
Proof-of-Stake Mining Games with Perfect Randomness

MATHEUS V. X. FERREIRA, Princeton University, USA

S. MATTHEW WEINBERG∗, Princeton University, USA

Proof-of-Stake blockchains based on a longest-chain consensus protocol are an attractive energy-friendly

alternative to the Proof-of-Work paradigm. However, formal barriers to łgetting the incentives rightž were

recently discovered, driven by the desire to use the blockchain itself as a source of pseudorandomness [4].

We consider instead a longest-chain Proof-of-Stake protocol with perfect, trusted, external randomness

(e.g. a randomness beacon). We produce two main results.

First, we show that a strategic miner can strictly outperform an honest miner with just 32.8% of the total

stake. Note that a miner of this size cannot outperform an honest miner in the Proof-of-Work model [21].

This establishes that even with access to a perfect randomness beacon, incentives in Proof-of-Work and

Proof-of-Stake longest-chain protocols are fundamentally different.

Second, we prove that a strategic miner cannot outperform an honest miner with 30.8% of the total stake.

This means that, while not quite as secure as the Proof-of-Work regime, desirable incentive properties of

Proof-of-Work longest-chain protocols can be approximately recovered via Proof-of-Stake with a perfect

randomness beacon.

The space of possible strategies in a Proof-of-Stake mining game is significantly richer than in a Proof-

of-Work game. Our main technical contribution is a characterization of potentially optimal strategies for a

strategic miner, and in particular a proof that the corresponding infinite-state MDP admits an optimal strategy

that is positive recurrent.

CCS Concepts: • Theory of computation → Algorithmic game theory; • Information systems →

Digital cash; • Security and privacy;

Additional Key Words and Phrases: cryptocurrency; proof-of-stake blockchains; energy-efficiency; random

beacons; Nash equilibrium

ACM Reference Format:

Matheus V. X. Ferreira and S. MatthewWeinberg. 2021. Proof-of-Stake Mining Games with Perfect Randomness.

In Proceedings of the 22nd ACM Conference on Economics and Computation (EC ’21), July 18ś23, 2021, Budapest,

Hungary. ACM, New York, NY, USA, 21 pages. https://doi.org/10.1145/3465456.3467636

1 INTRODUCTION

Blockchains have been a resounding success as a disruptive technology. However, the most suc-
cessful implementations (including Bitcoin [18] and Ethereum [22]) are built on a concept called
proof-of-work. That is, participants in the protocol are selected to update the blockchain propor-
tionally to their computational power. The consensus protocols underlying Bitcoin and Ethereum
(and many other proof-of-work cryptocurrencies) have been secure in practice, and robust against
strategic manipulation. There is even a theoretical foundation supporting this latter property:
honestly following the Bitcoin protocol is a Nash equilibrium in a stylized model when no miner

∗Supported by NSF CAREER Award CCF-1942497.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EC ’21, July 18ś23, 2021, Budapest, Hungary

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8554-1/21/07. . . $15.00

https://doi.org/10.1145/3465456.3467636

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

433

controls more than α
PoW ≈ 0.329 of the total computational power in the network [15, 21] (we

will use the notation α
model to denote the supremum α such that whenever no miner is selected

to create the next block with probability bigger than α , it is a Nash equilibrium for all miners to
follow the longest-chain protocol in the referenced model).1

However, one major drawback of proof-of-work blockchains is their massive energy consumption.
For example, Bitcoin currently consumes more electricity than all but 26 countries annually.2 The
need for specialized hardware and low-cost electricity/cooling/etc. also leads to concentration of
the mining process among the few entities who have access to the necessary technology [1]. One
popular emerging alternative is a paradigm termed proof-of-stake, where participants are selected
proportionally to their stake in the currency itself.

Proof-of-stake cryptocurrencies do not suffer from this drawback, but raise new technical chal-
lenges, especially from the incentives perspective. Indeed, Brown-Cohen et al. [4] identifies several
formal barriers to designing incentive compatible longest-chain proof-of-stake cryptocurrencies
(that is, proof-of-stake protocols łlike Bitcoinž). Their work highlights one key barrier: in existing
proof-of-stake protocols, the blockchain itself serves as a source of pseudorandomness, whereas in
proof-of-work protocols the pseudorandom selection of participants is completely independent of the

blockchain. Specifically, they pose a stylized model with No External Randomness and show that it
is never a Nash equilibrium for all miners to honestly follow the longest-chain protocol no matter
how small they are (that is, αPoSNER

= 0).
In this work, we investigate the incentive compatibility of longest-chain proof-of-stake protocols

with access to perfect external randomness, completely independent of the blockchain, often termed
a randomness beacon [20] (for brevity of notation, we’ll refer to this model simply as PoS). We
provide two main results, which give a fairly complete picture:

• We establish that αPoS ≤ 0.327 < α
PoW. That is, even with access to perfect external randomness,

longest-chain proof-of-stake protocols admit richer strategic manipulation than their proof-of-

work counterparts. We do this by designing a new strategic deviation that we term nothing-
at-stake selfish mining, and establish that it is strictly more profitable than honest behavior
for any miner with ⪆ 0.327 of the total stake (Theorem 3.4).

• We prove that αPoS ⪆ 0.308 (Theorem 6.1). In particular, this means that access to a ran-
domness beacon fundamentally changes longest-chain proof of stake protocols: without
one αPoSNER

= 0, and any miner can profit by deviating. With a randomness beacon, the
incentives are (quantitatively) almost as good as proof-of-work.

We now provide a high-level overview of our model (a significantly more detailed description of
the model appears in Section 2), a brief overview of the key technical highlights, and an overview
of related work.

1.1 Brief Overview of Model

Seminal work of Eyal and Sirer poses an elegant abstraction of the Bitcoin protocol (that we call
the PoW model) [9]. Specifically, the game proceeds in infinitely many discrete rounds. In each
round, a single miner is chosen proportionally to their computational power, and creates a block.
Immediately upon creating a block, the miner must choose its contents (including its predecessor
in the blockchain). The strategic decisions a miner makes are: a) which predecessor to select
when they create a block, and b) when to publish that block to the other miners. The fact that
predecessors must be chosen upon creation of the block captures that the contents of a block created
via proof-of-work are fixed upon creation.

1Kiayias et al. [15] proves that α PoW ⪆ 0.308, and [21] estimates α PoW to high precision as ≈ 0.329.
2Source: https://cbeci.org/. Accessed 3/25/2021.

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

434

A key concept in Bitcoin is the longest-chain protocol. Specifically, the longest chain is the
published block with the most ancestors.3 Each miner’s reward is equal to the fraction of blocks
they produce in the longest chain (taking a limit as rounds go to ∞). A miner honestly follows the
longest-chain protocol if: a) they always select the (current) longest chain as the predecessor of any
created node, and b) they publish all created blocks during the round in which it’s created. Eyal
and Sirer [9] establishes that αPoW ≤ 1/3 (previously, it was believed that αPoW

= 1/2 as proposed
in [18]), and follow-up work further nailed down α

PoW ≈ 0.329 [21].
Brown-Cohen et al. [4] modify this model to capture proof-of-stake with no external randomness.

