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ABSTRACT

We consider the problem of implementing a fixed social choice
function between multiple players (which takes as input a type ¢;
from each player i and outputs an outcome f(#1, ..., ty)), in which
each player must be incentivized to follow the protocol. In particular,
we study the communication requirements of a protocol which:
(a) implements f, (b) implements f and computes payments that
make it ex-post incentive compatible (EPIC) to follow the protocol,
and (c) implements f and computes payments in a way that makes
it dominant-strategy incentive compatible (DSIC) to follow the
protocol.

We show exponential separations between all three of these
quantities, already for just two players. That is, we first construct
an f such that f can be implemented in communication ¢, but any
EPIC implementation of f (with any choice of payments) requires
communication exp(c). This answers an open question of [Fadel
and Segal, 2009; Babaioff et. al., 2013]. Second, we construct an f
such that an EPIC protocol implements f with communication C,
but all DSIC implementations of f require communication exp(C).
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1 INTRODUCTION

Consider the following canonical problem: there is a set Y of possi-
ble outcomes, and each of n players have a type t; which determines
their utility u;(t;, y) for each outcome y € Y. You have a particu-
lar social choice function f in mind, which maps a profile of types
f=(t1,...,tn) to f(f) € Y. A canonical question within Computer
Science might first ask “what is CC(f), the communication com-
plexity of f?” That is, over all deterministic protocols computing f
among the n players (who initially each know only their own type,
and not that of any others), which one uses the least number of bits
in the worst case?

But consider now the possibility that the players do not simply
follow the intended protocol, and instead strive to maximize their
own utility. The need to incentivize the players to follow the proto-
col motivates the entire field of Algorithmic Mechanism Design, as
well as questions such as “what is the communication complexity to
implement f, using a protocol which incentivizes the players to follow
it?”

There are several formal instantiations of this question, depend-
ing on how strongly one wishes to incentivize the players. One
common solution concept is ex-post incentive compatibility (EPIC),
where the protocol may charge prices and it is in each player’s
interest to follow the protocol assuming that other players follow
the protocol as well (formally, it is a Nash equilibrium to follow the
protocol, no matter the other players’ types). We let CCEPIC(f)
denote the minimum communication cost of an EPIC protocol im-
plementing f. Another common solution concept is dominant strat-
egy incentive compatibility (DSIC), where the protocol may charge
prices and it is in each player’s interest to follow the protocol no
matter what the other players do (even if that behavior is completely
irrational). We let CCPSIC (f) denote the minimum communication
cost of a DSIC protocol implementing f. Because any EPIC protocol
must compute f and any DSIC protocol is in particular an EPIC
protocol, we have CC(f) < CCEPIC(f) < CCDSIC(f).

Formally, we study the following question: for a fixed f, how
does CC(f) relate to CCEPIC(f), and how does CCEPIC(f) relate
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to CCPSIC(£)? While related directions have received substantial
attention and produced a vast body of works (we overview this
related work, and others, in Section 1.1), relatively little attention
has been paid to these fundamental questions. Our main results are
exponential separations between all three quantities (and these are
the first such separations). Specifically:

THEOREM (SEE THEOREM 3.1 AND THEOREM 4.10). There exists
f such that CCEPIC(f) = exp(CC(f)). There exists g such that
CCPSIC(g) = exp(CCHPIC(g)).

The gap in both cases is at most exponential, so this is the largest
gap possible.!

1.1 Context and Related Work

There is a vast literature studying the communication requirements
of protocols for honest players versus truthful mechanisms for
strategic players [2, 3, 7-13, 15-17, 19, 20, 22-24, 26, 27]. Our work
certainly fits into this literature, but goes in a fairly distinct direction.
Specifically, this literature nearly-ubiquitously considers compar-
isons between how much communication is required for some f
satisfying some property (e.g. guaranteeing an a-approximation to
the optimal welfare?) versus how much communication is required
for some EPIC implementation of some g guaranteeing that property.
In particular, f and g may be different social choice functions, and
separations normally arise because the lowest-communication f
guaranteeing the desired property has no EPIC implementation —
there simply don’t exist prices that make any implementation of f
EPIC, no matter how much communication is used.?

Our work studies a fundamentally different question: for a fixed
f which is EPIC-implementable, how much communication over-
head is required to actually compute prices which make the im-
plementation EPIC? For an example of this distinction, consider a
single-item auction: each player has a value v; for the item. The
space of outcomes can award the item to any bidder, or no one.
The social choice function f which gives the item to the highest
bidder can be EPIC-implemented (by the second-price auction). The
social choice function g which gives the item to the lowest bidder
cannot be EPIC-implemented (by any prices, no matter how much
communication). In general, many approximation algorithms for
richer settings tend to be like g: they are simply not implementable,
no matter what. So the driving force behind all prior work is sepa-
rating the approximation guarantees for efficient protocols which
are EPIC-implementable (and tend to have low overhead to actually
compute the prices), versus those which are not.

There is significantly less prior work addressing our specific
questions. The direction was first posed in [18], who explicitly
pose the question of CC(f) versus CCEPIC(f), and demonstrate
that CCEPIC(f) can be strictly larger than CC(f). Follow-up work

ITo see this, consider the following sketch: for every protocol, there exists a simultane-
ous protocol (with one round of communication) with at most an exponential blowup
in communication. A simultaneous protocol is EPIC if and only if it is DSIC, and [18,
Proposition 1] shows that EPIC prices can be added to any simultaneous protocol for
f with low overhead. So the gap between the three quantities can be no larger than
the gap between simultaneous and interactive communication requirements for f,
which is at most exponential.

2The welfare of an outcome y is defined as 3; u; (¢;, y).

30n the other hand, if f is EPIC-implementable, it is DSIC-implementable, but perhaps
with exponential overhead.
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of [4] were the first to make progress on this, and show a separation
of CC(f) versus CCEPIC( f) which is linear in the number of play-
ers (so in particular, the blow-up for two players is not large). In
comparison to these works, our Theorem 3.1 shows the maximum
possible gap (exponential) with just two players, resolving the open
question in [18].

[18, Appendix B.2] defines and discusses CCPSIC| but only con-
siders the relationship between CC and CCPSIC (not the gap be-
tween CCEPIC and ccPSIC). [11, Appendix C.1] shows that no
large separation between CCEPIC(f) and CCPSIC(f) is possible
for the particular setting of two player combinatorial auctions with
arbitrary monotone valuations?.

The study of CCEPIC(£) versus CCPSIC(f) is conceptually re-
lated to a recent push with the Economics and Computation commu-
nity to understand obviously strategyproof (OSP) mechanisms [1,
6, 25, 28]. These works do not focus on communication complexity,
but rather on characterizing implementations which satisfy OSP
(a stronger, but related, definition than DSIC). In comparison to
these works, our Theorem 4.10 bears technical similarity, and our
approach may be useful for proving communication lower bounds
on OSP implementations.

[18] also study related questions for a solution concept termed
“Bayesian incentive compatibility” (BIC), and they obtain a tight
exponential separation of CC and CCBIC . [5] studies the solution
concept termed “truthful in expectation” (TIE), and show that in
single-parameter settings there is no (substantial) separation be-
tween CC(f) and CCTIE(f).

Concurrent and Independent Work. Concurrently and indepen-
dently of our work, Dobzinski and Ron [14] also consider the rela-
tionship between CC and CCEPIC 5 In particular, they also provide a
construction of a function f witnessing CCEPIC (f) = exp(CC(f))
(their Section 3.1), which is similar to ours (our Section 3) in that it
derives hardness from high-precision prices. The remainder of their
paper is disjoint from ours (in particular, they do not study CCPSIC,
so there is no analogue to our Section 4). Instead, they establish
the following results: (a) There exist functions f with CCEPIC( f) =
exp(CC(f)) without high-precision prices (but with a third bidder).
(b) Under certain assumptions on f, CCEPT C( f) = poly(n,CC(f))
and/or CCTTE(£) = poly(n, CC(f)). (c) Reconstructing the menu
presented by an EPIC mechanism can be exponentially harder than
computing the mechanism alone. A high-level distinction of our
works is that our paper provides exponential separations between
multiple solution concepts (algorithmic vs. EPIC vs. DSIC), whereas
their paper provides a more thorough investigation of algorithmic
vs. EPIC.

1.2 Summary and Roadmap

We establish an exponential separation between CC(f) and
CCEPIC(£), and also CCEPIC(f) and CCPSIC (), both the largest

“The proof of [11, Appendix C.1] relies on the fact that incentive compatible combina-
torial auctions with arbitrary monotone valuations have low “taxation complexity”.
Our construction in Section 4 circumvents this theorem because its environment is a
very structured subset of two player monotone combinatorial auctions, and moreover,
our social choice function f has high taxation complexity.

>Both papers were uploaded to arXiv simultaneously on December 29th, 2020.
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possible, and first of their kind. Section 3 provides the separation be-
tween CC(f) and C CEPIC( ), and Section 4 provides the separation
between CCEFIC(£) and CCPSIC(£).

2 PRELIMINARIES

We study implementations of social choice functions over (social
choice) environments. For completeness and accessibility for the
reader not familiar with game theory, we rigorously define all of
these terms in Appendix A. Here, we briefly and intuitively describe
the central definitions of the paper.

The environment specifies a set of outcomes Y and a set of types
T, ..., Tn for the n different strategic agents. Intuitively, the types
represent the different possible options for “who each agent might
be”. When agent i has type t; € 7;, they have utility u;(t;,y) € R for
each outcome y € Y. When we study environment with transfers®,
we assume utilities are quasilinear (that is, if outcome y is selected
and agent i receives transfer p, then agent i gets utility u; (¢, y) + p).
The social choice function f : 71 X ... X 7, — Y specifies how the
outcome depends on the type each agent has. While the “social
planner” designing the mechanism wishes to compute f, the agents
wish to maximize their own utility. The social choice function
itself is assumed to be implementable. That is, there exists transfer
functions p1,...,pn : 71 X - - X Ty — R for each agent, such that
for all i, types t1, ..., ty, and tl.’, we have

Fa ) + pi(ty, t=g) = f(#], 1) + pi(t], t-5).

