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ABSTRACT

We consider the problem of implementing a fixed social choice

function between multiple players (which takes as input a type 𝑡𝑖
from each player 𝑖 and outputs an outcome 𝑓 (𝑡1, . . . , 𝑡𝑛)), in which

each playermust be incentivized to follow the protocol. In particular,

we study the communication requirements of a protocol which:

(a) implements 𝑓 , (b) implements 𝑓 and computes payments that

make it ex-post incentive compatible (EPIC) to follow the protocol,

and (c) implements 𝑓 and computes payments in a way that makes

it dominant-strategy incentive compatible (DSIC) to follow the

protocol.

We show exponential separations between all three of these

quantities, already for just two players. That is, we first construct

an 𝑓 such that 𝑓 can be implemented in communication 𝑐 , but any

EPIC implementation of 𝑓 (with any choice of payments) requires

communication exp(𝑐). This answers an open question of [Fadel

and Segal, 2009; Babaioff et. al., 2013]. Second, we construct an 𝑓

such that an EPIC protocol implements 𝑓 with communication 𝐶 ,

but all DSIC implementations of 𝑓 require communication exp(𝐶).
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1 INTRODUCTION

Consider the following canonical problem: there is a set 𝑌 of possi-

ble outcomes, and each of 𝑛 players have a type 𝑡𝑖 which determines

their utility 𝑢𝑖 (𝑡𝑖 , 𝑦) for each outcome 𝑦 ∈ 𝑌 . You have a particu-

lar social choice function 𝑓 in mind, which maps a profile of types
®𝑡 = (𝑡1, . . . , 𝑡𝑛) to 𝑓 (®𝑡) ∈ 𝑌 . A canonical question within Computer

Science might first ask łwhat is 𝐶𝐶 (𝑓 ), the communication com-

plexity of 𝑓 ?ž That is, over all deterministic protocols computing 𝑓

among the 𝑛 players (who initially each know only their own type,

and not that of any others), which one uses the least number of bits

in the worst case?

But consider now the possibility that the players do not simply

follow the intended protocol, and instead strive to maximize their

own utility. The need to incentivize the players to follow the proto-

col motivates the entire field of Algorithmic Mechanism Design, as

well as questions such as łwhat is the communication complexity to

implement 𝑓 , using a protocol which incentivizes the players to follow

it?ž

There are several formal instantiations of this question, depend-

ing on how strongly one wishes to incentivize the players. One

common solution concept is ex-post incentive compatibility (EPIC),

where the protocol may charge prices and it is in each player’s

interest to follow the protocol assuming that other players follow

the protocol as well (formally, it is a Nash equilibrium to follow the

protocol, no matter the other players’ types). We let 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 )

denote the minimum communication cost of an EPIC protocol im-

plementing 𝑓 . Another common solution concept is dominant strat-

egy incentive compatibility (DSIC), where the protocol may charge

prices and it is in each player’s interest to follow the protocol no

matter what the other players do (even if that behavior is completely

irrational). We let𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 ) denote the minimum communication

cost of a DSIC protocol implementing 𝑓 . Because any EPIC protocol

must compute 𝑓 and any DSIC protocol is in particular an EPIC

protocol, we have 𝐶𝐶 (𝑓 ) ≤ 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) ≤ 𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 ).

Formally, we study the following question: for a fixed 𝑓 , how

does 𝐶𝐶 (𝑓 ) relate to 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ), and how does 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) relate
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to 𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 )? While related directions have received substantial

attention and produced a vast body of works (we overview this

related work, and others, in Section 1.1), relatively little attention

has been paid to these fundamental questions. Our main results are

exponential separations between all three quantities (and these are

the first such separations). Specifically:

Theorem (See Theorem 3.1 and Theorem 4.10). There exists

𝑓 such that 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) = exp(𝐶𝐶 (𝑓 )). There exists 𝑔 such that

𝐶𝐶𝐷𝑆𝐼𝐶 (𝑔) = exp(𝐶𝐶𝐸𝑃𝐼𝐶 (𝑔)).

The gap in both cases is at most exponential, so this is the largest

gap possible.1

1.1 Context and Related Work

There is a vast literature studying the communication requirements

of protocols for honest players versus truthful mechanisms for

strategic players [2, 3, 7ś13, 15ś17, 19, 20, 22ś24, 26, 27]. Our work

certainly fits into this literature, but goes in a fairly distinct direction.

Specifically, this literature nearly-ubiquitously considers compar-

isons between how much communication is required for some 𝑓

satisfying some property (e.g. guaranteeing an 𝛼-approximation to

the optimal welfare2) versus how much communication is required

for some EPIC implementation of some 𝑔 guaranteeing that property.

In particular, 𝑓 and 𝑔 may be different social choice functions, and

separations normally arise because the lowest-communication 𝑓

guaranteeing the desired property has no EPIC implementation Ð

there simply don’t exist prices that make any implementation of 𝑓

EPIC, no matter how much communication is used.3

Our work studies a fundamentally different question: for a fixed

𝑓 which is EPIC-implementable, how much communication over-

head is required to actually compute prices which make the im-

plementation EPIC? For an example of this distinction, consider a

single-item auction: each player has a value 𝑣𝑖 for the item. The

space of outcomes can award the item to any bidder, or no one.

The social choice function 𝑓 which gives the item to the highest

bidder can be EPIC-implemented (by the second-price auction). The

social choice function 𝑔 which gives the item to the lowest bidder

cannot be EPIC-implemented (by any prices, no matter how much

communication). In general, many approximation algorithms for

richer settings tend to be like 𝑔: they are simply not implementable,

no matter what. So the driving force behind all prior work is sepa-

rating the approximation guarantees for efficient protocols which

are EPIC-implementable (and tend to have low overhead to actually

compute the prices), versus those which are not.