In their model, a random coin is selected in each round independently for each block. That is, for
each round, and each block B, an independent random miner is selected who is eligible to create
a block with B as a predecessor with probability equals to their fraction of all the coins in the
system. This captures that the protocol must use the chain itself as a source of pseudorandomness.
Their work establishes that αPoSNER

= 0: it is never a Nash equilibrium to honestly follow the
longest-chain protocol in their model. This result is entirely driven by the fact that the protocol
has no external randomness, and therefore, miners can make non-trivial predictions about future
pseudorandomness.

Our model lies between these two, and captures proof-of-stake with perfect external randomness.
Specifically, in each round a single coin is chosen to create a block. Thus a single miner is chose
to create a block (just as in PoW) with probability proportional to their fraction of the coins in
the system. The strategic decisions are now better phrased as: a) when to publish a created block,
and b) which predecessor to select when publishing. Our model captures the following: perfect
external randomness allows the protocol to select a random miner independently of all previous
selected miners and all previously published blocks. The distinction to proof-of-work is that it is
now computationally tractable to set the contents of the block, including its predecessor, at any
point before it is published.
Note that our model does stipulate that the winner of round t can publish a single block with

timestamp t . In a proof-of-stake protocol, there is no technical barrier to creating and publishing any
number of blocks using the same timestamp (indeed, this is precisely because it is computationally
efficient to produce blocks in proof-of-stake). However, it will be immediately obvious to the rest of
the network that a miner has deviated from the longest-chain protocol in this specific way, and it
will be immediately obvious which miner cheated.4 A common solution to strongly disincentivize
such behavior is a slashing protocol: any miner can include pointers to two blocks created using
the same timestamp and the cheating miner will be steeply fined. While we will not rigorously
model the incentives induced by a slashing protocol, our model implicitly assumes a sufficiently
strong disincentive for miners to publish multiple blocks (and capture this in our model by simply
hard-coding that miners must publish at most a single block with each timestamp).

To get intuition for the types of protocols our stylized model aims to capture, below is a sample
(simplified) protocol to have in mind:5

3An ancestor is any block that can be reached by following a path of predecessors. Observe that because each block has a

single predecessor, there is a single path of predecessors out of any block.
4Observe that deviations from the longest-chain protocol that select strategic predecessors or publish at strategic times

cannot be definitively attributed to a cheating miner, as these deviations have an innocent explanation: latency. That is,

perhaps the reason a miner chose the wrong predecessor is because news of the true longest chain had not yet reached

them. Alternatively, perhaps the miner tried to publish their block during the correct round, but it only propagated through

the network several rounds later due. Like all prior work, we do not rigorously model latency, and stick to the elegant model

proposed in [9].
5We are not claiming that this protocol is secure in a rich model, nor will we reason formally about properties of the

proposed slashing mechanism. We provide this just to give intuition for why our stylized model captures the salient features

of a longest-chain protocol with trusted external randomness.

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

435

• In order to be eligible to mine, a coin must be frozen for (large)T rounds, along with a deposit
equal to (large) L times its value (that is, the coin and its deposit must be owned by the same
miner for T rounds in a row).

• After being used for mining, a coin and its deposit must be frozen for T rounds.
• During each round t , the randomness beacon outputs a random number. This is mapped to a
random eligible coin, and its owner is the selected miner at round t . The selected miner can
create blocks with timestamp t .

• If a miner ever publishes distinct blocks with the same timestamp, any other miner can
include pointers to those two blocks in a block of their own. This will cause the deviant miner
to lose their entire deposit (if desired, a 1 − ε fraction of it can be destroyed, and an ε fraction
can be awarded to the altruistic miner).

Importantly, we are claiming neither that randomness beacons exist (either in theory or in practice),
nor that slashing protocols that perfectly disincentivize detectable cheating (without affecting
any other incentives) exist. Theorem 3.4 shows that even if these primitives existed, a longest-
chain proof-of-stake protocol assuming them would still be (slightly) more vulnerable to strategic
manipulation than a proof-of-work protocol. On the other hand, Theorem 6.1 establishes in some
sense a reduction from proof-of-stake protocols that nearly match the incentive guarantees of
proof-of-work protocols to the design of randomness beacons and slashing protocols.

1.2 Brief Technical Overview

Theorem 3.4 (αPoS ⪅ 0.327) follows by designing our nothing-at-stake selfish mining strategy, and
analyzing its expected payoff. While the insights to design our strategy are novel, the analysis is
similar to those used in prior work to analyze the payoff of the resulting Markov Decision Process
(MDP). We defer to Section 3 a description of our strategy and intuition for why it succeeds.

The proof of Theorem 6.1 is the bulk of our technical work. To start, we observe that our model
admits an infinite-state MDP (just as in [21]). However, the space of strategies available to a
miner in our setting is significantly richer than in the PoW model. We provide several examples
demonstrating why counterintuitive behavior (such as orphaning one’s own blocks) could a priori
be part of an optimal strategy. So our main technical results characterize possible optimal strategies
for this infinite-state MDP, culminating in a strong enough characterization to lower bound the
optimal payoff for Theorem 6.1 and concluding αPoS ≥ 0.308.

1.3 Related Work

The most related work is already overviewed above: Eyal and Sirer [9] provide the PoW model,
develop the selfish mining attack, and prove that αPoW ≤ 1/3. Sapirshtein et al. [21] estimates
α
PoW ≈ 0.329 by solving the associated MDP to high precision, and Kiayias et al. [15] prove that

α
PoW ⪆ 0.308. Brown-Cohen et al. [4] study a related proof-of-stake model with no external

randomness, and show that αPoSNER
= 0. Other works also study similar questions in variants of

this model (e.g. [5, 19]).
There is a rapidly-growing body of work at the intersection of mechanism design and cryptocur-

rencies [1, 6, 10, 13, 17]. Some of these works further motiviate the consideration of proof-of-stake
cryptocurrencies [1], while others motivate the choice to restrict attention to Bitcoin’s proportional
reward scheme [6, 17], but there is otherwise little overlap between our works.
In practice, implementing a random beacon is a complex task [2, 3, 7] and is outside the scope

of this paper. As previously noted, our results can be viewed either as a reduction to designing
a randomness beacon (Theorem 6.1), or an impossibility result even under the assumption of a
randomness beacon (Theorem 3.4).

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

436

Finally, it is worth noting that many existing proof-of-stake protocols fit the longest-chain
paradigm [8, 12, 16], while others are fundamentally different [11]. Protocols based on Byzantine
consensus are a growing alternative to the longest-chain paradigm, although both paradigms are
well-represented in theory and in practice. Byzantine consensus protocols are outside the scope of
our analysis.

1.4 Roadmap

Section 2 provides a very detailed description of our model, along with examples to help illustrate
its distinction from proof-of-work. Section 3 provides our nothing-at-stake selfish mining, and
Theorem 3.4. Sections 5 and 4 narrow the space of optimal strategies through a series of reductions.
Section 6 overviews Theorem 6.1. Various helpful examples and all omitted proofs are in the
appendix.