We say that transfers (p1,. .., pn) incentivize f, and we say that f
is incentive compatible without transfers if each p;(-) above can be
taken to be 0.

A mechanism consists of an (extensive form) game G which the
n agents play, and “type-strategies” Sy, .. ., S, which suggest how
the agents should play G. Intuitively, the game G iteratively solicits
actions from players, updating its state according to the action
chosen, and outputting some result after a finite amount of time.
This is represented by a game tree, where the nodes correspond to
states of the game. Each non-leaf node is labeled by some agent,
and the edges below that node are labeled with the actions that
agent may play at that state of the game. The game is not perfect
information: it may hide information from agents or ask them to act
simultaneously. For each agent i € [n], the states of G at which i is
called to act are partitioned into “information sets” I; € Z;, where
two nodes are in the same information set if and only if agent i
cannot distinguish between them while playing the game’. For
i € [n], the type-strategy S; maps types t; € 7; to “behavioural
strategies” s; = S;(t;) which player i can play in G. A behavioural
strategy (typically referred to simply as a strategy) specifies the
action that player i will choose any time they are called to act
over the course of the game, that is, it assigns an action to each
information set of player i. We denote the result output by G when
the agents play strategies sy, . .., sp by G(s1,. .., sn).

5Throughout the paper, we make no assumptions on the transfers. That is, they can
be positive or negative, and an agent can receive negative utility. This makes our
impossibility results only stronger.

"We assume the game satisfies “perfect recall”, that is, the game cannot force agents
to forget information they knew in the past. For details on how information sets are
defined, see Appendix A.
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A mechanism G with strategies Sy, ...,S, computes (without
transfers) a social choice function f if G(S1 (1), ..., Sn(tn)) = f(t1,
..., tn). A mechanism computes f (with transfers) if the result of
the game additionally includes transfers py, . .., p, to each player.

We consider two notions of incentive compatibility for inter-
active mechanisms. In words, a mechanism is dominant strategy
incentive compatible (DSIC) if, for any (behavioral) strategy profile
s—j = (sj)jzi of the other players, it is a best response for player i
to play S;(#;). That is, for all ¢;, s_;, slf, we have

ui(ti, G(Si(ti),5-1)) = ui (i, G(s],5-i)),

where we recall that if the mechanism has transfers, u;(t;, -) is the
quasilinear utility given by agent i’s value for the outcome when
their type is t;, plus the transfer p; to player i. On the other hand, a
mechanism is ex-post Nash incentive compatible (EPIC) if, for any
profile of strategy S_;(t—;) := (S;(t}));jzi which are consistent with
type-strategies S_;, it is a best response to play S;(t;). That is, for
all t;, t_;, s{, we have

u;i (t;, G(Si(t:), S—i(t=)) = ui(t;, G(s{, S-i (t-))).

Observe quickly the following approach for an EPIC implemen-
tation of f: Say that (p1,...,pn) incentivizes f. Then one can run
protocols separately to compute f, and also to compute each p;, and
then output all of these together. This is simply because the EPIC
constraints assume that the other bidders’ strategies are fixed by
their type. So the overhead of CCEPIC (f) versus CC(f) is exactly
the overhead to compute transfers. This does not hold for DSIC
implementations. Indeed, this is because other bidders may use a
bizarre (not utility-maximizing) strategy which changes their be-
havior in (e.g.) the protocol to compute p; as a function of your
behavior in the protocol to compute f. But the EPIC condition does
not require guarantees against such bizarre strategies, only the
fixed strategies which guarantee each player a best response (as-
suming other players also use such a strategy). We formally define
our complexity measures as follows:

DEFINITION 2.1. For an arbitrary social choice function f,

o CC(f) is the minimum communication cost of a mechanism
(no incentives) computing f.

o If f is implementable, CCEFIC(f) is the minimum value of
CC(f,p1,- ., pn) overany transfer functions p1, . . ., pn which
incentivize f.

o Iff is implementable, CCPSIC(f,py, ..., pp) is the minimum
communication cost of any DSIC mechanism computing (f,
Pls- .., pn). Moreover, CCPSIC(f) is the minimum value of
CCPSIC(f,p1,...,pn) for any transfer functions p1, ..., pn
which incentivize f.

3 EXPONENTIAL SEPARATION OF CC(f)

AND CCEFIC(f)

In this section, we show that there exists an implementable social
choice function f which has communication complexity O(logn),
yet any EPIC implementation of f must use Q(n) communication.

We now describe our construction at a high level. Our instance
has two players, Alice and Bob. Alice’s type can be represented
succinctly, but Bob’s type is “complicated”. Therefore, without re-
gards to incentives, this social choice function can be efficiently
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computed in two rounds, with Alice sending her type to Bob in
the first round, and Bob deciding the outcome in the second round.
However, the social choice function and the utilities of Alice are
designed carefully such that there is essentially only one possible
transfer function that gives an EPIC implementation, and moreover,
this transfer function has to be “as complicated as the types of Bob”.
This means that the communication required to EPIC implement
the social choice function is large.

Social choice environment. Consider a 2-player social choice en-
vironment and refer to the players as Alice and Bob. The space of
outcomes of the environment is [n + 1]. The class of Bob’s types is
g = {0, 1}". That is, Bob’s type is a binary string b of length n. We
let b; € {0, 1} denote b’s i-th coordinate. Bob’s utility is always zero
regardless of the outcome (that is, ug(b,i) = 0foralli € [n+1],b €
78). The class of Alice’s types is T4 = UiE[n {a,'g, l’[, aip, l’h},

where for each i € [n], the types a; ¢, a ”,, a;p, a; , have utility:

ua(aje, i) = 2 "

uA(ai,f, i+ l) =0

uA(al-’f, i)=0
uA(al{{,, i+1)=27"

ua(ajp,i) =27" ua(aj;,i) =0

ua(ajpi+1) =2 ugal,i+1)=2"+27"

and ug(aie, j) = ua(aj,, j) = ua(aip, j) = uA(a,'h,J') = —oo for all
other outcomes ] ¢ {i,i+1}. Intuitively, a;., a; , are “low types” of
Alice, and a; , a; , are “high types” (which get much more utility

from outcome i + l)

Social choice function. The social choice function f : 74 X 7 —
[n+ 1] is given by

f(aieb) =i flaj,b)=i+1-b;
flajp,b) =i+1-b; f(a;h,b)=i+1.

That is, each of Alice’s type among a; ¢, a i L Qipa 'h receives either
outcome i or i + 1, and the exact outcome chosen depend on Bob’s
type b in the followmg way: If b; = 0, then a; ¢ receives outcome i,
and each of a] L ik a 'h receives outcome i+ 1. If b; = 1, then each

ofajr,a l{,, a; j, receives outcome i, and a’ , receives outcome i + 1.

ih

THEOREM 3.1. In the 2-player environment above, the social choice
function f is EPIC implementable. Moreover, there is an exponential
separation between the communication complexity for computing f
and the communication complexity of any EPIC implementation of f,
ie.,

ce(f) = ccEHe(f) =

Proor. First, observe that Alice and Bob can compute f with
O(logn) communication in the following way: Alice sends her
valuation, which can be described with O(log n) bits, to Bob, and
then, Bob computes and outputs the outcome, which also costs
O(log n) bits. Thus, CC(f) = O(logn).

On the other hand, consider any EPIC implementation of f.
Without loss of generality, we may assume that the transfers to
Bob are always 0. Let p(a, b) denote the transfer given to Alice
when Alice has type a € 74 and Bob has type b € 7g. By standard
arguments, we must have p(a’,b) = p(a,b) for any b € 7p and
a,a’ € T4 such that f(a’,b) = f(a,b) (otherwise, one of a or a’

O(logn) 0(n).
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would want to deviate to the other, in order to get a higher transfer
for the same outcome). Thus, going forward we write the transfer
function p : [n+ 1] X 7 — R, where p(i, b) is the transfer to Alice
when Bob has type b and outcome i is the output of f.

Now we prove our main lemma, which allows us to characterize
p in any EPIC implementation of f.

LemMA 3.2. Transfers p incentivize f if and only if we have
p(i,b) —p(i+1,b) € [bi2" -
foralli € [n] andb € Tp.

27" b2t +27" *

Proor. When Alice has type a; € {ajz, alf,l,, aip, al’h}, the social
choice function f will select outcome i or i + 1, based on the type of
Alice and bit b; of Bob’s valuation b € 7g. Certainly Alice will not
want to deviate to an outcome j ¢ {i,i + 1}, as her utility for these
outcomes is —oo. Thus, to prove the “if” direction, it suffices to show
that for each i € [n] and b € 7g, when transfers satisfy (*) for this
value of i and b, if Alice has a type a; € {aiy, al{’é,, aip, a;’h}, she will
not want to deviate to the unique outcome in {i,i + 1} \ {f(ai, b)}.
To prove the “only if” direction, it suffices to show that if transfers
p incentivize f, then (*) must hold for each i € [n] and b € 7p. To
this end, consider any i € [n].

First suppose b; = 0. This means that a; ¢ receives i, and alf,t,,
ajp, a 'h receive i + 1.

Suppose that transfers p satisfy (*) ie p(i,b) —p(i+1,b) €
[-27", 27"]. First, note that a; j, and a , Will not want to deviate to
i, because these types have much hlgher utility for i+ 1 (and receive
almost the same transfer on these two outcomes). Second, note that
ua(aip i+1) —ug(aie i) =—2""and uA(al{’{,, i+1)— uA(al{’{,, i) =

", and it follows by p(i,b) — p(i + 1,b) € [-27", 27"] that

ua(air, i) +p(i,b) > ua(aip, i+1) +p(i+1,b)
up(aj i+ 1) +p(i+1,b) > ua(aj,, i) +p(i,b)

Thus, a; p and alf’ ¢ will not want to deviate either.

