refer to the min{k, |S|} largest elements in S.

DEFINITION 4.5 (ORDERLY). The action PublishPath(V', u) is Orderly if V' = minV' V(U N (u, 0)).
That is, an action is Orderly if it publishes the smallest |V’ | blocks it could have possibly published on top
of u. A strategy is Orderly if when played against FRONTIER, with probability 1, all PublishPath(-, -)
actions it takes are Orderly.

THEOREM 4.6 (ORDERLY). Let 7 be any Timeserving strategy. Then there is a valid, Timeserving,
Orderly strategy 7 that satisfies REV§,n)(7~'[) = REvg,n)(ﬂ) forally andn e N.

We conclude this section by noting that, after restricting attention to Orderly strategies, we can
further replace the action PublishPath(V’, u) with the action:

DEFINITION 4.7 (PuBLISH). Taking action Publish(k,u) with k € N, andu € V is equivalent to
taking the action PublishPath(min® (U N (u, ©)), u).

4.3 Step 3: Longest Chain Mining

We now have structure on when blocks are published, and which blocks are published, but not yet
on where those blocks are published. Specifically, an orphaned chain is a path in TREE that used to
be part of the longest path A(C) but was overtaken by another path. Intuitively, a chain can only be
orphaned by Miner 1 and if Miner 1 is playing according to an optimal strategy, publishing blocks
which build on top of orphaned chains should be sub-optimal. We define a strategy as Longest
Chain Mining if it never publishes on top of a block in an orphaned chain.

DEFINITION 4.8 (LONGEST CHAIN MINING). Action Publish(k,u) is Longest Chain Mining (LCM)
ifu € A(C) is a block in the longest path. That is, an action is LCM if it builds on top of some block
within the longest path (not necessarily the leaf). A strategy is LCM if, with probability 1, every Publish
action it takes against FRONTIER is LCM.

Previous work on Proof-of-Work mining games [15, 21] assume all strategies are LCM. For
Proof-of-Stake mining games, Theorem 4.9 proves that it is w.l.o.g. to assume an LCM strategy.

THEOREM 4.9 (LCM). Let 7 be any Timeserving, Orderly strategy. Then there is a & that is Time-

serving, Orderly, LCM, takes a valid action at every step, and satisfies REV(Y")(J%) > REVg,n)(JT) for ally
andn € N.

4.4 Step 4: Trimmed

With Theorems 4.2, 4.6 and 4.9, we can immediately conclude that there exists an optimal strategy
satisfying several structural properties. We wrap up by showing one final property, and will show
that there exists an optimal strategy which is Trimmed.

DEFINITION 4.10 (TRIMMED ACTION). Action Publish(k,v) is Trimmed ifv € A(C) and whenever
v is not the longest chain (that is, v # C), and u is the unique node in A(C) with an edge to v, then u
was created by Miner 2 (that is, u € T).
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Put another way, every Publish(k, v) either builds on top of the longest chain (in which case it is
vacuously Trimmed), or kicks out the successors of v. In the latter case, an action is Trimmed if
and only if the minimum successor of v was created by Miner 2.

DEFINITION 4.11 (TRIMMED STRATEGY). A strategy is Trimmed if every action it takes is either
Wait or Trimmed.

We now conclude our main theorem of this section.

THEOREM 4.12 (TRIMMING). For all strategies r, there is a Trimmed strategy 7 that take valid
actions in every step, and REvg,")(fr) > REVg,n)(ﬂ.') forally andn € N.

5 TRIMMING THE STATE SPACE

So far, we have greatly simplified strategies which we need to consider. However, we still have not
even established that there exists an optimal strategy which is recurrent. That is, for all we know so
far, the optimal strategy might need to store not only the entire longest chain, but also all blocks
which have ever been published, and all unpublished blocks which they ever created. The goal in
this section is to establish that an optimal strategy exists which is recurrent: it will eventually (with
probability 1) reach a “checkpoint” which the strategy treats as a new genesis block that will never
be overridden.

5.1 Checkpoints and Weak Recurrence

We iteratively define a sequence of blocks Py, Py, . .. in the longest path A(C) to be checkpoints as
follows.

DEFINITION 5.1 (CHECKPOINTS). Based on the current state, checkpoints are iteratively defined as
follows.

o The first checkpoint, Py, is the genesis block.
o IfP;_1 is undefined, then P; is undefined as well.
e IfP;_, is defined, then v is a potential i*" checkpoint if
-0V > Pi—1~
- v e AC).
— Among blocks that Miner 1 created between P;_ and v (including v, not including P;_, ), more
are in the longest chain than unpublished. That is, |A(C) N (Pi—1,v] N T1| = |U; N (P;—1,0]|.
e If there are no potential it checkpoints, then P; is undefined.
e Else, then P; is defined to be the minimum potential i*" checkpoint.