2 MODEL

A mining protocol is a Nash equilibrium if no miner wishes to unilaterally change their strategy
provided all miners are following the intended protocol. Thus it suffices to consider a two-player
game between Miner 1 and Miner 2. Think of Miner 2 as the łrest of the networkž, which is
honestly executing the longest-chain protocol, and think of Miner 1 as the łpotential attackerž that
optimizes his strategy provided Miner 2 is honest. Following [9, 15, 21] and subsequent works, the
game proceeds in discrete time steps (abstracting away the exponential rate at which blocks are
found) which we call rounds, and the rounds are indexed by N+. The state B of the game is a tuple
(Tree(B),U1(B),U2(B),T1(B),T2(B)) (each of these terms will be explained subsequently).

Rounds. During every round n, a single miner creates a new block, and we denote that miner
by γn ∈ {1, 2}. We denote by γ := ⟨γn⟩n∈N+ the full ordered list of miners for each round. In
an execution of the game, each γn is drawn i.i.d., and equal to 1 with probability α < 1/2. We
let Ti := {n | γn = i} as the rounds during which Miner i creates a new block. Ti (B) denotes
all blocks created by Miner i at state B. We abuse notation and might refer to n as the state at
round n (after block n is created and all actions are taken, but before round n + 1 starts). That is,
(Tree(n),U1(n),U2(n),T1(n),T2(n)) is the state at round n.

Blocks. The second basic element is a block. Each block has a label in N. Blocks are totally ordered
by their labels and we say block s was created before block v if s < v . We overload notation and
also use n to refer to the block produced in round n. All blocks are initially unpublished, and can
later become published due to actions of the miners. Once a block n is published, it has a pointer to
exactly one predecessor n′ created earlier (that is n′ < n) and we write n → n′.

Block Tree. Because all published blocks have a pointer to an earlier block, this induces, at all
rounds, a block tree Tree. We will also refer to V,E as the nodes and edges in Tree = (V,E). Here,
the nodes are all blocks which have been published. Every node has exactly one outgoing (directed)
edge towards its predecessor. Before the game begins, the block tree contains only block 0, which
we refer to as the genesis block and not created by Miner 1 nor Miner 2. We letUi denote the set of
blocks which have been created by Miner i , but are not yet published. We refer to

B0 := (({0}, ∅), ∅, ∅, ∅, ∅) (2.1)

as the initial state before any blocks are created and the block tree contains only the genesis block.

Ancestor Blocks.We say that block a is an ancestor of block b ∈ V if there is a directed path from
b to a (so b is an ancestor of itself). We write A(b) to denote the set of all ancestors of b (observe
that a block can never gain new ancestors, so this is well-defined without referencing the particular

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

437

state S , or the round, etc.). We use h(b) := |A(b)| − 1 as short-hand for the height of block b (the
genesis block is the only block with height 0).

Longest Chain. The longest chain C := argmaxb ∈V {h(b)} is the leaf in V with the longest path
to the genesis block, breaking ties in favor of the first block published, and then in favor of the
earliest-indexed block. We use Hi to refer to the block in v ∈ A(C) with height i and we refer to
A(C) as the longest path. We say a block q is forked (or orphaned) when q ∈ A(C), but a new block
C′ becomes the longest chain and q < A(C′).

Successor blocks. We say block a is a successor of block b ∈ V if a , b is in the unique path from
C to b. We write Succ(b) to denote the set of successors of b.

Actions. During round n, Miner i knows γℓ for all ℓ ≤ n, and can take the following actions:

(1) Wait: wait for the next round, and do nothing.
(2) PublishSet(V ′,E ′): publish a set of blocksV ′ with pointers E ′. This addsV ′ toV , E ′ to E, and

changes all blocks in V ′ from unpublished to published. To be valid, it must be that:
• V ′ ⊆ Ui (Miner i actually has blocks V ′ to publish).
• For all v → v

′ ∈ E ′, v ∈ V ′, v ′ ∈ V ∪V ′ (syntax check for edges in E ′).
• For all v → v

′ ∈ E ′, v > v ′ (pointers are to earlier blocks).
• For allv ∈ V ′, there is exactly one outgoing edge in E ′ (every block has exactly one pointer).

Clarifying Order of Operations. At the beginning of round n, there is a block tree Tree =

Tree(n − 1), and each miner i has a set of unpublished blocksUi = Ui (n − 1). Then:

(1) γn is drawn, and equal to 1 with probability α , and 2 with probability 1 − α . This updates
Uγn := Uγn (n − 1) ∪ {n}. For the other miner,U3−γn := U3−γn (n − 1).

(2) Miner 2 takes an action. If that action is PublishSet(V ′,E ′), add the nodes V ′ and edges E ′ to
Tree, and updateU2 := U2 \V

′.
(3) Miner 1 takes an action. If that action is PublishSet(V ′,E ′), add the nodes V ′ and edges E ′ to

Tree, and updateU1 := U1 \V
′.

(4) At this point, round n is over, so Tree(n) := Tree,Ui (n) := Ui , etc.

Predecessor state. For state B, we define BHalf as the state prior to B before Miner 1 took
their most recent action and after Miner 2 took their most recent action. Similarly, we define
(TreeHalf(n),UHalf

1 (n),UHalf
2 (n),CHalf(n)) as the subsequent state to (Tree(n−1),U1(n−1),U2(n−

1),C(n − 1)) after block n was created, Miner 2 takes their action and before Miner 1 takes their
action.
Recall that Miner 2 acts first in every round, so the second tie-breaker in deciding what is the

longest chain is only used to distinguish between two blocks of Miner 1 published during the same
round, and will never be invoked in a łreasonablež strategy for Miner 1 (see Observation 4.3).6

Like Kiayias et al. [15], we use FRONTIER to refer to the honest strategy, which never forks and it
will be Miner 2’s strategy.

Definition 2.1 (Frontier Strategy). During all rounds n, the FRONTIER strategy for miner i

does the following:

• If γn , i , Wait.

• If γn = i , PublishSet({n}, {n → C}) (publishes the new block pointing to the longest chain).

Definition 2.2 (Rewards). For any two states B and B′, define Miner k’s reward as the integer-

valued function rk from state B to B′ as the difference between the number of blocks created by Miner

6Eyal and Sirer [9] also considers the case where Miner 1 wins a tie-breaking with probability β . In principle, our model

can easily accommodate any β ∈ [0, 1], but we focus on the case β = 0 since it is the most pessimistic for the attacker.

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

438

Example 2.3 (Proof-of-Work vs Proof-of-Stake). Consider the following 6-round example

where Miner 1 creates blocks 1, 4 and 5, and Miner 2 create blocks 2, 3 and 6 as depicted in Figure 1.

If Miner 1 was following the Selfish Mining strategy [9] (Definition 3.1), they would decide to create

and withhold 1 → 0 (at time t = 1). Miner 2 would then publish 3 → 2 → 0. At this point, Miner 1

would never attempt to publish 1 → 0 and we say block 1 becomes permanently orphan. Next, Miner 1

creates and withhold 4 → 3 (at t = 4) and 5 → 4 (at t = 5). When Miner 2 publishes 6 → 3, Miner 1

publishes 5 → 4 → 3 (at t = 6), forking block 6 from the longest path. This nets 2 blocks in the longest

path for Miner 1, and 2 for Miner 2.