Now we show that if transfers p incentivize f, then they must
satisfy (*) for this value of i. Observe that a; ¢ and a] i have almost
the same utility for i and i + 1, yet receive different outcomes. This
will force p(i, b) — p(i+1,b) € [-27", 27"]. Specifically, for neither

of a; p nor al’. , to want to deviate to each other, we must have

27" +p(i,b) = ua(aie, i) + p(i,b)
> up(aie,i+1)+p(i+1,b) =p(i+1,b)
27"+ p(i+1,b) =ualaj,i+ 1) +p(i+1,b)
> ua(aj, i) +p(i,b) = p(i,b),
and thus p(i,b) — p(i+1,b) € [-27", 27"].

Second, suppose b; = 1. This means that a; , alf[, a; j, receive i,
and alf , receives i+ 1. The logic in this case is analogous to the first
case.

Suppose that transfers p satisfy (*), i.e. p(i b) - p(i+1,b) €
[2¢ — 27", 2! + 27", First, note that a;; and a/ ie will not want to
deviate to i+1, because these types have almost the same utility for i
and i+1 (and receive a much higher transfer on i). Second, note that
ua(a;p, i+1)—us(a;p, i) = 2'=27" and uA(al’.h, i+1)—uA(al’.h, i) =
20 +27" and it follows by p(i,b) — p(i + 1, b) € [2] =277, 20 4+ 277]
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that

up(ajp, i) +p(i,b) > ua(a;p, i+ 1) +p(i+1,b)
”A(a,{,h, i+1)+p(i+1,b) > uA(alf’h, i)+ p(i,b)

Thus, a; ,, and alf ,, Will not want to deviate either.

Now we show that if transfers p incentivize f, then they must
satisfy (*). Observe that a; ;, and alf ,, have almost the same utilities
for i and i+1, yet receive different outcomes. This will force p(i,b)—
p(i+1,b) € [28 —27", 21 + 27]. Specifically, for neither of a; j, nor
alf’ , to want to deviate to each other, we must have

27" +p(i,b) = ua(ajp, i) + p(i,b)
2up(ajpi+1)+pi+1,0) = 2! +p(i+1,b)

2l 427" 4 p(i+1,b) = ua(al . i+1)+p(i+1,b)
2 uA(a{,h, i)+p(i,b) = p(i,b),

and thus p(i,b) — p(i + 1,b) € [2] — 27", 2 4277,

We now define transfers p* such that
i-1 )
pT(i,b) == b;2l.
j=1

For each b € 7g and i € [n], we have p*(i,b) — p*(i + 1,b) €
[b;2f — 27" b;2! + 27], and thus by Lemma 3.2, these transfers
incentivize f. Thus, let M denote the mechanism which has Alice
announce her type (using O(log(n)) bits), tells that type to Bob,
and then has Bob decide the outcome i (using O(log(n)) bits) and
the transfer p*(i, b) for Alice (using O(n) bits). This mechanism
EPIC implements f with communication cost O(n).

On the other hand, consider any mechanism M which EPIC
implements f. Let p denote the transfers M gives to Alice. By
Lemma 3.2 and telescoping sum, the transfers must satisfy p(1, b) —

p(n+1,b) € [zyzl(bjzf —27m), zy;l(b,-zf +27)] for all b € 7.

Notice that for sufficiently large n, n2™" is tiny, and hence, the
intervals [Z;?:l(bjzj —-27"), Z}Ll(bﬂj +27™)] corresponding to
distinct b’s are disjoint. Since there are 2" distinct b’s, there are also
2™ distinct values of p(1,b) — p(n+ 1, b). Suppose for contradiction
that M computes p using o(n) bits of communication. Then there
also exists a protocol which can compute p(1,b) — p(n + 1, b) with
o(n) communication, which is impossible because there are 2"
such values. Therefore, any EPIC implementation of f must have
communication cost Q(n). This completes the proof.

|

Discussion. In the proof above, we showed that computing the
transfers requires large amount of communication because the
transfers require a large number of bits to represent. For two players,
this is necessary. That is, in a two player environment, if a social
choice function f can be incentivized with transfers that can be
represented with K bits, then there exists an EPIC implementation
with communication cost CC(f) + K. This implementation first
has Alice and Bob compute the social choice function using an
optimal protocol, which requires CC(f) bits, and then has each
player specify the transfer for the other player (as we recalled in
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the proof of Theorem 3.1, the transfers to Alice are determined
solely by the outcome and Bob’s type and vice versa).

We note that it is possible to modify the environment by giving
Bob nontrivial utilities such that f is the unique social choice func-
tion which maximizes the welfare u4(a, i) + ug(b, i). Specifically,
for each Bob type b € 7, we define Bob’s utility as ug(b,i) =
- Zj;ll bj2j for each outcome i € [n+ 1], which is equal to p* (i, b)
in the proof. In this modified environment, f always returns the
unique outcome which maximizes welfare. Notice that p* (i, b) then
becomes the VCG transfer (up to an additive constant that can
depend Bob’s type) for Alice. If we also let Alice output the VCG
transfer (up to an additive constant that can depend on Alice’s type)
p’(i,a) = ug(a,i) for Bob after the outcome is decided, then p’
along with f is EPIC for Bob. Together, p*, p’ give an EPIC imple-
mentation of f.

Finally, in the above modified environment where f is welfare-
maximizing, note that despite Alice’s valuation being succinctly
representable, her utilities are “high precision”. This is necessary,
because by [18, Proposition 2], if all the valuations in the environ-
ment have low precision, every welfare-maximizing social choice
function has an EPIC implementation with only slightly more com-
munication for computing the transfers. Moreover, Bob’s type re-
quires many bits to represent. This is also necessary, because if both
players have succinct types, they can simultaneously output their
types, after which the mechanism computes the correct outcome
and charges VCG transfers.

4 EXPONENTIAL SEPARATION OF CCEFIC(f)
AND CCPSIC(f)

In this section, we construct a social choice function f such that
CCEFIC () = O(n), yet CCPSIC(f) = exp(n).

4.1 Building Up to Our Construction

We walk through a list of examples of environments and social
choice rules, trying to build to an exponential separation of the
communication required to EPIC implement and DSIC implement
the rules. The first example is a classical illustration of the differ-
ence between ex-post and dominant strategy implementations for
extensive form games.

4.1.1  Attempt One. Consider a second price auction with two bid-
ders, Alice and Bob, and a single item, such that Alice’s and Bob’s
value for the item are integers in {1,2,...,10}. If the auction is
implemented as a direct revelation mechanism, then it is DSIC.
However, suppose we first ask Alice her value, then tell that value
to Bob and ask him to respond with his own value. This mechanism
is no longer DSIC. For example, one strategy of Bob is to always
say his value is 1, except when Alice bids 8, in which case he will
say his value is 9. When Bob plays this strategy and Alice’s true
value is 8, Alice gets more utility by lying and bidding 9 than by
telling the truth.

We note that the above strategy for Bob is “crazy” in the sense
that it does not maximize his own utility, but serves mostly to
incentivize non-truthful bidding by Alice. Moreover, this crazy
strategy for Bob was possible only because Bob knew Alice’s value
and decided his response as a function of this value. Observe that,
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for such a crazy strategy to work, Bob does not have to know
Alice’s value exactly. Intuitively and informally, the following two
conditions suffice:

(a) Bob learns information about Alice’s type.
(b) Bob has two possible responses, one which gives Alice high
utility, and one which give Alice low utility.

Our next idea is to construct an instance where any low com-
munication mechanism must satisfy Item a and Item b above. We
first focus on Item a and try to devise an instance where any low-
communication mechanism requires Bob to know something about
Alice’s valuation. For this, we embed the well-known “Index” prob-
lem from communication complexity in a welfare-maximization
context. Recall that, in the Index problem, there is a parameter
K > 0 such that Alice has an index k € [K] and Bob has a vector
X = (xi)ie[x) € {0, 1}X, and the goal is to output the k™ Jocation
in the vector X, i.e. xi.

Intuitively, the importance of the Index problem lies in the fact
the only way to efficiently solve this problem is for Alice to reveal a
lot of information about her input. Specifically, first observe that the
protocol where Alice sends k to Bob, and Bob then simply outputs
Xk, uses communication O(log K). However, it turns out that any
protocol that does not reveal a lot of information about Alice’s input
to Bob must have communication Q(K) (this can be formalized, see
[21, etc.], although we do not need to do so here).

4.1.2  Attempt Two. Consider an auction where there are two bid-
ders and an even number m of items for sale. The bidders, Alice and
Bob, are multi-minded® with interests as follows: Alice is interested
in exactly two sets, a set S C [m] of size m/2 that she values at
4, and the set S that she values at 1. Bob’s valuation is such that
for every subset T C [m] of size m/2, he is interested in exactly
one of the sets T and T, which he values at 5 (and he values the
other set at 0). The social choice function f outputs the welfare-
maximizing allocation of items between Alice and Bob. That is,
Bob gets whichever of S or S he values at 5, and Alice gets the
complement (which she values at either 4 or 1). Observe that f is
incentive compatible without transfers.

The direct revelation mechanism M; (where Alice and Bob si-
multaneously reveal their entire type) is DSIC. In this mechanism,
Bob does not learn anything about Alice’s type, that is, Item a in
Section 4.1.1 does not hold. However, the fact that Bob commu-
nicates his entire type means that M; requires communication
exponential in m.

