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Abstract

We consider the manipulability of tournament rules which map the results of
(

n
2

)

pairwise matches

and select a winner. Prior work designs simple tournament rules such that no pair of teams can

manipulate the outcome of their match to improve their probability of winning by more than 1/3,

and this is the best possible among any Condorcet-consistent tournament rule (which selects an

undefeated team whenever one exists) [14, 15]. These lower bounds require the manipulators to

know precisely the outcome of all future matches.

We take a beyond worst-case view and instead consider tournaments which are “close to uniform”:

the outcome of all matches are independent, and no team is believed to win any match with probability

exceeding 1/2 + ε. We show that Randomized Single Elimination Bracket [14] and a new tournament

rule we term Randomized Death Match have the property that no pair of teams can manipulate the

outcome of their match to improve their probability of winning by more than ε/3 + 2ε2/3, for all ε,

and this is the best possible among any Condorcet-consistent tournament rule.

Our main technical contribution is a recursive framework to analyze the manipulability of certain

forms of tournament rules. In addition to our main results, this view helps streamline previous

analysis of Randomized Single Elimination Bracket, and may be of independent interest.
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1 Introduction

A tournament consists of n teams competing to win a championship via pairwise matches,

and a tournament rule (possibly randomly) selects a single winner as a result of these matches.

Tournament rules have been studied within Social Choice Theory for decades [6, 12, 16, 3, 7,

10, 11], see also [4] for a survey, and have gained attention from a few angles within TCS

more recently [2, 1, 18, 17, 9, 8, 14, 15]. Our work follows the model studied in [2, 1, 14, 15]

and seeks to design tournaments which are both fair (in that they select a reasonable winner,

based on the match outcomes), and “as strategyproof as possible” subject to this.

More specifically, these works acknowledge that an undefeated team, if one exists, should

surely win any reasonable tournament format. Formally, this property is termed Condorcet-

consistent (Definition 4). These works also consider the possibility of two teams strategically

manipulating the match between them to improve the probability that one of them wins.

The situation to have in mind is that perhaps two teams sponsored by the same company

enter an eSports tournament, and wish to maximize the probability that either of them take

home the prize money. A rule is 2-Strongly Non-Manipulable (2-SNM, Definition 7) if no

pair of teams can manipulate it to improve the probability that one of them wins.
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Initial works quickly established that no tournament rule exists which is both Condorcet-

consistent and 2-SNM [2, 1]. More recent works study the extent to which tournament

rules can be Condorcet-consistent and approximately 2-SNM. Specifically, a rule is 2-SNM-α

if no pair of teams can improve the probability that one of them wins by more than α

(Definition 7). [14, 15] design simple Condorcet-consistent tournament rules (defined in

Section 3) which are 2-SNM-1/3, and also show this is the best possible worst-case guarantee.

1.1 Our Results: Probabilistic Tournaments

The lower bounds in previous works assume that the deterministic future outcome of all

matches is known at the time of manipulation. While this is certainly a plausible scenario,

most competitions worth watching have some element of uncertainty, even for matches

between strong and weak teams. Indeed, [14, Open Problem 2] explicitly asks whether

improved guarantees are possible if instead the teams have a common Bayesian prior about

the possible outcomes of future matches which is bounded away from determinstic.

For example, consider the case where the outcome of all matches are uniformly at random.

Then it is not hard to design a Condorcet-consistent tournament rule which is 2-SNM in

this case. One example is a simple single-elimination bracket: when two manipulating teams

face each other, each of them is equally likely to continue on and win the tournament, so

manipulating doesn’t help.

What if instead the outcome of all matches are not uniformly random, but close? More

specifically, what if the match results are independent, and no team wins any match with

probability more than 1/2 + ε? When ε = 0, the previous paragraph establishes that rules

exist where profitable manipulation is impossible. When ε = 1/2, [14, 15] establish that

2-SNM-1/3 tournaments exist, but no better. What about when ε ∈ (0, 1/2)? How do the

achievable guarantees vary as a function of ε?

Our main result resolves this question, and nails down the guarantees precisely as a

function of ε. Moreover, we show that the same tournament rule achieves the optimal

guarantee for all ε. Below, Randomized Single Elimination Bracket (Definition 12, henceforth

RSEB) randomly seeds all teams, then runs a single-elimination bracket to determine the

winner, and was shown to be 2-SNM-1/3 in [14]. Randomized Death Match (Definition 14,

henceforth RDM) repeatedly picks two uniformly random teams to play a match, and

eliminates the loser (and is first analyzed in this paper).

◮ Informal Theorem 1 (See Theorems 30, 31). For all ε ∈ [0, 1/2], Randomized Death

Match and Randomized Single Elimination Bracket are 2-SNM-(ε/3 + 2ε2/3) when match

outcomes are independent, and no team wins any match with probability more than 1/2 + ε.

Moreover, for all ε ∈ [0, 1/2], no Condorcet-consistent tournament rule is 2-SNM-α for any

α < ε/3 + 2ε2/3, on the set of all tournaments with independent match outcomes that no

team wins with probability more than 1/2 + ε.

1.2 Technical Highlights

We prove our main result by finding a strong structural similarity between tournaments like

RDM and RSEB: they can be defined recursively. Specifically, RDM could be alternatively

defined as “Pick two teams uniformly at random, and eliminate the loser of their match.

Then, recurse on the remaining teams.” Similarly, RSEB can be alternatively defined as

“Pick a uniformly random perfect matching between the teams, and eliminate all teams which
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lose their match. Then, recurse on the remaining teams.” Even the Randomized King of the

Hill rule (Definition 13, henceforth RKotH) defined by [15] fits this framework as well: “Pick

a uniformly random team to play all other teams. Eliminate all teams who lose a match,

and recurse on the remaining teams.”

In Section 3, we give a formal definition of what it means to be a recursive tournament

rule. And in Section 4 (specifically, Theorem 21), we provide a general framework to analyze

the manipulability of recursive tournament rules on probabilistic tournaments. This provides

a fairly clean outline to analyze recursive tournament rules, and our main result then applies

this framework to RDM and RSEB. In the ε = 1/2 case, our analysis of RSEB in isolation

is perhaps not much simpler than that of [14], but our proof is arguably more structured.

Indeed, a substantial fraction of our proof can be applied verbatim to other tournament rules

like RDM, or applied verbatim to the ε < 1/2 case.

It is worth noting that our framework does face some technical barriers in accommodating

RKotH (and we leave open whether RKotH achieves the same guarantees as RDM and

RSEB). But, the technical barrier is easy to describe: the matches played in each round of

RDM and RSEB form a matching – no team plays more than one match. In RKotH, some

team plays multiple matches. It seems likely that our analysis would extend (perhaps with

messier calculations) to any recursive rule where each round’s matches form a matching.

But we highlight the aspects of our analysis which rely on this aspect of RDM/RSEB (and

therefore don’t hold for RKotH), and believe this is a genuine barrier.

1.3 Further Related Work

We’ve already discussed the most related work [2, 1, 14, 15]. The model is first posed

in [2], and [1] design tournaments which are 2-SNM and approximately Condorcet-consistent

(e.g. pick a uniformly random match and declare the winner of that match to win the

tournament). [14] first proposed to instead consider rules which are Condorcet-consistent

and approximately strategyproof, and establishes that RSEB is 2-SNM-1/3 and that this is

optimal. [15] considers larger manipulating sets (not relevant to this paper) and also designs

RKotH, showing that it too is 2-SNM-1/3 and satisfies a stronger notion of fairness termed

“cover-consistent”. In relation to these works, our main contribution is going beyond the

worst-case to derive improved bounds when match outcomes are more uncertain. A technical

contribution is our framework of recursive tournament rules.