Here is a viable strategy in the Proof-of-Stake mining game: Miner 1 still withholds block 1 (but
does not yet decide where it will point), and it is still initially orphaned when Miner 2 publishes

blocks 2 and 3. When Miner 1 creates block 4, they withhold it (but does not yet decide where it will
point). When they create block 5, they decide to publish block 4 (deciding only now to point to block
1) and block 5 (deciding only now to point to block 4). This creates a new longest path. Miner 2 then

publishes 6 → 5. This nets 3 blocks in the longest path for Miner 1, and 1 for Miner 2.

Importantly, observe that in the proof-of-work model, it would be exceptionally risky for Miner 1 to

pre-emptively decide to point block 4 to block 1 at time t = 4 without knowing that they will create

block 5 (because maybe Miner 2 creates block 5, and then they would be an additional block behind).

But in the proof-of-stake model, Miner 1 can wait to gather more information before deciding where to

point. In particular, if they happened to instead create block 6 but not 5, they could have published

6 → 4 → 3. In proof-of-stake, Miner 1 has the flexibility to make this decision later. In proof-of-work,

they have to decide immediately whether to have block 4 pointing to 1 or 3.

Reminder of Notation. Table ?? in Appendix ?? is a reminder of our notation.

2.1 Payoff as Fractional of Blocks in the Longest Path

Eyal and Sirer [9] motivates the use of the fraction of blocks as a miner’s utility due to the difficulty
adjustment in Bitcoin’s PoW protocol: Bitcoin adjusts PoW difficult so that, on expectation, miners
create one block every 10 minutes and the creator of each block receives new Bitcoins as block
reward. Thus a miner maximizes their expected number of blocks in the longest path up to time T
by maximizing their expected fraction of blocks in the longest path up to time T .

For PoS, a random beacon outputs a random string at a fixed rate, independent of the blockchain
state.7 Although difficult adjustment is absent in proof-of-stake, the probability of a miner creating
the next block is proportional to α , their fraction of coins in the system. Although α is approximately
constant over short time horizons, over long time horizons, α will depend on the fraction of block
rewardsMiner 1 collects. Thus, in the long-term, Miner 1 will maximize block rewards bymaximizing
their fraction of blocks in the longest path.

In Figure 2, we simulate the fraction of coins owned by Miner 1 overtime when Miner 1 follows
FRONTIER or the Nothing-at-Stake Selfish Mining (NSM in Definition 3.3) and Miner 2 follows
FRONTIER. From the simulation, we observe NSM allows Miner 1 to add a higher fraction of blocks
in the longest path when compared with FRONTIER as long as Miner 1 owns more than 32.8% of
the coins. We confirm this empirical result in Theorem 3.4. This allows Miner 1 to eventually own

an arbitrarily large fraction of the coins. Thus the security of a longest chain proof-of-stake protocol
depend on a formal guarantees that no strategy is more profitable than FRONTIER when a profit
maximizing miner is maximizing their fraction of blocks in the longest path. We accomplish this
task in Theorem 6.1.

7The National Institute of Standards and Technology (NIST) random beacon outputs 512 bits every 60 seconds [14].

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

440

2.3 Recurrence

Definition 2.4 (Recurrence). Consider a mining game starting at state X0 = B0 where Miner 1

follows strategy π . Let E be the event Miner 1 capitulates to state B0 at some time τ < ∞. We say π is

• Transient if Pr [E] < 1.

• Recurrent if Pr [E] = 1.

• Null recurrent if it is recurrent and E [τ] = ∞.

• Positive recurrent if it is recurrent and E [τ] < ∞.

Observe Miner 1 never forks the longest chain when using FRONTIER. Thus Miner 1 capitulates
to state B0 at every time step and τ = 1.

Observation 2.5. FRONTIER is positive recurrent.

For Proof-of-Work mining games, Kiayias et al. [15] and Sapirshtein et al. [21] assumes Miner 1
will always follow a positive recurrent strategy. To motivate this technical assumption, they assume
Miner 1 will never fork a block published by himself, which is sensible because Miner 1 can only
mine on a single branch of the blockchain. This is not the case for Proof-of-Stake blockchains, and
it is not a priori clear that Miner 1 will never fork a block that they created themselves. To see why
this may occur, consider the following example.

First, define Bk,0, for k ≥ 0, as the state where Miner 1 creates and withhold blocks {1, 2, . . . ,k} =
[k]. Thus

Bk,0 := (({0}, ∅), [k], [k]). (2.6)

Then define B1,1 as the state after B1,0 where Miner 2 creates block 2 and publishes 2 → 0. Thus

B1,1 := (({0, 2}, {2 → 0}), {1}, {1}). (2.7)

Example 2.6. Consider a game at state B1,1. After round 2, Miner 2 creates blocks 3, 4, . . . , 9, 10, 12

and publishes 12 → 10 → 9 . . . → 4 → 3 → 2 and Miner 1 creates and withholds blocks

11, 13, 14, . . . , 24. At time step 13, Miner 1 publishes 13 → 11 → 10 (this follows the classical

selfish mining strategy: it gives up on block 1, but publishes 11 → 10 and 13 → 11 to fork block 12).

This is reasonable, because it is unlikely that Miner 1 can add block 1 to longest path and Miner 1 risks

losing blocks 11 and 13 if Miner 2 creates and publishes block 14. However, in the event Miner 1 is lucky

and creates blocks 14, 15, . . . , 24, Miner 1 can fork all blocks from the current longest path (including

his own blocks 11 and 13), resulting in a new longest path with blocks 1, 14, 15, . . . , 24 (consisting

entirely of Miner 1’s blocks). Indeed, upon creating block 14, Miner 1 need not immediately decide

whether to make its predecessor 13, or whether to wait and see if they get an extremely lucky run to

override the entire chain.

Note that we are not claiming that this is the optimal decision for Miner 1 from this state, or even

that an optimal strategy may ever find itself in this state.8 However, this example helps demonstrate

that a significantly richer space of strategies are potentially optimal in our model, as compared to

proof-of-work.

This example shows that we must be careful to not exclude optimal strategies when claiming
any restrictions on strategies considered by Miner 1. We will eventually address this by introducing
the notion of a checkpoint, Section 5.1, and prove that there are some conditions that allow us to
claim that any optimal strategy for Miner 1 will not fork a checkpoint (however, we do not prove
that Miner 1 will never consider forking their own blocks).

8For example, if this were the optimal decision from this state, it would likely be because α is small, and Miner 1 should just

take whatever opportunities they have to publish blocks. However, if α is small, that may mean it is better for Miner 1 to

just be honest, and they would never find themselves in this situation. The point is that some quantitative comparison is

necessary in order to determine whether the optimal strategy for Miner 1 would ever take this action.