There is also a mechanism My for the above instance where
Item a is satisfied. This is the mechanism that first asks Alice for
the set S of size m/2 she values at 4, and then asks Bob which of the
sets $ and S he values at 5. The mechanism Mj then gives Bob the
set he said he values at 5 and gives Alice the complement. Observe
that My is EPIC and requires O(m) communication. However, the
mechanism M3 is not DSIC. Indeed, consider a (crazy) strategy for
Bob where he always says that the set S reported by Alice is the
one he values at 5 (regardless of his input). With this strategy for
Bob, Alice always gets the complement of what she reports and

8Recall that a valuation function v on [m] is multi-minded if there exists a collection
{(vi, T;) }i, where each v; € Rand T; C [m], such that 0(S) = max{v;|T; C S}.
The sets T; are call the “interests” of the valuation function v.
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therefore, she is incentivized to lie and report the set S instead of
the set S which is truly her favorite.

A low communication DSIC mechanism. However, the instance
above does not yield a separation between the communication
complexity of DSIC and EPIC implementations, as there is an O (m)-
communication mechanism that is also DSIC. This mechanism,
which we we call M*, asks Alice only report the sets {S, S} of size
m/2 she has non-zero value for, without specifying which one of
the two she values at 4. Then, the mechanism M™ asks Bob which
of the sets S and S he values at 5, gives him that set and gives Alice
the complement of the set.

The mechanism M™ clearly has communication O(m). It is DSIC,
because if Alice reports anything other than than {5, S}, she will
get utility 0 regardless of what Bob says. In particular, it is not
possible to construct a “crazy” strategy of Bob as in Mp, because
Bob’s response cannot depend on the difference between S and S.

In other words, the reason the mechanism M™ is DSIC is that
it does not satisfy Item b above. Even though Bob learns a lot of
information about Alice’s type, he cannot respond to this informa-
tion in a way that gives Alice a lower utility in some cases, and a
higher utility in other cases.

Need for new ideas. It may seem at first that the mechanism M*
works only because in our instance, Bob does not need to which
of S and S does Alice value at 4 in order to determine the welfare-
maximizing allocation. However, this is not the case. Even if the
welfare-maximizing allocation was dependent on which of S and §
is valued at 4 by Alice, Bob could just send two answers, one for
the case when S is valued at 4 and the other one for the when S is
valued at 4. The resulting mechanism would still be DSIC. Thus, new
ideas are needed to get a separation between the communication
complexity of EPIC and DSIC implementations.

4.2 Construction and Intuition

At a high level, our main construction is simply two independent
copies of the instance described in Section 4.1.2, where the valuation
functions for Alice and Bob are additive over the two copies.

Formally, for every even m, we have a two player combinatorial
auction where a set M; LI My of items satisfying |M;| = |Mz| = m
is for sale. The set of outcomes is defined by’

Y ={(X1,X2) | X1 €M, X2 C My, |X1| = |Xz] = m/2}.

An outcome (X1, X») indicates that Alice receives (X1, X2) and Bob
receives (X1, Xz). Alice’s types are also given by the set 74 = Y
and her utility function uy : 73 X Y — R is defined by u4 ((S1, S2),
(X1,X2)) =ua,1(S1,X1) + ua2(S2, X2), where, for i € [2], we have:

4, ifS;=X;
uai(SuXi) =41, ifS;=X;
0, otherwise.

Bob’s type set 7p is the collection of all pairs (vp 1,vp,2), where for
i € [2], the function vp; maps a subset of M; of size m/2 to the set

9We restrict the auction to always award half of the items in M; to each bidder, for
each i € [2]. This restriction is without loss of generality, because the social choice
function f always outputs allocations with this property, but it simplifies the notation
slightly.
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{0, 5} such that for each set T C M;, |T| = m/2, we have vg ;(T) = 5
and v B,i(T) = 0 or vice-versa. Bob’s utility function is:

up((vB.1,0B2), (X1, X2)) = vp1(X1) +vp2(X2).

Finally, the goal of the auctioneer is to maximize the welfare.
Observe that, if Alice’s type is (S1,52) € 74 and Bob’s type is
(vB.1,9B2) € 7B, this corresponds to computing the outcome (X,
X3), where, for i € [2], X; = §; if vB,i(S_,-) =5and S; otherwise. For
the rest of this section, let f denote this social choice function.

High Level Intuition. We use the instance above to separate the
communication complexity of EPIC and DSIC implementations.
First, we consider the mechanism MP?' which runs two instances of
the mechanism M* from Section 4.1.2 in parallel. More formally, in
the first round we ask Alice to report {Sj, S1} and {S, S5}, without
differentiating between sets up to complements. Bob then picks
the allocation on both sets of items in round two. This mechanism
EPIC implements f with communication cost O(m). However, as
we show next, MP?* fails to be DSIC.

Observe the following crucial detail of the social choice environ-
ment: when Alice’s true type is (S1, S2), Alice has utility 4 when she
receives (S1, Tz) for any T, ¢ {52,5}, but she has utility 2 when
she receives (S1,Ss). This motivates us to construct the following
strategy sp of Bob in MP?': for some fixed sets S;‘ C My, S; C My, if

1 f} and {57, g} in round one, then Bob will give

Alice (?, S_;) But if Alice reports {S] ,S_i‘} and {T3, T} in round
one, for any T ¢ {S3,S;}, then Bob will give Alice (S%,T;) (for
T, e {Ty, T} chosen arbitrarily). When Alice’s true type is (51,53,
truth telling is not a best response of Alice against this strategy sp.
Thus, MP?" is not DSIC.

We now argue informally that the existence of a “crazy” strategy
like this for Bob is not an accident, but a property which is neces-
sary in any communication efficient mechanism. Intuitively, this is
because for the mechanism to be efficient, Alice must reveal a lot
of information about both sets of items (implementing Item a from
Section 4.1.1). Regardless of the order in which this is done, at the
first point Bob learns about Alice’s type on one set of items M;, he
can condition his response on the other set of items Ms_; based on
the information from M; This allows him to give Alice two sets she
values at 1 when she tells the truth, yet at least one set which she
values at 4 when she deviates (implementing Item b).

For a concrete example, we can also consider M5, which de-
notes the mechanism which runs M™* on the first set of items Mj,
commits to the allocation on Mj, then runs M™* on the second set
of items M. Then the same argument as for MP?" shows that there
is a strategy of Bob against which truth telling is not a best re-
sponse. However, we now need to change the argument so that Bob
conditions his response on My on Alice’s actions on Mj, because
Bob commits to a result on M; before he acts on M. Because Alice
must reveal lots of information about her type on both M; and My,
this argument should go through in any communication efficient
mechanism.

Alice reports {S

4.3 Technical Considerations and Difficulties

In Section 4.2, we argued informally that at the earliest where Alice
reveals information, it should be possible to construct a strategy
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of Bob against which truth telling is not a best response for Alice.
Unfortunately, this is not literally true for every mechanism, and
our proof must circumvent this fact. In this section, we first explain
in more detail how such “crazy” strategies are constructed, and
demonstrate that the needed “crazy” strategy cannot necessarily
be constructed at the first node where Alice acts.

Consider a communication efficient mechanism M = (G, S4, Sg),
and for simplicity assume that M is perfect information'®. This
assumption allows us to not worry about situations where the
mechanism asks Alice for information, but does not reveal all of
that information to Bob.

Our goal is to construct a “crazy strategy” of Bob, against which
truth-telling is not a best response for Alice. To construct this
strategy, we want to find a node h in the game tree of M where
Alice communicates information which Bob can respond to in the
following way: when Alice tells the truth, Bob must be able to give
Alice a bad result, but if Alice deviates from truth telling, Bob can
give Alice a good result on at least one of the sets of items. To
explain this fully, we use the language of Section A.1. Specifically,
we use T (h), 7g(h) to denote the types of Alice and Bob for which
the computation of G under truth-telling passes through h. We need
h to satisfy the following:

(A) Alice acts at h, and there exist two of Alice’s types (51, S2),
(T, T2) € Ta(h) at hsuchthat S4((S1,S2))(h) # Sa((T1, T2)) (h)
(that is, (S1,S2) and (Ty, T2) take different actions at h under
truth telling), and moreover, we either have S; = Tj or Sp = T.
For concreteness, suppose that S; = Tj.

(B) There exist types (vg1,vB2), (v}'g,l,uj’s’z) € 9g(h) such that
vB,1(S1) = 5,08,1(S2) = 5, and 0y, (S1) = 0.

These correspond to Item a and Item b of Section 4.1.1, instantiated
for the specific social choice function f.

Cram 4.1. If there exists a node h at which Item A and Item B are
both satisfied, then M is not DSIC.

Proor. Define a “crazy strategy” of Bob as follows: Bob acts
according to (vllg, 0123) in all nodes except those in the subtree where
Alice plays the action chosen by (T3, Tz) at h, where Bob acts ac-
cording to (v}gl, 0123,). Suppose Alice’s true type is (S1, S2). When
Bob plays the above strategy and Alice tells the truth, Alice re-
ceives (§ 5) which she values at 2. But if Alice deviates and plays
strategy corresponding to (T3, Tz), then she receives S; on Mj, and
receives a utility of 4. Thus, truth-telling is not a best response for
Alice with type (S1,S2), and M is not DSIC. O

Neither of the above conditions Item A or Item B on node h are
very strong independently. For example, at any node h which is the
first time Alice takes a nontrivial action, Item A will be satisfied
for some set (S, S2). Furthermore, Item B will be satisfied at the
root node of the game tree for every Alice type (S1, S2). However,
together these two requirements become somewhat subtle. Before
we proceed to the formal proof, we highlight two cases of this
subtlety, and briefly hint at how we address them.

1OWe prove in the appendix of the full version that this assumption is without loss of
generality for our specific social choice function f.
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(i) Suppose the first thing the mechanism does is ask Bob “is your
type (vgﬁl,vg ,)?” (for some (v |, vg,) fixed by the mecha-

nism). If the ‘answer is yes, then all types of Alice have a

dominant strategy in the corresponding subtree. Moreover,

if the first question is to just ask Bob “is your full type on

M equal to vy, ?” (for some fixed v}, |, regardless of his type
on M) then it is possible that Alice’always has a dominant
strategy in that subtree!!. This shows that we cannot hope to
construct the needed “crazy strategy” of Bob in every subtree
of the game.