Other recent works within TCS focus specifically on single-elimination brackets and

manipulation in the form of a bracket designer trying to get a certain team to win [18, 17,

9, 8], or manipulability of particular tournament rules such as the World Cup qualifying

procedure [13, 5]. Aside from being thematically related, there is no significant technical

overlap with our work.

1.4 Roadmap

Section 2 immediately follows with definitions and preliminaries. Section 3 provides definitions

concerning recursive tournament rules, and formally defines RDM and RSEB. Section 4

provides our framework for analyzing the manipulability of recursive tournament rules.

Section 5 applies this framework, as a warmup, to rederive the main result of [14] and analyze

RDM/RSEB in the deterministic case. Section 6 proves our main results, and Section 7

provides a brief conclusion.

ITCS 2021
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2 Preliminaries

2.1 Tournament Rule Basics

In this section, we introduce notation consistent with prior work [1, 14, 15].

◮ Definition 2 (Deterministic Tournament). A (round robin) tournament T on n teams is a

complete, directed graph on n vertices whose edges denote the outcome of a match between

two teams. Team i beats team j if the edge between them points from i to j.

◮ Definition 3 (Tournament Rule). A tournament rule r is a function that maps (determ-

inistic) tournaments T to a distribution over teams, where ri(T ) := Pr[r(T ) = i] denotes

the probability that team i is declared the winner of tournament T under rule r. We use the

shorthand rS(T ) :=
∑

i∈S ri(T ) to denote the probability that a team in S is declared the

winner of tournament T under rule r.

Finally, we are interested in tournament rules which satisfy basic notions of fairness.

Importantly, note that Condorcet-consistence is a minimal notion of fairness, and in particular

does not constrain the behavior of r on any tournament without a Condorcet winner.

◮ Definition 4 (Condorcet-Consistent). Team i is a Condorcet winner of a tournament T if

i beats every other team (under T ). A tournament rule r is Condorcet-consistent if for every

tournament T with a Condorcet winner i, ri(T ) = 1 (whenever T has a Condorcet winner,

that team wins with probability 1).

2.2 Independent Probabilistic Tournaments

In this work, we study probabilistic tournaments. That is, we are interested in tournaments

where the outcome of each match is not known to teams “in advance”, but teams share a

Bayesian prior about the likelihood of each possible outcome. In particular, we consider

when match outcomes are independent.

◮ Definition 5 (Independent Probabilistic Tournament). A probabilistic tournament T is just

a distribution over deterministic tournaments. For notational convenience, we slightly abuse

notation and refer by ri(T ) to E[ri(T )] (that is, ri(T ) is the probability that team i wins

when rule r is applied to T , over the randomness in r and the randomness in drawing T ).

A probabilistic tournament T is independent if all match outcomes in T are independent

events. Observe that a probabilistic tournament T is fully defined by probabilities pT
ij for all

i < j, where pT
ij denotes the probability that i beats j in tournament T .

Observe that deterministic tournaments are also independent probabilistic tournaments,

with each pT
ij ∈ {0, 1}. Like prior work, we study tournament rules which are “as strategyproof

as possible”. Because of our focus on independent probabilistic tournaments, we first refine

previous definitions of non-manipulability.

◮ Definition 6 (S-adjacent). Two independent probabilistic tournaments T, T ′ are S-adjacent

if pT
ij = pT ′

ij whenever {i, j} 6⊆ S. That is, two independent probabilistic tournaments are

S-adjacent when all (probabilistic) match outcomes are identical, except possibly for matches

between two teams in S.

Intuitively, two tournaments T, T ′ are S-adjacent if the set of teams S can manipulate

the outcomes of matches between them in advance and cause the resulting (probabilistic)

tournament to go from T to T ′.
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◮ Definition 7 (Manipulating a Tournament). For a set S of teams, independent probabilistic

tournament T , and tournament rule r, we define αr
S(T ) to be the maximum winning probability

that S can possibly gain by manipulating T to an S-adjacent T ′. That is: αr
S(T ) :=

maxT ′:T ′ is S-adjacent to T {rS(T ′)− rS(T )}.

For a class T of (independent probabilistic) tournaments, we also define αr
k(T ) :=

maxT∈T ,S:|S|≤k{α
r
S(T )}. If αr

k(T ) ≤ α, we say r is k-Strongly Non-Manipulable at prob-

ability α with respect to T (k-SNMT -α). To match notation of prior work, we also say a

tournament is k-SNM-α if it is k-SNMS1/2-α.1

Finally, we also define αk(T ) = infCondorcet consistent r{α
r
k(T )}.

Intuitively, r is k-SNMT -α if no colluding set of ≤ k teams can manipulate a tournament

in T to improve the probability the winner is in S by more than α. The refinement over

prior work is that the condition only holds for tournaments in T – prior work only considers

guarantees that hold over all tournaments. The additional notation in Definition 7 are just

terms that will be helpful for later exposition.

We focus on independent probabilistic tournaments that are close to uniformly random.

◮ Definition 8 (ε-Bounded Tournaments). An independent probabilistic tournament T is

weakly ε-bounded if for all i, j pT
ij ∈ [1/2 − ε, 1/2 + ε]. We refer to T ε as the set of all

ε-bounded tournaments.

An independent probabilistic tournament T is strictly ε-bounded if for all i, j pT
ij ∈

{1/2− ε, 1/2 + ε}. We refer to Sε as the set of all strictly ε-bounded tournaments. It will be

helpful to define the notation T ε
≤n (respectively, Sε

≤n) as the set of all weakly- (respectively,

strictly-) bounded tournaments on ≤ n teams.

For example, every deterministic tournament is 1/2-bounded, and the uniformly random

tournament is 0-bounded. Our main results study αk(T ε) as a function of ε. We conclude

with a brief lemma relating αk(T ε) to αk(Sε), as direct analysis of αk(Sε) is significantly

simpler than direct analysis of αk(T ε).

◮ Proposition 9. For all rules r, and all ε, k, αr
k(T ε) = αr

k(Sε). Therefore, for all ε, k,

αk(T ε) = αk(Sε).

While the proof is deferred to Appendix A, the high-level outline is fairly intuitive.

First, the “Therefore,. . . ” statement follows trivially from the first portion of the lemma.

Also, it is trivial to see that αr
k(T ε) ≥ αr

k(Sε), as Sε ⊆ T ε. So the interesting step is

establishing αr
k(T ε) ≤ αr

k(Sε). Intuitively, this follows because all (independent probabilistic)

tournaments in T ε can be written as convex combinations of tournaments in Sε, and one

might expect that any particular tournament rule is most manipulable on extreme points

(indeed this is true). With Proposition 9, we may restrict our study to αk(Sε).

3 Recursive Tournament Rules

In this section, we formalize a class of tournament rules which have a recursive aspect to

them. This will help us streamline previous analysis of [14], and also easily design a new

tournament rule with matching guarantees. In addition, this view will help give us a clean

outline to analyze the performance of these rules on tournaments in T ε, rather than just in

the worst case.

1 Note that S1/2 is the set of all deterministic tournaments, defined shortly below.

ITCS 2021
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◮ Definition 10 (Elimination Rule). An elimination rule E takes as input a number n of teams

and selects (possibly randomly) a set M := E(n) of matches to play, with |M | ∈ [1, n− 1].

An elimination rule is matching if M is a (not necessarily perfect) matching with probab-

ility one.

◮ Definition 11 (Recursive Tournament Rule). A recursive tournament rule is fully defined

by its elimination rule E. The recursive tournament rule rE takes as input a tournament

T , samples matches M := E(n) to play, and then eliminates any team which loses a match

in M .2 Specifically, T |M denotes the induced subgraph of T on teams not eliminated by the

matches in M . The tournament then recursively executes rE(T |M ) to select a winner. As a

base case, when there is only one team left, that team is the winner.

We now give three examples of elimination rules, and the resulting tournament rule.