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

442

Let’s quickly understand why this strategy is not possible in the proof-of-work model. Zero in
on Miner 1’s behavior at B2,2. If Miner 1 creates block 5, Miner 1 publishes blocks 1, 4, 5, and in
particular has their block 4 point to block 1. However, if Miner 2 creates block 5, Miner 1 capitulates
to state B1,1. From here, if Miner 1 creates block 6, they immediately publish 4 and 6, having block 4
point to block 3.

That is, while using this strategy, Miner 1 does not decide where block 4 will point upon mining
it, but only upon publishing it. In a Proof-of-Work blockchain, Miner 1 must commit to the ancestor
of block 4 at time step 4, so this strategy cannot be used. Intuitively, a nothing-at-stake selfish miner
remembers an orphaned block to see if they might get lucky in the future. Importantly, in the PoS
model they can still wait to decide whether to try and bring this block into the longest chain even

after finding their next block (but before deciding where to publish it). This extra power enables not
only a slight improvement over standard selfish mining but also a strategy the is strictly better
than any other valid strategies for the Proof-of-Work mining game.

Theorem 3.4. For the nothing-at-stake selfish mining strategy,

Rev(NSM) =
α
2(3α7 − 13α6

+ 18α5 − 4α4 − 12α3
+ 15α2 − 12α + 4)

3α9 − 17α8
+ 40α7 − 50α6

+ 36α5 − 14α4
+ α3

+ α2 − 2α + 1
.

Moreover Rev(NSM) > α for α > 0.3277.

Recall Sapirshtein et al. [21] estimates αPoW ≈ 0.329. Thus Theorem 3.4 implies

α
PoS
< 0.3277 < 0.329 ≈ α

PoW
.

Interestingly, Nothing-at-Stake Selfish Mining is not better than Selfish Mining for all α . In
Figure 6, by plotting the difference Rev(NSM) − Rev(SM) as a function of α , we observe Selfish
Mining is better than Nothing-at-Stake Selfish Mining for α > 0.44.

To get intuition why this happens, consider how SM and NSM differs in the event Miner 1 creates
blocks 1, 4, 5 and Miner 2 creates blocks 2 and 3. By the end of the 5-th round, SM is at state B2,0

while NSM just moved from state B2,2 to B0. The main intuition is that being at state B2,0 is a highly
profitable for Miner 1 when α is large. In the proof of Theorem 3.2, Appendix ??, we show Miner 1
creates, on expectation, α

1−2α
blocks from the moment the game reaches state B2,0 until the moment

the game first returns to state B0. Moreover, SM has a bigger probability of being at state B2,0 than
NSM because SM capitulates to state B0 once it reaches state B1,2 but NSM does not.

4 TRIMMING THE STRATEGY SPACE

Analyzing the revenue of all possible strategies for Miner 1 is quite unwieldy. Therefore, our
first goal is to reduce the space of possible strategies to ones which are simpler to analyze while
guaranteeing that this simpler space still contains an optimal strategy. We accomplish this through a
series of reductions. This section provides a series of three łelementaryž reductions which build
upon each other. That is, the conclusions in each section should not be surprising, although it is
challenging to rigorously prove this (examples throughout Appendix ?? are used to highlight the
challenges). Sections 4.1 through 4.3 provide our three reductions. Section 4.4 provides the main
theorem statement of this section: there is an optimal trimmed strategy. Many proofs are omitted,
and can be found in Appendix ??.

4.1 Step 1: Timeserving

We first show that, w.l.o.g., every strategy only publishes blocks which will be ancestors of the
longest chain at the end of that round.

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

445

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

R
e

v
(

)

Frontier vs NSM

Nothing-at-Stake Selfish Mining

Frontier

Fig. 5. Payoff comparison between FRONTIER and

Nothing-at-Stake Selfish Mining.

0 0.1 0.2 0.3 0.4 0.5

-5

0

5

R
e

v
(N

S
M

)
-

R
e

v
(S

M
)

10
-3 SM vs NSM

Fig. 6. Payoff comparison between Selfish Mining

and Nothing-at-Stake Selfish Mining. Observe NSM

is slightly better than SM for α close to 1/3, but SM

outperforms NSM for α > 0.44.

Definition 4.1 (Timeserving). The action PublishSet(V ′,E ′) is Timeserving if all blocks in V ′

immediately enter the longest chain (formally: if the action is taken during roundn, thenV ′ ⊆ A(C(n))).

A strategy is Timeserving if when played against FRONTIER, with probability 1, all PublishSet(V ′,E ′)

actions it takes are Timeserving.

It is easy to see that FRONTIER is itself Timeserving: it publishes at most a single block at a time,
and that block is the new unique longest chain. We first argue that there exists an optimal strategy
against FRONTIER which is also Timeserving.

Theorem 4.2 (Timeserving). For any strategy π , there is a strategy π̃ that is Timeserving, takes a

valid action at every step, and satisfies Rev
(n)
γ (π̃) = Rev

(n)
γ (π) for all γ and n ∈ N.

We now state three basic properties of Timeserving strategies.

Observation 4.3. If π is Timeserving, then

(i) Whenever π publishes blocks, it publishes a single path. Formally, whenever π takes action

PublishSet(V ′,E ′) in round n, with V ′
= {b1, . . . ,bk } (bi < bi+1 for all i), then E ′ contains an

edge bi+1 → bi for all i ∈ [k − 1], and an edge b1 → b for some b ∈ V .

(ii) There are never two leaves of the same height. Formally, for all leaves q , q̃ ∈ V , h(q) , h(q̃).

(iii) Whenever π forks, it publishes at least two blocks. Formally, whenever π takes the action

PublishSet(V ′,E ′) which removes the old longest chain from the longest path, then |V ′ | ≥ 2.

Observation 4.3 gives us some nice structure about Timeserving strategies (and Theorem 4.2
asserts that it is w.l.o.g. to study such strategies). In particular, we only need to consider strategies
which publish a single path at a time. Formally, we may w.l.o.g. replace the action PublishSet(V ′,E ′)

with the action:

Definition 4.4 (PublishPath). Taking action PublishPath(V ′,u) with u ∈ V and V ′ ⊆ U is

equivalent to taking action PublishSet(V ′,E ′), where E ′ contains an edge from the minimum element

of V ′ to u, and an edge from v to the largest element of V ′ strictly less than v , for all other v ∈ V ′.

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

446

4.2 Step 2: Orderly

Section 4.1 provides structure on when we may assume blocks are announced, but it does not yet
provide structure on which blocks are announced. Specifically, for all we know right now it could
still be that when a strategy chooses to take action PublishPath(V ′,u), and |V ′ | = k , the precise k
blocks it chooses to publish matter (e.g. in state B2,0 it could choose to publish 2 → 0 versus 1 → 0).
Our next reduction shows that it is without loss to consider only strategies which are Orderly, and
always publish the earliest legal blocks. Intuitively, this gives the strategy more flexibility later

on. For simplicity of notation, we introduce the terms min(k){S} ⊆ S to refer to the min{k, |S |}

smallest elements in S and max(k){S} ⊆ S to refer to the min{k, |S |} largest elements in S .

