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We study the problem of repeatedly auctioning off an item to one of 𝑘 bidders where: a) bidders have a

per-round individual rationality constraint, b) bidders may leave the mechanism at any point, and c) the

bidders’ valuations are adversarially chosen (the prior-free setting). Without these constraints, the auctioneer

can run a second-price auction to łsell the businessž and receive the second highest total value for the entire

stream of items. We show that under these constraints, the auctioneer can attain a constant fraction of the

łsell the businessž benchmark, but no more than 2/𝑒 of this benchmark.

In the course of doing so, we design mechanisms for a single bidder problem of independent interest: how

should you repeatedly sell an item to a (per-round IR) buyer with adversarial valuations if you know their

total value over all rounds is𝑉 but not how their value changes over time? We demonstrate a mechanism that

achieves revenue 𝑉 /𝑒 and show that this is tight.
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1 INTRODUCTION

Classical dynamic mechanism design traditionally assumes that the values of the participants are
generated stochastically: for example, drawn iid from some distribution every round, or generated
according to a simple stochastic process known to the mechanism designer. These assumptions are
often somewhat unrealistic; actual valuations drift over time and are subject to shocks in a way
which is hard to predict or model. A mechanism designer may hope for a dynamic mechanism
robust to these features of the problem.
The goal of this paper is to initiate the study of dynamic mechanism design in the presence

of adversarially chosen valuations (the prior-free setting). Specifically: there are 𝑘 bidders, and 𝑇
rounds. Bidder 𝑖 has value 𝑣𝑖,𝑡 for the round-𝑡 item, and bidders are additive across rounds. The
designer’s goal is to maximize their revenue.

It is of course impossible to achieve any approximation guarantee with respect to the łfirst-bestž
benchmark of

∑

𝑡 max𝑖 {𝑣𝑖,𝑡 } (perhaps all but one bidder has a constant value of 0 Ð there is no
way to guess the correct price to set for the remaining bidder). This challenge also arises in the
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vast literature on prior-free auctions in other domains, and care is required to pick an insightful
łsecond-bestž benchmark [15, 16, 19, 22ś24].

Let us quickly consider two potential benchmarks. First, one might target the second-best
per-round: Rev𝑆𝑃𝐴 :=

∑

𝑡 Second-Highest𝑖 {𝑣𝑖,𝑡 }. There is also a simple, dominant-strategy truth-
ful auction which achieves Rev𝑆𝑃𝐴: simply auction each item via a second-price auction. This
benchmark, however, may be infinitely far from optimal if for each item there is a unique bid-
der with non-zero value. On the other extreme, one might target the aggregate second-best:
Rev𝑆𝑇𝐵 := Second-Highest𝑖 {

∑

𝑡 𝑣𝑖,𝑡 }. There is also a simple, dominant-strategy truthful auction
which achieves Rev𝑆𝑇𝐵 : simply łsell the businessž and auction the entire stream of items at the
very beginning.

Limited Liability and Per-Round Individual Rationality. In a static setting, Rev𝑆𝑃𝐴 corre-
sponds to selling the items separately (using a second-price auction), and Rev𝑆𝑇𝐵 corresponds to
bundling the items together (for a second-price auction). Both mechanisms are simple to implement
in the static setting, and in fact variants of (the better of) these are known to yield good approx-
imation guarantees in static settings [4, 11, 12, 14, 32]. In a dynamic setting, however, bundling
all time slots together requires the bidder to pay a large amount up front and trust that seller will
honor their promise to follow the protocol in the rounds to come. For this reason, much literature
on dynamic mechanism design studies what is possible under per-round łlimited liabilityž or
łindividual rationalityž constraints on the buyer, where they never pay more than their value per
round [1, 2, 5, 28ś31]. Recalling that the benchmark Rev𝑆𝑇𝐵 can be achieved in the static setting
(or the dynamic setting without limited liability), the main question we ask is:

What approximation to Rev𝑆𝑇𝐵 can be guaranteed by a dominant-strategy truthful mech-

anism in the dynamic setting with limited liability?

Observe further that any positive resolution to the above question will also imply an approxima-
tion guarantee to max{Rev𝑆𝑇𝐵,Rev𝑆𝑃𝐴}, by simply flipping a fair coin to run either the designed
mechanism or a per-round second-price auction (which already satisfies limited liability). In other
words, the Rev𝑆𝑇𝐵 benchmark is key to understanding the revenue lost in prior-free settings specif-
ically due to limited liability constraints (rather than other sources which harm revenue already in
the static setting).

1.1 Main results and techniques

We design a dominant-strategy truthful, limited-liability mechanism which achieves a constant-
factor approximation to Rev𝑆𝑇𝐵 . We also establish that it is impossible to achieve an arbitrarily close
approximation to Rev𝑆𝑇𝐵 , let alone match it. Below are informal statements of our main results,
along with pointers to the formal statements.

Theorem 1 (Informal Restatement of Theorem 12). There exists a mechanism (for two bidders)

which guarantees revenue at least 1
2𝑒
Rev𝑆𝑇𝐵 −𝑂 (1).

It is also worth noting that our mechanism does not require the bidders to know their individual
per round values ahead of time, but just their average value over all 𝑇 rounds. Still, the mechanism
is dominant-strategy truthful even if they have full knowledge of the future. For 𝑘 bidders, a simple
generalization of our 2-bidder mechanism leads to a competitive ratio of 1/(𝑘𝑒). We also show how
to improve this to a constant competitive ratio independent of 𝑘 , although the solution concept for
our auction is implementation in undominated strategies (that is, it guarantees an approximation
guarantee of 𝛼 as long as every bidder plays an undominated strategy).
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Theorem 2 (Informal Restatement of Theorem 14). There exists a mechanism for 𝑘 bidders

which guarantees revenue at least 𝛼 · Rev𝑆𝑇𝐵 −𝑂 (𝑘) for some constant 𝛼 (independent of 𝑘).

Finally, we show it is impossible to achieve revenue arbitrarily close to Rev𝑆𝑇𝐵 , even when there
are only two bidders.

Theorem 3 (Informal Restatement of Theorem 10). For any 𝛼 > 2/𝑒 , there is no mechanism

(for two bidders) which always guarantees revenue at least 𝛼 · Rev𝑆𝑇𝐵 −𝑂 (1).

Since the 𝑘 bidder game contains the 2 bidder game as a subcase, it is still the case that no
mechanism for 𝑘 bidders can achieve an approximation ratio better than 2/𝑒 (Corollary 11).

Technical Overview: A Related Single-Bidder Problem. The main ingredient in our above
results is actually a thorough understanding of a related single-buyer problem. Specifically, consider
exactly the same setup as our model, except there is only a single bidder and the designer knows
𝑉 =

∑

𝑡 𝑣𝑡 (or equivalent, that the designer knows 𝜈 := 𝑉 /𝑇 ). In the static setting, there is a trivial
optimal solution (sell the bundle of all items for 𝑉 , which is the first-best). Here we seek to answer
the same questions as above: what fraction of this benchmark can the seller guarantee subject to
limited liability?

Note that the prior-free nature of the valuations is an essential detail here. If the valuations were
generated stochastically from a time-invariant distribution, the seller could run mechanisms of
the form łcontinue giving the item to the buyer as long as the buyer has paid at least (1 − 𝜀)𝜈 on
average each round so farž and extract almost the entire expected welfare. When valuations are
adversarial, such mechanisms are no longer possible ś it could be the case that the value of the
buyer is entirely back-loaded and is zero for the first half of the rounds. Nonetheless, we show that
the seller can still (asymptotically) attain a 1/𝑒 fraction of the total welfare 𝑉 , and that this is tight.

Theorem 4 (Informal Restatement of Theorems 6 and 8). There is a mechanism for the single

buyer game that achieves revenue 𝑉 /𝑒 −𝑂 (1). Moreover, this is tight: for any 𝛼 > 1/𝑒 , there is no

mechanism for the single buyer game that can guarantee revenue 𝛼𝑉 −𝑂 (1).

The mechanism we design for Theorem 6 is what we call a pay-to-play mechanism. Such mecha-
nisms are parameterized by an increasing function 𝜌 : [0, 1] → (0, 1] and work as follows: on round
𝑡 , the seller allocates the item to the buyer with probability 𝜌 (𝑋𝑡/𝑉 ), where 𝑋𝑡 is the total payment
the buyer has made to the seller by time 𝑡 . The buyer is free to make any payment they wish
each round Ð since 𝜌 is increasing, they are incentivized to pay early to increase their allocation
probability later (and in particular, for whatever total payment they choose to make, they are
incentivized to make that payment as soon as possible).
We show that the optimal such 𝑓 (specifically, 𝑓 (𝑤) = min(𝑒𝑒𝑤−1, 1)) leads to a pay-to-play

mechanism with revenue 𝑉 /𝑒 . Our impossibility result shows that this mechanism is optimal, and
uses much of the same machinery. One highlight of this approach is that we reparameterize any
truthful mechanism in terms of the allocation/payment as a function of the maximum possible

welfare the buyer could have had so far (rather than as a function of the round 𝑡 ). Under this repa-
rameterization, we find a pay-to-play interpretation of any mechanism, meaning that the optimal
pay-to-play mechanism is in fact optimal among all mechanisms.