Randomized Single Elimination Bracket was first studied in [14], Randomized King of the

Hill was first studied in [15], and Randomized Death Match is first studied in this paper.

◮ Definition 12 (Randomized Single Elimination Bracket). For a tournament T on n teams,

let n′ := 2⌈log
2

n⌉. Create n′ − n dummy players who all lose to the original n teams. Let M

be matches corresponding to a uniformly random perfect matching (i.e. exactly n′/2 matches

are played, and every team plays in exactly one match). Eliminate the losers and recurse on

the remaining (non-dummy) teams.

◮ Definition 13 (Randomized King of the Hill). Pick a uniformly random team i, to play

all others. Observe that if i is a Condorcet winner, then i will be the only remaining team.

Otherwise, i and every team it beats will be eliminated. Recurse on the remaining teams.

◮ Definition 14 (Randomized Death Match). Pick two uniformly random teams (without

replacement) and play their match. Eliminate the loser and recurse on the remaining teams.

Observe that our definition of Randomized Single Elimination Bracket (RSEB) differs

semantically from that given in [14], where the n′ teams are uniformly permuted into n′

seeds, and then the resulting bracket is played (without re-randomizing at each round).

Observe that the two definitions are equivalent (identically distributed), however, as our

definition simply produces the seeding by first figuring out the first-round matches, then

the second-round matches, etc. Our definition of Randomized King of the Hill (RKotH) is

identical (semantically) to that given in [15].

Randomized Death Match (RDM) is similar to Randomized Voting Caterpillar (RVC) [14].

Like RDM, RVC picks two uniformly random teams (without replacement) and eliminates

the loser. However, rather than a “pure recursion”, RVC proceeds by picking one uniformly

random remaining team to play the previous winner. This subtle distinction causes RDM to

be 2-SNM-1/3 (Theorem 23), but not RVC ([14, Theorem 3.14]). Observe also that RSEB

and RDM have matching elimination rules, but RKotH doesn’t (this is the main technical

barrier in extending our analysis to RKotH).

Finally, observe that all three rules above are anonymous: relabeling the teams simply

relabels the distribution over winners. This will play a role in our analysis.

◮ Definition 15 (Anonymous). A tournament rule r is anonymous if for every tournament T ,

and every permutation σ, and all i, rσ(i)(σ(T )) = ri(T ).

2 Observe that because |M | ∈ [1, n − 1] that at least one team is eliminated, but not all teams are
eliminated.
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4 Key Framework

In this section, we propose an outline to analyze the manipulability of recursive tournament

rules for independent probabilistic tournaments. For notational convenience, if a team i is

not present in tournament T (e.g. because they were eliminated in an earlier round), we

abuse notation and denote by ri(T ) := 0. Additionally, we let M(T ) denote the outcome of

matches M for tournament T (i.e. for all (u, v) ∈M , whether u or v wins in tournament T ).

Note that if T is probabilistic, M(T ) is a random variable, even after conditioning on M .

Our first step simply observes that recursive tournament rules can be analyzed recursively

due to linearity of expectation. A (short) proof of Lemma 16 appears in Appendix B.

◮ Lemma 16. Let rE be any recursive tournament rule. Let T, T ′ be independent probabilistic

tournaments on n > 1 teams, and let S be any subset of teams. Then:

rE
S (T ′)− rE

S (T ) = EM←E(n)[r
E
S (T ′|M )− rE

S (T |M )].

To help parse notation: recall that if T, T ′ are not deterministic, then the notation rE
S (T ′)

(respectively, rE
S (T ), rE

S (T ′|M ), rE
S (T |M )) is taking an expectation over T ′ (respectively,

T, T ′|M , T |M ), as per Definition 5.3 On the right-hand side, we are taking an expectation

first over the matches M which are played. Inside the expectation, the teams in T |M and

T ′|M are still random variables (because they depend on the outcome of matches in M in T ,

which are still random after conditioning on M). And after the teams are determined by

M(T ), M(T ′), the tournaments T ′|M , T |M are still probabilistic tournaments.

Importantly, observe that when S = {u, v} and T, T ′ are S-adjacent, the tournaments

T |M and T ′|M may differ for two reasons. First, perhaps (u, v) ∈M . In this case, perhaps

M(T ) 6= M(T ′) (because T and T ′ can differ on the (u, v) match), and then T |M , T ′|M may

have different sets of teams. Second, perhaps (u, v) /∈ M , implying that M(T ) = M(T ′)

(because T and T ′ are identically distributed outside of the (u, v) match). T |M and T ′|M
therefore have the same sets of teams, but it can still be that pT

uv 6= pT ′

uv, so the tournaments

T |M and T ′|M can still differ due to this match (if both u and v are not eliminated).

The second step in our framework simply splits the recursive analysis into cases based

on M , and the results of the matches M(T ). We define these cases clearly below, and then

state our main framework.

◮ Definition 17 (Base Case). We say that tournament T is a base case if αr
S(T ) = 0. That

is, it is not possible for S to gain by manipulating tournament T under rule r.

One clear base case occurs if S = {u, v}, but u is not even in T . Lemma 22 later identifies

another for anonymous tournament rules (if relabeling u and v doesn’t change T except for

the (u, v) match, then {u, v} cannot gain by manipulating an anonymous tournament rule).

◮ Definition 18 (Bad Terminal Event). M is a bad terminal event if (u, v) ∈ M . That

is, a bad terminal event occurs when the (u, v) match is played this round. We denote the

occurence of this event by B.

◮ Definition 19 (Good Terminal Event). M, M(T ) is a good terminal event if (u, v) /∈ M ,

and M(T ) is such that T |M is a base case.4 That is, the (u, v) match is not played now (so

no gains from manipulation are possible), and no future gains are possible either. We denote

the occurence of this event by G.

3 In particular, note that T |M and T ′|M are not independent probabilistic tournaments, but are still
probabilistic tournaments, as they are distributions over independent probabilistic tournaments.

4 Observe that because (u, v) /∈ M , that if T ′ is S-adjacent to T then M(T ) and M(T ′) are identically
distributed.

ITCS 2021
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◮ Definition 20 (Recursive Event). M, M(T ) is a recursive event if (u, v) /∈M , but M(T ) is

not such that T |M is a base case. That is, a recursive event occurs when the (u, v) match is

not played now, but may be played later (and manipulating it may be beneficial). We denote

the occurence of this event by R.

We now state the theorem which drives our analysis. Observe that the bound claimed by

Theorem 21 could in principle be (very) loose, but our subsequent sections show that this

framework suffices to nail down αr
2(T ε) for RDM and RSEB, and also that these are the

best possible guarantees for any Condorcet-consistent tournament rule.

◮ Theorem 21. Let rE be a recursive tournament rule, ε ∈ [0, 1/2], and S := {u, v}. Let

b, g, c ≥ 0 (with b + g > 0) be so that for any T ∈ Sε, and any T ′ which is S-adjacent to T :

PrM←E(n)[B] ≤ b.

PrM←E(n),M(T )[G] ≥ g.

EM←E(n)[r
E
S (T ′|M )− rE

S (T |M )|B] ≤ c.

Then: αrE

2 (T ε) ≤ bc
b+g .

Proof. We prove the theorem by induction, and focus on Sε first (extending to T ε using

Proposition 9). As a base case, observe that when there are at most two teams remaining,

no gains from manipulation are possible and therefore αrE

2 (Sε
≤2) ≤ 0 ≤ bc

b+g as desired.