Note that each P; is again a random variable, meaning that a priori P; might change over time,
including from undefined to defined. For example, P;(n) would denote the i*" checkpoint, as defined
by the state after the conclusion of the n*” round (we will later prove that there exists an optimal
strategy which never changes or undefines P; once it is defined. But this will be a result, and not a
definition).

ExaMPLE 5.2. Consider the state in Figure 7 where blocks 0, 1, 5, and 7 are the checkpoints. By
definition, block 0 is the base-case and is always a checkpoint. Block 1 is a checkpoint because Miner
1 has no unpublished blocks in the interval (0, 1]. Block 2 is unpublished and thus not a checkpoint.
Block 3 is not a checkpoint because Miner 1 has one unpublished block in the interval (1,3] and zero
published block in the path from 3 — 1 (not counting block 1). From a similar reasoning, blocks 4
and 6 are not checkpoints. Block 5 is a checkpoint because Miner 1 has one unpublished block in the
interval (1, 5] and one block in the path 5 — 4 — 3 — 1 (not counting block 1). Block 7 is a checkpoint
because Miner 1 has no unpublished blocks in the interval (5,7].
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The main result of this section is stated below, and claims that there exists an optimal strategy
which treats checkpoints like the genesis block.

DEFINITION 5.3 (CHECKPOINT RECURRENT). A strategy n is Checkpoint Recurrent if when 7 is
played against FRONTIER:

e Foralli € N, if P; changes from undefined to defined, P; never changes again (in particular, this
implies that once P; is defined, it remains in A(C) forever).
o Immediately when P; becomes defined, neither player has any unpublished blocks > P;.

When bullet one is satisfied, checkpoints are never overridden. Given that bullet one holds, bullet
two implies that immediately when P; is defined, it is essentially a genesis block (because bullet
one holds, no unpublished blocks < P; can ever enter the longest chain. If bullet two also holds,
then there are no unpublished blocks > P;, so there are no relevant unpublished blocks, and P; is in
the longest chain forever, just like the genesis block in round 0). This implies that when optimizing
over Checkpoint Recurrent strategies, it suffices to consider only strategies that reset its state space
whenever a new checkpoint is defined. That is, whenever a new checkpoint is defined Miner 1
capitulates to state By.

THEOREM 5.4 (WEAK-RECURRENCE). There exists an optimal strategy which is checkpoint recurrent.

The weak-recurrence theorem provides a useful tool to reduce the state space of optimal strategies;
however, it does not say how often (if ever) the block tree reaches a new checkpoint. Fortunately,
each new checkpoint give us important information about the payoff of a strategic miner: if the block
tree never reaches a checkpoint, then at all times Miner 1 has at least half of their blocks unpublished.
Next, we check such strategies are not better than FRONTIER before diving into the proof of the
weak-recurrence theorem.

PROPOSITION 5.5. If 7 is checkpoint recurrent and P; is never defined, then REV(rr) < REV(FRONTIER).

As a first step toward proving upper bounds in the revenue, we will require a simply but useful
fact about rate of growth of the block tree.

LEMMA 5.6 (MINIMUM GROWTH RATE). For any mining game starting at state Xy = By,
hC(X,
lim inf M 21

n—oo n

COROLLARY 5.7. For any optimal strategy , REV(FRONTIER) = a < REV(r) < 1.

—a, with probability 1. (5.1)

Both Lemma 5.6 and Corollary 5.7 will be useful to prove Proposition 5.5. We need to understand
one property of checkpoints, and then we can complete the proof. Intuitively, Proposition 5.8 and
Corollary 5.9 just apply the definition of checkpoints to relate the number of blocks that Miner 1
has unpublished vs. published in the longest path.

PrOPOSITION 5.8. For allv € A(C),
(i) If v is a checkpoint, then for all checkpoints P; > v, |[A(C) N (v, P;] N Ti| = |U N (v, P;)|.
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(ii) If v is not a checkpoint and P; = max{P; : P; < v}, then |A(C) N (P;,v] N T;| < |U N (P;,v]|.

(iii) If v is not a checkpoint, then for all checkpoints P; > v, |A(C) N (v, P;i| N Ty| > |U N (v, P;]].