Technical Overview: Back to Multiple Bidders. We apply the following technique to extend
these ideas to 2 (and 𝑘 > 2) bidders. We begin by soliciting each bidder’s total value (e.g. 𝑉𝑎 =

∑

𝑎𝑡
and 𝑉𝑏 =

∑

𝑏𝑡 ). We then split each item in half and run two copies of the single bidder mechanism:
for Alice, we run the single bidder mechanism on one of the halves, assuming her total value for
these halves is𝑉𝑏/2, and for Bob we run the single bidder mechanism on the other halves, assuming
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his total value for these halves is 𝑉𝑎/2. If 𝑉𝑎 > 𝑉𝑏 , then 𝑉𝑏/2 is an underestimate for Alice’s value,
and our single bidder mechanism guarantees we receive revenue at least 𝑉𝑏/2𝑒 , or equivalently,
Rev𝑆𝑇𝐵/2𝑒 .
This simple idea extends to 𝑘 bidders, but causes the approximation guarantee to degrade to

1/(𝑘𝑒). The main issue with this approach is that we are allocating 1/𝑘 of the items to each bidder,
even to bidders that cannot afford them. To fix this, we introduce an element of competition to
this mechanism in the form of a first-price auction. Roughly speaking, each round 𝑡 we allow each
bidder 𝑖 to submit a bid 𝑏𝑖,𝑡 in an attempt to increase the rate at which they are allocated items.
The bidder with the highest bid pays that amount, which in turn increases the rate at which they
are allocated items (this description elides several details which can be found in Section 4.2). This
mechanism is not truthful, but we show that as long as all bidders play undominated strategies, this
mechanism achieves an 𝛼-approximation to Rev𝑆𝑇𝐵 for a constant 𝛼 independent of 𝑘 .

1.2 Related Work

The problem of selling a stream of items to one of several bidders is a central problem in the field
of dynamic mechanism design (for a general introduction to the area, we recommend the survey
[8]). Our treatment of this problem imposes two important constraints: the assumption of lack
of long-term trust between the auctioneer and seller, and the adversarial prior-free nature of the
bidders’ valuations.

Lack of long-term commitment. There is a major recent line of work which studies the design
of dynamic mechanisms satisfying ex-post IR constraints (or łlimited liabilityž) [1, 2, 5, 28ś31].
In this language, our constraint that bidders never pay more than their value in a given round
is a łper round ex-post IRž constraint. Most of these papers study a specific class of ex-post IR
mechanisms called bank account mechanisms, where the seller maintains a virtual łbank accountž
for each bidder, and allows bidders to draw from and pay to this bank account so that they end
up paying (for example) their average value per round. Such mechanisms work well and can be
shown to be optimal for stochastic valuations (where the total liability of the seller ś the size of
the bank account ś can be bounded sublinearly in 𝑇 ) but fail for adversarial valuations (where the
liability of the seller can grow linearly in 𝑇 , e.g. for a bidder whose values are back-loaded).

Prior-free valuations. There is a large spectrum of ways to model the valuations of the buyer, from
weakest (being independently drawn each round from a time-invariant distribution) to strongest
(the prior-free setting). The majority of the work mentioned above studies settings where each
bidder’s value is drawn iid each round from some distribution known to the seller (or occasionally
more generally, the value for round 𝑡 is drawn from a distribution specific to round 𝑡 but also
known to the seller in advance). One notable exception is [30] (and the follow-up work [17]), which
studies łnon-clairvoyant dynamic mechanism designž for selling to a single buyer, where the buyer
has a different value distribution for each round but the seller is only aware of the distribution
for the current round. Another is [27], which studies the competition complexity of auctions in a
non-clairvoyant setting.
One related line of work is the line of work on dynamic mechanisms for buyers with evolving

values [3, 6, 7, 9, 13, 26]. In these works, the value of the buyer evolves according to some stochastic
process over time (perhaps depending on the action of the seller or buyer). Again, the standard
assumption here is that the seller has detailed knowledge of this stochastic process, and as such
tend not to apply to adversarial valuations.
To the best of our knowledge, very few papers have studied dynamic mechanism design in

a completely adversarial setting. The most closely related such work is [18], which studies the
problem of selling to a buyer with adversarial valuations, but makes the additional assumption that
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the buyer is running a low-regret learning algorithm. In contrast to this, prior-free static mechanism
design has been extensively studied [15, 16, 19, 21ś24]. See also Chapter 7 of [25].

Contract Theory. The primary benchmark we compare against is the revenue obtained when
łselling the businessž; i.e. selling the entire stream of items at the beginning of the protocol through
a second-price auction. A similar strategy of łselling the firmž is a common concept in the contract
theory literature. As in our setting, for the classical principal-agent problem with hidden actions,
łselling the firmž is the optimal revenue strategy for the principal in the absence of limited liability.
[20] studies the approximation ratio between the optimal contract and this first-best benchmark in
this classical problem.

Indeed, our setting can be viewed as a peculiar multi-agent dynamic contract problem, where the
principal is the seller and the buyers are agents (with actions corresponding to possible payments
to the principal). A similar approach is taken in [10], which examines this model (in the stochastic
values setting) when the principal uses a low-regret learning algorithm to allocate items.

2 MODEL

2.1 Multiple bidder game

We consider a setting with 𝑘 ≥ 2 bidders and one seller. There are 𝑇 rounds, and in each round
the seller has one item for sale. Bidder 𝑖 has value 𝑣𝑖,𝑡 ∈ [0, 1] for the item sold at time 𝑡 . Unlike
in much prior work, where 𝑣𝑖,𝑡 are generated stochastically from some known prior, we consider
the case where all 𝑣𝑖,𝑡 are adversarially set at the beginning of the game. We assume the seller has
no knowledge of the valuations 𝑣𝑖,𝑡 . We further assume that each bidder 𝑖 has full knowledge of
their own valuations 𝑣𝑖,𝑡 over all times 𝑡 . This assumption exists largely so that strategic play is
well-defined for each bidder; in many of the mechanisms we present, we will see that it is possible
to relax this assumption to bidders who only know their average valuation per round.
During each round 𝑡 , the seller and the 𝑘 bidders are allowed to participate in arbitrary com-

munication. At the end of round 𝑡 , the seller allocates the item among the 𝑘 bidders by giving
some fraction1 𝑟𝑖,𝑡 of the item to bidder 𝑖 (with

∑

𝑖 𝑟𝑖,𝑡 ≤ 1; in particular, the seller does not need to
allocate all of the item). In return for this portion of the item, bidder 𝑖 pays the seller some price
𝑝 ∈ [0, 𝑟𝑖,𝑡𝑣𝑖,𝑡 ]. Note that we do not include any mechanism for the seller to force the bidder to
commit to paying a specific price 𝑝 for the item in a given round; but as this is a repeated game,
informal commitments of the form łif bidder 𝑖 does not pay the agreed upon price in a round, the
seller will never allocate any item to bidder 𝑖 ever againž are possible 2.

Note also that we assume the bidder never pays the seller more than their value for the item in a
given round. This can be seen as an łex post individual rationalityž or łlimited liabilityž assumption,
and rules out protocols where the seller simply sells the entire stream of items at the beginning
of the protocol to the highest bidder. Nonetheless, we will see that our mechanisms have good
performance even when some or all of the bidders are allowed to break this constraint and pay
more than their value.
Finally, at the end of the game, we allow a single bonus round where the seller is allowed

to reimburse each bidder an amount of the seller’s choosing. These reimbursements provide a
convenient way to incentivize bidders to participate for all 𝑇 rounds (otherwise e.g. there is never

1For mathematical convenience, we assume the seller runs a deterministic strategy with the ability to fractionally allocate

the item. We believe our results should carry over (with perhaps some loss in terms sublinear in𝑇 ) to randomized settings

where the seller awards the entire item to bidder 𝑖 with probability 𝑟𝑖,𝑡 .
2In particular, all our results extend to an alternate model where the seller offers bidder 𝑖 a price 𝑝 for some fraction of the

item, and the buyer either can either accept the price and take the item or reject the price and leave the item.
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any incentive to pay the seller anything in round 𝑇 ), but are otherwise unimportant and are small
(on the order of 𝑂 (1)) in most of the mechanisms we present3.

Strategies and solution concepts. We are primarily interested in mechanisms with dominant
strategy equilibria for the bidders. Specifically, let 𝑠𝑖 denote a deterministic strategy for bidder 𝑖 (i.e.,
a function from states of the mechanism and the valuations 𝑣𝑖,𝑡 to allowed actions of bidder 𝑖 at
that state), and let𝑈𝑖 (𝑠𝑖 , 𝑠−𝑖 ) denote the expected utility received by bidder 𝑖 (where the expectation
is over potential randomness in the seller’s actions) when 𝑖 plays according to 𝑠𝑖 and all other
bidders play according to 𝑠−𝑖 . Then the tuple (𝑠∗1, 𝑠

∗
2, . . . , 𝑠

∗
𝑘
) is a dominant strategy equilibrium for

this mechanism if for all 𝑠𝑖 and 𝑠−𝑖 ,

𝑈𝑖 (𝑠
∗
𝑖 , 𝑠−𝑖 ) ≥ 𝑈𝑖 (𝑠𝑖 , 𝑠−𝑖 ).