For the inductive hypothesis, assume that αrE

2 (Sε
≤n−1) ≤ bc

b+g and consider now any

tournament T ∈ Sε on n teams, and an S-adjacent T ′. We have the following chain of

equalities, which essentially just breaks down rE
S (T ′) − rE

S (T ) based on the three events

R, B, G (below, I(X) denotes the indicator random variable for event X, which is 1 when

event X occurs and 0 otherwise):

rE
S (T ′)− rE

S (T ) = EM←E(n)[r
E
S (T ′|M )− rE

S (T |M )]

= EM←E(n),M(T )[(r
E
S (T ′|M )− rE

S (T |M )) · (I(R) + I(B) + I(G))]

= Pr
M←E(n),M(T )

[R] · EM←E(n),M(T )[r
E
S (T ′|M )− rE

S (T |M )|R]

+ Pr
M←E(n)

[B] · EM←E(n)[r
E
S (T ′|M )− rE

S (T |M )|B]

+ Pr
M←E(n),M(T )

[G] · EM←E(n),M(T )[r
E
S (T ′|M )− rE

S (T |M )|G]

The first line restates Lemma 16. The second line simply observes that exactly one of the

events R, B, G occur, and also uses linearity of expectation to take an expectation also over

M(T ). The third line just observes that E[Y ·I(X)] = Pr[X] ·X[Y |X] for any random variable

Y and event X, breaks the sum into three parts (again using linearity of expectation), and

observes that the event B is determined entirely by M and is independent of M(T ).

We now want to analyze the three terms separately. First, observe that by bullet three:

EM←E(n)[r
E
S (T ′|M )− rE

S (T |M )|B] ≤ c. (1)

Next, observe that in either a good terminal event or a recursive event, (u, v) /∈ M .

Because T, T ′ are S-adjacent, this means that M(T ), M(T ′) are identically distributed (and

can therefore be coupled so that M(T ) = M(T ′) with probability one), so the teams in

T |M and T ′|M are therefore the same. Finally, because T is an independent probabilistic

tournament, and at least one team that participates in every match in M is eliminated,

p
T |M
ij = pT

ij for all teams i, j which are present in T |M (and also p
T ′|M
ij = pT ′

ij ). This means

that T |M ∈ S
ε
≤n−1, and also that T ′|M , T |M are S-adjacent.
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In a good terminal event, because αrE

2 (T |M ) = 0 by definition, we must therefore have:

EM←E(n),M(T )[r
E
S (T ′|M )− rE

S (T |M )|G] ≤ 0. (2)

In a recursive event, we instead have:

EM←E(n),M(T )[r
E
S (T ′|M )− rE

S (T |M )|R] ≤ αrE

2 (S≤n−1). (3)

Finally, we may now use our inductive hypothesis and Equations (1), (2), (3) to conclude:

rE
S (T ′)− rE

S (T ) = Pr
M←E(n),M(T )

[R] · EM←E(n),M(T )[r
E
S (T ′|M )− rE

S (T |M )|R]

+ Pr
M←E(n)

[B] · EM←E(n)[r
E
S (T ′|M )− rE

S (T |M )|B]

+ Pr
M←E(n),M(T )

[G] · EM←E(n),M(T )[r
E
S (T ′|M )− rE

S (T |M )|G]

≤ Pr
M←E(n),M(T )

[R] ·
bc

b + g
+ Pr

M←E(n)
[B] · c + Pr

M←E(n),M(T )
[G] · 0

=
bc

b + g
+ Pr

M←E(n)
[B] ·

(

c−
bc

b + g

)

+ Pr
M←E(n),M(T )

[G] ·

(

0−
bc

b + g

)

≤ (1− b− g) ·
bc

b + g
+ b · c + g · 0 =

bc

b + g

The first inequality just combines the work of Equations (1), (2), (3), and upper bounds the

expected gains in all three cases using either the inductive hypothesis (R), direct hypothesis

(B), or definition of good terminal event (G). The final inequality observes that c ≥ bc
b+g ≥ 0,

so the bound is maximized when B occurs as often as possible, while G occurs as little as

possible (consistent with the hypotheses).

We have now shown that for any T ∈ Sε, and any T ′ which is S-adjacent, that rE
S (T ′)−

rE
S (T ) ≤ bc

b+g . This establishes that αrE

2 (Sε) ≤ bc
b+g . Proposition 9 extends this to T ε. ◭

Theorem 21 is our main framework for analysis. The remainder of this paper now computes

the bounds required for the three bullets for the two tournament rules of interest as a

function of ε, and substitutes to obtain tight bounds. Finally, it is worth briefly noting that

the definition of αr
2(T ε) semantically assumes that teams must decide how to manipulate

the outcome of their match in advance, before any matches are played. Still, any analysis

that follows from Theorem 21 applies even to manipulations which are decided upon as the

match is played. This is because the bound in bullet three of Theorem 21 must hold over all

S-adjacent T ′, not just one which was decided in advance. This claim is not central to our

main results, and making it formal would be notationally cumbersome, so we provide only

this brief discussion.

5 Warmup: Rederiving Bounds for Deterministic Tournaments

In this section, we rederive the main result of [14] (RSEB is 2-SNM-1/3), and analyze a novel

tournament rule (RDM is 2-SNM-1/3) using a simple application of Theorem 21. This will

require one further lemma about anonymous tournament rules to find additional base cases.

The proof is in Appendix C.

◮ Lemma 22. Let r be any anonymous tournament rule, S := {u, v}, and T, T ′ be independ-

ent probabilistic tournaments which are S-adjacent and satisfy pT
uw = pT

vw for all w /∈ {u, v}.

Then rS(T ) = rS(T ′).
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We now prove that RDM is 2-SNM-1/3. Recall that α2(S1/2) = 1/3, so this is optimal.

◮ Theorem 23. RDM is 2-SNM-1/3. Or in our language, αRDM
2 (T 1/2) = 1/3.

Proof. Recall that we need to lower bound the probability of a good terminal event, upper

bound the probability of a bad terminal event, and upper bound the gains from manipulation

in case of a bad terminal event. For the deterministic case, the latter bound is particularly

simple, and we will just observe that clearly EM←E(n)[r
E
S (T ′|M )− rE

S (T |M )|B] ≤ 1. This is

simply because the maximum probability that any coalition can win in any tournament is 1,

and the minimum is 0. So we have established that RDM satisfies c = 1.

To bound the probability of a bad terminal event, observe that a bad terminal event

occurs only when u plays v in this round, which happens with probability exactly 1/
(

n
2

)

. So

RDM satisfies b = 1/
(

n
2

)

.

For the good terminal events, we claim that Pr[G] ≥ 2/
(

n
2

)

. First, observe that once we

show this, we can plug into Theorem 21 and conclude αRDM
2 (T 1/2) ≤

1·1/(n
2)

1/(n
2)+2/(n

2)
= 1/3.

To see this bound, let ℓu denote the number of teams which beat u but not v, and ℓv

denote the number of teams which beat v but not u. Without loss of generality let ℓu ≥ ℓv.

If ℓu + ℓv = 0, then Lemma 22 already establishes that u and v can gain nothing by

manipulating. If ℓu + ℓv ≥ 2, then whenever u or v play a team which beat them, we have a

good terminal event (because u or v is already eliminated before having ever played the (u, v)

match, resulting in a base case). This happens with probability at least 2/
(

n
2

)

, as desired.

If ℓu + ℓv = 1, then ℓu = 1, ℓv = 0. Let w be the unique team which beats u but not v.

We claim that if w plays either u or v that we are in a good terminal event. Indeed, if w

plays u, then u is eliminated having never played the (u, v) match. If instead w plays v, then

w is eliminated, but now there are no remaining teams which beat u but not v (or vice versa)

and Lemma 22 asserts that there are no further gains from manipulation. The probability

that w plays u or v is 2/
(

n
2

)

, as desired.

This handles all possible cases, and establishes that g ≥ 2/
(

n
2

)

in all cases. Plugging into

Theorem 21 as described above completes the proof. ◭

The analysis of RSEB is extremely similar to RDM, and requires only slightly more

calculations to bound the probability of a good terminal event. This proof structure is fairly

different than the original analysis in [14], and highlights the similarities to other recursive

tournament rules. A complete proof of Theorem 24 appears in Appendix C.