Definition 4.5 (Orderly). The action PublishPath(V ′,u) is Orderly ifV ′
= min(|V

′ |)(U∩(u,∞)).

That is, an action is Orderly if it publishes the smallest |V ′ | blocks it could have possibly published on top

of u. A strategy is Orderly if when played against FRONTIER, with probability 1, all PublishPath(·, ·)

actions it takes are Orderly.

Theorem 4.6 (Orderly). Let π be any Timeserving strategy. Then there is a valid, Timeserving,

Orderly strategy π̃ that satisfies Rev
(n)
γ (π̃) = Rev

(n)
γ (π) for all γ and n ∈ N.

We conclude this section by noting that, after restricting attention to Orderly strategies, we can
further replace the action PublishPath(V ′,u) with the action:

Definition 4.7 (Publish). Taking action Publish(k,u) with k ∈ N+ and u ∈ V is equivalent to

taking the action PublishPath(min(k)(U ∩ (u,∞)),u).

4.3 Step 3: Longest Chain Mining

We now have structure on when blocks are published, and which blocks are published, but not yet
on where those blocks are published. Specifically, an orphaned chain is a path in Tree that used to
be part of the longest path A(C) but was overtaken by another path. Intuitively, a chain can only be
orphaned by Miner 1 and if Miner 1 is playing according to an optimal strategy, publishing blocks
which build on top of orphaned chains should be sub-optimal. We define a strategy as Longest
Chain Mining if it never publishes on top of a block in an orphaned chain.

Definition 4.8 (Longest Chain Mining). Action Publish(k,u) is Longest Chain Mining (LCM)

if u ∈ A(C) is a block in the longest path. That is, an action is LCM if it builds on top of some block

within the longest path (not necessarily the leaf). A strategy is LCM if, with probability 1, every Publish

action it takes against FRONTIER is LCM.

Previous work on Proof-of-Work mining games [15, 21] assume all strategies are LCM. For
Proof-of-Stake mining games, Theorem 4.9 proves that it is w.l.o.g. to assume an LCM strategy.

Theorem 4.9 (LCM). Let π be any Timeserving, Orderly strategy. Then there is a π̃ that is Time-

serving, Orderly, LCM, takes a valid action at every step, and satisfies Rev
(n)
γ (π̃) ≥ Rev

(n)
γ (π) for all γ

and n ∈ N.

4.4 Step 4: Trimmed

With Theorems 4.2, 4.6 and 4.9, we can immediately conclude that there exists an optimal strategy
satisfying several structural properties. We wrap up by showing one final property, and will show
that there exists an optimal strategy which is Trimmed.

Definition 4.10 (Trimmed Action). Action Publish(k,v) is Trimmed if v ∈ A(C) and whenever

v is not the longest chain (that is, v , C), and u is the unique node in A(C) with an edge to v , then u

was created by Miner 2 (that is, u ∈ T2).

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

447

Put another way, every Publish(k,v) either builds on top of the longest chain (in which case it is
vacuously Trimmed), or kicks out the successors of v . In the latter case, an action is Trimmed if
and only if the minimum successor of v was created by Miner 2.

Definition 4.11 (Trimmed Strategy). A strategy is Trimmed if every action it takes is either

Wait or Trimmed.

We now conclude our main theorem of this section.

Theorem 4.12 (Trimming). For all strategies π , there is a Trimmed strategy π̃ that take valid

actions in every step, and Rev
(n)
γ (π̃) ≥ Rev

(n)
γ (π) for all γ and n ∈ N.

5 TRIMMING THE STATE SPACE

So far, we have greatly simplified strategies which we need to consider. However, we still have not
even established that there exists an optimal strategy which is recurrent. That is, for all we know so
far, the optimal strategy might need to store not only the entire longest chain, but also all blocks
which have ever been published, and all unpublished blocks which they ever created. The goal in
this section is to establish that an optimal strategy exists which is recurrent: it will eventually (with
probability 1) reach a łcheckpointž which the strategy treats as a new genesis block that will never
be overridden.

5.1 Checkpoints and Weak Recurrence

We iteratively define a sequence of blocks P0, P1, . . . in the longest path A(C) to be checkpoints as
follows.

Definition 5.1 (Checkpoints). Based on the current state, checkpoints are iteratively defined as

follows.

• The first checkpoint, P0, is the genesis block.

• If Pi−1 is undefined, then Pi is undefined as well.

• If Pi−1 is defined, then v is a potential ith checkpoint if:
– v > Pi−1.

– v ∈ A(C).

– Among blocks that Miner 1 created between Pi−1 and v (including v , not including Pi−1), more

are in the longest chain than unpublished. That is, |A(C) ∩ (Pi−1,v] ∩T1 | ≥ |U1 ∩ (Pi−1,v]|.

• If there are no potential ith checkpoints, then Pi is undefined.

• Else, then Pi is defined to be the minimum potential ith checkpoint.

Note that each Pi is again a random variable, meaning that a priori Pi might change over time,
including from undefined to defined. For example, Pi (n)would denote the i

th checkpoint, as defined
by the state after the conclusion of the nth round (we will later prove that there exists an optimal
strategy which never changes or undefines Pi once it is defined. But this will be a result, and not a
definition).

Example 5.2. Consider the state in Figure 7 where blocks 0, 1, 5, and 7 are the checkpoints. By

definition, block 0 is the base-case and is always a checkpoint. Block 1 is a checkpoint because Miner

1 has no unpublished blocks in the interval (0, 1]. Block 2 is unpublished and thus not a checkpoint.

Block 3 is not a checkpoint because Miner 1 has one unpublished block in the interval (1, 3] and zero

published block in the path from 3 → 1 (not counting block 1). From a similar reasoning, blocks 4

and 6 are not checkpoints. Block 5 is a checkpoint because Miner 1 has one unpublished block in the

interval (1, 5] and one block in the path 5 → 4 → 3 → 1 (not counting block 1). Block 7 is a checkpoint

because Miner 1 has no unpublished blocks in the interval (5, 7].

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

448

(ii) If v is not a checkpoint and Pi = max{Pj : Pj < v}, then |A(C) ∩ (Pi ,v] ∩T1 | < |U ∩ (Pi ,v]|.

(iii) If v is not a checkpoint, then for all checkpoints Pi > v , |A(C) ∩ (v, Pi] ∩T1 | > |U ∩ (v, Pi]|.

Corollary 5.9. Suppose v ∈ A(C) is not a checkpoint and let Pi be the highest checkpoint below

v . Then Miner 1 publishes less than half of all blocks they created from time Pi + 1 to v . That is,

|A(C) ∩ (Pi ,v] ∩T1 | <
|T1∩(Pi ,v] |

2
.

Proof. Bullet (ii), Proposition 5.8, implies

|A(C) ∩ (Pi ,v] ∩T1 | + |U ∩ (Pi ,v]| > 2|A(C) ∩ (Pi ,v] ∩T1 |.