Any mechanism with a dominant strategy equilibrium can be transformed into a truthful direct-
revelation mechanism via the revelation principle, where the bidders report their private types (their
valuations 𝑣𝑖,𝑡 ) to the seller at the beginning of the protocol and the seller uses this to simulate the
bidders’ dominant strategies 𝑠∗𝑖 on behalf of the bidders. In our setting, we specify a direct-revelation
mechanism as follows.

A direct-revelation mechanism for the multiple bidder game specifies the following information
for each type profile v = {𝑣𝑖,𝑡 }𝑖∈[𝑘 ],𝑡 ∈[𝑇 ] of all 𝑘 bidders:

• For each bidder 𝑖 , the fraction 𝑟v,𝑖,𝑡 of the item allocated to bidder 𝑖 at time 𝑡 . (These must
satisfy

∑

𝑖 𝑟v,𝑖,𝑡 ≤ 1 for any v and 𝑡 ).
• For each bidder 𝑖 , the price 𝑥v,𝑖,𝑡 the seller expects bidder 𝑖 to pay on round 𝑡 .
• For each bidder 𝑖 , the reimbursement 𝑔v,𝑖 paid to bidder 𝑖 at the end of the game.

To run a direct-revelation mechanism, the seller proceeds as follows:

(1) The seller begins by soliciting the type profile v from all of the bidders. The seller computes
𝑟v,𝑖,𝑡 , 𝑝v,𝑖,𝑡 , and 𝑔v,𝑖 , and distributes this information to the bidders.

(2) On round 𝑡 , the seller allocates to bidder 𝑖 a fraction 𝑟v,𝑖,𝑡 of the item (note that there can
be some fraction of the item that goes unallocated), unless bidder 𝑖 has been eliminated (in
which case bidder 𝑖 receives nothing).

(3) This bidder responds by paying the seller some price 𝑝 . If 𝑝 ≠ 𝑥v,𝑖,𝑡 , then the seller eliminates
bidder 𝑖 from further consideration (i.e. will never allocate to or reimburse bidder 𝑖 again).

(4) Finally, at the end of the game, the seller gives a reimbursement of 𝑔v,𝑖 to each uneliminated
bidder 𝑖 .

In order for a direct-revelation mechanism to be truthful, these allocations, prices, and reimburse-
ments must satisfy the following two constraints:

• (Limited liability) For any v, 𝑖 , and 𝑡 , we must have 𝑥v,𝑖,𝑡 ≤ 𝑟v,𝑖,𝑡𝑣𝑖,𝑡 (i.e., a limited-liability
bidder reporting truthfully must be able to pay for the item if they win in this round).

• (Incentive compatibility) Fix a type profile v and a bidder 𝑖 , and let v′ be the profile where
bidder 𝑖’s type 𝑣𝑖,𝑡 is replaced by a new type 𝑣 ′𝑖,𝑡 . Then, if it is the case that

𝑥v′,𝑖,𝑡 ≤ 𝑟v′,𝑖,𝑡𝑣𝑖,𝑡

for all 𝑡 ≤ 𝜏 (i.e. our bidder with limited liability can pretend to have type v′ for 𝜏 rounds) we
must have that, for any 𝜏 ≤ 𝑇 ,

3One notable exception is in Section 4.2, where we first demonstrate a mechanism for the 𝑘 bidder case which uses

reimbursements on the order of𝑂 (𝑇 ) . We subsequently show how to reduce the size of these reimbursements to𝑂 (1) , but

some may find the mechanism with large reimbursements more natural.
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(

𝑇
∑

𝑡=1

𝑟v,𝑖,𝑡𝑣𝑖,𝑡 − 𝑥v,𝑖,𝑡

)

+ 𝑔v,𝑖 ≥

(

𝜏
∑

𝑡=1

𝑟v′,𝑖,𝑡𝑣𝑖,𝑡 − 𝑥v′,𝑖,𝑡

)

+ 𝑥v′,𝑖,𝜏 .

That is, a bidder cannot increase their expected utility by misreporting their type and then
following the resulting mechanism for 𝜏 steps before defecting. The additional term on the
RHS represents the fact that the bidder does not need to pay the payment 𝑥v′,𝑖,𝜏 if they defect
on round 𝜏 . Note that both 𝑥v′,𝑖,𝜏 and 𝑔v,𝑖 will typically be 𝑂 (1), in comparison to the two
sums which will typically be Θ(𝑇 ).

Revenue and benchmarks. Wewish to design truthful mechanismswith high revenue: the total sum
of payments paid to the seller, minus reimbursements. For a truthful direct-revelation mechanism
and bidders with type profile v, this can be written as

Rev(v) =

𝑘
∑

𝑖=1

𝑇
∑

𝑡=1

𝑥v,𝑖,𝑡 −

𝑘
∑

𝑖=1

𝑔v,𝑖 .

We will compare the revenue the seller achieves to a benchmark function of v. In this paper, we
primarily consider the benchmark of the revenue obtained when auctioning off all 𝑇 items at once
at the beginning of the game, i.e. łselling the businessž. This is not possible with limited-liability
bidders, but with unconstrained bidders this strategy obtains a revenue equal to

Rev𝑆𝑇𝐵 (v) = max
(2)

({

𝑇
∑

𝑡=1

𝑣𝑖,𝑡

�

�

�

�

�

𝑖 ∈ [𝑘]

})

,

where we write max(2) (𝑆) to denote the second largest element in 𝑆 . We say that a mechanism
(more specifically, a family of mechanisms, one for each𝑇 ) is 𝛼-competitive with selling the business
if for all 𝑇 and type profiles v,

Rev(v) ≥ 𝛼Rev𝑆𝑇𝐵 (v) −𝑂𝑘 (1).

(Here we use the notation 𝑂𝑘 (1) to denote a constant possibly depending on 𝑘 but not on 𝑇

or any other parameter). It should be noted that Rev𝑆𝑇𝐵 is not the łoptimalž policy for the seller
when bidders are unconstrained, merely a natural choice. In fact, for any type profile v, there is a
mechanism that achieves revenue equal to Rev(v) =

∑

𝑡 max({𝑣𝑖,𝑡 |𝑖 ∈ [𝑘]}) on this specific type
profile (even if bidders are limited-liability), namely the mechanism which hopes that the type
profile is exactly v and posts prices accordingly.

We will write v𝑖 to refer to the specific type of player 𝑖 (in the type profile v), and |v𝑖 | =
∑𝑇

𝑡=1 𝑣𝑖,𝑡
to denote the total value of type v𝑖 . For instance, using this notation, we can write Rev𝑆𝑇𝐵 (v) =
max(2) ({|v𝑖 | | 𝑖 ∈ [𝑘]}).

3 OPTIMAL MECHANISMS FOR SELLING TO A SINGLE BUYER

In the course of designing mechanisms and proving lower bounds for the multiple bidder game
described in the previous section, it will be useful to think about a different game between a single
seller and a single buyer. This game is identical to the 𝑘 = 1 variant of the multiple buyer game
described in the previous section, with the following modifications:

• The seller knows (at the beginning of the protocol) the total value 𝑉 of the buyer over all 𝑇
rounds.
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• Instead of trying to compete with the benchmark of selling the business (the sum of the
second-largest value per round), the seller wishes to be 𝛼-competitive with respect to the
total value 𝑉 ; i.e., the seller’s mechanism should satisfy

Rev(v) ≥ 𝛼𝑉 −𝑂 (1)

for all 𝑇 and types v.

We can define truthful, direct-revelation mechanisms as before. Since there is only a single buyer
in this case, we drop all subscripts 𝑖 where relevant; e.g. a direct-revelation mechanism in the single
buyer game is parametrized by sequences 𝑟v,𝑡 , 𝑥v,𝑡 , and 𝑔v,𝑡 .

In this section, we will show that there exists a (1/𝑒)-competitive mechanism for the seller in the
single buyer game. Moreover, we will show that this competitive ratio is optimal; no mechanism
for the single buyer game can obtain more than a 1/𝑒 fraction of the welfare.

Our main technique for the both the upper and lower bound is understanding how the rate and
allocation functions of the mechanism at time 𝑡 depend on the total amount of revenue received
from the buyer so far. Our (1/𝑒)-competitive mechanism will take the form of what we refer to as
a łpay-to-playž mechanism, where the fraction of the item you are allocated at time 𝑡 is equal to
some fixed function of the total amount you have paid to the seller so far.

3.1 Continuous-time models

The analysis of the single buyer game is more clear in a continuous-time setting, where instead of
being discretized into 𝑇 rounds, the buyer’s value (and the various parameters of his mechanism)
are described by well-behaved functions over a continuous interval of time. We formalize this
continuous-time model here. The analogous upper and lower bounds in the discrete-time model
are formulated and proved in the appendices of the online supplemental material4 ś they follow
essentially the same logic, but are slightly messier.
In this continuous variant, our buyer has a Riemann-integrable value function 𝑣 (𝑡) : [0, 1] →

[0,∞) representing their value at time 𝑡 . If the buyer has total value 𝑉 (known to the seller), this

function 𝑣 (𝑡) should satisfy
∫ 1

0
𝑣 (𝑡)𝑑𝑡 = 𝑉 .