There is significantly less prior work addressing our specific

questions. The direction was first posed in [18], who explicitly

pose the question of 𝐶𝐶 (𝑓 ) versus 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ), and demonstrate

that 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) can be strictly larger than 𝐶𝐶 (𝑓 ). Follow-up work

1To see this, consider the following sketch: for every protocol, there exists a simultane-
ous protocol (with one round of communication) with at most an exponential blowup
in communication. A simultaneous protocol is EPIC if and only if it is DSIC, and [18,
Proposition 1] shows that EPIC prices can be added to any simultaneous protocol for
𝑓 with low overhead. So the gap between the three quantities can be no larger than
the gap between simultaneous and interactive communication requirements for 𝑓 ,
which is at most exponential.
2The welfare of an outcome 𝑦 is defined as

∑
𝑖 𝑢𝑖 (𝑡𝑖 , 𝑦) .

3On the other hand, if 𝑓 is EPIC-implementable, it is DSIC-implementable, but perhaps
with exponential overhead.

of [4] were the first to make progress on this, and show a separation

of 𝐶𝐶 (𝑓 ) versus 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) which is linear in the number of play-

ers (so in particular, the blow-up for two players is not large). In

comparison to these works, our Theorem 3.1 shows the maximum

possible gap (exponential) with just two players, resolving the open

question in [18].

[18, Appendix B.2] defines and discusses 𝐶𝐶𝐷𝑆𝐼𝐶 , but only con-

siders the relationship between 𝐶𝐶 and 𝐶𝐶𝐷𝑆𝐼𝐶 (not the gap be-

tween 𝐶𝐶𝐸𝑃𝐼𝐶 and 𝐶𝐶𝐷𝑆𝐼𝐶 ). [11, Appendix C.1] shows that no

large separation between 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) and 𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 ) is possible

for the particular setting of two player combinatorial auctions with

arbitrary monotone valuations4.

The study of 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) versus 𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 ) is conceptually re-

lated to a recent pushwith the Economics and Computation commu-

nity to understand obviously strategyproof (OSP) mechanisms [1,

6, 25, 28]. These works do not focus on communication complexity,

but rather on characterizing implementations which satisfy OSP

(a stronger, but related, definition than DSIC). In comparison to

these works, our Theorem 4.10 bears technical similarity, and our

approach may be useful for proving communication lower bounds

on OSP implementations.

[18] also study related questions for a solution concept termed

łBayesian incentive compatibilityž (BIC), and they obtain a tight

exponential separation of 𝐶𝐶 and 𝐶𝐶𝐵𝐼𝐶 . [5] studies the solution

concept termed łtruthful in expectationž (TIE), and show that in

single-parameter settings there is no (substantial) separation be-

tween 𝐶𝐶 (𝑓 ) and 𝐶𝐶𝑇 𝐼𝐸 (𝑓 ).

Concurrent and IndependentWork.Concurrently and indepen-

dently of our work, Dobzinski and Ron [14] also consider the rela-

tionship between𝐶𝐶 and𝐶𝐶𝐸𝑃𝐼𝐶 .5 In particular, they also provide a

construction of a function 𝑓 witnessing 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) = exp(𝐶𝐶 (𝑓 ))

(their Section 3.1), which is similar to ours (our Section 3) in that it

derives hardness from high-precision prices. The remainder of their

paper is disjoint from ours (in particular, they do not study𝐶𝐶𝐷𝑆𝐼𝐶 ,

so there is no analogue to our Section 4). Instead, they establish

the following results: (a) There exist functions 𝑓 with𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) =

exp(𝐶𝐶 (𝑓 )) without high-precision prices (but with a third bidder).

(b) Under certain assumptions on 𝑓 , 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) = poly(𝑛,𝐶𝐶 (𝑓 ))

and/or 𝐶𝐶𝑇 𝐼𝐸 (𝑓 ) = poly(𝑛,𝐶𝐶 (𝑓 )). (c) Reconstructing the menu

presented by an EPIC mechanism can be exponentially harder than

computing the mechanism alone. A high-level distinction of our

works is that our paper provides exponential separations between

multiple solution concepts (algorithmic vs. EPIC vs. DSIC), whereas

their paper provides a more thorough investigation of algorithmic

vs. EPIC.

1.2 Summary and Roadmap

We establish an exponential separation between 𝐶𝐶 (𝑓 ) and

𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ), and also 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) and 𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 ), both the largest

4The proof of [11, Appendix C.1] relies on the fact that incentive compatible combina-
torial auctions with arbitrary monotone valuations have low łtaxation complexityž.
Our construction in Section 4 circumvents this theorem because its environment is a
very structured subset of two player monotone combinatorial auctions, and moreover,
our social choice function 𝑓 has high taxation complexity.
5Both papers were uploaded to arXiv simultaneously on December 29th, 2020.
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possible, and first of their kind. Section 3 provides the separation be-

tween𝐶𝐶 (𝑓 ) and𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ), and Section 4 provides the separation

between 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) and 𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 ).

2 PRELIMINARIES

We study implementations of social choice functions over (social

choice) environments. For completeness and accessibility for the

reader not familiar with game theory, we rigorously define all of

these terms in Appendix A. Here, we briefly and intuitively describe

the central definitions of the paper.

The environment specifies a set of outcomes 𝑌 and a set of types

T1, . . . ,T𝑛 for the 𝑛 different strategic agents. Intuitively, the types

represent the different possible options for łwho each agent might

bež. When agent 𝑖 has type 𝑡𝑖 ∈ T𝑖 , they have utility𝑢𝑖 (𝑡𝑖 , 𝑦) ∈ R for

each outcome 𝑦 ∈ 𝑌 . When we study environment with transfers6,

we assume utilities are quasilinear (that is, if outcome 𝑦 is selected

and agent 𝑖 receives transfer 𝑝 , then agent 𝑖 gets utility 𝑢𝑖 (𝑡𝑖 , 𝑦) +𝑝).

