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All proper scoring rules incentivize an expert to predict accurately (report their true estimate), but not all
proper scoring rules equally incentivize precision. Rather than treating the expert’s belief as exogenously
given, we consider a model where a rational expert can endogenously refine their belief by repeatedly paying
a fixed cost, and is incentivized to do so by a proper scoring rule.

Specifically, our expert aims to predict the probability that a biased coin flipped tomorrow will land heads,
and can flip the coin any number of times today at a cost of 𝑐 per flip. Our first main result defines an
incentivization index for proper scoring rules, and proves that this index measures the expected error of the
expert’s estimate (where the number of flips today is chosen adaptively to maximize the predictor’s expected
payoff). Our second main result finds the unique scoring rule which optimizes the incentivization index over
all proper scoring rules.

We also consider extensions to minimizing the ℓ𝑡ℎ moment of error, and again provide an incentivization
index and optimal proper scoring rule. In some cases, the resulting scoring rule is differentiable, but not
infinitely differentiable. In these cases, we further prove that the optimum can be uniformly approximated by
polynomial scoring rules.

Finally, we compare common scoring rules via our measure, and include simulations confirming the
relevance of our measure even in domains outside where it provably applies.
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1 Introduction

In the context of decision theory, a scoring rule rewards predictors for the accuracy of their
predictions [2, 9, 15]. In the context of a binary choice (e.g. łWill it rain tomorrow?"), a scoring
rule can be thought of as a function 𝑓 : (0, 1) → R, where if a predictor reports a probability 𝑝 of
rain, then the predictor’s reward is 𝑓 (𝑝) if it rains and 𝑓 (1 − 𝑝) if it does not rain.1 We consider
settings in which there are two possible outcomes that are treated symmetrically (as this definition
assumes), and henceforth refer to scoring rules in terms of this function 𝑓 . Traditionally, scoring
rules are concerned with incentivizing accurate reports. For example, a scoring rule is called proper

if a predictor is always incentivized to tell the truth, in the sense that reporting the predictor’s true
belief strictly maximizes the predictor’s expected reward.
Of course, there is an extraordinary amount of flexibility in selecting a proper scoring rule.

For example, if a continuously differentiable scoring rule 𝑓 : (0, 1) → R satisfies 𝑥 𝑓 ′(𝑥) =

(1 − 𝑥) 𝑓 ′(1 − 𝑥) and 𝑓 ′(𝑥) > 0 for all 𝑥 , then 𝑓 is proper. Any increasing C1 function on [ 1
2
, 1) can

therefore be extended to a C1 proper scoring rule on (0, 1) (see Corollary 2.6). Much prior work
exists comparing proper scoring rules by various measures, e.g. [7, 8, 18], but there is little which
formally analyzes the extent to which proper scoring rules incentivize precision (see Section 1.2 for
a discussion of prior work).
As a motivating example, consider the problem of guessing the probability that one of two

competing advertisements will be clicked. With zero effort, a predictor could blindly guess that
each is equally likely. But the predictor is not exogenously endowed with this belief, they can also
endogenously exert costly effort to refine their prediction. For example, the predictor could sample
which ad they would click themselves, or poll members of their household for additional samples.
A more ambitious predictor could run a crowdsourcing experiment, paying users to see which
link they would click. Any proper scoring rule will equally incentivize the predictor to accurately
report their resulting belief, but not all scoring rules equally incentivize the costly gathering of
information.

We propose a simple model to formally measure the extent to which a scoring rule incentivizes
costly refinement of the predictor’s beliefs. Specifically, we consider a two-sided coin that comes up
heads with probability 𝑝 , and 𝑝 is drawn uniformly from (0, 1) (we refer to 𝑝 as the bias of the coin).
Tomorrow the coin will be flipped, and we ask the predictor to guess the probability that it lands
heads. Today, the predictor can flip the coin (with bias 𝑝) any number of times, at cost 𝑐 per flip.
While we choose this model for its mathematical simplicity, it captures examples like the previous
paragraph surprisingly well: tomorrow, a user will be shown the two advertisements (clicking one).
Today, the predictor can run a crowdsourcing experiment and pay any number of workers 𝑐 to
choose between the two ads. This simple model also captures weather forecasting using ensemble
methods surprisingly well, and we expand on this connection in Appendix A in the supplement.
With this model in mind, consider the following two extreme predictions: on one hand, the

predictor could never flip the coin, and always output a guess of 1/2. On the other, the predictor
could flip the coin infinitely many times to learn 𝑝 exactly, and output a guess of 𝑝 . Note that
both predictions are accurate: the predictor is truthfully reporting their belief, and that belief is
correct given the observed flips. However, the latter prediction is more precise. All proper scoring
rules incentivize the predictor to accurately report their true prediction in both cases, but different
scoring rules incentivize the predictor to flip the coin a different number of times. More specifically,
every scoring rule induces a different optimization problem for the predictor, thereby leading

1To be clear: if 𝑓 (𝑥) = ln(𝑥) and a predictor predicts a probability of 0.7 to it raining, then the predictor receives reward
ln(0.7) if it rains and ln(0.3) if it does not rain.
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them to produce predictions of different quality. In this model, the key question we answer is the
following: which scoring rules best incentivize the predictor to produce a precise prediction?

1.1 Our Results

Our first main result is the existence of an incentivization index. Specifically, if Error𝑐 (𝑓 ) denotes the
expected error that a rational predictor makes when incentivized by scoring rule 𝑓 with cost 𝑐 per
flip, we give a closed-form index Ind(𝑓 ) with the following remarkable property: for all respectful
(see Definition 3.1) proper scoring rules 𝑓 and 𝑔, the inequality Ind(𝑓 ) < Ind(𝑔) implies the
existence of a sufficiently small 𝑐0 > 0 such that Error𝑐 (𝑓 ) < Error𝑐 (𝑔) for all 𝑐 ≤ 𝑐0 (Theorem 3.3).
We formally introduce this index in Definition 3.2, but remark here that it is not a priori clear that
such an index should exist at all, let alone that it should have a closed form.2

With an index in hand, we can now pose a well-defined optimization problem: which proper
scoring rule minimizes the incentivization index? Our second main result nails down this scoring
rule precisely; we call it 𝑔1,Opt (see Theorem 4.1).
We also extend our results to the ℓ𝑡ℎ moment for ℓ ≥ 1, where now Errorℓ𝑐 (𝑓 ) denotes the

expected ℓ𝑡ℎ power of the error that a rational predictor makes when incentivized by 𝑓 with cost 𝑐
per flip, and again derive an incentivization index Indℓ (𝑓 ) and an optimal scoring rule 𝑔ℓ,Opt.