A direct-revelation mechanism in this setting specifies for each type 𝑣 (𝑡) a continuous rate
function 𝑟𝑣 (𝑡) : [0, 1] → [0, 1] (the fraction of the infinitesimal item the buyer receives at time
𝑡 ) and a continuous payment function 𝑥𝑣 (𝑡) : [0, 1] → [0,∞). In order for this direct-revelation
mechanism to be truthful, it must satisfy the following analogues of the corresponding constraints
in Section 2.1:

• For all types 𝑣 and 𝑡 ∈ [0, 1],

𝑟𝑣 (𝑡)𝑣 (𝑡) − 𝑥𝑣 (𝑡) ≥ 0.

• For any types 𝑣, 𝑣 ′ and 𝜏 ∈ [0, 1] that satisfy

𝑟𝑣′ (𝑡)𝑣 (𝑡) − 𝑥𝑣′ (𝑡) ≥ 0 ∀ 0 ≤ 𝑡 ≤ 𝜏 (1)

(i.e., it is possible for 𝑣 under limited liability constraints to imitate type 𝑣 ′ up until time 𝜏 ), it
is the case that

∫ 1

0

(𝑟𝑣 (𝑡)𝑣 (𝑡) − 𝑥𝑣 (𝑡))𝑑𝑡 ≥

∫ 𝜏

0

(𝑟𝑣′ (𝑡)𝑣 (𝑡) − 𝑥𝑣′ (𝑡))𝑑𝑡 . (2)

4Also available at https://arxiv.org/abs/2103.01868
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Note that for continuous mechanisms, we don’t need to allow for a final reimbursement; this
reflects the fact that only an infinitesimal amount of the product is up for grabs at any point, so we
can guarantee a buyer cannot gain positive utility by defecting.

The total revenue this mechanism achieves on type 𝑣 is given by
∫ 1

0
𝑥𝑣 (𝑡)𝑑𝑡 ; we denote this

quantity as 𝑋𝑣 . Our goal is to maximize our worst-case revenue over all types, 𝑀 = inf𝑣 𝑋𝑣 ; if a
mechanism attains a specific𝑀 , we say it is𝑀-competitive.

Reparametrization by welfare. Define 𝑤𝑣 (𝑡) =
∫ 𝑡

0
𝑟𝑣 (𝑠)𝑣 (𝑠)𝑑𝑠 to be the total utility received by

the bidder up until time 𝑡 , not including payments (we call this quantity the welfare of the bidder
up until time 𝑡 ). Note that for 𝑡 ∈ [0, 1],𝑤𝑣 (𝑡) is monotone increasing from 0 to𝑊𝑣 = 𝑤𝑣 (1).

This allows us to reparametrize our existing functions (value, rate, payment) in terms of welfare.
For example, we (abusing notation) let 𝑟𝑣 (𝑤) = 𝑟𝑣 (𝑤

−1
𝑣 (𝑤)) to be the rate at the time when bidder

𝑣 has received welfare𝑤 . We similarly define 𝑣 (𝑤) and 𝑥𝑣 (𝑤).

3.2 A (1/𝑒)-competitive mechanism

In this section we demonstrate a mechanism for the single buyer game which is (1/𝑒)-competitive.
As mentioned, this mechanism falls into the class of mechanisms that we call pay-to-play mecha-

nisms.
A pay-to-play mechanism is specified by a continuous, weakly-increasing function 𝜌 (𝑋 ) :

[0, 1] → (0, 1], denoting the fraction of the item we allocate to the buyer if the buyer has given
the seller a fraction 𝑋 of his welfare so far. The buyer is free to pay however much they wish to
at time 𝑡 , under the constraint that a limited-liability buyer cannot pay more than 𝜌 (𝑋 ) of their
value in any round. We claim that for any pay-to-play mechanism, the dominant strategy for any
limited-liability buyer (regardless of their type 𝑣) is to pay as much as they can every round until
they have paid an 𝑋𝑜𝑝𝑡 fraction (for some value 𝑋𝑜𝑝𝑡 depending only on 𝜌) of their total value 𝑉 ,
and then never pay again.
More formally, we have the following lemma.

Lemma 5. Let 𝜌 (𝑋 ) : [0, 1] → (0, 1] be a weakly-increasing continuous function and let 𝑋𝑜𝑝𝑡 be a

value of 𝑥 ∈ [0, 1] which maximizes the expression

𝜌 (𝑥)

(

1 −

∫ 𝑥

0

𝑑𝑥 ′

𝜌 (𝑥 ′)

)

.

Consider the pay-to-play mechanism defined by 𝜌 (𝑋 ). Fix a type 𝑣 with total value 𝑉 . Then there

exists a dominant strategy for the buyer with type 𝑣 where they pay at least 𝑋𝑜𝑝𝑡𝑉 to the seller.

Moreover, if 𝑋𝑜𝑝𝑡 is a strict maximum, then this property holds for any dominant strategy.

Proof. Begin by fixing any dominant strategy for the buyer 𝑥𝑣 (𝑡) (since there is only one player,

this is just any strategy which optimizes the buyer’s utility). We first note that if
∫ 1

𝑡
𝑥𝑣 (𝑡)𝑑𝑡 > 0 (the

buyer pays some amount to the seller after time 𝑡 ), then
∫ 𝑡

0
𝑥v (𝑡)𝑑𝑡 =

∫ 𝑡

0
𝑟𝑣 (𝑡)𝑣 (𝑡)𝑑𝑡 = 𝑤𝑣 (𝑡) (the

buyer passes along all reward at times 𝑠 < 𝑡 ). In other words, the buyer’s payments are front-loaded;
i.e. any dominant strategy must pay as much as possible until it passes some threshold, then stop
paying entirely. To see this, it suffices to note that since 𝜌 (𝑋 ) is an increasing function of𝑋 , moving
later payments earlier increases the value of all future rewards and hence is strictly optimal.
Any dominant strategy for the buyer can therefore be characterized by the total amount the

buyer gives to the seller. We will show there is one dominant strategy where they give at least
𝑋𝑜𝑝𝑡𝑉 . Assume that the buyer gives a total of 𝑥𝑉 , for some 𝑥 ∈ [0, 1]. If the buyer pays the seller
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until time 𝜏 , then 𝜏 must satisfy
∫ 𝜏

0
𝑥𝑣 (𝑡)𝑑𝑡 = 𝑥𝑉 . But from the above argument, we know that

∫ 𝜏

0
𝑥𝑣 (𝑡)𝑑𝑡 = 𝑤𝑣 (𝜏), so this means 𝜏 = 𝑤−1

𝑣 (𝑥𝑉 ).

Now, note that the eventual utility of the buyer is 𝜌 (𝑥) (𝑉 −
∫ 𝜏

0
𝑣 (𝑡)𝑑𝑡) (the buyer gets no net

utility from the item until time 𝜏 , and from then on they get a constant fraction 𝜌 (𝑥) of the remainder
of the item).

Recall that 𝑤𝑣 (𝑡) =
∫ 𝑡

0
𝑟𝑣 (𝑠)𝑣 (𝑠)𝑑𝑠 , so

𝑑𝑤𝑣

𝑑𝑡
= 𝑟𝑣 (𝑡)𝑣 (𝑡). This lets us reparametrize the integral

∫ 𝜏

0
𝑣 (𝑡)𝑑𝑡 in terms of welfare via

∫ 𝜏

0

𝑣 (𝑡)𝑑𝑡 =

∫ 𝑤𝑣 (𝜏)

0

𝑣 (𝑡) ·
1

𝑟𝑣 (𝑡)𝑣 (𝑡)
𝑑𝑤

=

∫ 𝑥𝑉

0

𝑑𝑤

𝑟𝑣 (𝑤)

=

∫ 𝑥𝑉

0

𝑑𝑤

𝜌 (𝑤/𝑉 )

= 𝑉

∫ 𝑥

0

𝑑𝑤 ′

𝜌 (𝑤 ′)
.

In the second-to-last equality, we have used the fact that while the buyer is passing along their
full welfare to the seller, 𝑟𝑣 (𝑤) = 𝜌 (𝑤/𝑉 ). It follows that the net utility of the buyer is equal to

𝑉 𝜌 (𝑥)

(

1 −

∫ 𝑥

0

𝑑𝑤

𝜌 (𝑤)

)

.

Since 𝑥 was chosen to maximize this expression, this is the maximal possible utility possible for
the buyer and hence this is a dominant strategy. If 𝑥 is a strict maximizer, any dominant strategy
must pay a total of 𝑥𝑉 to the seller (or it will be dominated by this strategy). □

With Lemma 5 in hand, we can exhibit our (1/𝑒)-competitive mechanism.

Theorem 6. There exists a mechanism for the seller which obtains 𝑉 /𝑒 total revenue.

Proof. Consider the pay-to-play mechanism defined by the function 𝜌 (𝑤), where

𝜌 (𝑤) =

{

𝑒𝑒𝑤−1 if𝑤 ∈ [0, 1/𝑒]

1 if𝑤 ∈ [1/𝑒, 1]

Note that for 𝑥 ≤ 1/𝑒 , we have that

𝜌 (𝑤)

(

1 −

∫ 𝑥

0

𝑑𝑥 ′

𝜌 (𝑥 ′)

)

= 𝑒𝑒𝑥−1
(

1 −

∫ 𝑥 ′

0

𝑒−𝑒𝑥
′+1𝑑𝑥 ′

)

= 𝑒𝑒𝑥−1𝑒−𝑒𝑥

= 𝑒−1.