The social choice function 𝑓 : T1 × . . . × T𝑛 → 𝑌 specifies how the

outcome depends on the type each agent has. While the łsocial

plannerž designing the mechanism wishes to compute 𝑓 , the agents

wish to maximize their own utility. The social choice function

itself is assumed to be implementable. That is, there exists transfer

functions 𝑝1, . . . , 𝑝𝑛 : T1 × · · · × T𝑛 → R for each agent, such that

for all 𝑖 , types 𝑡1, . . . , 𝑡𝑛 , and 𝑡
′
𝑖 , we have

𝑓 (𝑡𝑖 , 𝑡−𝑖 ) + 𝑝𝑖 (𝑡𝑖 , 𝑡−𝑖 ) ≥ 𝑓 (𝑡 ′𝑖 , 𝑡−𝑖 ) + 𝑝𝑖 (𝑡
′
𝑖 , 𝑡−𝑖 ) .

We say that transfers (𝑝1, . . . , 𝑝𝑛) incentivize 𝑓 , and we say that 𝑓

is incentive compatible without transfers if each 𝑝𝑖 (·) above can be

taken to be 0.

A mechanism consists of an (extensive form) game 𝐺 which the

𝑛 agents play, and łtype-strategiesž 𝑆1, . . . , 𝑆𝑛 which suggest how

the agents should play𝐺 . Intuitively, the game𝐺 iteratively solicits

actions from players, updating its state according to the action

chosen, and outputting some result after a finite amount of time.

This is represented by a game tree, where the nodes correspond to

states of the game. Each non-leaf node is labeled by some agent,

and the edges below that node are labeled with the actions that

agent may play at that state of the game. The game is not perfect

information: it may hide information from agents or ask them to act

simultaneously. For each agent 𝑖 ∈ [𝑛], the states of𝐺 at which 𝑖 is

called to act are partitioned into łinformation setsž 𝐼𝑖 ∈ I𝑖 , where

two nodes are in the same information set if and only if agent 𝑖

cannot distinguish between them while playing the game7. For

𝑖 ∈ [𝑛], the type-strategy 𝑆𝑖 maps types 𝑡𝑖 ∈ T𝑖 to łbehavioural

strategiesž 𝑠𝑖 = 𝑆𝑖 (𝑡𝑖 ) which player 𝑖 can play in 𝐺 . A behavioural

strategy (typically referred to simply as a strategy) specifies the

action that player 𝑖 will choose any time they are called to act

over the course of the game, that is, it assigns an action to each

information set of player 𝑖 . We denote the result output by𝐺 when

the agents play strategies 𝑠1, . . . , 𝑠𝑛 by 𝐺 (𝑠1, . . . , 𝑠𝑛).

6Throughout the paper, we make no assumptions on the transfers. That is, they can
be positive or negative, and an agent can receive negative utility. This makes our
impossibility results only stronger.
7We assume the game satisfies łperfect recallž, that is, the game cannot force agents
to forget information they knew in the past. For details on how information sets are
defined, see Appendix A.

A mechanism 𝐺 with strategies 𝑆1, . . . , 𝑆𝑛 computes (without

transfers) a social choice function 𝑓 if𝐺 (𝑆1 (𝑡1), . . . , 𝑆𝑛 (𝑡𝑛)) = 𝑓 (𝑡1,

. . . , 𝑡𝑛). A mechanism computes 𝑓 (with transfers) if the result of

the game additionally includes transfers 𝑝1, . . . , 𝑝𝑛 to each player.

We consider two notions of incentive compatibility for inter-

active mechanisms. In words, a mechanism is dominant strategy

incentive compatible (DSIC) if, for any (behavioral) strategy profile

𝑠−𝑖 := (𝑠 𝑗 )𝑗≠𝑖 of the other players, it is a best response for player 𝑖

to play 𝑆𝑖 (𝑡𝑖 ). That is, for all 𝑡𝑖 , 𝑠−𝑖 , 𝑠
′
𝑖 , we have

𝑢𝑖 (𝑡𝑖 ,𝐺 (𝑆𝑖 (𝑡𝑖 ), 𝑠−𝑖 )) ≥ 𝑢𝑖 (𝑡𝑖 ,𝐺 (𝑠 ′𝑖 , 𝑠−𝑖 )),

where we recall that if the mechanism has transfers, 𝑢𝑖 (𝑡𝑖 , ·) is the

quasilinear utility given by agent 𝑖’s value for the outcome when

their type is 𝑡𝑖 , plus the transfer 𝑝𝑖 to player 𝑖 . On the other hand, a

mechanism is ex-post Nash incentive compatible (EPIC) if, for any

profile of strategy 𝑆−𝑖 (𝑡−𝑖 ) := (𝑆 𝑗 (𝑡 𝑗 ))𝑗≠𝑖 which are consistent with

type-strategies 𝑆−𝑖 , it is a best response to play 𝑆𝑖 (𝑡𝑖 ). That is, for

all 𝑡𝑖 , 𝑡−𝑖 , 𝑠
′
𝑖 , we have

𝑢𝑖 (𝑡𝑖 ,𝐺 (𝑆𝑖 (𝑡𝑖 ), 𝑆−𝑖 (𝑡−𝑖 )) ≥ 𝑢𝑖 (𝑡𝑖 ,𝐺 (𝑠 ′𝑖 , 𝑆−𝑖 (𝑡−𝑖 ))) .

Observe quickly the following approach for an EPIC implemen-

tation of 𝑓 : Say that (𝑝1, . . . , 𝑝𝑛) incentivizes 𝑓 . Then one can run

protocols separately to compute 𝑓 , and also to compute each 𝑝𝑖 , and

then output all of these together. This is simply because the EPIC

constraints assume that the other bidders’ strategies are fixed by

their type. So the overhead of 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) versus 𝐶𝐶 (𝑓 ) is exactly

the overhead to compute transfers. This does not hold for DSIC

implementations. Indeed, this is because other bidders may use a

bizarre (not utility-maximizing) strategy which changes their be-

havior in (e.g.) the protocol to compute 𝑝𝑖 as a function of your

behavior in the protocol to compute 𝑓 . But the EPIC condition does

not require guarantees against such bizarre strategies, only the

fixed strategies which guarantee each player a best response (as-

suming other players also use such a strategy). We formally define

our complexity measures as follows:

Definition 2.1. For an arbitrary social choice function 𝑓 ,

• 𝐶𝐶 (𝑓 ) is the minimum communication cost of a mechanism

(no incentives) computing 𝑓 .