(i) Suppose the first question is to ask Bob “what is your value
on sets {Tl*,T_l*} C M; and sets {T*,T_z*} C M; (for some set
T}, T, fixed by the mechanism). At the (four nodes of the) next

layer of the tree, ask Alice “Do you have S; € {Tl*, T_1*} AND
Sy € {T*,T_z*}?” It turns out that truth-telling is a dominant
action at every node in the first layer where Alice acts'?. This
shows that we cannot hope to construct the needed “crazy

strategy” of Bob at every layer of the game tree.

Intuitively, we address the first issue by noting that, because Bob
has more types than there are nodes in the game tree, we can safely
ignore any node in which Bob has few types. We fix the second
issue by changing the proof outline overall. Instead of taking an
efficient mechanism M and finding a node h satisfying Item A
and Item B (thus showing that M is not DSIC), we use a proof by
contradiction. Intuitively, we consider an efficient mechanism in
which no such “crazy strategy” of Bob be constructed, and show that
the questions such a mechanism can ask to Alice are so restrictive
that the mechanism cannot possibly handle all types Alice might
have.

4.4 Separation of DSIC and EPIC without
Transfers

We now prove that, without transfers, social choice function f from
Section 4.2 requires an exponential amount of communication to
implement in dominant strategies.

THEOREM 4.2. Any DSIC implementation of f without transfers
has communication cost Q(2™).

Proor. Fix a DSIC mechanism M and let C ¢ be the commu-
nication of M. At the cost of blowing up the communication by a
factor of two, we can assume by Lemma B.1 (in the full version of
this paper) that M is perfect information. Let M = (G, S4, Sp), i.e.
G is the perfect information extensive form game used by M, and
Sa, Sp are the dominant type-strategy profile implementing f. By
Section A.1, each node h of the game tree G corresponds to a set of

1Observe that Alice already knows what will happen on M;. Thus, in this subtree the
mechanism can thus run the DSIC mechanism M™* described in Section 4.1.1 on M.
Then, as a final step the mechanism can ask Alice her type on M. Intuitively, Alice
already knows what will happen on M; (and can always grantee her best attainable
outcome on M; at the end), so she might as well try to get her full value on M.
12Formally, truth-telling is a dominant action at node & if Sa (4) gets utility at least
as high as all strategies s, such that s, (h) # Sa(ta) (h).

Clearly Alice has a dominant strategy if indeed she should answer “yes” in this
layer. If not, either one or both of her sets are not in the specified pair. If both are not,
she gets zero utility from lying. If one of her sets is in the specified pair, the outcome on
the matching set of items is already fixed, so Alice might as well “continue” (answering
“no”) and hope for more utility on the other set of items, knowing she can always
grantee her utility on the matching set of items.
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Bob
Do you have type
vg L on M;?

Alice

Run DSIC mechanism M* on M,,
then query Alice’s value on M.

Bob

What is your value on
Tl* C M and TZ’F C M,?

Do you have S; € {Tl*,TT*}
and S; € {T,, T 1?

Alice

The mechanism
knows the outcome

Figure 1: Examples of the technical difficulties our proof
needs to handle. These figures illustrate the first few layers
of the game trees, while the remainder of the game is un-
specified. Regardless of how the rest of the game computes
f,these examples illustrate that the required strategy of Bob
cannot always be constructed based on the first node where
Alice acts (i.e. the first node where Alice acts may not satisfy
Item A and Item B for any (51, S2), (T1, T2)).

types 74 (h) of Alice and 75 (h) of Bob, and each action taken at h
corresponds to partitioning the types of the player P (h) € {A, B}
who acts at this node. This partition is given by S;(+), specifically,
for each node h’ immediately after h in G, a type t € 7;(h) remains
in 7;(h’) if and only if S;(¢) plays the action at h which corresponds
to h’. We say that type ¢ takes action a at h if S;(t) plays a at h.
Observe that for each i and nodes h, h’ where h is an ancestor of
K, we have 7;(h’) C 7;(h).

Define K := (m’72)/2 and observe that K = ©(2™). Observe
that, for i € [2], we can partition all subsets of M; of size m/2 into
(unordered) pairs of the form (T, T), and there will be exactly K
such pairs. Call these pairs P; 1, - -, P; x in some canonical order.
For the rest of this section, we equivalently view a type (vp1,0B2)
of Bob as a pair of bit-strings B = (By, Bz) € {0, 1}Xx{0, 1}X, where
Bj i for k € [K] specifies which set in P; ;. Bob values at 5. Similarly,
we can view Alice’s type (S1, S2) as a tuple (ki, k2, b1, b2) where
k1, kz € [K] are indices and by, by are bits, and, for i € [2], S; is the
b%h element in P;t,. As by, by are irrelevant to the outcome of the
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mechanism, using Lemma B.3 (in the full version)!?, we can assume
without loss of generality that for all k1, kz € [K], and nodes h, we
either have that all Alice’s types of the form (k1, k2, -, -) € Ta(h) or
all types of the form (kq, kg, -, -) ¢ 7a(h). Thus, when talking about
the sets 74 (h) for nodes h, we can view Alice’s type as simply a
pair of indices (k1, k2). We adopt this convention for the rest of this
proof, and we consider 74(h) C [K] X [K]. Correspondingly, we
consider S4 (+) to be a map from [K] X [K] to strategies in M, and
refer to the actions taken by pairs (k1, k2) € [K] X [K].

The social choice function f is determined by Alice’s index on
both sets of items, as well as Bob’s value on those two indices. Thus,
for each leaf ¢, we have 74 (£) = {(k1, k2)} a singleton'*, which will
be a key observation in our proof.

We now begin to build the language and tools needed to address
the considerations highlighted in Section 4.3.

DEFINITION 4.3 (SHATTERED PAIRS). Leth be a node and (ky1, k) €
[K] x [K]. We say that (ki, k2) is shattered at h if Bob’s types B =
(B1,B2) € Tg(h), when restricted to coordinates ki, ky, take on all
four possible values. In other words,

{(Byk,> Ba,) | (B1,B2) € Tp(h)}| = 4.

We use TN (h) € [K] X [K] to denote the set of all pairs (ki, k2)
that are shattered at h.

For convenience, we define the “neighbors” of a pair (k1, k2) to
be all those pairs with (at least) one index in common with (k1, k2).
Note that (ki, k2) € nbr(ky, ko).

DEFINITION 4.4 (NEIGHBORS). Let (k1,k2) € [K] X [K]. A neigh-
bor of (k1, k2) is any pair of the form form (k1,k’) or (k’,k2) for
some k’ € [K]. We use nbr(ky, k2) to denote the set of all neighbors
of (k1, k2).

Our first two lemmas show that a pair being shattered at a node
h severely restricts which questions the mechanism can ask at h.
The first lemma corresponds to Claim 4.1, recast in the language of
this proof. More specifically, Item B from Section 4.3 corresponds
to a pair (k1, k2) being shattered at h, and Item A from Section 4.3
corresponds to (ki, k) taking a different action than one of its
neighbors. These two items cannot simultaniously occur in a DSIC
mechansism.

LEmMMA 4.5. Consider any node h with P (h) = A and shattered pair
(k1, ko) € TSN (h) N Ta(h). Then every pair in nbr(ky, ka) N T4 (h)
must take the same action as (k1, kz) at h.

Proo¥. Fix a (ki, k2) € 750 (h) N T4 (h). Suppose for contradic-
tion that there exists a neighbor of (k1, k) which is in 74 (h), yet
takes a different action from (k1, k2) at h. Without loss of generality,
assume this neighbor is of the form (ki, k3). We derive a contra-
diction by constructing a “crazy” strategy for Bob, exactly as in
Claim 4.1, that violates the DSIC property.

BMore formally, consider the partition of Alice’s types given by
{{(k1, k2, b1, b2) }(b,,b5) €{0.1}x{0.1} }(ky.kp)e[KIx[K]- For all fixed types of Bob,
f is constant on the above partition, and thus by Lemma B.3 in the full version, we
can assume that for all h, if one element of a set {(k1, k2, b1, b2) }(.b,)(0,1)x{0,1} 1S
in 74 (h), then all elements of that set are in 74 (h).

14Bob’s type, on the other hand, need only be determined on indices k1, k5. That s, for
each leaf ¢, if we have 7 (¢) = {(ki, k2) }, then for each (B, By), (B}, By) € Tg(¢),

2

we have By, = Bll,kl and By, = Bz,kz'
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Pick some (Bi, Bp), (B, By) € Tp(h) with By} = By, = 1and
Bi,kl = 0 (these exist by Definition 4.3). We define a strategy sp
of Bob such that in subtree where Alice plays the action taken by
(k1,k}) at h, sg plays the action played by Sg((Bj, B)). In every
other node of the game tree, sg plays the same action played by
Sg((B1, B2)). This completely specifies sp.

Suppose Alice has type (k1, kg, 1,1) (that is, for i € [2], her
desired sets are in P; ¢, and her most preferred set is the one from
P; , which (B1, B2) values at 5). When Alice plays S4 ((k1, k2)), she
is allocated her less preferred set on both M; and My, and thus gets
utility 2. But if Alice deviates and plays S4((k1,k3)), on My she
receives her most preferred set, which she values at 4. Thus, truth
telling is not a best response for Alice with type (k1, k2), and thus
M is not DSIC. O

We just showed that if some pair is shattered and lies in some
Ta(h), then all of its neighbors who are also in 74 (h) must take
the same action. Next, we need something stronger, namely that all
shattered pairs at h take the same action. Along the way we prove
that additionally that if a pair is shattered and lies in 74 (h), then
all of its neighbors must lie in 74 (h).

LEMMA 4.6. Let h be any node, and consider the set

T 0P (p) .= nbr(ky, k).
(k1kz) €T (W) T4 ()

Then we have thatTASh'”br(h) C Ta(h). Moreover, if P(h) = A, then
all types in ‘7;‘Sh'”br(h) must take the same action at h.