For𝑥 > 1/𝑒 , this expression is decreasing (since 𝜌 (𝑥) is constant for𝑥 ∈ [1/𝑒, 1], but
∫ 1

0
(1/𝜌 (𝑥 ′))𝑑𝑥 ′

is increasing). It follows that 𝑋𝑜𝑝𝑡 = 1/𝑒 is a value of 𝑥 which maximizes utility. By Lemma 5, it
follows that a pay-to-play mechanism with this choice of 𝜌 results in the seller receiving 𝑉 /𝑒 total
revenue, as desired. □
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Remark 1. Note that for the 𝜌 in Theorem 6, the expression in Lemma 5 is only weakly maximized at
𝑋𝑜𝑝𝑡 = 1/𝑒 (and in fact attains this maximum for all 𝑋 ∈ [0, 1/𝑒]). It is possible to perturb 𝜌 slightly
so that the expression is strictly maximized at some 𝑋𝑜𝑝𝑡 ≥ 1/𝑒 − 𝜀 for some arbitrarily small 𝜀, thus
satisfying the stronger conditions of Lemma 5. One option is to choose 𝜌 (𝑤) = 𝜌 (min(𝑤/(1−𝜀), 1)).
This can be thought of as allocating the item via the original pay-to-play mechanism but as if the
buyer actually had value (1 − 𝜀)𝑉 (to see why this works, see Remark 2). Alternatively, it suffices
to give any positive reimbursement at the end of the game contingent on the buyer paying at least
𝑉 /𝑒 .

Remark 2. The above analysis assumes that the total value of the buyer is exactly 𝑉 , but in fact
works as long as 𝑉 is any lower bound on the total value of the buyer (that is, it still guarantees a
revenue of at least 𝑉 /𝑒). Indeed, if the buyer’s true value is 𝑉 ′ ≥ 𝑉 , then by stopping at a payment
of 𝑥𝑉 they receive a net utility of

𝜌 (𝑥)

(

𝑉 ′ −𝑉

∫ 𝑥

0

𝑑𝑤

𝜌 (𝑤)

)

.

For the 𝜌 in Theorem 6, this expression is strictly increasing for 𝑥 ∈ [0, 1/𝑒] (in particular, it
equals (𝑉 ′ −𝑉 )𝜌 (𝑥) + 𝑒−1𝑉 ) and strictly decreasing for 𝑥 > 1/𝑒 , so it is is strictly dominant for the
buyer to pay 𝑉 /𝑒 .

Remark 3. Likewise, although the above analysis assumes that the buyer is subject to limited liability
and does not pay more than his value, this too is not necessary. It is still true that a non-limited
liable agent will front-load payments as much as possible, and thus we will have that 𝜏 ≤ 𝑤−1

𝑣 (𝑥𝑉 )

(instead of in the limited-liable case, where they are equal). The rest of the proof proceeds as before.
For example, in the extreme case where the buyer can pay as much as they want at the very

beginning, they will simply pay 𝑉 /𝑒 at the very beginning and receive (1 − 1/𝑒)𝑉 total utility (in
contrast to if they were limited-liable, in which case they receive 𝑉 /𝑒 utility).

Remark 4. The discrete version of this mechanism is presented in the online appendix. As expected,
it works essentially equivalently to the continuous mechanism of Theorem 6. Two small differences
are: i) instead of guaranteeing a revenue of 𝑉 /𝑒 , it only guarantees a revenue of 𝑉 /𝑒 −𝑂 (1) (this
additive loss is inevitable due to the fact that in the discrete case we cannot guarantee a payment
in the very last round), and ii) it employs a small 𝑂 (1) reimbursement at the end of the protocol to
guarantee truthfulness.

3.3 Upper bound of 1/𝑒

In this section we show that no incentive compatible mechanism can extract more than 1/𝑒 of the
welfare of the bidder. Throughout this section, we will assume without loss of generality that the
total value 𝑉 of the bidder is normalized to 1.
We will need the following auxiliary lemma.

Lemma 7. Fix an 𝛼 ∈ [0, 1], and let 𝑓 : [0, 1] → [0, 1] be a function satisfying

(

1 −

∫ 𝑥

0

𝑑𝑥 ′

𝑓 (𝑥 ′)

)

𝑓 (𝑥) ≤ 𝛼

for all 𝑥 ∈ [0, 1]. Then

∫ 𝛼 log(1/𝛼)

0

𝑑𝑥

𝑓 (𝑥)
≥ 1 − 𝛼.
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Proof. Define 𝑔(𝑥) = 1/𝑓 (𝑥), so 𝑔(𝑥) satisfies

𝑔(𝑥) ≥
1

𝛼
−

1

𝛼

(∫ 𝑥

0

𝑔(𝑥 ′)𝑑𝑥 ′

)

Let 𝜆(𝑥) = 𝛼𝑒𝑥/𝛼 . Multiplying the above inequality by 𝜆(𝑥) and integrating it from 0 to𝛼 log(1/𝛼),
we get that

∫ 𝛼 log(1/𝛼)

0

𝜆(𝑥)𝑔(𝑥)𝑑𝑥 ≥
1

𝛼

∫ 𝛼 log(1/𝛼)

0

𝜆(𝑥)𝑑𝑥 −
1

𝛼

∫ 𝛼 log(1/𝛼)

0

𝜆(𝑥)

∫ 𝑥

0

𝑔(𝑥 ′)𝑑𝑥 ′𝑑𝑥

=
1

𝛼

∫ 𝛼 log(1/𝛼)

0

𝜆(𝑥)𝑑𝑥 −
1

𝛼

∫ 𝛼 log(1/𝛼)

0

𝑔(𝑥)

∫ 𝛼 log(1/𝛼)

𝑥

𝜆(𝑥 ′)𝑑𝑥 ′𝑑𝑥.

From this, we have that

1 − 𝛼 =
1

𝛼

∫ 𝛼 log(1/𝛼)

0

𝜆(𝑥)𝑑𝑥

≤

∫ 𝛼 log(1/𝛼)

0

𝜆(𝑥)𝑔(𝑥)𝑑𝑥 +
1

𝛼

∫ 𝛼 log(1/𝛼)

0

𝑔(𝑥)

∫ 𝛼 log(1/𝛼)

𝑥

𝜆(𝑥 ′)𝑑𝑥 ′𝑑𝑥

=

∫ 𝛼 log(1/𝛼)

0

𝑔(𝑥)

(

𝜆(𝑥) +
1

𝛼

∫ 𝛼 log(1/𝛼)

𝑥

𝜆(𝑥 ′)𝑑𝑥 ′

)

𝑑𝑥

=

∫ 𝛼 log(1/𝛼)

0

𝑔(𝑥)𝑑𝑥,

from which the desired result follows. □

We can now prove our main theorem.

Theorem 8. The worst-case revenue of any incentive compatible mechanism is at most 1/𝑒 .

Proof. In other words, we must show that for any mechanism𝑀 ≤ 1/𝑒 .
For a type 𝑣 let 𝑈𝑣 =𝑊𝑣 − 𝑋𝑣 be the total utility this type ends up with at the end of the game if

they act truthfully. We will need the following lemma, which shows that if all𝑈𝑣 are bounded by
some constant and𝑀 is large enough, we can bound𝑈𝑣 by an even smaller constant.

Lemma 9. If for all types 𝑣 ,𝑈𝑣 ≤ 𝛼 (for some 𝛼 ∈ [0, 1]), then for all types 𝑣 ,𝑈𝑣 ≤ 𝑓 (𝛼) −𝑀 , where

𝑓 (𝛼) = 𝛼 log(1/𝛼) + 𝛼

Proof. Fix any type 𝑣 and any𝑤 ∈ [0,𝑊𝑣]; let 𝑡𝑣 (𝑤) = 𝑤−1
𝑣 (𝑤). Fix a small 𝜀 > 0, and consider

a new type, which we will call spike(𝑤, 𝜀) with value equal to 𝑣 (𝑡) for 𝑡 ≤ 𝑡𝑣 (𝑤), value equal to 0

for 𝑡 ≥ 𝑡𝑣 (𝑤) + 𝜀, and a constant value 𝜈spike =
1
𝜀

∫ 1

𝑡𝑣 (𝑤)
𝑣 (𝑡)𝑑𝑡 within the interval [𝑡𝑣 (𝑤), 𝑡𝑣 (𝑤) + 𝜀]

(here 𝜈spike is chosen so that the total value of this type equals 1).
This type can deviate as follows: it can pretend to be 𝑣 until time 𝑡𝑣 (𝑤) + 𝜀 and then abort. By

performing this deviation, the type spike(𝑤, 𝜀) receives utility at least the utility it gains during
this spike, so
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𝑈 ′
spike(𝑤,𝜀) ≥ 𝜈spike

∫ 𝑡𝑣 (𝑤)+𝜀

𝑡𝑣 (𝑤)

𝑟𝑣 (𝑡)𝑑𝑡 −

∫ 𝑡𝑣 (𝑤)+𝜀

𝑡𝑣 (𝑤)

𝑥𝑣 (𝑡)𝑑𝑡

=

(∫ 1

𝑡𝑣 (𝑤)

𝑣 (𝑡)𝑑𝑡

) (

1

𝜀

∫ 𝑡𝑣 (𝑤)+𝜀

𝑡𝑣 (𝑤)

𝑟𝑣 (𝑡)𝑑𝑡

)

−

∫ 𝑡𝑣 (𝑤)+𝜀

𝑡𝑣 (𝑤)

𝑥𝑣 (𝑡)𝑑𝑡 .