Suppose for contradiction |A(C) ∩ (Pi ,v] ∩ T1 | ≥
|T1∩(Pi ,v) |

2
. Then, the number of unpublished

blocks plus blocks in the longest path would be strictly bigger than the number of blocks Miner 1
created, a contradiction. □

Proof of Proposition 5.5. From the strong law of large numbers, Corollary 5.9 and Lemma 5.6,

lim sup
n→∞

|A(C(Xn)) ∩T1 |

|A(C(Xn))|
≤ lim sup

n→∞

|T1∩(0,n] |
2n

|A(C(Xn)) |
n

≤
lim supn→∞

|T1∩(0,n] |
2n

lim infn→∞
|A(C(Xn)) |

n

≤
α/2

(1 − α)
≤ α .

where the last inequality uses the fact α ≤ 1/2. Intuitively, if Miner 1 never reaches a checkpoint,
then they are publishing at most αn/2 blocks in expectation by round n (and clearly at most αn/2
of these can be in the longest path). But Lemma 5.6 asserts that there are at least (1 − α)n blocks in
expectation in the longest path by round n. Therefore, the fraction produced by Miner 1 cannot be
too high (and in particular, honesty would have been better in expectation). □

We prove Theorem 5.4 in two steps, Section 5.2 and Section 5.3.

5.2 Step 1: Checkpoint Preserving

The first step is to show the existence of an optimal strategy that never forks a checkpoint. For that,
we will give an explicitly procedure f to transform any strategy π that could fork checkpoints into
another strategy f (π) that does not fork checkpoints satisfying Rev(f (π)) ≥ Rev(π).

Definition 5.10 (Finality). A block q ∈ A(C) reaches finality with respect to strategy π if, with

probability 1, π takes no action that removes q from longest path.

Definition 5.11 (Checkpoint Preserving). A strategy π is checkpoint preserving if whenever

a new checkpoint Pi is defined, Pi reaches finality with respect to π .

Theorem 5.12. For every strategy π , there is a trimmed, checkpoint preserving strategy f (π) with

Rev(f (π)) ≥ Rev(π).

5.3 Step 2: Opportunistic

We have shown the existence of an optimal strategy that would never fork the longest chain C

when it becomes a checkpoint. However, to be checkpoint recurrent, we must also show Miner 1
has no unpublished blocks bigger than C when the longest chain is a checkpoint. The converse can
only happen when Miner 1 is about to take action PublishPath(Q,v) and max Q will reach finality
with respect to Miner 1’s strategy, but Miner 1 would leave an unpublished block q > max Q . The
intuition is that Miner 1 can wait instead of publishing Q pointing to v in current round. If Miner 1
creates the next block, Miner 1 can publish Q pointing to v as before. If Miner 2 creates the next
block, Miner 1 can still take action PublishPath(Q ∪ {q},v) adding Q ∪ {q} to the longest path.

Definition 5.13 (Opportunistic). Letπ be a strategy and letB be a state. Action PublishPath(Q,v)

is opportunistic with respect to B and π if

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

450

• PublishPath(Q,v) is a valid action at state B.

• If π takes action PublishPath(Q,v) where max Q reaches finality with respect to π (Defini-

tion 5.10), then Q = U(B) ∩ (v,∞).

Strategy π is opportunistic if at all states B, π waits or takes an opportunistic action with respect to B

and π .

Theorem 5.14. For any strategy π , there is a valid, trimmed, checkpoint preserving and opportunistic

strategy f (π) with Rev(f (π)) ≥ Rev(π).

Proof of Theorem 5.4. Theorem 5.14 directly implies the weak-recurrence theorem since a
checkpoint preserving and opportunistic strategy is also checkpoint recurrent. □

5.4 Step 3: Strong Recurrence

So far, we have shown that there exist an optimal strategy that is checkpoint recurrent. That is,
once we reach a state Xt where C(Xt) is a checkpoint, Miner 1 capitulates to state B0. Next, we
will aim for a stronger result.

Theorem 5.15 (Strong recurrence). There exists an optimal checkpoint recurrent and positive

recurrent strategy.

For a proof sketch, observe theWeak Recurrence Theorem implies there exists an optimal strategy
π that is checkpoint recurrent. We will assume π is not positive-recurrent (i.e., the expected time
E [τ] to define a new checkpoints is infinite) and derive that Rev(π) ≤ α = Rev(FRONTIER). The
case where Miner 1 never defines checkpoint P1 ś i.e., τ = ∞ with probability 1 in Proposition 5.5 ś
give us intuition why the claim should hold to the more general case where E [τ] = ∞. Once we
proof Rev(π) ≤ Rev(FRONTIER), we just observe FRONTIER is checkpoint and positive recurrent.
Thus there exists an optimal checkpoint and positive recurrent strategy.

6 NASH EQUILIBRIUM

We briefly give intuition behind our second main result, which leverages Theorem 5.15 to lower
bound αPoS.

Theorem 6.1. For α ≤ 0.308, FRONTIER is an optimal strategy for Miner 1 when Miner 2 follows

FRONTIER.

We defer the proof to Appendix ??. The main idea behind the proof is to show that Nothing-at-
Stake Selfish Mining is almost optimal when α < 1/3. The following proof-sketch highlights the
main insights of the proof.

Selfish Mining is optimal when Miner 2 creates the first block (when α < 1/3).We know that there
is an optimal checkpoint recurrent strategy, Theorem 5.15. Therefore, it is optimal for Miner 1 to
capitulate to state B0 if Miner 2 creates and publishes 1 → 0 (which is exactly what selfish mining
does).

Selfish Mining is optimal after Miner 1 creates and withholds blocks 1 and 2. Starting from state B2,0,
selfish mining will wait until the first time step τ when the lead decrease to a single block to fork
all of Miner 2 blocks. We show that waiting until time τ is indeed optimal for any value of α (which
is not surprising). Less obvious is why Miner 1 must publishes all his blocks at time τ when they
still have a lead of a single block. Indeed we should not expect this to be optimal for all values of
α . If Miner 1 waits at time τ and creates the next block, they will again have a lead of two blocks
and can resume to łselfish minež. Here, we shown that Miner 1 creates α

1−2α
blocks on expectation

from the time they have a lead of two blocks to the moment the lead decreases to a single block.

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

451

This quantity can be arbitrarily large but it is at most 1 when α < 1/3 so it is a risky action for
Miner 1. That is because if (instead) Miner 2 creates next block, there is a tie (Miner 1 does not have
enough blocks to fork the longest chain) and we can show that the probability Miner 1 will ever
publish any blocks created before time τ is at most α

1−α
. Formally, we will prove Miner 1 maximizes

rewards by waiting until time τ and immediately publishing all unpublished blocks (which is what
selfish mining does).

There is little window to improve Selfish Mining when Miner 1 creates and withhold block 1 and Miner

2 publishes 2 → 0. Winning the tie-breaking at state B1,1 is another source of revenue for Miner 1.
In fact, the only improvement that Nothing-at-Stake Selfish Mining provides over standard Selfish
Mining is increasing the probability that Miner 1 wins the tie-breaking between blocks 1 and 2.
From a similar argument from previous bullet, we can show the probability of adding block 1 to the
longest path is at most α

1−α
. Next, we observe Miner 1 has no more advantage of being the creator

of the block at height ℓ ≥ 2 at state B1,1 than being the creator of the block at height ℓ − 1 at state
B0. We formalize this intuition by showing that, by ignoring blocks 1 and 2, any action taken on a
state reachable from B1,1 can be converted into an action for an state reachable from B0. The only
advantage state B1,1 provides over state B0 is that Miner 1 has a probability (of at most α

1−α
) of

adding block 1 to the longest path.