◮ Theorem 24 ([14]). RSEB is 2-SNM-1/3. Or in our language, αRSEB
2 (T 1/2) = 1/3.

We wrap up our warmup by highlighting key points of the analysis which will be relevant

for our main results. First, observe that our analysis of both rules succeeded by simply

upper-bounding c by 1. Improving this as a function of ε is the biggest technical difference

between our warmup and main results. Second, observe that our analysis required Lemma 22

in case ℓu < 2. In particular, we needed good terminal events even when both u and v were

not eliminated (and this need continues in main results).

6 Optimal Bounds for Independent Probabilistic Tournaments

Before analyzing our two tournament rules, we extend the simple 3-team lower bound of [14]

for α2(T 1/2) to α2(T ε). The proof is in Appendix D.

◮ Lemma 25. α2(T ε) ≥ 1
3 ε + 2

3 ε2.
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6.1 Gauntlets: Upper Bounding Gains from Bad Terminal Events

As previously noted, the main difference between our warmup and main results is bounding

gain from bad terminal events. We provide a short, but key, structural insight about recursive

tournament rules. Intuitively, a team u wins under rule rE as long as they survive all

elimination matches. Our key observation is that this defines a gauntlet of teams such that u

wins if and only if they defeat every team in the gauntlet.

◮ Definition 26 (Gauntlet). For deterministic tournament T , recursive tournament rule r,

and team u, let T ′ be such that the outcome of the (v, w) match is the same for all v, w 6= u,

but u is a Condorcet winner. The gauntlet for u in tournament T under recursive rule r,

Gr
u(T ), is the set of teams that u plays in elimination matches when r is executed on T ′. If

r is randomized, then Gr
u(T ) is a random variable.

If T is a probabilistic tournament, we extend the notation Gr
u(T ) to be the random variable

which first samples T , then outputs Gr
u(T ) (again over randomness in r).

For intuition, consider RSEB. u wins RSEB if and only if they win each of their ⌈log2(n)⌉

matches, so their gauntlet is a list of ⌈log2(n)⌉ teams, one per round. For RDM, however,

the set of matches that u plays is itself a random variable (depending on how many times u

is selected to play), but u still must win all these matches in order to win. For RKotH, the

size of the gauntlet is a random variable as well. Importantly, however, observe that for all

three rules (and any elimination rule), as soon as u loses a match, they are eliminated, so

their gauntlet opponents can be set assuming that u won all previous matches.

Importantly, observe that u’s gauntlet does not depend on the outcome of any of its own

matches (because T ′ immediately causes u to win all its matches anyway). This lets us make

the following key observation, which requires E to be a matching elimination rule.

◮ Lemma 27. Let rE be an anonymous recursive tournament rule with a matching elimination

rule, T be an independent probabilistic tournament on n teams, M ← E(n), and u, v be two

teams. Let also (u, v) ∈M and w denote the winner of the (u, v) match. Then the random

variable GrE

w (T |M ) is independent of w.

Proof. Observe first that because M is a matching which contains (u, v), that exactly one

of {u, v} (namely, w) is present in T |M . Moreover, because T is independent probabilistic,

the remaining teams in T |M are independent of w. Because the definition of w’s gauntlet

immediately considers a tournament T ′ which replaces the outcome of all matches involving

w by having w be a Condorcet winner, the tournament T ′ is independent of w except for

whether w is labeled as “u” or “v”. But because rE(·) is anonymous, its behavior on T ′ is

independent of w’s label. This completes the proof. ◭

Note that Lemma 27 fails when M is not a matching. This is because: (a) perhaps both

u and v are eliminated, and w is undefined, but also (b) even conditioned on w being defined,

the set of teams in T |M can depend on w. This is the main technical challenge in extending

beyond matching elimination rules.5

5 For example, in RKotH: conditioned on w := u, we know either that u was a Condorcet winner, or that
v was selected to play everyone, so all teams which lose to v are eliminated. If instead w := u, we know
either that v was a Condorcet winner, or that u was selected to play everyone. The teams which lose to
u vs. v could be different, so the Lemma fails to hold.
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◮ Corollary 28. Let rE be an anonymous tournament rule with a matching elimination rule,

T ∈ T ε, S = {u, v} be any two teams, and T ′ be S-adjacent to T . Then:

EM←E(n)[r
E
S (T ′|M )− rE

S (T |M )|B] ≤ 2ε( 1
2 + ε).

Proof. Because we are in a bad terminal event, this means that (u, v) ∈ M . If we let w

denote the winner of the (u, v) match in T , and w′ denote the winner in T ′, then we know

that GrE

w (T |M ) and GrE

w′ (T ′|M ) are identically distributed by Lemma 27. This means that:

rE
S (T |M ) = E

GrE
w (T |M )





∏

x∈GrE
w (T |M )

pT
wx





rE
S (T ′|M ) = E

GrE

w′
(T ′|M )







∏

x∈GrE

w′
(T ′|M )

pT ′

w′x







= E
GrE

w (T |M )





∏

x∈GrE
w (T |M )

pT
w′x





⇒ rE
S (T ′|M ) − rE

S (T |M ) = E
GrE

w (T |M )





∏

x∈GrE
w (T |M )

pT
w′x −

∏

x∈GrE
w (T |M )

pT
wx





≤ E
GrE

w (T |M )





∏

x∈GrE
w (T |M )

( 1
2

+ ε) −
∏

x∈GrE
w (T |M )

( 1
2

− ε)





= E
GrE

w (T |M )

[

( 1
2

+ ε)|GrE

w (T |M )| − ( 1
2

− ε)|GrE

w (T |M )|

]

≤ 2ε

The first two lines follow by definition of the gauntlet, and Lemma 27. The third line is

basic algebra. The fourth line follows as T ∈ T ε. The fifth line is again basic algebra, and

the final line invokes Lemma 29, which is stated below (proof omitted from this version).

The above calculations hold for any T |M , T ′|M .

◮ Lemma 29. For all n ∈ N≥0, and ε ∈ [0, 1/2]: ( 1
2 + ε)i − ( 1

2 − ε)n ≤ 2ε.

To see where the additional factor of ( 1
2 +ε) comes from, recall that pT

uv ∈ [1/2−ε, 1/2+ε].

Therefore, pT ′

uv − pT
uv ≤

1
2 + ε. Consider now coupling the tournaments T and T ′ so the the

result of every match except for the one between u and v is identical (this is possible because

T and T ′ are independent probabilistic). Under this coupling, T and T ′ are identical with

probability at least 1
2 −ε (and gains from manipulation are clearly only possible when T 6= T ′,

which occurs with probability at most 1
2 + ε, and independently of M). Therefore, T 6= T ′

with probability at most ( 1
2 + ε) and conditioned on this, rE

S (T ′|M )− rE
S (T |M ) ≤ 2ε. ◭

6.2 RDM and RSEB

Corollary 28 is the main technical lemma to extend from T 1/2 to T ε. We begin with RDM.

◮ Theorem 30. αRDM
2 (T ε) = α2(T ε) = 1

3 ε + 2
3 ε2.

Proof. Let T ∈ Sε. Recall that we need to lower bound the probability of a good terminal

event, upper bound the probability of a bad terminal event, and upper bound the gains from

manipulation in case of a bad terminal event. We have already upper bounded the gains

from a bad terminal event using Corollary 28 and can therefore take c = 2ε( 1
2 + ε).
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To bound the probability of a bad terminal event, observe that a bad terminal event

occurs only when u plays v in this round, which happens with probability exactly 1/
(

n
2

)

. So

RDM satisfies b = 1/
(

n
2

)

.