On the other hand, by dynamic incentive-compatibility it holds that the utility the spike receives
if it plays truthfully,𝑈spike(𝑤,𝜀) , is at least𝑈

′
spike(𝑤,𝜀)

. Since by assumption𝑈spike(𝑤,𝜀) ≤ 𝛼 , this means

𝛼 ≥

(∫ 1

𝑡𝑣 (𝑤)

𝑣 (𝑡)𝑑𝑡

) (

1

𝜀

∫ 𝑡𝑣 (𝑤)+𝜀

𝑡𝑣 (𝑤)

𝑟𝑣 (𝑡)𝑑𝑡

)

−

∫ 𝑡𝑣 (𝑤)+𝜀

𝑡𝑣 (𝑤)

𝑥𝑣 (𝑡)𝑑𝑡 .

Since 𝑟𝑣 (𝑡) is continuous, taking the limit as 𝜀 → 0, the term
(

1
𝜀

∫ 𝑡𝑣 (𝑤)+𝜀

𝑡𝑣 (𝑤)
𝑟𝑣 (𝑡)𝑑𝑡

)

converges to

𝑟𝑣 (𝑡𝑣 (𝑤)) = 𝑟𝑣 (𝑤), and the term
∫ 𝑡𝑣 (𝑤)+𝜀

𝑡𝑣 (𝑤)
𝑥𝑣 (𝑡)𝑑𝑡 converges to 0. It follows that

𝛼 ≥

(∫ 1

𝑡𝑣 (𝑤)

𝑣 (𝑡)𝑑𝑡

)

𝑟𝑣 (𝑤). (3)

We’ll now express the integral in (3) in terms of𝑤 . First, note that since
∫ 1

0
𝑣 (𝑡)𝑑𝑡 = 1,

∫ 1

𝑡𝑣 (𝑤)

𝑣 (𝑡)𝑑𝑡 = 1 −

∫ 𝑡𝑣 (𝑤)

0

𝑣 (𝑡)𝑑𝑡 .

We will perform a substitution to express
∫ 𝑡𝑣 (𝑤)

0
𝑣 (𝑡)𝑑𝑡 as an integral in terms of 𝑤 . Since

𝑤𝑣 (𝑡) =
∫ 𝑡

0
𝑟𝑣 (𝑠)𝑣 (𝑠)𝑑𝑠 ,

𝑑𝑤𝑣 (𝑡 )
𝑑𝑡

= 𝑟𝑣 (𝑡)𝑣 (𝑡) and 𝑑𝑡 =
𝑑𝑤𝑣 (𝑡 )
𝑟𝑣 (𝑡 )𝑣 (𝑡 )

. It follows then that

∫ 𝑡𝑣 (𝑤)

0

𝑣 (𝑡)𝑑𝑡 =

∫ 𝑤

0

𝑑𝑤 ′

𝑟𝑣 (𝑤 ′)
. (4)

Subsituting this into (3), we have that:

𝛼 ≥

(

1 −

∫ 𝑤

0

𝑑𝑤 ′

𝑟𝑣 (𝑤 ′)

)

𝑟𝑣 (𝑤). (5)

Note that by Lemma 7, (5) implies that

∫ 𝛼 log(1/𝛼)

0

𝑑𝑤

𝑟𝑣 (𝑤)
≥ 1 − 𝛼. (6)

Now, since
∫ 1

0
𝑣 (𝑡)𝑑𝑡 = 1 and𝑤 (1) =𝑊𝑣 , substituting𝑤 =𝑊𝑣 into (4) we have that

∫ 𝑊𝑣

0

1

𝑟𝑣 (𝑤)
𝑑𝑤 = 1. (7)

If𝑊𝑣 > 𝛼 log(1/𝛼), we therefore have that

1 =

∫ 𝑊𝑣

0

1

𝑟𝑣 (𝑤)
𝑑𝑤

=

∫ 𝛼 log(1/𝛼)

0

1

𝑟𝑣 (𝑤)
𝑑𝑤 +

∫ 𝑊𝑣

𝛼 log(1/𝛼)

1

𝑟𝑣 (𝑤)
𝑑𝑤

≥ (1 − 𝛼) + (𝑊𝑣 − 𝛼 log(1/𝛼)).
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where here we’ve applied (6) and the fact that 𝑟𝑣 (𝑤) ≤ 1. For this to be true, we must have

𝑊𝑣 ≤ 𝛼 log(1/𝛼) + 𝛼. (8)

On the other hand, if𝑊𝑣 ≤ 𝛼 log(1/𝛼),𝑊𝑣 also satisfies (8). Therefore in either case,𝑊𝑣 is at
most 𝛼 log(1/𝛼) + 𝛼 = 𝑓 (𝛼).
Since 𝑈𝑣 = 𝑊𝑣 − 𝑋𝑣 , and since 𝑋𝑣 ≥ 𝑀 for all types 𝑣 (by definition of 𝑀), it follows that

𝑈𝑣 ≤ 𝑓 (𝛼) −𝑀 , as desired. □

Now, note that if 𝑓 (𝛼) −𝑀 < 𝛼 for all 𝛼 ∈ [0, 1], repeatedly applying Lemma 9 (starting from
𝛼 = 1) will eventually imply𝑈𝑣 < 0 for all types 𝑣 . But this is clearly not possible in any incentive
compatible mechanism (any type could improve their situation by immediately deviating and not
paying).

We claim that 𝑓 (𝛼) −𝑀 < 𝛼 for all 𝛼 ∈ [0, 1] if𝑀 > 1/𝑒 , thus completing the proof. One way to
see this is to show that the maximum value of 𝑓 (𝛼) − 𝛼 on the interval [0, 1] is at most 1/𝑒 . But
𝑓 (𝛼) − 𝛼 = 𝛼 log(1/𝛼), which is maximized at 𝛼 = 1/𝑒 and has a maximum value of 1/𝑒 , as desired.

□

4 SELLING TO MULTIPLE BIDDERS

In this section, we apply the results from the single buyer problem to the problem of selling to
multiple bidders.
We begin (in Section 4.1) by considering the case when there are only two bidders. We show

that even with just two bidders, it is impossible to get arbitrarily close to the benchmark of selling
the business (in particular, we show that no algorithm can achieve a better competitive ratio than
2/𝑒). On the other hand we show that a constant competitive-ratio is achievable: by adapting the
pay-to-play mechanism from the single buyer game, we can get a (1/2𝑒)-competitive mechanism.
For 𝑘 bidders, this same strategy results in a (1/𝑘𝑒)-competitive mechanism. We show how to

improve this by adding competition in the form of a first-price auction. The resulting mechanism
is no longer truthful, but has the guarantee that it is Θ(1)-competitive as long as all bidders play
non-dominated strategies.

4.1 Two bidders

We begin by showing that there is no limited liability mechanism which is guaranteed to get more
than a factor of 2/𝑒 of the benchmark of selling the business.

Theorem 10. There is no truthful mechanism for two bidders which is 𝛼-competitive against selling

the business for 𝛼 > 2/𝑒 .

Proof Sketch. Fix a 𝜈 > 0 and a sufficiently large 𝑇 . Let 𝑉 = 𝜈𝑇 . From our upper bound
(Theorem 8), we know that for any truthful mechanism for the single bidder game, there exists
a value profile v with

∑

𝑡 𝑣𝑡 = 𝑉 such that our mechanism receives revenue at most 𝑉 /𝑒 on this
profile. By the minimax theorem, this means there exists a distribution 𝜇 over value profiles v
with |v| = 𝑉 such that no mechanism receives expected revenue more than 𝑉 /𝑒 on a value profile
sampled from this distribution. (There is a technical issue here in that von Neumann’s minimax
theorem requires finite action spaces, but here there are an uncountably infinite set of valuations
and protocols. We address this by performing appropriate discretizations ś the full detailed proof is
in the online appendix.
Consider the following distribution D of instances for the two bidder game. All instances will

have 2𝑇 rounds. The valuation profile v1 of the first bidder will be sampled so that (𝑣1,1, . . . , 𝑣1,𝑇 ) is
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sampled according to 𝜇 and 𝑣1,𝑡 = 0 for 𝑡 > 𝑇 . Likewise, v2 will be sampled so that (𝑣2,𝑇+1, . . . , 𝑣2,2𝑇 )
is (independently from v1) sampled according to 𝜇 and so that 𝑣2,𝑡 = 0 for 𝑡 ≤ 𝑇 .
Assume to the contrary that there exists a truthful mechanism M for two bidders which is

𝛼-competitive for some 𝛼 > 2/𝑒 . Since |v1 | = |v2 | = 𝑉 for all instances v in the support of D,
Rev𝑆𝑇𝐵 (v) = 𝑉 , and this means that this mechanism receives expected revenue at least 𝛼𝑉 over
instances sampled from D.
Now, note that from the mechanism M we can construct two mechanisms M1 and M2 for

the single-bidder game. To construct M1, after soliciting the bidder’s valuation v, additionally
sample a dummy valuation v

′ from 𝜇. Consider running M on the valuation profile (v, v′): since v
and v

′ have disjoint supports, M chooses some sequence of allocations / payments for the first
bidder for the first 𝑇 rounds and some sequence of allocations / payments for the second bidder
for the second 𝑇 rounds. Use this sequence of allocations / payments for the first 𝑇 rounds as the
allocations / payments forM1; sinceM is truthful, it follows thatM1 is also truthful. We construct
M2 symmetrically.