• If 𝑓 is implementable, 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) is the minimum value of

𝐶𝐶 (𝑓 , 𝑝1, . . . , 𝑝𝑛) over any transfer functions 𝑝1, . . . , 𝑝𝑛 which

incentivize 𝑓 .

• If 𝑓 is implementable,𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 , 𝑝1, . . . , 𝑝𝑛) is the minimum

communication cost of any DSIC mechanism computing (𝑓 ,

𝑝1, . . . , 𝑝𝑛). Moreover, 𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 ) is the minimum value of

𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 , 𝑝1, . . . , 𝑝𝑛) for any transfer functions 𝑝1, . . . , 𝑝𝑛
which incentivize 𝑓 .

3 EXPONENTIAL SEPARATION OF 𝐶𝐶 (𝑓 )
AND 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 )

In this section, we show that there exists an implementable social

choice function 𝑓 which has communication complexity O(log𝑛),

yet any EPIC implementation of 𝑓 must use Ω(𝑛) communication.

We now describe our construction at a high level. Our instance

has two players, Alice and Bob. Alice’s type can be represented

succinctly, but Bob’s type is łcomplicatedž. Therefore, without re-

gards to incentives, this social choice function can be efficiently
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computed in two rounds, with Alice sending her type to Bob in

the first round, and Bob deciding the outcome in the second round.

However, the social choice function and the utilities of Alice are

designed carefully such that there is essentially only one possible

transfer function that gives an EPIC implementation, and moreover,

this transfer function has to be łas complicated as the types of Bobž.

This means that the communication required to EPIC implement

the social choice function is large.

Social choice environment. Consider a 2-player social choice en-

vironment and refer to the players as Alice and Bob. The space of

outcomes of the environment is [𝑛 + 1]. The class of Bob’s types is

T𝐵 = {0, 1}𝑛 . That is, Bob’s type is a binary string 𝑏 of length 𝑛. We

let 𝑏𝑖 ∈ {0, 1} denote 𝑏’s 𝑖-th coordinate. Bob’s utility is always zero

regardless of the outcome (that is, 𝑢𝐵 (𝑏, 𝑖) = 0 for all 𝑖 ∈ [𝑛+1], 𝑏 ∈

T𝐵 ). The class of Alice’s types is T𝐴 =
⋃
𝑖∈[𝑛] {𝑎𝑖,ℓ , 𝑎

′
𝑖,ℓ , 𝑎𝑖,ℎ, 𝑎

′
𝑖,ℎ

},

where for each 𝑖 ∈ [𝑛], the types 𝑎𝑖,ℓ , 𝑎
′
𝑖,ℓ , 𝑎𝑖,ℎ, 𝑎

′
𝑖,ℎ

have utility:

𝑢𝐴 (𝑎𝑖,ℓ , 𝑖) = 2−𝑛 𝑢𝐴 (𝑎
′
𝑖,ℓ , 𝑖) = 0

𝑢𝐴 (𝑎𝑖,ℓ , 𝑖 + 1) = 0 𝑢𝐴 (𝑎
′
𝑖,ℓ , 𝑖 + 1) = 2−𝑛

𝑢𝐴 (𝑎𝑖,ℎ, 𝑖) = 2−𝑛 𝑢𝐴 (𝑎
′
𝑖,ℎ
, 𝑖) = 0

𝑢𝐴 (𝑎𝑖,ℎ, 𝑖 + 1) = 2𝑖 𝑢𝐴 (𝑎
′
𝑖,ℎ
, 𝑖 + 1) = 2𝑖 + 2−𝑛,

and 𝑢𝐴 (𝑎𝑖,ℓ , 𝑗) = 𝑢𝐴 (𝑎
′
𝑖,ℓ , 𝑗) = 𝑢𝐴 (𝑎𝑖,ℎ, 𝑗) = 𝑢𝐴 (𝑎

′
𝑖,ℎ
, 𝑗) = −∞ for all

other outcomes 𝑗 ∉ {𝑖, 𝑖 + 1}. Intuitively, 𝑎𝑖,ℓ , 𝑎
′
𝑖,ℓ are łlow typesž of

Alice, and 𝑎𝑖,ℎ, 𝑎
′
𝑖,ℎ

are łhigh typesž (which get much more utility

from outcome 𝑖 + 1).

Social choice function. The social choice function 𝑓 : T𝐴 × T𝐵 →

[𝑛 + 1] is given by

𝑓 (𝑎𝑖,ℓ , 𝑏) = 𝑖 𝑓 (𝑎′𝑖,ℓ , 𝑏) = 𝑖 + 1 − 𝑏𝑖

𝑓 (𝑎𝑖,ℎ, 𝑏) = 𝑖 + 1 − 𝑏𝑖 𝑓 (𝑎′
𝑖,ℎ
, 𝑏) = 𝑖 + 1.

That is, each of Alice’s type among 𝑎𝑖,ℓ , 𝑎
′
𝑖,ℓ , 𝑎𝑖,ℎ, 𝑎

′
𝑖,ℎ

receives either

outcome 𝑖 or 𝑖 + 1, and the exact outcome chosen depend on Bob’s

type 𝑏 in the following way: If 𝑏𝑖 = 0, then 𝑎𝑖,ℓ receives outcome 𝑖 ,

and each of 𝑎′𝑖,ℓ , 𝑎𝑖,ℎ, 𝑎
′
𝑖,ℎ

receives outcome 𝑖 + 1. If 𝑏𝑖 = 1, then each

of 𝑎𝑖,ℓ , 𝑎
′
𝑖,ℓ , 𝑎𝑖,ℎ receives outcome 𝑖 , and 𝑎′

𝑖,ℎ
receives outcome 𝑖 + 1.