Proor. First, we prove that 71'45h'"br(h) C 7a(h). Suppose for
contradiction that this is not the case. This means that there exists
(k1,k2) € TSN (R) N T4 (h) and (K, k;) € nbr(ky, k2), but (ki,k7) ¢
Ta(h).

Consider the node h’ which is the latest Alice node along the
path from the root to h at which (k{, k) € 7a(h’). By definition,
(k1. k2) and (kj, k;) take different actions at h’. Observe that, be-
cause T5(h) € Tp(h’), we also have 75" (h) € 75N (k’), and thus
(k1,kz) is shattered at h’. But then, by Lemma 4.5, (k1, k2) and
(K1, k;) must take the same action at h’, a contradiction.

Conclude using 7;\5]1‘”1”(}1) C Ja(h) and Lemma 4.5 that, if
(k1. k2) € T5M(h) N Ta(h), then each pair in nbr(ky, kz) takes
the same action at h. Thus, to prove that all types in ‘7;‘Sh'”br(h)
take the same action, it suffices to show that if (k1, k2), (k. k;) €
TS (h) N Ta(h) with k; # k] and kp # kJ, then (k1, kz) and (k], k})
must still take the same action at h.

To prove this, we make use of the fact that aSh'"br C Ta(h).In
particular, means that (kq, k) € nbr(ki, k2) € 74(h). By Lemma 4.5,
(k1, k7) must take the same action as (kq, k2). By the exact same
logic, (k1, k) must take the same action as (kj, k;). Thus, (k1, k2)
and (k{, k) take the same action at h, and so does every pair in
7:45h nbr(h).

O

While 75" (h) € [K] x [K] is defined entirely in terms of Bob’s
types, aSh'"br(h) C Ta(h) tells us information about Alice’s types
as well. This provides us with a convenient way to describe the rest
of the proof, in terms of the following observation:
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OBSERVATION 4.7. For all leaves ¢ of the game tree, we have
T3hbr(g) = 0 (that is, TSP (£) N Ta(£) = 0).

ProoF. Recall that social choice function f is determined by Al-
ice’s index on both sets of items, as well as Bob’s value on those two
indices. In particular, at every leaf node, the mechanism must com-
pletely know Alice’s pair in order to correctly compute f. Thus, for
all leaves ¢ of the game tree, 74 (¢) is a singleton. Using Lemma 4.6
and the fact that [nbr(kq, k2)| > 1, this is possible only if all leaves
¢ satisty 7;15h'”br(£’) =0. O

Our task in the remainder of the proof is to show that, if the
communication cost C pq of M is sufficiently small, then there must
exist a leaf ¢ with 7:45h'nbr(£’) + 0.

Note that it is possible for a mechanism with exponential com-
munication to satisfy 7:45h'nbr(£’) = ( at every leaf. Indeed, in the
direct revelation mechanism where Bob reveals his entire type,
TB(¢) is singleton for every leaf, and thus 75h(¢) = 0. However,
our next two lemmas shows that in low-communication mecha-
nisms, very few types of Bob can ever end up at leafs ¢ in which
|775h (¢)| is small. This serves to address Item i from Section 4.3. Our
next lemma is a standard communication complexity argument,
and intuitively states that “typical” Bob types always end up in
leaves with a large number of Bob types.

LEmMMA 4.8. Let %Typ C 7B denote the set of all Bob types B € T
such that for all leaves ¢ with B € Tg(t), we have |T5(¢)| > || -
47%CM_ We have

T -
1757|1781 - (1= 47)

Proor. We show that |75 \ ‘TBTyp < 4=Cm . |73]. Indeed, for

all B € 75\ ‘7;\/'), there exists a leaf £ such that B € 7g(f) and
|75(6)| < |TB| - 4~%EM_ There are at most 2°M leaves in G. This

gives:
2

leaf ¢ such that
[75(0)|<| 75 |-472M

-2C —C
< D ITpl-47THM < |75 - 47CM,
leaf ¢

175\ 7,77 < 175(0)|

]

Next, we show that in all “typical nodes” (that is, nodes contain-

ing even one type from ‘71'3Typ), most of the pairs in [K] X [K] are
shattered. This follows from a combinatorial argument - if a lot of
pairs are not shattered at h, then there cannot possibly be enough
types in 7g(h) for h to be “typical”.

LEMMA 4.9. For any node h such that 7g(h) N 7;3Typ # 0, we have
|775P (k)| > K? - 10KC o

Proor. Fix anode h with 75(h) N ‘7;3Typ # (. Some descendent of

his aleaf node £ where 7g(£) N %Typ # (. By the definition of %Typ)
this means |75(¢)| > |7g| - 4~ 2M . Thus |Tg(h)| = |75 - 472M as
well. This condition will suffice to bound |7'Sh (h)|.

We consider the set 7Sh(h) = [K] x [K]\ 73" (h) of unshattered
pairs, and proceed by showing that | 75N (k)| < 10KC 4. To this end,
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observe that each unshattered pair (k1, k2) can be uniquely written
as (k, k + d) for some values of k,d € [K]| (where we take indexes

mod K). To show that |75h (k)| < 10KC 4, we actually show that

for all d € [K], the number of pairs of the form (k, k +d) € 75h(h)
is at most 10C 4. Summing over all d € [K] then proves the lemma.
Fix a d and suppose for contradiction that there were more than

R = 10C p pairs in 75N (h) of the form (k, k + d). For any fixed
d, all of the 4K types of Bob in 7 can be uniquely described by
specifying Bob’s value on (k, k + d) for each k € [K], that is, by
specifying for each k € [K] one of the four possible values of
(By . Bygra) € (0.1} x {0, 1.

If (k,k + d) is shattered at h, then the types of Bob in 7g(h)
can take on all 4 possible values on indexes (k, k + d). However,
if (k, k + d) is unshattered at h, then there is at least one of the 4
options for Bob’s type on indexes (k, k + d) which never occurs
in 7g(h). Thus, the types of Bob in 75(h) can take on at most 3
possible values on indices (k, k + d). Thus, the number of types in
Tg(h) satisfies

|7F3(h)| < 3R . 4K—R — 4K—(1—10g4 3)R < 4K—(1/5)R.

Plugging R = 10C », we have |T5(h)| < 4K72Cm = |7g] - 472Cm,
which contradicts what we know about |75 (h)|.
m}

Even in communication efficient mechanisms, there can be leaf
nodes with 7;45h'nbr(f) = (. The right hand side of Figure 1, illus-
trating Item ii in Section 4.3, gives an example. Looking into this
example deeper, we see the reason: at the node h where Alice acts,
if we take the action not taken by the pairs in 75" (h), then we
arrive at a leaf node with 775h () NTa(£) = 0. Thus, intuitively, our
approach for the remainder of this proof is to follow the actions
taken by 775h(h) in order to arrive at a node with ‘7:45h'”br(t’) 0.

We now begin to wrap up our proof. Assume for contradiction
that Cq < K/10. By Lemma 4.8, we get that Cq < K/10 implies
that %Typ # 0. Fix an arbitrary B* e 7;3Typ. From Lemma 4.9, for

any node h such that B* € 75(h), we have TSh(h) £ 0.
Define a collection of nodes H* in G as follows:

H* = {h| B* € Ts(h), TS"(h) C Ta(h)}

Observe that the root hy of G is in H* (because 74 (hg) = 74 and
T8(ho) = TB), and thus H* # (. Now, define h* to any node in H*
for which no descendent of A* is in H*1°.

First, we claim that A* cannot be a node where Bob acts. Other-
wise, consider the child A’ of h* corresponding to the action taken
by B* at h*. At h’, Alice’s type set remains the same, while sets
75 (h’) and thus 75" (h’) have only decreased from h*. Thus,

TSP (R € TSP (H*) € Ta(h*) = Ta(h),

and h’ € H*. This contradictions the choice of h*.

Next, we claim A* cannot be a node where Alice acts. Sup-
pose otherwise. Because 7Sh(h*) € T4(h*), we have TSN (h*) C
‘7:45h'"br(h*). Because 751 (h*) # 0, we have ESh'"br(h*) # (. By
Lemma 4.6, there is thus a single child b’ of A* such that every pair

150One can use Lemma 4.6 to show that h* is unique and H* forms a path from the
root to a leaf. However, this is not needed for our argument to go through.
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in 7:45h‘"br(h*) takes the action leading to h’. As Bob’s type set is
unchanged at h’, we thus get

Tsh(hl) — TSh(h*) c ash—nbr(h*) c 7;4(]’[/),

and h’ € H*. This contradictions the choice of A*.

This means that #* must be a leaf node. But then we have 0 #
7Sh(h*) € T4(h*), and thus aSh'nbr(h*) # (. This contradicts
Observation 4.7.

Thus, for any mechanism M which DSIC implements f without
transfers, Hy > (1/10)K = Q(2™).

O

We remark that this theorem is tight up to constants, as the
direct revelation mechanism asking Bob to reveal his entire type
has communication cost O(K).

4.5 Extension to the Case with Transfers

We have shown that social choice function f, which is incentive
compatible without transfers, cannot be efficiently DSIC imple-
mented without transfers. However, this does not yet rule out the
existence of certain transfer functions which can efficiently DSIC
implement f1°.

Modified construction. We now describe how to modify our con-
struction to prove our separation even in the regime with transfers.
For each i € [2] and each pair of subsets of items of the form
{T, T} C M; where |T| = m/2, we add a type of Alice which values
every set at 0. The outcome when Alice has such a type on M; is
identical to if Alice had positive utility for T and T originally. That
is, Bob receives whichever set among {T,T} he values at 5, and
Alice receives the complement.