By construction, the expected revenue ofM on instances drawn from D is the same as sum of
the expected revenues of mechanismsM1 andM2 on instances drawn from 𝜇. SinceM receives
expected revenue at least 𝛼𝑉 , this means that either M1 or M2 must receive expected revenue at
least (𝛼/2)𝑉 on instances from 𝜇. But (𝛼/2)𝑉 > 𝑉 /𝑒 , contradicting the fact that no mechanism
can receive expected revenue larger than 𝑉 /𝑒 from 𝜇. The theorem statement follows. □

Note that since we can always embed the 2 bidder game in the 𝑘 bidder game for any 𝑘 > 2, we
have the immediate corollary that there is no 𝛼-competitive mechanism for 𝑘 bidders with 𝛼 ≥ 2/𝑒 .

Corollary 11. For any 𝜀 > 0 and integer 𝑘 ≥ 2, there is no mechanism for 𝑘 𝜀-truthful bidders

which is 𝛼-competitive against selling the business for 𝛼 > 2/𝑒 .

Proof. See the online appendix. □

On the other hand, we can reuse the pay-to-play mechanism of Section 3.2 to get a (1/2𝑒)-
competitive mechanism. This mechanism works as follows:

(1) At the beginning of the game, ask both players for their total values 𝑉1 =
∑

𝑡 𝑣1,𝑡 and
𝑉2 =

∑

𝑡 𝑣2,𝑡 .
(2) Define

𝜌 (𝑤) =

{

𝑒𝑒𝑤−1 if𝑤 ∈ [0, 1/𝑒]

1 if𝑤 ∈ [1/𝑒,∞)

(Recall that this is the rate function for the single buyer mechanism in Theorem 6).
(3) In a given round, let 𝑋1 and 𝑋2 be the total payments of players 1 and 2 thus far. Allocate

fraction 𝜌 (2𝑋1/𝑉2)/2 of the item to player 1, and allocate fraction 𝜌 (2𝑋2/𝑉1)/2 of the item to
player 2. Note that since 𝜌 (𝑥) ≤ 1, our allocation is valid.

Theorem 12. This mechanism for 2 bidders is (1/2𝑒)-competitive mechanism against selling the

business.

Proof. Assume without loss of generality that 𝑉1 ≥ 𝑉2. We therefore must show that this
mechanism obtains revenue 𝑉2/(2𝑒).
From the perspective of player 1, they are playing the single buyer mechanism for half of the

item each round (for which their total valuation is 𝑉1/2) with the lower bound on their value of
𝑉2/2. Since 𝑉1/2 ≥ 𝑉2/2, the single buyer mechanism guarantees that player 1 will pay at least
(1/𝑒) · (𝑉2/2) = 𝑉2/(2𝑒), as desired. □
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4.2 More than two bidders

What approximation factor can we achieve when we have 𝑘 > 2 bidders? Adapting the mechanism
of Theorem 12 (by splitting the item into 𝑘 pieces and running the single buyer mechanism on
each piece with the highest other reported value), we can obtain an approximation factor of 1/𝑒𝑘 .
In this section, we will show that it is in fact possible to achieve a constant approximation factor
independent of 𝑘 . Unlike the other mechanisms in this paper, this mechanism is not a direct
revelation mechanism ś nonetheless, we will show that as long as bidders follow non-dominated
strategies, we will receive expected revenue within a constant factor of Rev𝑆𝑇𝐵 (v).

4.2.1 Selling shares via a first-price auction. Assume, to begin, that we know any lower bound 𝑉 ∗

on the largest total value of any bidder. We will first show how to construct a mechanism that
guarantees we obtain revenue at least a constant fraction of 𝑉 ∗. This mechanism will also have
the property that it requires reimbursements of size 𝑂 (𝑇 ) at the end of the protocol. Note that
this is not inherently at odds with limited liability: our protocol will still never expect a bidder
to pay more than their value in any given round. Nevertheless, we will show how to remove this
constraint in Section 4.2.3.

Roughly, our mechanism proceeds as follows. Each round we will split the item into two halves,
which we will allocate in different ways. One half of the item we will allocate via a first-price
auction among all 𝑘 bidders (each bidder will submit one bid per round in advance). We will allocate
a fraction 𝜌 (𝑋𝑖 ) = 10(𝑋𝑖/𝑉

∗) of the other half of the item (i.e. 𝜌 (𝑋𝑖 )/2 of the item) to bidder 𝑖 ,
where 𝑋𝑖 is the total payment of bidder 𝑖 up to this round in the first-price auction.

Now, note that it is possible for
∑

𝑖 𝜌 (𝑋𝑖 ) > 1; this would make it impossible to allocate the
second half of the item as described above. To get around this, as soon as

∑

𝑖 𝜌 (𝑋𝑖 ) = 1 we will
freeze the allocation rates as is. That is, we will continue allocating the first half of the item to the
bidder with the highest bid via a first-price auction, but stop updating the values 𝑋𝑖 . Finally, at
the end of the protocol, we will reimburse each bidder for the amount they paid in the first-price
auction after the allocation rates have been fixed.
More formally, our mechanism operates as follows:

(1) At the beginning of the mechanism, the seller asks each bidder 𝑖 to (simultaneously) report
their desired bid 𝑏𝑖,𝑡 in the first price auction at time 𝑡 .

(2) In round 𝑡 , the seller splits the item into two equal halves which they allocate separately. We
will keep track of a value 𝑋𝑖 (𝑡) for each bidder 𝑖 representing the amount they have paid the
seller up until round 𝑡 before the allocation cap is hit. A fraction 𝜌 (𝑋𝑖 (𝑡)) = 10(𝑋𝑖 (𝑡)/𝑉

∗) of
the first half (the allocation half ) is allocated to bidder 𝑖 . We will guarantee

∑

𝑖 𝜌 (𝑋𝑖 (𝑡)) ≤ 1

for all 𝑡 .
(3) The second half of the item (the auction half ) is allocated to the bidder 𝑖 = argmax𝑖 𝑏𝑖,𝑡

(if multiple bidders share the same highest bid, split it evenly among them). This bidder is
expected to pay 𝑏𝑖,𝑡 this round (if they do not, we refuse to ever allocate to them in the future).
If this causes

∑

𝑖 𝜌 (𝑋𝑖 (𝑡)) to exceed 1, decrease the payment until it exactly equals 1. Note
that if

∑

𝑖 𝜌 (𝑋𝑖 (𝑡)) = 1, the payment in this round does not contribute towards 𝑋𝑖 (𝑡).
(4) Finally, at the end of the protocol, as long as they successfully paid their bids when they were

chosen in step (3), we provide each bidder a reimbursement equal to the amount they paid
the seller after the allocation cap was hit (i.e. after the first round where

∑

𝑖 𝜌 (𝑋𝑖 (𝑡)) = 1). In
addition, provide each bidder any𝑂 (1) reimbursement 𝑔 > 1 in case the other reimbursement
is 0. This makes it dominant for each bidder to only report bids 𝑏𝑖,𝑡 which they have the
ability of paying (i.e. 𝑏𝑖,𝑡 satisfying 𝑏𝑖,𝑡 ≤ 𝑣𝑖,𝑡/2) and also to participate for the entire protocol.
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Note that (for this mechanism) a pure strategy for bidder 𝑖 consists of their choice of 𝑏𝑖,𝑡 to report
at the beginning of the mechanism, along with a rule for when to defect from the mechanism. Recall
that we write 𝑠𝑖 to denote a pure strategy for bidder 𝑖 , 𝑠−𝑖 to denote a profile of pure strategies for
the other 𝑘 − 1 bidders, and𝑈𝑖 (𝑠𝑖 , 𝑠−𝑖 ) the utility received by bidder 𝑖 when they play strategy 𝑠𝑖 and
the other bidders play 𝑠−𝑖 . We call a pure strategy 𝑠𝑖 weakly-dominated if there exists a (possibly
mixed) strategy 𝜎 ′

𝑖 such that𝑈𝑖 (𝑠𝑖 , 𝑠−𝑖 ) ≤ 𝑈𝑖 (𝜎
′
𝑖 , 𝑠−𝑖 ) for all 𝑠−𝑖 , and if there exists at least one choice

of 𝑠−𝑖 such that𝑈𝑖 (𝑠𝑖 , 𝑠−𝑖 ) < 𝑈𝑖 (𝜎
′
𝑖 , 𝑠−𝑖 ); a strategy is non-dominated if it is not weakly-dominated

(and a mixed strategy is non-dominated if it is supported on non-dominated strategies).
For example, note that since we offer a reimbursement of at least 𝑔 > 1 at the end of the protocol,

any strategy which defects (doesn’t pay 𝑏𝑖,𝑡 when they are expected to) is dominated; by not paying
𝑏𝑖,𝑡 they possibly gain 𝑏𝑖,𝑡 but lose 𝑔 (plus any other utility they may have obtained) for a net
negative loss. In other words, all non-dominated strategies will never defect.

We show that, as long as all bidders are playing non-dominated strategies, the above mechanism
extracts a constant fraction of 𝑉 ∗.