Theorem 3.1. In the 2-player environment above, the social choice

function 𝑓 is EPIC implementable. Moreover, there is an exponential

separation between the communication complexity for computing 𝑓

and the communication complexity of any EPIC implementation of 𝑓 ,

i.e.,

𝐶𝐶 (𝑓 ) = O(log𝑛) 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) = Θ(𝑛).

Proof. First, observe that Alice and Bob can compute 𝑓 with

O(log𝑛) communication in the following way: Alice sends her

valuation, which can be described with O(log𝑛) bits, to Bob, and

then, Bob computes and outputs the outcome, which also costs

O(log𝑛) bits. Thus, 𝐶𝐶 (𝑓 ) = O(log𝑛).

On the other hand, consider any EPIC implementation of 𝑓 .

Without loss of generality, we may assume that the transfers to

Bob are always 0. Let 𝑝 (𝑎, 𝑏) denote the transfer given to Alice

when Alice has type 𝑎 ∈ T𝐴 and Bob has type 𝑏 ∈ T𝐵 . By standard

arguments, we must have 𝑝 (𝑎′, 𝑏) = 𝑝 (𝑎, 𝑏) for any 𝑏 ∈ T𝐵 and

𝑎, 𝑎′ ∈ T𝐴 such that 𝑓 (𝑎′, 𝑏) = 𝑓 (𝑎, 𝑏) (otherwise, one of 𝑎 or 𝑎′

would want to deviate to the other, in order to get a higher transfer

for the same outcome). Thus, going forward we write the transfer

function 𝑝 : [𝑛 + 1] × T𝐵 → R, where 𝑝 (𝑖, 𝑏) is the transfer to Alice

when Bob has type 𝑏 and outcome 𝑖 is the output of 𝑓 .

Now we prove our main lemma, which allows us to characterize

𝑝 in any EPIC implementation of 𝑓 .

Lemma 3.2. Transfers 𝑝 incentivize 𝑓 if and only if we have

𝑝 (𝑖, 𝑏) − 𝑝 (𝑖 + 1, 𝑏) ∈ [𝑏𝑖2
𝑖 − 2−𝑛, 𝑏𝑖2

𝑖 + 2−𝑛] (*)

for all 𝑖 ∈ [𝑛] and 𝑏 ∈ T𝐵 .

Proof. When Alice has type 𝑎𝑖 ∈ {𝑎𝑖,ℓ , 𝑎
′
𝑖,ℓ , 𝑎𝑖,ℎ, 𝑎

′
𝑖,ℎ

}, the social

choice function 𝑓 will select outcome 𝑖 or 𝑖 + 1, based on the type of

Alice and bit 𝑏𝑖 of Bob’s valuation 𝑏 ∈ T𝐵 . Certainly Alice will not

want to deviate to an outcome 𝑗 ∉ {𝑖, 𝑖 + 1}, as her utility for these

outcomes is −∞. Thus, to prove the łifž direction, it suffices to show

that for each 𝑖 ∈ [𝑛] and 𝑏 ∈ T𝐵 , when transfers satisfy (*) for this

value of 𝑖 and 𝑏, if Alice has a type 𝑎𝑖 ∈ {𝑎𝑖,ℓ , 𝑎
′
𝑖,ℓ , 𝑎𝑖,ℎ, 𝑎

′
𝑖,ℎ

}, she will

not want to deviate to the unique outcome in {𝑖, 𝑖 + 1} \ {𝑓 (𝑎𝑖 , 𝑏)}.

To prove the łonly ifž direction, it suffices to show that if transfers

𝑝 incentivize 𝑓 , then (*) must hold for each 𝑖 ∈ [𝑛] and 𝑏 ∈ T𝐵 . To

this end, consider any 𝑖 ∈ [𝑛].

First, suppose 𝑏𝑖 = 0. This means that 𝑎𝑖,ℓ receives 𝑖 , and 𝑎
′
𝑖,ℓ ,

𝑎𝑖,ℎ, 𝑎
′
𝑖,ℎ

receive 𝑖 + 1.

Suppose that transfers 𝑝 satisfy (*), i.e. 𝑝 (𝑖, 𝑏) − 𝑝 (𝑖 + 1, 𝑏) ∈

[−2−𝑛, 2−𝑛]. First, note that 𝑎𝑖,ℎ and 𝑎′
𝑖,ℎ

will not want to deviate to

𝑖 , because these types have much higher utility for 𝑖 +1 (and receive

almost the same transfer on these two outcomes). Second, note that

𝑢𝐴 (𝑎𝑖,ℓ , 𝑖 + 1) −𝑢𝐴 (𝑎𝑖,ℓ , 𝑖) = −2−𝑛 and 𝑢𝐴 (𝑎
′
𝑖,ℓ , 𝑖 + 1) −𝑢𝐴 (𝑎

′
𝑖,ℓ , 𝑖) =

2−𝑛 , and it follows by 𝑝 (𝑖, 𝑏) − 𝑝 (𝑖 + 1, 𝑏) ∈ [−2−𝑛, 2−𝑛] that

𝑢𝐴 (𝑎𝑖,ℓ , 𝑖) + 𝑝 (𝑖, 𝑏) ≥ 𝑢𝐴 (𝑎𝑖,ℓ , 𝑖 + 1) + 𝑝 (𝑖 + 1, 𝑏)

𝑢𝐴 (𝑎
′
𝑖,ℓ , 𝑖 + 1) + 𝑝 (𝑖 + 1, 𝑏) ≥ 𝑢𝐴 (𝑎

′
𝑖,ℓ , 𝑖) + 𝑝 (𝑖, 𝑏)

Thus, 𝑎𝑖,ℓ and 𝑎
′
𝑖,ℓ will not want to deviate either.