COROLLARY 5.9. Suppose v € A(C) is not a checkpoint and let P; be the highest checkpoint below
v. Then Miner 1 publishes less than half of all blocks they created from time P; + 1 to v. That is,
|AC) N (Pv] T < FRgeell,

Proor. Bullet (ii), Proposition 5.8, implies
[A(C) N (Pi, 0] N Th| + |U N (Pi,v]| > 2|A(C) N (P, 0] N Tyl

Suppose for contradiction |A(C) N (P;,v] N Ty| > w Then, the number of unpublished
blocks plus blocks in the longest path would be strictly bigger than the number of blocks Miner 1
created, a contradiction. O

PRrRoOOF OF PROPOSITION 5.5. From the strong law of large numbers, Corollary 5.9 and Lemma 5.6,

IT10(0, n]| ; IT20(0, n]|
msup PCKD T oo o WS 25" a2
noeo JACKG)I 7~ e’ ACOWL ™ pimng, | JACCLIL ™ (1-a)

where the last inequality uses the fact ¢ < 1/2. Intuitively, if Miner 1 never reaches a checkpoint,
then they are publishing at most an/2 blocks in expectation by round »n (and clearly at most an/2
of these can be in the longest path). But Lemma 5.6 asserts that there are at least (1 — )n blocks in
expectation in the longest path by round n. Therefore, the fraction produced by Miner 1 cannot be
too high (and in particular, honesty would have been better in expectation). O

We prove Theorem 5.4 in two steps, Section 5.2 and Section 5.3.

5.2 Step 1: Checkpoint Preserving

The first step is to show the existence of an optimal strategy that never forks a checkpoint. For that,
we will give an explicitly procedure f to transform any strategy x that could fork checkpoints into
another strategy f(rr) that does not fork checkpoints satisfying Rev(f(r)) > Rev(r).

DEFINITION 5.10 (FINALITY). A block g € A(C) reaches finality with respect to strategy r if, with
probability 1, & takes no action that removes q from longest path.

DEFINITION 5.11 (CHECKPOINT PRESERVING). A strategy m is checkpoint preserving if whenever
a new checkpoint P; is defined, P; reaches finality with respect to 7.

THEOREM 5.12. For every strategy r, there is a trimmed, checkpoint preserving strategy f () with

RevV(f (7)) = ReV(7).

5.3 Step 2: Opportunistic

We have shown the existence of an optimal strategy that would never fork the longest chain C
when it becomes a checkpoint. However, to be checkpoint recurrent, we must also show Miner 1
has no unpublished blocks bigger than C when the longest chain is a checkpoint. The converse can
only happen when Miner 1 is about to take action PublishPath(Q, v) and max Q will reach finality
with respect to Miner 1’s strategy, but Miner 1 would leave an unpublished block ¢ > max Q. The
intuition is that Miner 1 can wait instead of publishing Q pointing to v in current round. If Miner 1
creates the next block, Miner 1 can publish Q pointing to v as before. If Miner 2 creates the next
block, Miner 1 can still take action PublishPath(Q U {q}, v) adding Q U {q} to the longest path.

DEFINITION 5.13 (OPPORTUNISTIC). Let i be a strategy and let B be a state. Action PublishPath(Q, v)
is opportunistic with respect to B and 7 if
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e PublishPath(Q, v) is a valid action at state B.
o If  takes action PublishPath(Q,v) where max Q reaches finality with respect to & (Defini-
tion 5.10), then Q = U(B) N (v, ).
Strategy 7 is opportunistic if at all states B, & waits or takes an opportunistic action with respect to B
and .

THEOREM 5.14. For any strategy =, there is a valid, trimmed, checkpoint preserving and opportunistic
strategy f(m) with REV(f(rr)) = REV(rr).

Proor oF THEOREM 5.4. Theorem 5.14 directly implies the weak-recurrence theorem since a
checkpoint preserving and opportunistic strategy is also checkpoint recurrent. O

5.4 Step 3: Strong Recurrence

So far, we have shown that there exist an optimal strategy that is checkpoint recurrent. That is,
once we reach a state X; where C(X;) is a checkpoint, Miner 1 capitulates to state By. Next, we
will aim for a stronger result.

THEOREM 5.15 (STRONG RECURRENCE). There exists an optimal checkpoint recurrent and positive
recurrent strategy.

For a proof sketch, observe the Weak Recurrence Theorem implies there exists an optimal strategy
7 that is checkpoint recurrent. We will assume s is not positive-recurrent (i.e., the expected time
E [r] to define a new checkpoints is infinite) and derive that REv(r) < @ = REV(FRONTIER). The
case where Miner 1 never defines checkpoint P; - i.e., 7 = oo with probability 1 in Proposition 5.5 -
give us intuition why the claim should hold to the more general case where E [7] = c0. Once we
proof REv(r) < REV(FRONTIER), we just observe FRONTIER is checkpoint and positive recurrent.
Thus there exists an optimal checkpoint and positive recurrent strategy.