For the good terminal events, we claim that Pr[G] ≥ 2/
(

n
2

)

. First, observe that once we

show this, we can plug into Theorem 21 and conclude αRDM
2 (T ε) ≤

2ε(
1
2 +ε)·1/(n

2)
1/(n

2)+2/(n
2)

= 1
3 ε + 2

3 ε2.

To see this bound, let ℓu denote the number of teams which beat u with probability

(1/2 + ε) but v with probability (1/2− ε), and ℓv denote the number of teams which beat v

with probabiltiy (1/2 + ε) but u with probability (1/2− ε). Without loss of generality let

ℓu ≥ ℓv.

If ℓu = 0, then Lemma 22 already establishes that u and v can gain nothing by ma-

nipulating. If ℓu + ℓv ≥ 2, then whenever u or v plays a team (not in {u, v}) which beats

them, we have a good terminal event (because u or v is already eliminated before having

ever played the (u, v) match, so manipulating the match has no impact). Observe that any

team which beats u (respectively, v) with probability (1/2 + ε) beats v (respectively, u) with

probability at least (1/2− ε). Therefore, we have a good terminal event with probability at

least 2(1/2 + ε)/
(

n
2

)

+ 2(1/2− ε)/
(

n
2

)

= 2/
(

n
2

)

, as desired.6

If ℓu = 1, ℓv = 0, then let w be the unique team which beats u with probability (1/2 + ε)

but v with probability (1/2− ε). We claim that if w plays either u or v that we have a good

terminal event. Indeed, if w wins, then either u or v are eliminated having never played the

(u, v) match. If instead w loses this match, then w is eliminated, but now pT
ux = pT

vx for all

remaining teams x, and Lemma 22 asserts that there are no further gains from manipulation.

The probability that w plays u or v is 2/
(

n
2

)

, as desired.

This handles all possible cases, and establishes that g ≥ 2/
(

n
2

)

in all cases. Plugging into

Theorem 21 as described above completes the proof. ◭

The analysis for RSEB is again similar to RDM, but some calculations are more involved.

◮ Theorem 31. αRSEB
2 (T ε) = α2(T ε) = 1

3 ε + 2
3 ε2.

Proof. Let T ∈ Sε. We have already upper bounded the gains from a bad terminal event

using Corollary 28 and can therefore take c = 2ε( 1
2 + ε).

To bound the probability of a bad terminal event, observe that a bad terminal event

occurs only when u plays v this round, which happens with probability exactly 1/(n′ − 1).7.

So RSEB satisfies b = 1/(n′ − 1).

For the good terminal events, we claim that Pr[G] ≥ 2/(n′ − 1). First, observe that once

we show this, we can plug into Theorem 21 and conclude αRSEB
2 (T ε) ≤

2ε(
1
2 +ε)·1/(n′−1)

1/(n′−1)+2/(n′−1) =
1
3 ε + 2

3 ε2.

To see this bound (which requires more calculations than previous proofs), let ℓu denote

the number of teams which beat u with probability (1/2 + ε) but v with probability (1/2− ε),

and ℓv denote the number of teams which beat v with probabiltiy (1/2 + ε) but u with

probability (1/2− ε). Without loss of generality let ℓu ≥ ℓv.

Case One: ℓu + ℓv ≤ 1. If ℓu = 0, then Lemma 22 already establishes that u and v can

gain nothing by manipulating. If ℓu = 1, ℓv = 0, then let w be the unique team which

beats u with probability (1/2 + ε) but v with probability (1/2− ε). We claim that if w

6 To be extra clear, the two matches (w, u), (w, v) together contribute probability 1/
(

n
2

)

to the probability

of a good terminal event, as long as w beats either u or v with probability (1/2 + ε). Because there are
two such teams, we get this twice.

7 Recall in RSEB that n′ denotes the total number of teams plus dummy teams, and is 2⌈log
2

(n)⌉

ITCS 2021



14:14 Approximately Strategyproof Tournament Rules in the Probabilistic Setting

plays either u or v that we are in a good terminal event. Indeed, if w wins this match,

then either u or v are eliminated having never played the (u, v) match. If instead w

loses this match, then w is eliminated, but now pT
ux = pT

vx for all remaining teams x, and

Lemma 22 asserts that there are no further gains from manipulation. The probability

that w plays u or v is 2/(n′ − 1), as desired.

Case Two: ℓu + ℓv = 2. Next, consider the case where ℓu +ℓv = 2, and call the two relevant

teams x, w. Observe first that if u plays x and v plays w, or if u plays w and v plays

x, then we are surely in a good terminal event. This is because either (a) u or v is

eliminated without having played the (u, v) match, or (b) both x and w are eliminated

(allowing us to invoke Lemma 22). This occurs with probability 2
(n′−1)(n′−3) . There are

also the cases where exactly one of {w, x} plays a team in {u, v}. For any given pair (a, b),

with a ∈ {w, x} and b ∈ {u, v}, this case occurs with probability (n′−4)
(n′−1)(n′−3) .8 Two of

these cases contribute at least a (1/2 + ε) probability of eliminating the team in {u, v},

and the other two contribute at least a (1/2− ε) probability. So in total, all four cases

contribute at least 2(n′−4)
(n′−1)(n′−3) , and together we get that a good terminal event occurs

with probability at least:

2

(n′ − 1)(n′ − 3)
+

2(n′ − 4)

(n′ − 1)(n′ − 3)
=

2(n′ − 3)

(n′ − 1)(n′ − 3)
=

2

n′ − 1
.

Case Three: ℓu + ℓv ≥ 3. Next, consider the case where ℓu + ℓv ≥ 3 (observe that this

implies n ≥ 5). We will show that either u or v are eliminated with probability at

least 2/(n′ − 1). Indeed, let Lu denote the set of teams which beat u with probability

(1/2 + ε) (but not v), and Lv denote the set of teams which beat v with probability

(1/2 + ε) (but not u). Then consider the case where u plays a team in Lu, or v plays

a team in Lv. Conditioned on this, both u and v survive with probability at most

(1/2 + ε)(1/2 − ε) ≤ 1/4, so one of {u, v} is eliminated with probability at least 3/4.

So one sufficient condition would be to establish that u plays a team in Lu or v plays

a team in Lv with probability at least 8/3
n′−1 (because conditioned on this, one of {u, v}

is eliminated with probability 3/4, for a total probability of at least 2
n′−1 that one of

{u, v} is eliminated). In the subcase that ℓu ≥ 3, then the probability is in fact at least

3/(n′ − 1), as desired. Clearly, this probability is monotone in ℓu, ℓv, so this leaves the

only remaining subcase as ℓu = 2, ℓv = 1.

Subcase Three-A: ℓu = 2, ℓv = 1, n ≥ 9. For the subcase of ℓu = 2, ℓv = 1, the probabil-

ity that u plays a team in Lu or v plays a team in Lv is 2
n′−1 + (n′−5)

(n′−1)(n′−3) .9 As n′ ≥ 16

(because n ≥ 9 and n′ is a power of 2), we have that (n′ − 5)/(n′ − 3) ≥ 11/13, meaning

that 2
n′−1 + (n′−5)

(n′−1)(n′−3) ≥
37/13
n′−1 > 8/3

n′−1 , which resolves this case by the work above.

Subcase Three-B: ℓu = 2, ℓv = 1, ε ≥ 1

2
√

13
, n ∈ [5, 8]. When n ∈ [5, 8], we have n′ = 8.

This means that (n′ − 5)/(n′ − 3) = 3/5, and therefore 2
n′−1 + (n′−5)

(n′−1)(n′−3) = 13/5
n′−1 .

Unfortunately, this is < 8/3
n′−1 , meaning that this case doesn’t immediately resolve by the

method above. In this range, we do an explicit case analysis. First, observe that u and v

are least likely to be eliminated when there are more dummy teams (because u and v

8 Because the probability that a plays b is 1/(n′ − 1), and the probability that the other two teams do
not play, conditioned on this, is (n′ − 4)/(n′ − 3).