Now we show that if transfers 𝑝 incentivize 𝑓 , then they must

satisfy (*) for this value of 𝑖 . Observe that 𝑎𝑖,ℓ and 𝑎
′
𝑖,ℓ have almost

the same utility for 𝑖 and 𝑖 + 1, yet receive different outcomes. This

will force 𝑝 (𝑖, 𝑏) −𝑝 (𝑖 +1, 𝑏) ∈ [−2−𝑛, 2−𝑛]. Specifically, for neither

of 𝑎𝑖,ℓ nor 𝑎
′
𝑖,ℓ to want to deviate to each other, we must have

2−𝑛 + 𝑝 (𝑖, 𝑏) = 𝑢𝐴 (𝑎𝑖,ℓ , 𝑖) + 𝑝 (𝑖, 𝑏)

≥ 𝑢𝐴 (𝑎𝑖,ℓ , 𝑖 + 1) + 𝑝 (𝑖 + 1, 𝑏) = 𝑝 (𝑖 + 1, 𝑏)

2−𝑛 + 𝑝 (𝑖 + 1, 𝑏) = 𝑢𝐴 (𝑎
′
𝑖,ℓ , 𝑖 + 1) + 𝑝 (𝑖 + 1, 𝑏)

≥ 𝑢𝐴 (𝑎
′
𝑖,ℓ , 𝑖) + 𝑝 (𝑖, 𝑏) = 𝑝 (𝑖, 𝑏),

and thus 𝑝 (𝑖, 𝑏) − 𝑝 (𝑖 + 1, 𝑏) ∈ [−2−𝑛, 2−𝑛].

Second, suppose 𝑏𝑖 = 1. This means that 𝑎𝑖,ℓ , 𝑎
′
𝑖,ℓ , 𝑎𝑖,ℎ receive 𝑖 ,

and 𝑎′
𝑖,ℎ

receives 𝑖 + 1. The logic in this case is analogous to the first

case.

Suppose that transfers 𝑝 satisfy (*), i.e. 𝑝 (𝑖, 𝑏) − 𝑝 (𝑖 + 1, 𝑏) ∈

[2𝑖 − 2−𝑛, 2𝑖 + 2−𝑛]. First, note that 𝑎𝑖,ℓ and 𝑎
′
𝑖,ℓ will not want to

deviate to 𝑖+1, because these types have almost the same utility for 𝑖

and 𝑖 +1 (and receive a much higher transfer on 𝑖). Second, note that

𝑢𝐴 (𝑎𝑖,ℎ, 𝑖+1)−𝑢𝐴 (𝑎𝑖,ℎ, 𝑖) = 2𝑖−2−𝑛 and𝑢𝐴 (𝑎
′
𝑖,ℎ
, 𝑖+1)−𝑢𝐴 (𝑎

′
𝑖,ℎ
, 𝑖) =

2𝑖 + 2−𝑛 , and it follows by 𝑝 (𝑖, 𝑏) − 𝑝 (𝑖 + 1, 𝑏) ∈ [2𝑖 − 2−𝑛, 2𝑖 + 2−𝑛]
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that

𝑢𝐴 (𝑎𝑖,ℎ, 𝑖) + 𝑝 (𝑖, 𝑏) ≥ 𝑢𝐴 (𝑎𝑖,ℎ, 𝑖 + 1) + 𝑝 (𝑖 + 1, 𝑏)

𝑢𝐴 (𝑎
′
𝑖,ℎ
, 𝑖 + 1) + 𝑝 (𝑖 + 1, 𝑏) ≥ 𝑢𝐴 (𝑎

′
𝑖,ℎ
, 𝑖) + 𝑝 (𝑖, 𝑏)

Thus, 𝑎𝑖,ℎ and 𝑎′
𝑖,ℎ

will not want to deviate either.

Now we show that if transfers 𝑝 incentivize 𝑓 , then they must

satisfy (*). Observe that 𝑎𝑖,ℎ and 𝑎′
𝑖,ℎ

have almost the same utilities

for 𝑖 and 𝑖+1, yet receive different outcomes. This will force 𝑝 (𝑖, 𝑏)−

𝑝 (𝑖 + 1, 𝑏) ∈ [2𝑖 − 2−𝑛, 2𝑖 + 2−𝑛]. Specifically, for neither of 𝑎𝑖,ℎ nor

𝑎′
𝑖,ℎ

to want to deviate to each other, we must have

2−𝑛 + 𝑝 (𝑖, 𝑏) = 𝑢𝐴 (𝑎𝑖,ℎ, 𝑖) + 𝑝 (𝑖, 𝑏)

≥ 𝑢𝐴 (𝑎𝑖,ℎ, 𝑖 + 1) + 𝑝 (𝑖 + 1, 𝑏) = 2𝑖 + 𝑝 (𝑖 + 1, 𝑏)

2𝑖 + 2−𝑛 + 𝑝 (𝑖 + 1, 𝑏) = 𝑢𝐴 (𝑎
′
𝑖,ℎ
, 𝑖 + 1) + 𝑝 (𝑖 + 1, 𝑏)

≥ 𝑢𝐴 (𝑎
′
𝑖,ℎ
, 𝑖) + 𝑝 (𝑖, 𝑏) = 𝑝 (𝑖, 𝑏),

and thus 𝑝 (𝑖, 𝑏) − 𝑝 (𝑖 + 1, 𝑏) ∈ [2𝑖 − 2−𝑛, 2𝑖 + 2−𝑛].

□

We now define transfers 𝑝∗ such that

𝑝∗ (𝑖, 𝑏) = −

𝑖−1∑

𝑗=1

𝑏 𝑗2
𝑗 .

For each 𝑏 ∈ T𝐵 and 𝑖 ∈ [𝑛], we have 𝑝∗ (𝑖, 𝑏) − 𝑝∗ (𝑖 + 1, 𝑏) ∈

[𝑏𝑖2
𝑖 − 2−𝑛, 𝑏𝑖2

𝑖 + 2−𝑛], and thus by Lemma 3.2, these transfers

incentivize 𝑓 . Thus, let M denote the mechanism which has Alice

announce her type (using O(log(𝑛)) bits), tells that type to Bob,

and then has Bob decide the outcome 𝑖 (using O(log(𝑛)) bits) and

the transfer 𝑝∗ (𝑖, 𝑏) for Alice (using O(𝑛) bits). This mechanism

EPIC implements 𝑓 with communication cost O(𝑛).