6 NASH EQUILIBRIUM

We briefly give intuition behind our second main result, which leverages Theorem 5.15 to lower
bound a5

THEOREM 6.1. For a < 0.308, FRONTIER is an optimal strategy for Miner 1 when Miner 2 follows
FRONTIER.

We defer the proof to Appendix ??. The main idea behind the proof is to show that Nothing-at-
Stake Selfish Mining is almost optimal when a < 1/3. The following proof-sketch highlights the
main insights of the proof.

Selfish Mining is optimal when Miner 2 creates the first block (when a < 1/3). We know that there
is an optimal checkpoint recurrent strategy, Theorem 5.15. Therefore, it is optimal for Miner 1 to
capitulate to state By if Miner 2 creates and publishes 1 — 0 (which is exactly what selfish mining
does).

Selfish Mining is optimal after Miner 1 creates and withholds blocks 1 and 2. Starting from state B o,

selfish mining will wait until the first time step r when the lead decrease to a single block to fork

all of Miner 2 blocks. We show that waiting until time 7 is indeed optimal for any value of @ (which

is not surprising). Less obvious is why Miner 1 must publishes all his blocks at time 7 when they

still have a lead of a single block. Indeed we should not expect this to be optimal for all values of

a. If Miner 1 waits at time 7 and creates the next block, they will again have a lead of two blocks
¢4

and can resume to “selfish mine”. Here, we shown that Miner 1 creates —%— blocks on expectation
1-2a

from the time they have a lead of two blocks to the moment the lead decreases to a single block.
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This quantity can be arbitrarily large but it is at most 1 when @ < 1/3 so it is a risky action for
Miner 1. That is because if (instead) Miner 2 creates next block, there is a tie (Miner 1 does not have
enough blocks to fork the longest chain) and we can show that the probability Miner 1 will ever
publish any blocks created before time  is at most 2. Formally, we will prove Miner 1 maximizes
rewards by waiting until time 7 and immediately publishing all unpublished blocks (which is what
selfish mining does).

There is little window to improve Selfish Mining when Miner 1 creates and withhold block 1 and Miner
2 publishes 2 — 0. Winning the tie-breaking at state By ; is another source of revenue for Miner 1.
In fact, the only improvement that Nothing-at-Stake Selfish Mining provides over standard Selfish
Mining is increasing the probability that Miner 1 wins the tie-breaking between blocks 1 and 2.
From a similar argument from previous bullet, we can show the probability of adding block 1 to the
longest path is at most 12-. Next, we observe Miner 1 has no more advantage of being the creator
of the block at height £ > 2 at state By ; than being the creator of the block at height £ — 1 at state
By. We formalize this intuition by showing that, by ignoring blocks 1 and 2, any action taken on a
state reachable from B; ; can be converted into an action for an state reachable from By. The only
advantage state By ; provides over state B is that Miner 1 has a probability (of at most ;%) of
adding block 1 to the longest path.

Wrapping up. From the discussion above, state By ; is the only state where we could possible search
for a better strategy than Nothing-at-Stake Selfish Mining when a < 1/3, but there is little window
to improve Miner 1’s action at state By ;. As a result, we will obtain FRONTIER is optimal when
a < 0.308 as desired.

7 CONCLUSION

We study miner incentives in longest-chain proof-of-stake protocols with perfect external ran-
domness. We show both that such protocols are strictly more vulnerable to manipulation than
those based on proof-of-work (Theorem 3.4), but also that it is a Nash equilibrium for all miners
to follow the longest-chain protocol as long as no miner has more than ~ 0.308 of the total stake
(Theorem 6.1). Our main technical results characterize potentially optimal strategies in a complex,
infinite-state MDP (Theorem 5.15). Our work motivates several natural open problems:

e Theorem 5.15, combined with the analysis in Theorem 6.1, provides strong structure on
optimal strategies. It is therefore conceivable that a simulation-based approach with MDP
solvers (as in [21]) could estimate ™ to high precision.

e Our Theorem 6.1 provides a reduction from incentive-compatible longest-chain proof-of-
stake protocols to designing a randomness beacon and a slashing protocol. Clearly, it is
important for future work to construct these primitives, although these are well-known and
ambitious open problems. In our setting, it is further important to understand what are the
minimal assumptions on a randomness beacon or slashing protocol necessary to leverage
Theorem 6.1.
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