Wrapping up. From the discussion above, state B1,1 is the only state where we could possible search
for a better strategy than Nothing-at-Stake Selfish Mining when α < 1/3, but there is little window
to improve Miner 1’s action at state B1,1. As a result, we will obtain FRONTIER is optimal when
α ≤ 0.308 as desired.

7 CONCLUSION

We study miner incentives in longest-chain proof-of-stake protocols with perfect external ran-
domness. We show both that such protocols are strictly more vulnerable to manipulation than
those based on proof-of-work (Theorem 3.4), but also that it is a Nash equilibrium for all miners
to follow the longest-chain protocol as long as no miner has more than ≈ 0.308 of the total stake
(Theorem 6.1). Our main technical results characterize potentially optimal strategies in a complex,
infinite-state MDP (Theorem 5.15). Our work motivates several natural open problems:

• Theorem 5.15, combined with the analysis in Theorem 6.1, provides strong structure on
optimal strategies. It is therefore conceivable that a simulation-based approach with MDP
solvers (as in [21]) could estimate αPoS to high precision.

• Our Theorem 6.1 provides a reduction from incentive-compatible longest-chain proof-of-
stake protocols to designing a randomness beacon and a slashing protocol. Clearly, it is
important for future work to construct these primitives, although these are well-known and
ambitious open problems. In our setting, it is further important to understand what are the
minimal assumptions on a randomness beacon or slashing protocol necessary to leverage
Theorem 6.1.

REFERENCES

[1] Nick Arnosti and S. MatthewWeinberg. 2019. Bitcoin: A Natural Oligopoly. In 10th Innovations in Theoretical Computer

Science Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA (LIPIcs, Vol. 124). Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 5:1ś5:1.

[2] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable delay functions. In Annual international

cryptology conference. Springer, 757ś788.

[3] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. 2015. On Bitcoin as a public randomness source. IACR Cryptol.

ePrint Arch. 2015 (2015), 1015.

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

452

[4] Jonah Brown-Cohen, Arvind Narayanan, Alexandros Psomas, and S Matthew Weinberg. 2019. Formal barriers to

longest-chain proof-of-stake protocols. In Proceedings of the 2019 ACM Conference on Economics and Computation.

459ś473.

[5] Miles Carlsten, Harry A. Kalodner, S. Matthew Weinberg, and Arvind Narayanan. 2016. On the Instability of Bitcoin

Without the Block Reward. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications

Security, Vienna, Austria, October 24-28, 2016. ACM, 154ś167.

[6] Xi Chen, Christos H. Papadimitriou, and Tim Roughgarden. 2019. An Axiomatic Approach to Block Rewards. In

Proceedings of the 1st ACM Conference on Advances in Financial Technologies, AFT 2019, Zurich, Switzerland, October

21-23, 2019. ACM, 124ś131.

[7] Jeremy Clark and Urs Hengartner. 2010. On the Use of Financial Data as a Random Beacon. EVT/WOTE 89 (2010).

[8] Phil Daian, Rafael Pass, and Elaine Shi. 2019. Snow White: Robustly Reconfigurable Consensus and Applications

to Provably Secure Proof of Stake. In Financial Cryptography and Data Security - 23rd International Conference, FC

2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised Selected Papers (Lecture Notes in Computer Science,

Vol. 11598). Springer, 23ś41.

[9] Ittay Eyal and Emin Gün Sirer. 2014. Majority is not enough: Bitcoin mining is vulnerable. In International conference

on financial cryptography and data security. Springer, 436ś454.

[10] Matheus V. X. Ferreira, Daniel J. Moroz, David C. Parkes, and Mitchell Stern. 2021. Dynamic Posted-Price Mechanisms

for the Blockchain Transaction-Fee Market. arXiv:2103.14144 [cs.GT]

[11] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. 2017. Algorand: Scaling byzantine

agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles. 51ś68.

[12] LM Goodman. 2014. Tezos: A self-amending crypto-ledger position paper. Aug 3 (2014), 2014.

[13] Gur Huberman, Jacob Leshno, and Ciamac Moallemi. 2020. Monopoly without a Monopolist: An Economic Analysis

of the Bitcoin Payment System. Review of Economic Studies (2020).

[14] John Kelsey, Luís TAN Brandão, Rene Peralta, and Harold Booth. 2019. A reference for randomness beacons: Format and

protocol version 2. Technical Report. National Institute of Standards and Technology.

[15] Aggelos Kiayias, Elias Koutsoupias, Maria Kyropoulou, and Yiannis Tselekounis. 2016. Blockchain mining games. In

Proceedings of the 2016 ACM Conference on Economics and Computation. 365ś382.

[16] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017. Ouroboros: A provably secure

proof-of-stake blockchain protocol. In Annual International Cryptology Conference. Springer, 357ś388.

[17] Jacob Leshno and Philipp Strack. 2020. Bitcoin: An Impossibility Theorem for Proof-of-Work based Protocols. American

Economics Review: Insights (2020).

[18] Satoshi Nakamoto. 2007. Bitcoin: A peer-to-peer electronic cash system. Technical Report.

[19] Michael Neuder, Daniel J. Moroz, Rithvik Rao, and David C. Parkes. 2021. Selfish Behavior in the Tezos

Proof-of-Stake Protocol. Cryptoeconomic Systems 0, 1 (5 4 2021). https://doi.org/10.21428/58320208.27350920

https://cryptoeconomicsystems.pubpub.org/pub/neuder-selfish-behavior-tezos.

[20] Michael O Rabin. 1983. Transaction protection by beacons. J. Comput. System Sci. 27, 2 (1983), 256ś267.

[21] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2016. Optimal selfish mining strategies in bitcoin. In

International Conference on Financial Cryptography and Data Security. Springer, 515ś532.

[22] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow

paper 151, 2014 (2014), 1ś32.

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

453

	Abstract
	1 Introduction
	1.1 Brief Overview of Model
	1.2 Brief Technical Overview
	1.3 Related Work
	1.4 Roadmap

	2 Model
	2.1 Payoff as Fractional of Blocks in the Longest Path
	2.2 Capitulating a State
	2.3 Recurrence

	3 Enhancing Selfish Mining with Nothing-at-Stake
	4 Trimming the Strategy Space
	4.1 Step 1: Timeserving
	4.2 Step 2: Orderly
	4.3 Step 3: Longest Chain Mining
	4.4 Step 4: Trimmed

	5 Trimming the State Space
	5.1 Checkpoints and Weak Recurrence
	5.2 Step 1: Checkpoint Preserving
	5.3 Step 2: Opportunistic
	5.4 Step 3: Strong Recurrence

	6 Nash Equilibrium
	7 Conclusion
	References