On the other hand, consider any mechanism M which EPIC

implements 𝑓 . Let 𝑝 denote the transfers M gives to Alice. By

Lemma 3.2 and telescoping sum, the transfers must satisfy 𝑝 (1, 𝑏) −

𝑝 (𝑛 + 1, 𝑏) ∈ [
∑𝑛
𝑗=1 (𝑏 𝑗2

𝑗 − 2−𝑛),
∑𝑛
𝑗=1 (𝑏 𝑗2

𝑗 + 2−𝑛)] for all 𝑏 ∈ T𝐵 .

Notice that for sufficiently large 𝑛, 𝑛2−𝑛 is tiny, and hence, the

intervals [
∑𝑛
𝑗=1 (𝑏 𝑗2

𝑗 − 2−𝑛),
∑𝑛
𝑗=1 (𝑏 𝑗2

𝑗 + 2−𝑛)] corresponding to

distinct 𝑏’s are disjoint. Since there are 2𝑛 distinct 𝑏’s, there are also

2𝑛 distinct values of 𝑝 (1, 𝑏) − 𝑝 (𝑛 + 1, 𝑏). Suppose for contradiction

that M computes 𝑝 using 𝑜 (𝑛) bits of communication. Then there

also exists a protocol which can compute 𝑝 (1, 𝑏) − 𝑝 (𝑛 + 1, 𝑏) with

𝑜 (𝑛) communication, which is impossible because there are 2𝑛

such values. Therefore, any EPIC implementation of 𝑓 must have

communication cost Ω(𝑛). This completes the proof.

□

Discussion. In the proof above, we showed that computing the

transfers requires large amount of communication because the

transfers require a large number of bits to represent. For two players,

this is necessary. That is, in a two player environment, if a social

choice function 𝑓 can be incentivized with transfers that can be

represented with 𝐾 bits, then there exists an EPIC implementation

with communication cost 𝐶𝐶 (𝑓 ) + 𝐾 . This implementation first

has Alice and Bob compute the social choice function using an

optimal protocol, which requires 𝐶𝐶 (𝑓 ) bits, and then has each

player specify the transfer for the other player (as we recalled in

the proof of Theorem 3.1, the transfers to Alice are determined

solely by the outcome and Bob’s type and vice versa).

We note that it is possible to modify the environment by giving

Bob nontrivial utilities such that 𝑓 is the unique social choice func-

tion which maximizes the welfare 𝑢𝐴 (𝑎, 𝑖) + 𝑢𝐵 (𝑏, 𝑖). Specifically,

for each Bob type 𝑏 ∈ T𝐵 , we define Bob’s utility as 𝑢𝐵 (𝑏, 𝑖) =

−
∑𝑖−1
𝑗=1 𝑏 𝑗2

𝑗 for each outcome 𝑖 ∈ [𝑛 + 1], which is equal to 𝑝∗ (𝑖, 𝑏)

in the proof. In this modified environment, 𝑓 always returns the

unique outcome which maximizes welfare. Notice that 𝑝∗ (𝑖, 𝑏) then

becomes the VCG transfer (up to an additive constant that can

depend Bob’s type) for Alice. If we also let Alice output the VCG

transfer (up to an additive constant that can depend on Alice’s type)

𝑝 ′(𝑖, 𝑎) := 𝑢𝐴 (𝑎, 𝑖) for Bob after the outcome is decided, then 𝑝 ′

along with 𝑓 is EPIC for Bob. Together, 𝑝∗, 𝑝 ′ give an EPIC imple-

mentation of 𝑓 .

Finally, in the above modified environment where 𝑓 is welfare-

maximizing, note that despite Alice’s valuation being succinctly

representable, her utilities are łhigh precisionž. This is necessary,

because by [18, Proposition 2], if all the valuations in the environ-

ment have low precision, every welfare-maximizing social choice

function has an EPIC implementation with only slightly more com-

munication for computing the transfers. Moreover, Bob’s type re-

quires many bits to represent. This is also necessary, because if both

players have succinct types, they can simultaneously output their

types, after which the mechanism computes the correct outcome

and charges VCG transfers.

4 EXPONENTIAL SEPARATION OF 𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 )
AND 𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 )

In this section, we construct a social choice function 𝑓 such that

𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ) = O(𝑛), yet 𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 ) = exp(𝑛).

4.1 Building Up to Our Construction

We walk through a list of examples of environments and social

choice rules, trying to build to an exponential separation of the

communication required to EPIC implement and DSIC implement

the rules. The first example is a classical illustration of the differ-

ence between ex-post and dominant strategy implementations for

extensive form games.

4.1.1 Attempt One. Consider a second price auction with two bid-

ders, Alice and Bob, and a single item, such that Alice’s and Bob’s

value for the item are integers in {1, 2, . . . , 10}. If the auction is

implemented as a direct revelation mechanism, then it is DSIC.

However, suppose we first ask Alice her value, then tell that value

to Bob and ask him to respond with his own value. This mechanism

is no longer DSIC. For example, one strategy of Bob is to always

say his value is 1, except when Alice bids 8, in which case he will

say his value is 9. When Bob plays this strategy and Alice’s true

value is 8, Alice gets more utility by lying and bidding 9 than by

telling the truth.

We note that the above strategy for Bob is łcrazyž in the sense

that it does not maximize his own utility, but serves mostly to

incentivize non-truthful bidding by Alice. Moreover, this crazy

strategy for Bob was possible only because Bob knew Alice’s value

and decided his response as a function of this value. Observe that,
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for such a crazy strategy to work, Bob does not have to know

Alice’s value exactly. Intuitively and informally, the following two

conditions suffice:

(a) Bob learns information about Alice’s type.

(b) Bob has two possible responses, one which gives Alice high

utility, and one which give Alice low utility.