Some optimal rules𝑔ℓ,Opt have a particularly nice closed form (for example, as ℓ → ∞, the optimal
rule pointwise converges to a polynomial), but many do not. We also prove, using techniques
similar to the Weierstrass approximation theorem [17], that each of these rules can be approximated
by polynomial scoring rules whose incentivization indices approach the optimum.
Finally, beyond characterizing the optimal rules, the incentivization indices themselves allow

for comparison among popular scoring rules, such as logarithmic (𝑓log (𝑥) := ln(𝑥)), quadratic
(𝑓quad (𝑥) := 2𝑥−(𝑥2+(1−𝑥)2)), and spherical (𝑓sph (𝑥) := 𝑥/

√︁
𝑥2 + (1 − 𝑥)2). We plot the predictions

made by our incentivization index (which provably binds only as 𝑐 → 0) for various values of 𝑐 ,
and also confirm via simulation that the index has bite for reasonable choices of 𝑐 .

1.2 Related Work

To the best of our knowledge, [13] was the first to consider scoring rules as motivating the predictor
to seek additional information about the distribution before reporting their belief. This direction is
revisited in [6], and has gained more attention recently [10, 14, 16]. While these works (and ours)
each study the same phenomenon, there is little technical overlap and the models are distinct: each
explores a different aspect of this broad agenda. For example, [14] considers the predictor’s incentive
to outperform competing predictors (but there is no costly effort Ð the predictors’ beliefs are still
exogenous). [10] (which is contemporaneous and independent of our work) is the most similar in
motivation, but still has significant technical differences (beyond the two subsequent examples).
On one hand, their model is more general than ours in that they consider multi-dimensional state
spaces (rather than binary ones, in our model). On another hand, it is more restrictive in that they
consider only two levels of effort (versus infinitely many, in our model).
Our work also fits into the broad category of principal-agent problems. For example, works

such as [3ś5, 11] consider a learning principal who incentivizes agents to make costly effort and
produce an accurate data point. Again, the models are fairly distinct, as these works focus on more
sophisticated learning problems (e.g. regression), whereas we perform a more comprehensive dive
into the problem of simply eliciting the (incentivized-to-be-precise) belief.

2Indeed, a priori it is possible that Error0.1 (𝑓 ) < Error0.1 (𝑔) , but Error0.01 (𝑓 ) > Error0.01 (𝑔) , and Error0.001 (𝑓 ) <

Error0.001 (𝑔) , but Error0.0001 (𝑓 ) > Error0.0001 (𝑔) , and so on. The existence of an incentivization index rules out this
possibility.
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In summary, there is a sparse, but growing, body of work addressing the study of incentivizing
effort in forming predictions, rather than just accuracy in reporting them. The above-referenced
works pose various models to tackle different aspects of this agenda. In comparison, our model is
arguably the simplest, and we develop a deep understanding of optimal scoring rules in this setting.

1.3 Summary and Roadmap

Section 2 lays out our model, and contains some basic facts to help build intuition for reasoning
about the incentivization properties of scoring rules. Our main results are detailed in Sections 3
through 6, along with intuition for our techniques.

• Section 3 defines the incentivization index, and provides a sufficient condition (Definition 3.1)
for the incentivization index to nail down the expected error of a rational predictor, up to
𝑜 (1). This is our first main result, which gives a framework to formally reason about scoring
rules that incentivize precision.

• Section 4 finds the unique proper scoring rule which optimizes the incentivization index.
This is our second main result, which finds novel scoring rules, and also sets a benchmark
with which to evaluate commonly-studied scoring rules.

• Section 5 studies the optimal scoring rules from Section 4, and compares their incentivization
indices to those of some well-known scoring rules. Appendix H in the supplement provides a
few simulations confirming that Ind seems to have predictive value for 𝑐 ≫ 0.

• Section 6 proves that there exist polynomial scoring rules with incentivization indices arbi-
trarily close to the optimum.

• All sections additionally consider the expected ℓ𝑡ℎ power of the error for any ℓ ≥ 1.
• Section 7 concludes.

2 Model and Preliminaries

2.1 Scoring Rules and their Rewards

This paper considers predicting a binary outcome for tomorrow: heads or tails. The expert or
predictor is asked to output a probability 𝑝 with which they believe the coin will land heads.
Tomorrow, should the coin land heads, their reward is 𝑓 (𝑝); should it not, their reward is 𝑓 (1 − 𝑝)
(note that the reward is symmetric: it is invariant under swapping the labels ‘heads’ and ‘tails’).
Throughout this paper, we consider a scoring rule to be defined by this function 𝑓 (·). Observe
that if the expert believes the true probability of heads to be 𝑝 , and chooses to guess 𝑥 , then the
expected reward is 𝑝 · 𝑓 (𝑥) + (1 − 𝑝) · 𝑓 (1 − 𝑥).

Definition 2.1 (Expected Reward). For scoring rule 𝑓 : (0, 1) → R, denote by 𝑟
𝑓
𝑝 (𝑥) :=

𝑝 · 𝑓 (𝑥) + (1 − 𝑝) · 𝑓 (1 − 𝑥) the expected reward of an expert who predicts 𝑥 when their true

belief is 𝑝 .

Let also 𝑅 𝑓 (𝑝) := 𝑟
𝑓
𝑝 (𝑝) be the expected reward of an expert who reports their true belief 𝑝 . We may

drop the superscript when the scoring rule 𝑓 is clear from context.

A scoring rule is (weakly) proper if it (weakly) incentivizes accurate reporting. In our notation:

Definition 2.2. A scoring rule 𝑓 : (0, 1) → R is proper (resp. weakly proper) if for all 𝑝 ∈ (0, 1),
the expected reward function 𝑟

𝑓
𝑝 (𝑥) is strictly (resp. weakly) maximal at 𝑥 = 𝑝 on (0, 1).

Note that the optimal scoring rules designed in this paper are all (strictly) proper. However, we
will show them to be optimal even with respect to the larger class of weakly proper scoring rules.
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2.2 Modeling the Expert’s Behavior

We model the expert as Bayesian. Specifically, the expert initially believes the coin bias is uniformly
distributed in (0, 1). Today, the expert may flip the coin any number of times in order to gauge its
true bias, and pays 𝑐 per flip. After having flipped the coin 𝑛 times, and seen 𝑘 heads, the expert
believes the true bias is 𝑘+1

𝑛+2 (Fact C.2 in the supplemental appendix).3 Once done flipping, the expert
reports the coin bias. Tomorrow, the coin is flipped once, and the expert receives reward for the
prediction based on the outcome via scoring rule 𝑓 (known to the expert in advance), as described
in Section 2.1.
It remains to define when the expert should stop flipping. Below, an adaptive strategy simply

refers to a (possibly randomized) stopping rule for the expert, i.e. a rule that, given any number of
past flips and the scoring rule 𝑓 , tells the expert whether to stop or flip once again. The payoff of
an adaptive strategy is simply the expert’s expected reward for following that strategy, minus the
expected number of coin flips.