More formally, the set of outcomes and Bob’s types (and Bob’s
utility for each outcome) remains unchanged, but Alice’s type set
changes. For i € [2], we let Q; denote the collection of all subsets
of M; of size m/2, and let R; denote the collection of all unordered
pairs of subsets of M; of the form {T,T} with |T| = m/2. Alice’s
new set of types are then 7/ = (Q1 UR1) X (Q2 U Rz). We use R;
to represent the cases where Alice gets 0 value from sets of items
in M;. Specifically, Alice’s utility function u}, : 7,/ X ¥ — R is
now defined by u;‘((Sl, S2), (X1,X2)) = 141’4’1 (51, X1) + ug’z (S2, X2),
where, for i € [2], we have:

4, ifS; € Qjand S; =X;
ul (S, Xi) =11, ifS; € Qand S; =X;
0, otherwise.

In particular, ul’q’i(Si,X,-) = 0 whenever S; € R;.

We define the social choice function f” as follows: Let f/ ((51, S2),
(vB,1,0B2)) = (X1,X2), where for i € [2],if S; € R;, then X; € S;
is such that UB,i()Ti) =5,and if S; € Q;, then X; = S; if UB,,-(S_i) =5

16Note that in principle it is possible for certain transfer functions to make a mech-
anism DSIC, but for others to render a mechanism EPIC but not DSIC. For exam-
ple, suppose Alice has two types L, R and Bob has two types a, b, and we have
f(L,a) = 1, f(L,b) = 2,f(Ra) = 3,f(R b) = 4. Let Alice with type L value
1,2,3,4 at 10,7, 8, 1 respectively, and Alice with type R value 1,2,3,4 at 0,0, 10, 10
respectively. Bob’s valuations are irrelevant. Consider the perfect information mech-
anism sequentially asking Alice for her type, then Bob for his. If no transfers are
included (that is, all transfers are 0) then this mechanism is EPIC but not DSIC. If the
transfers to Alice when the outcome is 1, 2, 3, 4 are 0, 2, 0, 0 respectively (that is, we
pay Alice 2 when outcome 2 is selected), then this mechanism is DSIC.
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and X; = S; if 0B, (S;) = 5. Observe that f” is still welfare maxi-
mizing (although we use a very specific tie-breaking rule for those
Alice types with S; € R;).

Intuitively, the addition of Alice types which are irrelevant to
all outcomes allows us to say that the mechanism cannot award
transfer to Alice in a nontrivial way. This allows us to reduce to
the case without transfers. We make this formal below.

THEOREM 4.10. There exists an EPIC implementation of f’ with
communication cost O(m). However, any DSIC implementation of f’
with transfers has communication cost Q(2™). That is,

Proor. Consider the mechanism which asks Alice to reveal her
entire type, tells that type to Bob, and asks Bob to choose an out-
come. All transfers are 0. This is EPIC, for the exact same reason
that MP2 in Section 4.2 is EPIC. Moreover, the communication
cost is O(m), as desired.

Now, consider a mechanism My which DSIC implements f’
with transfers.

In principle, this mechanism may provide nonzero transfers to
Bob (specifically, if Alice acts at the root node, this action may
change the transfer to Bob arbitrarily). However, observe that if we
replace every transfer to Bob with 0, the result is still DSIC. This
is because incentives have changed only for Bob, but Bob can now
guarantee himself utility 10 when he follows Sg(¢g) (and this is the
highest utility he can achieve). Let M; denote the mechanism that
sets every transfer to Bob in My to 0.

Now that Bob has constant utility in every outcome selected by
M, let M denote the result of applying Lemma B.1 (from the
full version of this paper) to M; to get a perfect information DSIC
mechanism. This leaves the transfers unchanged, and effects the
communication cost by only a constant factor.

We describe and partition Alice’s types 7 in a similar way to
how we partitioned them in the proof of Theorem 4.2. Let K :=
(mn;z) /2 and, for i € [2], recall that R; denotes a partition of subsets
of M; of size m/2 into pairs {T, T}. Index the pairs in this partition
by k € [K]. Then the type of Alice can be described by tuple
(k1, ko, v1,v2) where k1, k2 € [K] and 01,02 € {0, 1, 2}. Specifically,
for i € [2], the index k; specifies which set in R; Alice’s type
corresponds to, and v; € {0,1,2} specifies whether Alice’s most
preferred set is T (when o; = 0), T (when v; = 1), or neither (i.e. if
v; = 2, then Alice receives 0 utility from all subsets of M;).

Observe that for every type of Bob, f” is independent of the
values 01, vy, and depends only on the indices (k1, k2). That is, f” is
constant on every element of the partition of Alice’s types given by

{(k1, k2,01, 92) Yo, 0, € {0,1,2) (kv ko) € [KTX[K] -

We can thus apply Lemma B.3 (in the full version) to M to get a
mechanism Ms, which is still DSIC and has the same communica-
tion cost as My, and additionally never distinguishes between types
of the form (ky, kg, -, ). Formally, in M3, if we have (kq, k2,v1,02) €
T4 (h) for some v1, v2, then we have (k1, kz, v1,02) € T4 (h) for every
01, 02.

In principle, M3 can provides non-constant transfers to Alice.
Specifically, Bob can act at the root node in a way which changes
the transfer to Alice arbitrarily. However, it turns out that this
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is all that is possible. Namely, there cannot be any Alice node h
with two leaf nodes, #1, f» which are descendants of h, such that
Alice receives different transfers in #; and £, If there were, Alice
would have a strategic manipulation when her type is indifferent on
both sets of items, i.e. when v1 = vy = 2. Specifically, suppose the
transfer at #; is higher than the transfer at £,. Because the game is
perfect information, there is some strategy of Bob such that, when
Alice follows actions directed towards 1, Bob takes actions directed
towards £, and when Alice takes actions directed toward £, Bob
takes actions directed towards £;. Then, whichever Alice type takes
£ has a strategic manipulation against this strategy of Bob when
her type has v; = vy = 2.

Now, consider replacing every transfer to Alice in M3 with 0 to
get a mechanism My. By the reasoning in the preceding paragraph,
the strategic situation for Alice has not changed at any node. More
specifically, for each Alice node h, the transfers in M3 were con-
stant at every leaf below h. This is still true in My. Thus, if there
were no strategic manipulations in M3, there can be no strategic
manipulations in My.

Thus, My constitutes an implementation of f’ in which the
transfers to both agents are always 0. By simply ignoring the values
of v1, vy, this constitutes an implementation of f from Section 4.2.
By Theorem 4.2, this means that the communication cost of My
(and thus Mo) is Q(2™).

]

A FORMAL DEFINITIONS AND
PRELIMINARY ANALYSIS

Environments and Implementations. An environment for a set of
nplayersi=1,...,nisatuple E= (Y, 7,...,Tn, u1, ..., un). Here,
Y is the set of outcomes and each 7 is the set of types of player i.
Each u; : 77 X Y — R is the utility function of player i. We say that
a type t; € T; has utility u;(¢;, a) € R for an outcome a € Y. A social
choice function f over E is a mapping 71 X ... X 7, — Y. We restrict
attention to deterministic social choice functions.

We say that a social choice function f : 71 X ... X 7, — Yis
incentive compatible (or implementable) (without transfers) if for
any i,t; € 71,...,tn € Tp, and t] € T;, we have

wi (g, f (b t23)) = wi(ty, (8], 129)).

That is, each agent (weakly) maximizes their utility by reporting
their true type, regardless of the types of other agents.

Our paper works with the paradigm of monetary transfers and
quasilinear utilities. Unlike many prior papers, we make the distinc-
tion between environments with transfers and without transfers
explicit. For any environment E = (Y, 71, ..., Tp, u1, ..., up), the
corresponding quasilinear environment with transfers is E' = (Y X
R 91, ..., T, u{, ..., up), where ul{(ti, (Y, p1,-- > Pn)) = ui(ti, y) +
pi. That is, the quasilinear environment adds transfers p1, ..., pn to
each agent, and the agents quasilinear utility is the sum of its utility
for the outcome and the transfer. In this context, we call u;(t;, a) the
value agent i gets (in order to distinguish it from agent i’s utility of
u; (i, a) + p;). We say that a social choice function f” over E’ com-
putes a social choice function f over E if f” satisfies f”(t1,...,t,) =
(f(t1,. .- tn)P1, ..., pn) foreach (t1,...,tp) € 71, ..., Tn. (That is,
the function must agree on Y, but can be arbitrary on the transfers.)
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We treat transfers primarily as a tool for encouraging truthful
behavior in mechanisms!”. Thus, a social choice function f : 77 X
... X Tp — Y over an environment E is incentive compatible (or
implementable) (with transfers) if there exists a function f” : 77 X
... X Ty — Y xR"™ which computes f and is incentive compatible in
the quasilinear environment E’. This is equivalent to the existence
of n transfer functions!® P1o--spn 1 X ... X Tn — Rsuch that

i (i, f(ti, t-0)) + pitis t—i) = wi(ti, £ (4], t-)) + pi(t], t-).

In this case, we say the transfer functions (p;)i=1,...,n incentivize
social choice function f.

A mechanism M = (G,S1,...,S,) over an environment E =
(Y,71,...,Tn, u1,...,uy) consists of

e An extensive form game G for n players with perfect recall
and consequences in Y (defined below).

o A type-strategy S; for each player i, which maps types 7;
to (behavioural) strategies s; of player i in game G (defined
below).

Mechanism M over E computes (without transfers) a social choice
function f over E if we have G(S1(t1),...,Sn(tn)) = f(t1,...,tn)
for each profile of types t1,...,t; € 71 X ... X 7. A mechanism
M over E’ computes (with transfers) a social choice f over E if M
computes f”, for some f’ computing f.

We now present our incentive compatibility notions for mecha-
nisms, both with and without transfers (recall that, if the mechanism
has transfers, then u; (t;, (y, p1, - - ., pn)) denotes the quasilinear util-
ity u; (¢, y) + p;). An implementation M is ex-post Nash incentive
compatible (EPIC) if, for any i, any types t; € 71,...,tn € Tp, and
any behavioral strategy s; of player i, we have (letting S_;(t—;) =
(Sj(tj))jzi):

ui(ti, G(Si(t:), S-i(t-1))) = wi(ti, G(s}, S-i(t-1))).