Theorem 13. Assume we are given a lower bound 𝑉 ∗ on the largest total value belonging to any

bidder. Then, as long as all bidders play non-dominated strategies, the above mechanism achieves

revenue at least 𝛼𝑉 ∗ −𝑂 (1) for some constant 𝛼 > 0 (independent of the number of bidders 𝑘).

The full proof of Theorem 13 can be found in the online appendix. The main intuition behind
the proof is as follows. Without loss of generality, assume that bidder 1 is the bidder with the
highest total value (and so in particular, 𝑉1 ≥ 𝑉 ∗). We argue that for łsufficiently earlyž rounds 𝑡 , if
bidder 1 ever bids less than 𝑣1,𝑡/2 (their value for the auction half of the item this round), then this
strategy is dominated by the strategy where they bid 𝑣1,𝑡/2. This follows from the construction
of the mechanism: increasing their bid this round costs bidder 1 a little bit more if they win, but
this is more than paid back by the value they obtain from the allocation half of the item over the
remaining rounds. In particular, we can think of this as the bidder paying one unit of cost to obtain
a 5/𝑉 ∗ share of the remaining value of the item; if the bidder values the remaining rounds at 𝑉 ∗/5

or more, the bidder should be happy to pay this amount (and in fact, the bidders in the mechanism
need to compete for the ability to buy these shares in a first-price auction).

Since𝑉1 ≥ 𝑉 ∗, there are many rounds where the bidder values the remainder of the item (i.e. the
total value of the item across the remaining rounds) at over 𝑉 ∗/5; in fact, this happens for at least
4𝑉1/5 of the bidder’s welfare. If the auction is active for all these rounds, then it generates revenue
at least 2𝑉1/5 if bidder 1 is playing a non-dominated strategy (and is thus bidding at least half their
value per round). But if the auction ever stops, this means that

∑

𝑖 𝜌 (𝑋𝑖 ) = 1, and therefore that
∑

𝑖 𝑋𝑖 ≥ 𝑉 ∗/10, so we have received 𝑉 ∗/10 in revenue. In either case, we have received at least a
constant fraction of 𝑉 ∗ (since 2𝑉1/5 ≥ 2𝑉 ∗/5).

Why do we reimburse each bidder for the amount they paid after the allocation rates have been
fixed? Note that if we do not do this, then bidders may be incentivized to shade their bids for rounds
where they think the cap has been hit, and we can no longer argue that they will bid their full
value. Providing this reimbursement allows us to encourage bidders to bid their full value for the
item and incentivizes them to hit the cap.

Remark 5. In fact, Theorem 13 does not require all 𝑘 bidders to play non-dominated strategies ś it
merely requires the bidder with largest total value to play a non-dominated strategy.

Similarly, although we assume bidders cannot bid above their true value, note that the mechanism
in Theorem 13 is still 𝛼-competitive even if some bidders can bid above their true value: it is still in
a bidder’s interest to bid at least their value in early rounds of the first price auction (and in fact, it
might be in their interest to bid above their value, if they can afford to do so).
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Remark 6. This mechanism has the additional caveat that, unlike our previous mechanisms (and
the 𝑂 (1/𝑘)-competitive generalization), it does require the bidders to know their individual per
round values in advance (at least for Theorem 13 to hold). Since bidders’ bids can affect the utility of
other bidders, allowing bidders to bid dynamically can lead to undominated grim trigger strategies
where bidders punish each other for not bidding according to a specific schedule. It is an interesting
open question whether it is possible to adapt this mechanism to remove these constraints.

4.2.2 Soliciting bidders’ values. The mechanism of Theorem 13 assumes we have a lower bound
𝑉 ∗ on the highest total value of a bidder, and extracts a constant fraction of this bound as revenue.
However, our ultimate goal is to construct a completely prior-free mechanism that extracts constant
fraction of the second-highest total value Rev𝑆𝑇𝐵 (v).
To do so, we will at the very beginning of the mechanism solicit the value of Rev𝑆𝑇𝐵 (v) using

a similar technique as in our construction of the 𝑘 = 2 algorithm. Specifically, we will do the
following at the very beginning of the protocol:

• At the beginning of the mechanism, the seller asks each bidder 𝑖 to (simultaneously) report
their total value 𝑉𝑖 . (This should be done simultaneously with the reporting of bids in the
mechanism of Theorem 13).

• The seller splits the bidders randomly into two subsets 𝑆𝑝𝑟𝑖𝑐𝑒 and 𝑆𝑝𝑙𝑎𝑦 . Each bidder is
independently assigned to 𝑆𝑝𝑟𝑖𝑐𝑒 with probability 1/2 and to 𝑆𝑝𝑙𝑎𝑦 with probability 1/2. (If
either set is empty the seller immediately stops the auction, never allocating the item).

• Define 𝑉 ∗
= max𝑖∈𝑆𝑝𝑟𝑖𝑐𝑒 𝑉𝑖 . The seller now removes all players in 𝑆𝑝𝑟𝑖𝑐𝑒 from the auction (i.e.,

the seller will only allocate to players in 𝑆𝑝𝑙𝑎𝑦 in the future).
• Run the mechanism from Theorem 13 on the bidders in 𝑆𝑝𝑙𝑎𝑦 with this 𝑉 ∗.

Note that 1/4 of the time, the bidder with the highest value belongs to 𝑆𝑝𝑙𝑎𝑦 and the bidder
with the second highest value belongs to 𝑆𝑝𝑟𝑖𝑐𝑒 . In this case, 𝑉 ∗

= Rev𝑆𝑇𝐵 (v) and the conditions of
Theorem 13 are satisfied with constant probability (assuming bidders report their values truthfully).
Moreover, note that the value 𝑉 that a bidder reports in this step is completely independent from
their eventual utility (in particular, if they are selected to belong to 𝑆𝑝𝑙𝑎𝑦 , their value 𝑉 is never
used). It is therefore never better for a bidder to report a value 𝑉 ′ not equal to their true value 𝑉 .
If bidders cannot pay more than their value each round, it is possible to make it dominant for

each bidder to report their true value 𝑉 . To do so, with some small probability 𝛿 > 0, instead of
running the rest of the mechanism after step (1), run the following procedure: allocate 𝜀 ≈ 1/𝑘𝑇 of
the item to each buyer each round. If buyer 𝑖 has paid a total of 𝜀𝑉𝑖 at the end of the mechanism,
reimburse them an additional 2𝜀𝑉𝑖 .

If we do this, then bidder 𝑖 receives a total utility of 𝜀𝑉𝑖 − 𝜀𝑉 ′
𝑖 + 2𝜀𝑉

′
𝑖 = 𝜀 (𝑉𝑖 +𝑉

′
𝑖 ) by misreporting

𝑉 ′
𝑖 instead of one’s true valuation 𝑉𝑖 ; to maximize this, a bidder will want to report the largest 𝑉 ′

𝑖

they can possibly afford, which is 𝑉𝑖 (they cannot report a larger 𝑉 ′
𝑖 while paying at most their

value every round). It is therefore dominated for a bidder 𝑖 to report any value 𝑉 ′
𝑖 ≠ 𝑉𝑖 .

Our main theorem for selling to 𝑘 buyers therefore follows.

Theorem 14. As long as all bidders play non-dominated strategies, the above mechanism is an

𝛼-competitive mechanism for 𝑘 bidders for some constant 𝛼 > 0 (independent of 𝑘).

4.2.3 Removing large reimbursements. As written, Theorem 14 could require post-protocol reim-
bursements of up to 𝑂 (𝑇 ), since we reimburse bidders for all payments after the allocation rates
for the allocation half have been fixed. Although this is not at odds with limited-liability, ideally
we could reduce these reimbursements to 𝑂 (1) as in our other protocols.

Since we reimburse bidders for their payments after the allocation cap has been hit, one simple
idea is to simply remove these payments. In other words, after the allocation cap has been hit, still
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allocate the item to the bidder with the highest bid, but charge them nothing. This largely works,
but has the unfortunate side effect that now bidders might gamble and submit bids larger than their
value for later rounds where they think the allocation cap has already been hit. Note that this was
originally not an issue because in the first-price auction a bidder had to immediately pay their bid
if they won the item, thus checking that they in fact could afford it. But now, it might be strategic
for a bidder to report a higher bid than their value for a late round hoping that the cap has been
met (and if the cap has not been met, defecting at that point).

Nonetheless, we can still address this in the following (admittedly contrived) way. The key idea
is to spot check that bidders are capable of paying the bids they have reported. More specifically,
for some uniformly randomly selected constant fraction (e.g. 50%) of the rounds, instead of running
the mechanism described above, allocate a tiny 𝜀 of the item (for some 𝜀 ≈ 1/𝑘𝑇 ) to each bidder
and ask them to pay 2𝜀 times their bid (since their bid was for half the item, this should be at most
𝜀 times their value). If they fail to do this, eject them from the protocol.

We then can show that with this change, it is dominated for a limited-liability bidder to bid
higher than their value. In particular, the expected increase in utility they can possibly get from
bidding above their value is outweighed by the expected loss in future utility (including the 𝑂 (1)

reimbursement at the end) which they would lose from being forced to defect.

Corollary 15. It is possible to implement Theorem 14 with reimbursements of size 𝑂 (1).

Details and the full proof of Corollary 15 can be found in the online appendix.
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