Definition 2.3. A globally-adaptive expert uses the payoff-maximizing adaptive strategy.

Nailing down the expert’s optimal behavior as a function of 𝑐 is quite unwieldy. Thus, we derive
our characterizations up to 𝑜 (1) terms (as 𝑐 → 0). When 𝑐 is large, one may reasonably worry that
these 𝑜 (1) terms render our theoretical results irrelevant. In Appendix H in the supplement we
simulate the expert’s optimal behavior for large 𝑐 , and confirm that our results hold qualitatively in
this regime.
Finally, we define a natural measure of precision for the expert’s prediction.

Definition 2.4. The expected error associated with a scoring rule 𝑓 and cost 𝑐 is Error𝑐 (𝑓 ) :=
E [|𝑝 − 𝑞 |]. The expectation is taken over 𝑝 , drawn uniformly from (0, 1), and 𝑞, the prediction of a

globally-adaptive expert after flipping the coin (𝑞 is a random variable which depends on 𝑓 , 𝑝, 𝑐).

We will also consider generalizations to other moments, and define Errorℓ𝑐 (𝑓 ) := E[|𝑝 − 𝑞 |ℓ ].

2.3 Scoring Rule Preliminaries

Our proofs will make use of fairly heavy single-variable analysis, and therefore will require making
some assumptions on 𝑓 (·): continuity, differentiability, but also more technical ones. We will clearly
state them when necessary, and confirm that all scoring rules of interest satisfy them. For these
preliminaries, we need only assume that 𝑓 is continuously differentiable so that everything which
follows is well-defined. First, Lemma 2.5 provides an alternative characterization of proper (and
weakly proper) scoring rules. The proof is in Appendix C in the supplement.

Lemma 2.5. A continuously differentiable scoring rule 𝑓 is weakly proper if and only if for all

𝑝 ∈ (0, 1), 𝑝𝑓 ′(𝑝) = (1 − 𝑝) 𝑓 ′(1 − 𝑝) and 𝑓 ′(𝑝) ≥ 0. It is (strictly) proper if and only if additionally

𝑓 ′(𝑝) > 0 almost everywhere4 in (0, 1).

Corollary 2.6. Let 𝑓 be strictly increasing almost everywhere (resp., nondecreasing everywhere)

and continuously differentiable on (0, 1
2
]. Then 𝑓 can be extended to a continuously differentiable

proper (resp., weakly proper) scoring rule on (0, 1) by defining 𝑓 ′(𝑝) = 1−𝑝
𝑝

𝑓 ′(1 − 𝑝) for 𝑝 ∈ ( 1
2
, 1).

Put another way: every continuously differentiable proper scoring rule can be defined by first
providing a strictly increasing function on (0, 1

2
], and then extending it as in Corollary 2.6. Remark

C.3 in the supplemental appendix provides a short example to help parse this extension.

3By this, we mean the expert believes the coin would land heads with probability 𝑘+1
𝑛+2 , if it were flipped again.

4Almost everywhere on (0, 1) refers to the interval (0, 1) except a set of measure zero.
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2.4 First Steps towards Understanding Incentivization

In this section, we state a few basic facts about the expert’s expected reward, and how it changes
with additional flips. We defer all proofs to Appendix C in the supplement. Reading these proofs
may help a reader gain technical intuition for the model. Our analysis will focus mostly on the
reward function 𝑅 𝑓 (·) rather than 𝑓 (·), so the following fact will be useful:

Fact 2.7. For a weakly proper scoring rule 𝑓 , we have (𝑅 𝑓 ) ′(𝑥) = 𝑓 (𝑥) − 𝑓 (1−𝑥) and (𝑅 𝑓 ) ′′(𝑥) =
𝑓 ′(𝑥) + 𝑓 ′(1 − 𝑥) = 𝑓 ′ (𝑥)

1−𝑥 ≥ 0 on (0, 1).

Lemma 2.8 observes how this expected reward evolves with an additional flip.

Lemma 2.8. If the expert has already flipped the coin 𝑛 times, seeing 𝑘 heads, then their expected

increase in reward for exactly one additional flip is 𝑘+1
𝑛+2𝑅

𝑓 ( 𝑘+2
𝑛+3 ) +

𝑛−𝑘+1
𝑛+2 𝑅 𝑓 ( 𝑘+1

𝑛+3 ) − 𝑅 𝑓 ( 𝑘+1
𝑛+2 ).

Lemma 2.8 suggests that the function 𝑅 𝑓 (𝑥) should be convex: if it were not, that would leave
open the possibility of the expert potentially losing expected reward as a result of performing more

flips (meaning that the expert might get a smaller reward for a better estimate of the coin bias).

Lemma 2.9 ([12]). Let 𝑓 be any proper (resp., weakly proper) scoring rule. Then 𝑅 𝑓 (𝑥) is strictly
convex (resp., weakly convex) almost everywhere on (0, 1).

Corollary 2.10. Let 𝑓 be a proper (resp., weakly proper) scoring rule. Then the expert’s increased

expected reward from an additional flip is strictly positive (resp., weakly positive).

Because we are interested in incentivizing the expert to take costly actions, the scale of a proper
scoring rule will also be relevant. For example, if 𝑓 is proper, then so is 2𝑓 , and 2𝑓 clearly does a
better job of incentivizing the expert (Lemma 2.8). As such, we will want to first normalize any
scoring rule under consideration to be on the same scale. A natural normalization is to consider
two scoring rules to be on the same scale if expected payoff they provide to the expert is the same
(where the expectation is taken over both the bias and the flips of the coin).

Definition 2.11. We define Cost𝑐 (𝑓 ) to be the expected payoff to a globally-adaptive expert via

scoring rule 𝑓 (when the bias is drawn uniformly from (0, 1), and the expert may pay 𝑐 per flip).