9 To see this, observe that the probability that u plays a team in Lu is 2/(n′ − 1). The probability that
u plays a team not in Lu ∪ Lv ∪ {v} is (n′ − 5)/(n′ − 1). Conditioned on this, the probability that v
plays the team in Lv is 1/(n′ − 3) (and this is the only way that v can possibly play the team in Lv

without u playing Lu).
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beat dummy teams with probability one, but real teams with probably at most 1/2 + ε).

So the worst case to consider is when n = 5: two real teams beat only u, one beats only

v, and there are three dummy teams. We just have to compute several cases:

Perhaps u plays one of the ℓu teams, and v plays one of the ℓv teams. This occurs with

probability 2
7 ·

1
5 , and eliminates u or v with probability 1− (1/2− ε)2 = 3/4 + ε− ε2.

Perhaps u plays one of the ℓu teams, and v plays the other. This occurs with probability
2
7 ·

1
5 , and eliminates u or v with probability 1− (1/2 + ε)(1/2− ε) = 3/4 + ε2.

Perhaps u plays one of the ℓu teams, and v plays a dummy team. This occurs with

probability 2
7 ·

3
5 , and eliminutes u with probability 1/2 + ε.

Perhaps u plays one of the ℓv teams, and v plays one of the ℓu teams. This occurs with

probability 1
7 ·

2
5 , and eliminates u or v with probability 1− (1/2 + ε)2 = 3/4− ε− ε2.

Perhaps u plays one of the ℓv teams, and v plays a dummy team. This occurs with

probability 1
7 ·

3
5 , and eliminates u with probability 1/2− ε.

Perhaps u plays a dummy team, and v plays one of the ℓv teams. This occurs with

probability 3
7 ·

1
5 , and eliminates v with probability 1/2 + ε.

Perhaps u plays a dummy team, and v plays one of the ℓu teams. This occurs with

probability 3
7 ·

2
5 , and eliminates v with probability 1/2− ε.

Perhaps both u and v play dummy teams. This happens with probability 3
7 ·

2
5 , but

eliminates neither team.

So either u or v is eliminated (without playing each other) with probability:

2

35
· (3/4 + ε− ε2) +

2

35
· (3/4 + ε2) +

6

35
· (1/2 + ε) +

2

35
· (3/4− ε− ε2)

+
3

35
· (1/2− ε) +

3

35
· (1/2 + ε) +

6

35
· (1/2− ε)

=
27

70
−

2

35
ε2 ≥

26

70
> 2/7.

Note that when n ∈ [5, 8], the probability of a bad event is exactly 1/7, and the above

work establishes that in case Three-B, the probability of a good terminal event is at least

twice that of a bad terminal event.

The arguments above handle all possible cases, and establishes that g ≥ 2/(n′ − 1) in all

cases. Plugging into Theorem 21 as described above completes the proof. ◭

7 Conclusion and Open Problems

We take a beyond worst-case view on manipulability of tournament rules, and nail down

optimal guarantees as a function of the uncertainty of match outcomes. Specifically, our

main result shows that α2(T ε) = ε/3 + 2ε2/3, and this is achieved for all ε by Randomized

Death Match and Randomized Single Elimination Bracket. Our main technical contribution

is a framework to analyze recursive tournament rules.

There are two natural directions for future work. The first concerns further work in the

probabilistic setting: does αRKotH
2 (T ε) = ε/3+2ε2/3? The main technical barrier is replacing

Lemma 27, which only holds for matching elimination rules.10 In addition, it is interesting

to analyze probabilistic tournaments which are not independent. Here there are technical

barriers to overcome (many of our steps do require independence), but also conceptual

10 There are other barriers to using our precise definitions, but these barriers seem semantic rather than
substantial.
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ones: if tournament match outcomes are correlated, should we consider manipulations which

are correlated with external outcomes as well? If so, is there a natural way to consider

manipulations which are “not more correlated than the original tournament itself”?

A second direction concerns applications of our recursive framework towards other

problems in approximately strategy-proof tournament design. For example, it is still an open

question following [15] what is αk(T 1/2) for any k > 2. Our recursive framework may prove

useful for analyzing this, or at least determining achievable guarantees for recursive rules.
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A Omitted Proofs from Section 2

Proof of Proposition 9. The second statement of the lemma clearly follows from the first. It

is trivial to see that αr
k(T ε) ≥ αr

k(Sε), as Sε ⊆ T ε. To get intuition for why αr
k(T ) ≤ αr

k(Sε),

observe that every probabilistic tournament in T ε can be written as a convex combination of

probabilistic tournaments in Sε. Indeed, this intuition drives the proof.

To see this formally, let T be an arbitrary (independent probabilistic) tournament in T ε,

and let T ′ be any S-adjacent (independent probabilistic) tournament for some |S| ≤ k. Then

pT
ij ∈ [1/2− ε, 1/2 + ε] for all i, j, by definition. Consider the following procedure to jointly

sample tournaments from T, T ′. The procedure first constructs another pair of probabilistic

tournaments U, U ′, and then samples from these.

1. For all (i, j), set qij :=
pT

ij−(1/2−ε)

2ε . Observe that qij · (1/2 + ε) + (1− qij) · (1/2− ε) = pT
ij ,

and that qij ∈ [0, 1] as pT
ij ∈ [1/2− ε, 1/2 + ε].

2. For each (i, j), independently, set pij equal to (1/2 + ε) with probability qij and equal to

(1/2− ε) with probability (1− qij).

3. For all (i, j), set pU
ij := pij .

4. For all (i, j) such that {i, j} 6⊆ S, set pU ′

:= pU . For other (i, j), set pU ′

ij := pT ′

ij .

5. Draw a pair of tournaments according to U, U ′ (independently, say).

Observe that this procedure correctly draws two tournament according to T, T ′. Indeed,

it is easy to see for each output tournament that the outcome of each match is independent,

simply because they are independent in U (resp. U ′), and because the random variables pU
ij

(resp. pU ′

ij ) are independent. Moreover, we claim that the probability that i beats j is exactly

pT
ij . Indeed, the probability that i beats j in U is: E[pU

ij ] = qij ·(1/2+ε)+(1−qij) ·(1/2−ε) =

pT
ij . In U ′, when {i, j} ⊆ S, the probability that i beats j in U ′ is clearly pT ′

ij by definition.

When {i, j} 6⊆ S, the probability that i beats j is also pT
ij , which is equal to pT ′

ij as T, T ′ are

S-adjacent. Additionally, observe that: (a) U ∈ Sε and (b) U and U ′ are S-adjacent. Now,

consider any tournament rule r(·):

For all i: ri(T ) = E[ri(U)], and ri(T
′) = E[ri(U

′)]

⇒ rS(T ′)− rS(T ) = E[rS(U ′)− rS(U)] ≤ αr
k(Sε)

Indeed, the first line is simply linearity of expectation, once the previous work confirms that

going through U, U ′ is a valid way to draw tournaments from T, T ′. The third line then also

follows by linearity of expectation. The final line follows as U ∈ Sε, and U, U ′ are S-adjacent.

This completes the proof, as we have now shown that αr
k(T ε) ≤ αr

k(Sε). ◭
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B Omitted Proofs from Section 3

Proof of Lemma 16. This follows immediately from linearity of expectation. For all i, the

probability that i wins in tournament T under rule rE(·) is the expected probability that i

wins in T |M . Summing over i ∈ S, and repeating this for T ′ yields the lemma. ◭

C Omitted Proofs from Section 5

Proof of Lemma 22. Let σ(·) denote the permutation which swaps u and v. Consider any

two deterministic tournaments U, σ(U). Then because r(·) is anonymous, we have:

ru(U) + rv(U) = rσ(u)(σ(U)) + rσ(v)(σ(U)) = rv(σ(U)) + ru(σ(U))

⇒ rS(U) = rS(σ(U))

Indeed, the first line simply applies anonymity, and the second line simply applies σ. Now let’s

return to T, T ′ (which are independent probabilistic tournaments, rather than deterministic).