An implementation is dominant strategy incentive compatible (DSIC)
if, for any i, type t; of player i, behavioral strategies slf and s_; of
all players,

u;i(ti, G(Si(ti), 5-1)) = i (t;, G(s},5-i)).

Thus, ex-post Nash implementations are weaker, as they only re-
quire S;(t;) to be a best response when other agents are playing
strategies consistent with some S_;(¢_;).

A direct revelation mechanism is one in which each agent is asked
to simultaneously reveal their type to the mechanism, and then the
outcome is computed. In such a mechanism, every possible strategy
corresponds to some type, and thus the mechanism is EPIC if and
only if it is DSIC.

Extensive Form Games. A deterministic extensive form game with
perfect recall and consequences in Y (hereafter called a game) is a
tuple G = (H,E,P,A A, (]})ie[n],g) such that

e H is a set of states (also called nodes), and E is a set of
directed edges between the states, such that (H, E) forms
a finite directed tree (where every edge points away from

17 Alternative paradigms include studying “budget balanced” mechanisms or mecha-
nisms that maximize revenue.

18We do not make any assumptions (such as “no positive transfers” or “individual ratio-
nality”) on the transfers the mechanism is allowed to use. This makes our imposibility
results only stronger.
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the root). We denote typical elements of H by h'°. Define Z
as the set of leafs, and let the root be called hy. Moreover,
define o5 : H — 2F such that og(h) is the set of edges
leading out of state h (that is, leading to successor nodes),
and oy : H — 2H such that o(h) is the set of states which
are immediate successors of h in the game tree. We write
edges like (h,h’) € E, where h is between the root and h’.

e P : H — {1,...,n} is the player choice function, which

labels each non-leaf node in H \ Z with the player who

acts at that node. Define H; = {s € S|P(s) = i} as the
set of states where player i is called to act. We assume that
no player takes a consecutive turn, that is, for any h and

h’ € o (h), we have P(h) # P(h')%.

A is the set of actions, and A : E — A labels each edge with

an action. A must be injective on each set og(h) C E (that

is, two edges below the same node cannot be labeled with
the same action). Define A : H — 24 such that A(h) is the
set of actions available at state h (that is, {A(e)|e € og(h)}).

For each player i, the set 7; (the information partition) is

a partition of H; (the set of states where i is called to act)

such that for every set I; € 1;, the set of actions available

to i are exactly the same at every set in I; (that is, A(s) =

A(s’) for each s, s” € I;). The elements I; € I; are called the

information sets of player i. Abusing notation slightly, we

denote A : 7; — A such that A(I;) = A(s) for any s € N.

When a player acts in G, all that player knows is which

information set they are in. The information sets must satisfy

the following (known as the “perfect recall” assumptions?!):

— Any path from the root to a leaf can cross a specific infor-
mation set only once. That is, for any path p = (hg, by, ...,
hi) from the root to a leaf, we never have h;, hj € I; € I;
fori # j.

— If two nodes are in the same information set of player
i, then i’s experience in reaching those nodes must be
identical. More specifically, for node h € H;, we define
Vi(p), the experience of player i reaching h as follows: take
the (unique) path p = (hg, hy, ..., hy = h) from the root
to h, and for each j € [k] at which P(hj) = i, write

I.j , a’) in order, where I.j > h; is the information set
i i J

containing h; and a/ is the (unique) action which player
i takes at hj to move the game to hji1. So ¥;(p) is an
ordered, alternating list of information sets and actions
i takes at those information sets. We must have y;(h) =

19This follows from the economics convention of identifying states with “histories”,
that is, the (unique) sequence of actions taken to arive in a certain node. We describe
the game more concretely in terms of nodes of a tree because in some arguments we
need to directly manipulate and change the game tree, which can alter these histories.
20Note that this assumption is without loss of generality. Condensing consecutive
actions by the same player into a single node leaves the game essentially unchanged.
In particular, the communication cost does not increase and if the mechanism was
already DSIC, then it is still DSIC.

2These assumptions just mean that the mechanism is not able to force agents to
forget things they knew in the past of the game. While some of the game theory
literature relaxes this assumption, we do not consider games without perfect recall
here. This is in accordance with our adversarial model: we consider agents who know
the already know the entire game tree in advance (although when they actually act
in the mechanism, they only know what the mechanism tells them, that is, which
information set they are in).
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; (h’) for any two histories in the same information set
(h K €l € ).
e g:Z — Y labels each leaf node with an outcome from Y.

A (behavioral) strategy s; of player i is a function 7; — A, such
that s; (I;) € A(I;) is an action available to player i at information set
I; € I;. The result of the mechanism under a behavioural strategy
profile (si,...,s,) is the outcome in Y in the leaf node which you
arrive at by iteratively following the action selected by each s;.
We write this as G(sy, ..., sp). That is, if (ho, h1, ..., hy) is the path
from the root to a leaf such that each edge (hj, hj4+1) is the unique
edge such that A(hj, hj41) = si(l;), for i = P(hj) and h; € I; € I,
then we set G(s1, .. .,sn) = g(hg)-

A game is perfect information if every information set is a sin-
gleton. Observe that perfect information games cannot hide in-
formation from players or allow more than one player to move
simultaneously.

For a state h € H, define the communication cost of & as
[log |A(h)[], i.e. the number of bits needed for the agent acting at h
to communicate their choice of action. Define the communication
cost of game G as the maximum sum of the communication costs
of nodes on a path from the root to a leaf node in G?2.

Consider an environment E = (Y, 71, ..., Tn, U1, ...,Uy) and an
extensive form game G with consequences in Y. As we mentioned
above, a type-strategy S; is a mapping from 7; to behavioural strate-
gies of player i in game G. Equivalently, a type-strategy is any
function S; : 77 X I; — A such that s;(#;, I;) € A(I;) for each I; € I;.
We let S;(t;) denote the entire behavioural strategy. For clarity,
we capitalize type-strategies. We typically refer to behavioural
strategies simply as “strategies”, and specify explicitly when S; is a
type-strategy.

Notation. When describing games between two players, Alice
and Bob, we often use the terms “Alice node” for a node where
Alice acts. We also denote such an h with $ (h) = A. Similarly, Bob
nodes have P (h) = B.

In auction-like domains, we typically identify the type with a
valuation function over the bundles of items received by a player.
For example, when the allowable types are some sets of functions
from subsets of M, and the allowable outcomes are partitions of
the items to the n players, we formally have u; (v;, (A1, ...,4A,)) =
vi(A;). Thus, we often write v; (A;) in place of the entire outcome
(A1,...,Ap).

For a player i with type ¢, we say that S;(t) is the “truth-telling”
strategy of player i, and the action S;(¢)(h) is the “truth telling
action” at node h. A strategy is a best response to strategies (s;);i
for player i with type t if the strategy maximizes player i’s utility
across all possible strategies of player i.

22Some prior works [18] limit mechanisms to at most two actions per node and define
the communication cost as the maximum depth of the tree. This is equivalent to our
definition up to constants, and our definition allows us to assume without loss of
generality that no agent takes consecutive turns in the game.

As is standard in the literature, we do not count the communication which the
mechanism must send to the agents (to tell them which information set they are in). In
perfect information games, one can argue that this is because the mechanism is simply
run over a public communication channel. However, this does not apply in games of
partial information. We note that counting the communication the mechanism would
need to tell players their information set can increase the communication used by at
most a quadratic factor. This is because at worst the mechanism needs to repeat to
agent i the messages of all agents which acted before i.
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A.1 Describing the Game Tree via Sets of Types

We now give some ways to regularize and describe EPIC mecha-
nisms in a natural way in terms of the types of agents. Most of this
language has been considered before (see e.g. [6, 18]).

Let (G,S1,...,Sn) be a deterministic mechanism EPIC imple-
menting f over environment E = (Y,77,..., T, u1,. .., up). For
eachnode h € H,let 7(h) € 71 X ... X T, denote the set of types
(t1, -
the computation of G(S1(t1),...,Sn(tn)) enters state h (that is,
h is on the path from the root to a leaf taken when computing
G(Sl(tl), ces Sn(tn)))-

LEMMA A.1. Each set T (h) is a rectangle. That is, T (h) = 71 (h) X
... X Ty (h) for some sets 71 (h), . .., Tn(h). Moreover, if P (h) = i then
{Ti(W") Y oy (m) is a partition of Ti(h). If P(h) # i then Ti(h") =
Ti(h) forallh’ € o (h).

PRrROOF. One can apply a standard rectangle argument to 7 (h).
Specifically, suppose that t = (1, ..., ), (tl’, .. th) € T(h), and
consider some player i and type profile (/, t;). Every player other
than i takes the same action under t and (t],t—;). Because the
actions taken by each player along the path from the root to h are
unique, S;(t/) must play the same actions along this path as does
Si(t;). Thus, i will take the same action under ¢; and tl.' at every
node along the path where i is called to act. So (t],t-;) € 7 (h) as
well. Applying this for each player i = 1,...,n proves that 7 (h) is
a rectangle. This makes 77 (h), .. ., 7, (h) well defined for each node
h.

If a player does not act at node h, then each successor of node
h keeps the type set of that player the same, by definition. On
the other hand, when player i acts at h, every type in 7;(h) takes
exactly one action at h. This proves 7;(h’) partitions 7;(h) as we
let b’ € o (h) vary. m|

Without loss of generality, we may assume that every node h
of the game has 7°(h) # 0%%. Under this assumption, to specify an
EPIC mechanism, it suffices to specify a tree equipped with type
sets 7;(h) satisfying the conclusions of lemma A.1. In appendix B in
the full version, we often describe modifying extensive form games
in these terms.
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