Recall that the (expected) payoff of a perfect expert is
∫ 1

0
𝑅(𝑥)𝑑𝑥 , since a perfect expert has

expected payoff 𝑅(𝑥) if the coin has bias 𝑥 , and the coin’s bias is chosen uniformly from [0, 1].
For proper (but not necessarily weakly proper) scoring rules, we show that as 𝑐 → 0 the expected
payoff of a globally-adaptive expert approaches the payoff of a perfect expert. (This is true no
matter the coin’s bias, though we only need this result in expectation over the bias.) Intuitively,
this is because the number of flips approaches ∞ as 𝑐 → 0, so the expert is rewarded as if they are
perfect.

Proposition 2.12. Let 𝑓 be a proper scoring rule. Then lim𝑐→0 Cost𝑐 (𝑓 ) =
∫ 1

0
𝑅(𝑥)𝑑𝑥 . That is,

Cost𝑐 (𝑓 ) =
∫ 1

0
𝑅(𝑥)𝑑𝑥 ± 𝑜 (1).

Assuming that two scoring rules 𝑓 , 𝑔 have Cost𝑐 (𝑓 ) = Cost𝑐 (𝑔) addresses one potential scaling
issue. But there is another issue as well: whenever 𝑓 is proper, the scoring rule 2𝑓 − 1 is also proper,
and again clearly does a better job incentivizing the expert (again directly by Lemma 2.8). As such,
we will also normalize so that 𝑅 𝑓 (𝑥) ≥ 0 for all 𝑥 : the expert’s expected reward is always non-
negative if they are perfect. We conclude this section with a formal statement of this normalization.
Appendix C in the supplement confirms the implications of the definition, and also contains a few
lemmas stating equivalent conditions.
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Definition 2.13. A scoring rule 𝑓 (·) is normalized if
∫ 1

0
𝑅 𝑓 (𝑥)𝑑𝑥 = 1, and 𝑓 (1/2) = 0. This

implies that Cost𝑐 (𝑓 ) = 1 ± 𝑜 (1), and that a perfectly calibrated expert gets non-negative expected
reward. It also implies that an expert who flips zero coins gets zero expected reward.

3 An Incentivization Index

This section presents our first main contribution: an incentivization index which characterizes the
expert’s expected error. The main result of this section, Theorem 3.3, requires scoring rules to be
analytically nice in a specific way. We term such scoring rules respectful.

Definition 3.1. A proper scoring rule 𝑓 with reward function 𝑅 := 𝑅 𝑓 is respectful if:

(1) 𝑅 is strongly convex on (0, 1). That is, 𝑅′′(𝑥) ≥ 𝑎 on (0, 1) for some 𝑎 > 0.

(2) 𝑅′′′ is Riemann integrable on any closed subinterval of (0, 1).5
(3) ∃𝑡 > 1

4
, and 𝑐0 > 0 s.th. for all 𝑐 ∈ (0, 𝑐0): |𝑅′′′(𝑥) | ≤ 1

𝑐0.16
√
𝑥 (1−𝑥)

𝑅′′(𝑥) on [𝑐𝑡 , 1 − 𝑐𝑡 ].6

Recall that 𝑅 is strictly convex for any strictly proper scoring rule, so strong convexity is a
minor condition. Likewise, the second condition is a minor łniceness" assumption. We elaborate on
the third condition in detail in Appendix D in the supplement, and confirm that frequently used
proper scoring rules are indeed respectful. We briefly note here that intuitively, the third condition
asserts that 𝑅′′ does not change too quickly (except possibly near zero and one) for small enough
coin-flipping costs 𝑐 . The particular choice of 0.16 is not special, and could be replaced with any
constant < 1/6.

Definition 3.2 (Incentivization Index). We define the incentivization index of a scoring rule 𝑓 :

Ind(𝑓 ) :=
∫ 1

0

(
𝑥 (1 − 𝑥)
(𝑅 𝑓 ) ′′(𝑥)

)1/4
𝑑𝑥 . More generally, for ℓ ≥ 1: Indℓ (𝑓 ) :=

∫ 1

0

(
𝑥 (1 − 𝑥)
(𝑅 𝑓 ) ′′(𝑥)

) ℓ/4
𝑑𝑥.

Theorem 3.3. If 𝑓 is a respectful, continuously differentiable proper scoring rule, then:

lim
𝑐→0

𝑐−1/4 · Error𝑐 (𝑓 ) =
√︁
2/𝜋 · 21/4 · Ind(𝑓 ).

More generally, if 𝜇ℓ :=
2ℓ/2Γ( ℓ+1

2 )√
𝜋

is the ℓ𝑡ℎ moment of the standard normal distribution, then:

lim
𝑐→0

𝑐−ℓ/4 · Errorℓ𝑐 (𝑓 ) = 𝜇ℓ · 2ℓ/4 · Indℓ (𝑓 ).

Intuitively, the incentivization index captures the expert’s error as 𝑐 → 0.7 More formally, for
any two respectful proper scoring rules 𝑓 , 𝑔, Ind(𝑓 ) < Ind(𝑔) implies that there exists a sufficiently
small 𝑐0 > 0 such that Error𝑐 (𝑓 ) < Error𝑐 (𝑔) for all 𝑐 ≤ 𝑐0. As previously referenced, Theorem 3.3
says nothing about how big or small this 𝑐0 might be, although simulations in Appendix H in the
supplement confirm that it does not appear to be too small for typical scoring rules.
The rest of this section is organized as follows. Sections 3.1 through 3.6 outline our proof of

Theorem 3.3. The key steps are given as precisely-stated technical lemmas with mathematical
intuition alongside them, to illustrate where precision is needed for the proof to carry through.
Complete proofs of these lemmas can be found in Appendix E in the supplement. In Appendix D,
we confirm that natural scoring rules are respectful (which is mostly a matter of validating the
third condition in Definition 3.1).

5Note this does not necessarily require 𝑅′′′ be defined on the entire (0, 1) , just that it is defined almost everywhere.
6Except in places where 𝑅′′′ is undefined.
7Proposition 3.9 in Section 3.4 gives intuition for why Error𝑐 (𝑓 ) is proportional to 4

√
𝑐 .
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3.1 Proof Outline of Theorem 3.3

We provide below an executive overview of our approach. The concrete steps are separated out as
formally-stated technical lemmas in the following sections, with proofs deferred to Appendix E
in the supplement. Before beginning, we highlight the main challenge: to prove Theorem 3.3, we
need to capture the precise asymptotics of the expert’s expected error. Upper bounds can be easily
shown via concentration inequalities; however, traditional lower bounds via anti-concentration
results would simply state that the expected error tends to 0 as 𝑐 → 0 (which holds for every
proper scoring rule, and doesn’t distinguish among them). So not only are we looking for two-sided
bounds on the error, but we need to gauge the precise rate at which it approaches zero. Moreover,
even obtaining the order of magnitude of the error as 𝑐 → 0, which turns out to be 𝑐−ℓ/4, still does
not suffice: we need to compute the exact coefficient of 𝑐−ℓ/4. This difficulty motivates the need for
the technical lemmas stated in this section to be very precise. Our outline is as follows:

• All of our analysis first considers a locally-adaptive expert, who flips the coin one additional
time if and only if the expected increase in reward from that single flip exceeds 𝑐 .