Consider the following process to draw T and T ′ jointly:

1. To emphasize that pT
uw = pT

vw, for all w /∈ {u, v}, denote by pT
w := pT

uw.

2. Without loss of generality, let pT
uv ≤ pT ′

uv.

3. Draw the outcome of all matches involving two teams both /∈ {u, v}. Set the outcome of

these matches the same for T and T ′.

4. For all w /∈ {u, v}, draw qw1 and qw2 iid and uniformly from [0, 1]. Draw quv independently

and uniformly from [0, 1].

5. For all w /∈ {u, v}, have u beat w if and only if qw1 < pT
w. Have v beat w if and only if

qw2 < pT
w. Have u beat v if and only if quv < pT

uv.

6. If quv /∈ [pT
uv, pT ′

uv], set T ′ := T .

7. If quv ∈ [pT
uv, pT ′

uv], then set T ′ := σ(T ).

This process clearly satisfies that with probability one, either T ′ = T or T ′ = σ(T ). By

the work above, this means that rS(T ) = rS(T ′) as desired, as long as we confirm that this

process validly samples both T and T ′. It is easy to see that the process is valid for T : the

match outcomes are clearly independent, and any team w beats x if and only if a uniformly

random draw from [0, 1] is < pT
wx (which happens with probability pT

wx, as desired).

To see that the process is valid for T ′, observe first that u beats v with probability exactly

pT ′

uv, because u beats v whenever quv < pT ′

uv. Moreover, after conditioning on quv, the outcome

of each (u, w) match is either set according to qw1 (an independent, uniform draw from [0, 1]),

or qw2 (also an independent, uniform draw from [0, 1]). In either case, these match results

are all set independently and with the correct probability (because T, T ′ are S-adjacent, and

because qw1, qw2 are iid because pT
uw = pT

vw for all w). This completes the proof. ◭

Proof of Theorem 24. We again simply let c = 1 and take the trivial bound on the gain in

bad terminal events.

To bound the probability of a bad terminal event, observe that a bad terminal event

occurs only when u plays v this round, which happens with probability exactly 1/(n′ − 1).11

So RSEB satisfies b = 1/(n′ − 1).

For the good terminal events, we claim that Pr[G] ≥ 2/(n′−1). First, observe that once we

show this, we can plug into Theorem 21 and conclude αRSEB
2 (T 1/2) ≤ 1·1/(n′−1)

1/(n′−1)+2/(n′−1) = 1/3.

11 Recall that in RSEB, n′ := 2⌈log
2

(n)⌉.
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To establish this bound, let ℓu denote the number of teams which beat u but not v, ℓv

denote the number of teams which beat v but not u. Without loss of generality let ℓu ≥ ℓv.

If ℓu + ℓv = 0, then Lemma 22 already establishes that u and v gain nothing by

manipulating. If ℓu ≥ 2, then whenever u plays a team which beats them, we have a good

terminal event (because u is already eliminated before having ever played the (u, v) match,

so manipulating the match has no impact). This happens with probability at least 2/(n′− 1).

If ℓu = 1, ℓv = 0, then let w denote the unique team which beats u but not v. We now

claim that if w plays either u or v that we are in a good terminal event. Indeed, if w plays

u, then u is eliminated having never played the (u, v) match. If instead w plays v, then w is

eliminated, but now there are no remaining teams which beat u but not v (or vice versa)

and Lemma 22 asserts that there are no further gains from manipulation. The probability

that w plays u or v is 2/(n′ − 1), as desired.

Finally, if ℓu = ℓv = 1, let w denote the unique team which beats u but not v, and x

denote the unique team which beats v but not u (this case requires slightly more calculations

than RDM). If u plays w, or v plays x, then at least one of u, v is eliminated before the

(u, v) match is played, and therefore no gains are possible. This happens with probability

2/(n′ − 1) − 1
(n′−1)(n′−3) . In addition, if u plays x and v plays w, then both x and w will

be eliminated, and Lemma 22 asserts that there are no further gains from manipulation.

This occurs with probability 1
(n′−1)(n′−3) . Therefore, a good terminal event happens with

probability at least 2/(n′−1), as desired. This handles all possible cases, and establishes that

g ≥ 2/(n′ − 1) in all cases. Plugging into Theorem 21 as described completes the proof. ◭

D Omitted Proofs from Section 6

Proof of Lemma 25. Consider a 3-player tournament T with teams u, v, and w, pT
uv =

pT
vw = pT

wu = 1
2 + ε.12 Noting that T is randomized, there are two possible types of

deterministic outcomes: outcomes where there is a Condorcet winner, and outcomes which

form a cycle (either v beats u, u beats w, and w beats v, or vice versa).

In T , each of the three players has probability ( 1
2 + ε)( 1

2 − ε) of being a Condorcet winner.

Call the cycle where v beats u “cycle 1”; this occurs with probability ( 1
2 + ε)3. Call the

opposing cycle (where u beats v) “cycle 2”; this occurs with probability ( 1
2 − ε)3.

Let r be any Condorcet-consistent tournament rule. Denote by γx the probability that

the rule selects x as the winner when cycle 1 occurs (for any x ∈ {u, v, w}). Denote by βx

the probability that the rule selects x as the winner when cycle 2 occurs. Recall that r must

select x as the winner with probability 1 when x is the Condorcet winner.

Suppose that u and v collude so that u throws their match to v. Specifically, let T uv

denote the {u, v}-adjacent tournament to T where pT uv

uv = 0 (instead of 1/2 + ε). In T uv, v

is a Condorcet winner with probability 1
2 + ε (they need only beat w), cycle 2 occurs with

probability ( 1
2 − ε)2 (v must lose to w, who must lose to u), and w is a Condorcet winner

with probability ( 1
2 + ε)( 1

2 − ε). No other outcomes are possible. We then have:

ru(T uv) + rv(T uv)− ru(T )− rv(T ) = ( 1
2 + ε) + (βu + βv) · ( 1

2 − ε)2

− 2( 1
2 + ε)( 1

2 − ε)− (βu + βv) · ( 1
2 − ε)3 − (γu + γv)( 1

2 + ε)3

= 2ε · ( 1
2 + ε) + (βu + βv) · (( 1

2 − ε)2 − ( 1
2 − ε)3)− (γu + γv)( 1

2 + ε)3

12 That is, if ε = 1/2, this is the same 3-cycle example from [14].
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Identical calculations hold for T vw, T wu. We can sum these three together to achieve:

(ru(T uv) + rv(T uv)− ru(T )− rv(T )) + (rv(T vw) + rw(T vw)− rv(T )− rw(T ))

+ (rw(T wu) + ru(T wu)− rw(T )− ru(T ))

= 6ε · ( 1
2 + ε) + 2(βu + βv + βw) · (( 1

2 − ε)2 − ( 1
2 − ε)3)− 2(γu + γv + γw)( 1

2 + ε)3

= 6ε · ( 1
2 + ε) + 2 · ( 1

2 − ε)2 · ( 1
2 + ε)− 2( 1

2 + ε)3

= 6ε · ( 1
2 + ε) + 2 · ( 1

2 + ε) · (( 1
2 − ε)2 − ( 1

2 + ε)2)

= 6ε · ( 1
2 + ε) + 2 · ( 1

2 + ε) · (−2ε) = 2ε · ( 1
2 + ε)

This means that one of the three coalitions can gain at least 2
3 ε( 1

2 + ε) = 1
3 ε + 2

3 ε2. ◭
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