• Our first key step, Section 3.2, provides an asymptotic lower bound on the number of times
an expert flips the coin, for all respectful 𝑓 .

• Our second key step, Section 3.3, provides a coupling of the expert’s flips across all possible
true biases 𝑝 . This helps prove uniform convergence bounds over all 𝑝 for the expert’s error:
we can now define an unlikely łbad" event of overly-slow convergence without reference to
𝑝 .

• Our third key step, Section 3.4, provides tight bounds on the number of flips by a locally-
adaptive expert, up to (1 ± 𝑜 (1)) factors. Note that the first three steps have not referenced
an error measure at all, and only discuss the expert’s behavior.

• Our fourth key step, Section 3.5, shows how to translate the bounds in Section 3.4 to tight
bounds on the error of a locally-adaptive expert, again up to (1 ± 𝑜 (1)) factors.

• Finally our last step, Section 3.6, shows that the globally-adaptive expert behaves nearly-
identically to the locally-adaptive expert, up to an additional 𝑜 (1) factor of flips.

We now proceed to formally state the main steps along this outline, recalling that the first several
steps consider a locally-adaptive expert, whose definition is restated formally below:

Definition 3.4 (Locally-Adaptive Expert). The locally-adaptive expert flips one more time if

and only if making a single additional coin flip (and then stopping) increases their expected payoff.

3.2 Step One: Lower Bounding Expert’s Number of Flips

We begin by tying the expert’s expected marginal reward from one additional flip to 𝑅′′. Below,
𝑄 (𝑛) denotes the random variable which is the expert’s belief after 𝑛 flips. The important takeaway
from Claim 3.5 is that for fixed𝑛, the expert’s expected belief as a function of𝑄 (𝑛) changes (roughly)
as 𝑄 (𝑛) · (1 −𝑄 (𝑛)) · 𝑅′′(𝑄 (𝑛)) Ð this takeaway will appear in later sections.

Claim 3.5. Let Δ𝑛+1 (𝑞) := E[𝑅(𝑄 (𝑛 + 1)) |𝑄 (𝑛) = 𝑞] −𝑅(𝑞) be the expected increase in the expert’s
reward (not counting the paid cost 𝑐) from the (𝑛 + 1)𝑡ℎ flip of the coin, given current belief 𝑄 (𝑛) = 𝑞.

Then there exist 𝑐1, 𝑐2 ∈ [𝑞 − 1/𝑛, 𝑞 + 1/𝑛] such that:

Δ𝑛+1 =
𝑞 · (1 − 𝑞)
2(𝑛 + 3)2 (𝑞 · 𝑅′′(𝑐1) + (1 − 𝑞) · 𝑅′′(𝑐2))

Recalling that the locally-adaptive expert decides to flip the coin for the (𝑛 + 1)𝑡ℎ time if and
only if Δ𝑛+1 ≥ 𝑐 , and assuming that 𝑅′′ is bounded away from zero (Condition 1 in Definition 3.1),
we arrive at a simple lower bound on the number of coin flips.
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Claim 3.6. For all 𝑓 such that (𝑅 𝑓 ) ′′ is bounded away from zero, there exists 𝛼, 𝑐0 such that the

expert is guaranteed to flip the coin at least 1
𝛼𝑐1/3

times for all 𝑐 ≤ 𝑐0 (no matter the true bias).

Using basic concentration inequalities, Claim 3.6 immediately implies an asymptotic upper bound
on the expert’s error. Recall, however, that we need a two-sided bound, and moreover that we need
precise asymptotics of the error. Still, Claim 3.6 is the first step towards this.

3.3 Step Two: Ruling Out Irregular Coin-Flipping Trajectories

The expert’s coin-flipping behavior depends on 𝑄 (𝑛), which depends on the fraction of realized
coin flips which are heads, which itself depend on the coin’s true bias 𝑝 . Note, of course, that
𝑄 (𝑛) → 𝑝 as 𝑛 → ∞. If instead we had that𝑄 (𝑛) = 𝑝 exactly, we could leverage Claim 3.5 to better
understand the number of flips as a function of 𝑝 . Unfortunately, 𝑄 (𝑛) will not equal 𝑝 exactly, and
it is even possible to have 𝑄 (𝑛) far from 𝑝 , albeit with low probability.
The challenge, then, is how to handle these low-probability events, and importantly how to do

so uniformly over 𝑝 . To this end, we consider the following coupling of coin-flipping processes over
all possible biases. Specifically, rather than first drawing bias 𝑝 and then flipping coins with bias 𝑝 ,
we use the following identically distributed procedure:

(1) Generate an infinite sequence 𝑟1, 𝑟2, . . . of uniformly random numbers in [0, 1].
(2) Choose 𝑝 uniformly at random from [0, 1].
(3) For each 𝑛, coin 𝑛 comes up heads if and only if 𝑟𝑛 ≤ 𝑝 .

Under this sampling procedure, 𝑄𝑝 (𝑛) :=
ℎ𝑝 (𝑛)+1
𝑛+2 is the expert’s estimate after flipping 𝑛 coins,

where ℎ𝑝 (𝑛) is the number of heads in the first 𝑛 flips, if 𝑝 is the value chosen in step (2).
With this procedure, we can now define a single bad event uniformly over all 𝑝 . Intuitively, Ω𝑁

holds when, no matter what 𝑝 is chosen in step (2), the expert’s Bayesian estimate of 𝑝 never strays
too far from 𝑝 after 𝑁 flips. More formally, the complement of Ω𝑁 is our single bad event:

Ω𝑁 :=

∞⋃

𝑛=𝑁

𝑛−1⋃

𝑗=1

{����𝑄 𝑗/𝑛 (𝑛) −
𝑗

𝑛

���� >

√︁
𝑗 (𝑛 − 𝑗)
2𝑛1.49

}

.

The expression on the right-hand side of the inequality can be rewritten as

√︂
𝑗
𝑛

(
1− 𝑗

𝑛

)

𝑛
· 𝑛.01

2
, where

the radical term gives the order of the expected difference between 𝑄 𝑗/𝑛 (𝑛) and 𝑗
𝑛
. So intuitively,

Ω𝑁 holds unless the actual difference between 𝑄 𝑗/𝑛 (𝑛) and 𝑗
𝑛
far exceeds its expected value.

We have defined Ω𝑁 so that, on the one hand, our subsequent analysis becomes tractable when
Ω𝑁 holds, and on the other hand, Ω𝑁 fails to hold with probability small enough that our asymptotic
results are not affected. Below, Claim 3.7 gives the property we desire from Ω𝑁 , and Claim 3.8
shows that Ω𝑁 is unlikely. The key takeaway from Claim 3.7 is that when Ω𝑁 holds, the expert’s
prediction is close to 𝑝 for all 𝑛 ≥ 𝑁 and 𝑝 ∈ (0, 1) and this closeness shrinks with 𝑛.

Claim 3.7. The exists a sufficiently large 𝑁0 such that for all 𝑁 ≥ 𝑁0: if Ω𝑁 holds, then

��𝑄𝑝 (𝑛) − 𝑝
�� ≤

√︁
𝑝 (1 − 𝑝)
𝑛.49

for all 𝑛 ≥ 𝑁 and 𝑝 ∈ [1/𝑛, 1 − 1/𝑛] .

Claim 3.8.

Pr
[
Ω𝑁

]
= 𝑂

(
𝑒−𝑁

.01
)
.

While it is trivial to see that 𝑄𝑝 (𝑛) approaches 𝑝 as 𝑛 → ∞, we reiterate that Claims 3.7 and 3.8
guarantee quantitatively that: (a) when Ω𝑁 holds, |𝑄𝑝 (𝑛) − 𝑝 | shrinks with 𝑛, (b) the probability
that Ω𝑁 fails shrinks exponentially fast in 𝑁 , and (c) both previous bounds are uniform over 𝑝 .
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3.4 Step Three: Tightly Bounding Expert’s Number of Flips

We now nail down the precise asymptotics of the number of the expert’s flips as a function of the
true bias 𝑝 . This becomes significantly more tractable after assuming Ω𝑁 holds. Below, the random
variable 𝑛stop denotes the number of flips that a locally-adaptive expert chooses to make.

Proposition 3.9. Assume that Ω𝑁 holds for some 𝑁 , and let 𝑡 be as in Definition 3.1. There exists

a constant 𝛾 and cost 𝑐0 > 0 such that for all 𝑐 ≤ 𝑐0 and all 𝑝 ∈ [2𝑐𝑡 , 1 − 2𝑐𝑡 ], we have
√︂

𝑝 (1 − 𝑝)𝑅′′(𝑝)
2𝑐

(1 − 𝛾𝑐1/300) ≤ 𝑛stop ≤
√︂

𝑝 (1 − 𝑝)𝑅′′(𝑝)
2𝑐

(1 + 𝛾𝑐1/300).

Proposition 3.9 has two key aspects. First, the upper and lower bounds on 𝑛stop match up to a 1±
𝑜 (1) factor. Second, the 𝑜 (1) term is independent of 𝑝 . To get intuition for why 𝑛stop ≈

√︃
𝑝 (1−𝑝)𝑅′′ (𝑝)

2𝑐
,

recall that Claim 3.5 shows after 𝑛 flips, the expected marginal gain is Δ𝑛+1 ≈ 𝑝 (1−𝑝)
2𝑛2 𝑅′′(𝑝). This

quantity first falls below 𝑐 , the cost per flip, after 𝑛 =

√︃
𝑝 (1−𝑝)𝑅′′ (𝑝)

2𝑐
flips.

3.5 Step Four: Translating Number-of-Flips Bounds to Error Bounds

Having pinned down 𝑛stop quite precisely, we will now obtain a tight bound on the error of the
locally-adaptive expert’s reported prediction. By contrast, the previous three steps performed an
analysis of the locally-adaptive expert’s coin-flipping behavior, which does not depend on the
choice of error metric. Lemma 3.10 below is a formal statement of the main step of this process,
which nails down the asymptotics of the error conditioned on Ω𝑁 . Below, Err𝑐 (𝑝) denotes a random
variable equal to the locally-adaptive expert’s error when the cost is 𝑐 and the true bias is 𝑝 (and
the scoring rule 𝑓 is implicit).

Lemma 3.10. Let ℓ ≥ 1 and 𝜇ℓ :=
2ℓ/2Γ( ℓ+1

2 )√
𝜋

be the ℓ𝑡ℎ moment of a standard Gaussian. Let 𝑁 =
1

𝛼𝑐1/3

(so 𝑁 is implicitly a function of 𝑐). For all 𝑝 ∈ [2𝑐𝑡 , 1 − 2𝑐𝑡 ] we have

(1 − 𝑜 (1)) · 𝜇ℓ ·
(
2𝑝 (1 − 𝑝)
𝑅′′(𝑝)

) ℓ/4
≤ 𝑐−ℓ/4 · E

[
(Err𝑐 (𝑝))ℓ | Ω𝑁

]
≤ (1 + 𝑜 (1)) · 𝜇ℓ ·

(
2𝑝 (1 − 𝑝)
𝑅′′(𝑝)

) ℓ/4

where the 𝑜 (1) term is a function of 𝑐 (but not 𝑝) that approaches zero as 𝑐 approaches zero.

Lemma 3.10 is the key, but far from only, step in translating Proposition 3.9 to tight bounds on
the locally-adaptive expert’s error. Intuitively, it states that the value of the expert’s error will be,
up to a 1 ± 𝑜 (1) factor, consistent with what one would expect from using a quantitative central
limit theorem in conjunction with the bound on 𝑛stop from Proposition 3.9.

3.6 Step Five: From Locally-Adaptive to Globally-Adaptive Behavior

Finally, we extend our previous analysis from locally-adaptive to globally-adaptive experts. In
particular, for a scoring rule that gives finite expected reward to a perfect expert, we prove that
the globally-adaptive expert does not flip significantly more than a locally-adaptive expert would,
and therefore their achieved errors are equal up to a 1 ± 𝑜 (1) factor. Below, the random variable 𝑛𝑔
denotes the number of flips by the globally-adaptive expert.

Lemma 3.11. Assume 𝑓 is respectful and normalizable (i.e.
∫ 1

0
𝑅(𝑥)𝑑𝑥 < ∞). Let 𝛾 be as in Proposi-

tion 3.9. There exists a 𝑐0 > 0, such that for all 𝑐 ≤ 𝑐0: If Ω𝑛stop
holds and 4𝑐𝑡 ≤ 𝑄 (𝑛stop) ≤ 1 − 4𝑐𝑡 ,

then

𝑛stop ≤ 𝑛𝑔 ≤ (1 + 6𝛾𝑐1/300)𝑛stop.
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Lemma 3.11 is the key step in this portion of the analysis. The remaining work is to bound the
impact of negligible events (such as Ω𝑛stop

failing, or 𝑄 (𝑛stop) being extremely close to 0 or 1) on
our analysis. This completes our outline of the proof of Theorem 3.3 (and we refer the reader back
to Section 3.1 for a reminder of this outline).

4 Finding Optimal Scoring Rules

Now that we have shown that the incentivization index characterizes how well any respectful
scoring rule incentivizes a globally-adaptive expert to minimize error, we have a well-defined
optimization problem: which normalized proper scoring rule has the lowest incentivization index (and
therefore minimizes the expert’s expected error)? Recall the following necessary and sufficient
set of conditions for a continuously differentiable and normalized scoring rule 𝑔(·) to be weakly
proper:8

• (Lemma 2.5) For all 𝑥 ∈ (0, 1), 𝑥𝑔′(𝑥) = (1 − 𝑥)𝑔′(1 − 𝑥) and 𝑔′(𝑥) ≥ 0.
• (Definition 2.13, Corollary C.7 in supplemental appendix) 𝑔

(
1
2

)
= 0.

• (Definition 2.13, Corollary C.7 in supplemental appendix)
∫ 1
1
2

(1 − 𝑥)𝑔′(𝑥)𝑑𝑥 = 1.

So our goal is just to find the scoring rule which satisfies these constraints and minimizes the
incentivization index:

Indℓ (𝑔) =
∫ 1

0

(
𝑥 (1 − 𝑥)
𝑅′′(𝑥)

) ℓ/4
𝑑𝑥 =

∫ 1

0

(
𝑥 (1 − 𝑥)2
𝑔′(𝑥)

) ℓ/4
𝑑𝑥.

The main result of this section is the following theorem:

Theorem 4.1. The unique continuously differentiable normalized proper scoring rule which mini-

mizes Indℓ (𝑔) is:

𝑔ℓ,Opt (𝑥) =



𝜅ℓ
∫ 𝑥
1
2

(𝑡 ℓ−8 (1 − 𝑡)2ℓ+4)1/(ℓ+4)𝑑𝑡 𝑥 ≤ 1
2

𝜅ℓ
∫ 𝑥
1
2

(𝑡 ℓ (1 − 𝑡)2ℓ−4)1/(ℓ+4)𝑑𝑡 𝑥 ≥ 1
2
.
,

where 𝜅ℓ is the appropriate normalization constant.

While 𝑔ℓ,Opt is certainly challenging to parse, importantly it is a closed form, and can thus be
numerically evaluated (and, it is provably optimal). A complete proof of Theorem 4.1 appears in
Appendix F in the supplement. Appendix B contains several plots of these scoring rules, alongside
traditional ones. Section 5 immediately below also gives further discussion of these rules.

5 Comparing Scoring Rules

In this section we compare various scoring rules by their incentivization indices, for various values
of ℓ . Of particular interest are the values ℓ = 1 (expected absolute error), ℓ = 2 (expected squared
error), and the limit as ℓ → ∞ (which penalizes bigger errors łinfinitely morež than smaller ones,
so this regime corresponds to minimizing the probability of being very far off).

5.1 Optimal Scoring Rules for Particular Values of ℓ

We begin by noting some values of ℓ for which the function 𝑔ℓ,Opt takes a nice closed form. ℓ = 1

happens to not be one such value. For ℓ = 2, 4, 8, the functions 𝑔ℓ,Opt can be written in terms
of elementary functions on the entire interval (0, 1). For ℓ = 2, the closed form on (1/2, 1) is a
polynomial, although its extension via Corollary 2.6 to (0, 1/2) is not. For ℓ = 8, the closed form on

8Including weakly proper scoring rules in our optimization domain makes the analysis simpler. The optimal scoring rules
are in fact strictly proper.
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both (0, 1/2) and (1/2, 1) is a polynomial, although they are different. Interestingly, as ℓ → ∞, the
closed form converges pointwise to a single polynomial. Specifically, for these values of ℓ :

For ℓ = 2: On [ 1
2
, 1), we have

𝑔2,Opt (𝑥) = 𝜅2

∫ 𝑥

1
2

𝑡2/3𝑑𝑡 =
3

5
𝜅2

(

𝑥5/3 −
(
1

2

)5/3)

.

For ℓ = 8: On (0, 1
2
], we have

𝑔8,Opt (𝑥) = 𝜅8

∫ 𝑥

1
2

(1 − 𝑡)5/3𝑑𝑡 = 3

8
𝜅8

((
1

2

)8/3
− (1 − 𝑥)8/3

)

and on [ 1
2
, 1), we have

𝑔8,Opt (𝑥) = 𝜅8

∫ 𝑥

1
2

(𝑡2/3 − 𝑡5/3)𝑑𝑡 = 𝜅8

(
3

5

(

𝑥5/3 −
(
1

2

)5/3)

− 3

8

(

𝑥8/3 −
(
1

2

)8/3))

.

Finally, as ℓ → ∞: on the entire interval (0, 1), 𝑔ℓ,Opt pointwise converges to

lim
ℓ→∞

𝜅ℓ ·
∫ 𝑥

1
2

𝑡 (1 − 𝑡)2𝑑𝑡 = 320

3

(
1

4
𝑥4 − 2

3
𝑥3 + 1

2
𝑥2 − 11

192

)
=

5

9
(48𝑥4 − 128𝑥3 + 96𝑥2 − 11) .

We refer to this last rule as 𝑔∞,Opt. Intuitively, minimizing the expected value of error raised to a
power that approaches infinity punishes any error infinitely more than an even slightly smaller
error. Put otherwise, this metric judges a scoring rule by the maximum (over 𝑝 ∈ (0, 1)) of the
spread of the distribution of expert error. The scoring rule 𝑔∞,Opt has a very special property, which

is that the quantity 𝑥 (1−𝑥)
𝑅′′ (𝑥) =

𝑥 (1−𝑥)2
𝑔′∞,Opt

(𝑥) , which appears in the incentivization index, is a constant

regardless of 𝑥 . This means that, in the limit as 𝑐 → ∞, the distribution of the expert’s error is the
same regardless of 𝑝 . It makes intuitive sense that making the spread of the distribution of expert
error uniform over all 𝑝 also minimizes the maximum of these spreads, which explains why 𝑔∞,Opt

has this interesting property.
As some of these rules are not infinitely differentiable, a natural question to ask is: what infinitely

differentiable normalized function minimizes Indℓ? While (as we have shown by virtue of 𝑔ℓ,Opt
being the unique minimizer) achieving an incentivization index equal to Indℓ (𝑔ℓ,Opt) with an
infinitely differentiable scoring rule is impossible, it turns out that it is possible to get arbitrarily
close Ð and in fact it is possible to get arbitrarily close with polynomial scoring rules. The main
idea of the proof is to use the Weierstrass approximation theorem to approximate 𝑔ℓ,Opt with
polynomials. See Section 6 for a full proof.

5.2 Comparison of Incentivization Indices of Scoring Rules

We compare commonly studied scoring rules such as quadratic, logarithmic, and spherical, and
refer to their normalizations as 𝑔quad, 𝑔log, 𝑔sph, respectively. Additionally we include for comparison

the normalization 𝑔hs of the ℎ𝑠 scoring rule, defined as ℎ𝑠 (𝑥) = −
√︃

1−𝑥
𝑥
. This scoring rule was

prominently used in [1] to prove their minimax theorem for randomized algorithms.
Figure 1 states Indℓ (𝑔) for various scoring rules 𝑔 (the lower the better). Figure 1 lets us compare

the performance of various scoring rules by our metric for any particular value of ℓ . However, as
one can see, Indℓ decreases as ℓ increases. This makes sense, since Indℓ measures the expected ℓ-th
power of error. For this reason, if we wish to describe how a given scoring rule performs over
a range of values of ℓ , we need to normalize these values. We do so by taking the ℓ-th root and

Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

729





Below is a continuous version of Figure 2. The chart shows how the numbers above vary as ℓ
ranges from 1 to 200.

And below is a zoomed-in version where ℓ ranges from 1 to 10.

6 Almost-Optimal Incentivization Indices with Polynomial Respectful Scoring Rules

The main result of this section is the following theorem, stating that polynomial,9 respectful proper
scoring rules suffice to get arbitrarily close to the optimal incentivization index.

Theorem 6.1. For ℓ ≥ 1 and 𝜀 > 0, there exists a respectful polynomial normalized proper scoring

rule 𝑓 satisfying Indℓ (𝑓 ) ≤ Indℓ (𝑔ℓ,Opt) + 𝜀.

The proof of Theorem 6.1 uses ideas from the Weierstrass approximation theorem. However, the
Weierstrass approximation theorem gives a particular measure of łdistancež between two functions,
which does not translate to these functions having similar incentivization indices. So one challenge
of the proof is ensuring convergence of a sequence of polynomials to 𝑔ℓ,Opt in a measure related to

Indℓ . A second challenge is to ensure that all polynomials in this sequence are themselves proper,
respectful scoring rules. Like previous technical sections, we include a few concrete lemmas to give
a sense of our proof outline.
For example, one step in our proof is to characterize all analytic proper scoring rules (that is,

proper scoring rules that have a Taylor expansion which converges on their entire domain (0, 1)).
9To be clear, when we say a scoring rule 𝑓 ( ·) is polynomial, we mean simply that 𝑓 ( ·) is a polynomial function.
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A necessary condition to be analytic is to be infinitely differentiable, which rules of the form 𝑔ℓ,Opt
are not, for any fixed ℓ . We therefore seek to approximate such scoring rules with polynomial
scoring rules (which are analytic), which are also respectful and proper.

Theorem 6.2. Let 𝑓 : (0, 1) → R be analytic. Then 𝑓 is a proper scoring rule if and only if 𝑓 is

nonconstant, 𝑓 ′(𝑥) ≥ 0 everywhere, and

𝑓 (𝑥) = 𝑐0 +
∑︁

𝑘>0 odd

𝑐𝑘 (2𝑘 + 1 − 2𝑘𝑥)
(
𝑥 − 1

2

)𝑘

for some 𝑐0, 𝑐1, 𝑐3, 𝑐5, · · · ∈ R.

As an example to help parse Theorem 6.2, the quadratic scoring rule has 𝑐1 < 0, and 𝑐𝑖 = 0 for all
other 𝑖 . Using Theorem 6.2, we can conclude the following about (𝑅 𝑓 ) ′′ for any proper scoring rule
𝑓 :

Lemma 6.3. Let 𝑓 : (0, 1) → R be analytic. Then 𝑓 is a proper scoring rule if and only if (𝑅 𝑓 ) ′′ is
not uniformly zero, nonnegative everywhere, and can be written as

(𝑅 𝑓 ) ′′(𝑥) =
∑︁

𝑘≥0 even
𝑑𝑘

(
𝑥 − 1

2

)𝑘
.

Lemma 6.3 provides clean conditions on what functions (𝑅 𝑓 ) ′′ are safe to use in our sequence of
approximations, and our proof follows by following a Weierstrass approximation-type argument
while keeping track of these conditions. The rest of the details for the proof of Theorem 6.1 can be
found in Appendix G in the supplement.

7 Conclusion

We propose a simple model where an expert can expend costly effort to refine their prediction,
and study the effectiveness of different scoring rules in incentivizing the expert to form a precise
belief. Our first main result (Theorem 3.3) identifies the existence of a closed-form incentivization
index: scoring rules with a lower index incentivize the expert to be more accurate. Our second main
result (Theorem 4.1) identifies the unique optimal scoring rule with respect to this index. Section 5
then uses the incentivization index to compare common scoring rules (including our newly-found
optimal ones), and Section 6 shows that one can get arbitrarily close to the optimal incentivization
index with polynomial scoring rules.

Our model is mathematically simple to describe, and yet it captures realistic settings surprisingly
well (see Section 1 and Appendix A in the supplement). As such, there are many interesting
directions for future work. For example:

• Our work considers a globally-adaptive expert, and establishes that they behave nearly
identically to a locally-adaptive expert. What about a non-adaptive expert, who must decide
a priori how many flips to make before seeing their results?

• Our work considers a principal who wishes to minimize expected error. What if instead the
principal wishes to optimize other objectives? In particular, are there objectives that are
optimized by simpler rules (such as quadratic, logarithmic, etc.)?

• Our work considers optimal scoring rules for the incentivization index, and shows that
polynomial scoring rules approach the optimum. Do exceptionally simple scoring rules (such
as quadratic, logarithmic, etc.) guarantee a good approximation to the optimal incentivization
index for all ℓ?
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