Our next idea is to construct an instance where any low com-

munication mechanism must satisfy Item a and Item b above. We

first focus on Item a and try to devise an instance where any low-

communication mechanism requires Bob to know something about

Alice’s valuation. For this, we embed the well-known łIndexž prob-

lem from communication complexity in a welfare-maximization

context. Recall that, in the Index problem, there is a parameter

𝐾 > 0 such that Alice has an index 𝑘 ∈ [𝐾] and Bob has a vector

𝑋 = (𝑥𝑖 )𝑖∈[𝐾 ] ∈ {0, 1}𝐾 , and the goal is to output the 𝑘th location

in the vector 𝑋 , i.e. 𝑥𝑘 .

Intuitively, the importance of the Index problem lies in the fact

the only way to efficiently solve this problem is for Alice to reveal a

lot of information about her input. Specifically, first observe that the

protocol where Alice sends 𝑘 to Bob, and Bob then simply outputs

𝑥𝑘 , uses communication O(log𝐾). However, it turns out that any

protocol that does not reveal a lot of information about Alice’s input

to Bob must have communication Ω(𝐾) (this can be formalized, see

[21, etc.], although we do not need to do so here).

4.1.2 Attempt Two. Consider an auction where there are two bid-

ders and an even number𝑚 of items for sale. The bidders, Alice and

Bob, are multi-minded8 with interests as follows: Alice is interested

in exactly two sets, a set 𝑆 ⊆ [𝑚] of size𝑚/2 that she values at

4, and the set 𝑆 that she values at 1. Bob’s valuation is such that

for every subset 𝑇 ⊆ [𝑚] of size𝑚/2, he is interested in exactly

one of the sets 𝑇 and 𝑇 , which he values at 5 (and he values the

other set at 0). The social choice function 𝑓 outputs the welfare-

maximizing allocation of items between Alice and Bob. That is,

Bob gets whichever of 𝑆 or 𝑆 he values at 5, and Alice gets the

complement (which she values at either 4 or 1). Observe that 𝑓 is

incentive compatible without transfers.

The direct revelation mechanismM1 (where Alice and Bob si-

multaneously reveal their entire type) is DSIC. In this mechanism,

Bob does not learn anything about Alice’s type, that is, Item a in

Section 4.1.1 does not hold. However, the fact that Bob commu-

nicates his entire type means that M1 requires communication

exponential in𝑚.

There is also a mechanism M2 for the above instance where

Item a is satisfied. This is the mechanism that first asks Alice for

the set 𝑆 of size𝑚/2 she values at 4, and then asks Bob which of the

sets 𝑆 and 𝑆 he values at 5. The mechanism M2 then gives Bob the

set he said he values at 5 and gives Alice the complement. Observe

that M2 is EPIC and requires O(𝑚) communication. However, the

mechanism M2 is not DSIC. Indeed, consider a (crazy) strategy for

Bob where he always says that the set 𝑆 reported by Alice is the

one he values at 5 (regardless of his input). With this strategy for

Bob, Alice always gets the complement of what she reports and

8Recall that a valuation function 𝑣 on [𝑚] is multi-minded if there exists a collection
{(𝑣𝑖 ,𝑇𝑖 ) }𝑖 , where each 𝑣𝑖 ∈ R and 𝑇𝑖 ⊆ [𝑚], such that 𝑣 (𝑆) = max{𝑣𝑖 |𝑇𝑖 ⊆ 𝑆 }.
The sets𝑇𝑖 are call the łinterestsž of the valuation function 𝑣.

therefore, she is incentivized to lie and report the set 𝑆 instead of

the set 𝑆 which is truly her favorite.

A low communication DSIC mechanism. However, the instance

above does not yield a separation between the communication

complexity of DSIC and EPIC implementations, as there is an O(𝑚)-

communication mechanism that is also DSIC. This mechanism,

which we we call M★, asks Alice only report the sets {𝑆, 𝑆} of size

𝑚/2 she has non-zero value for, without specifying which one of

the two she values at 4. Then, the mechanism M★ asks Bob which

of the sets 𝑆 and 𝑆 he values at 5, gives him that set and gives Alice

the complement of the set.

ThemechanismM★ clearly has communicationO(𝑚). It is DSIC,

because if Alice reports anything other than than {𝑆, 𝑆}, she will

get utility 0 regardless of what Bob says. In particular, it is not

possible to construct a łcrazyž strategy of Bob as inM2, because

Bob’s response cannot depend on the difference between 𝑆 and 𝑆 .

In other words, the reason the mechanismM★ is DSIC is that

it does not satisfy Item b above. Even though Bob learns a lot of

information about Alice’s type, he cannot respond to this informa-

tion in a way that gives Alice a lower utility in some cases, and a

higher utility in other cases.

Need for new ideas. It may seem at first that the mechanismM★

works only because in our instance, Bob does not need to which

of 𝑆 and 𝑆 does Alice value at 4 in order to determine the welfare-

maximizing allocation. However, this is not the case. Even if the

welfare-maximizing allocation was dependent on which of 𝑆 and 𝑆

is valued at 4 by Alice, Bob could just send two answers, one for

the case when 𝑆 is valued at 4 and the other one for the when 𝑆 is

valued at 4. The resultingmechanismwould still be DSIC. Thus, new

ideas are needed to get a separation between the communication

complexity of EPIC and DSIC implementations.

4.2 Construction and Intuition

At a high level, our main construction is simply two independent

copies of the instance described in Section 4.1.2, where the valuation

functions for Alice and Bob are additive over the two copies.

Formally, for every even𝑚, we have a two player combinatorial

auction where a set 𝑀1 ⊔𝑀2 of items satisfying |𝑀1 | = |𝑀2 | =𝑚

is for sale. The set of outcomes is defined by9

𝑌 = {(𝑋1, 𝑋2) | 𝑋1 ⊆ 𝑀1, 𝑋2 ⊆ 𝑀2, |𝑋1 | = |𝑋2 | =𝑚/2}.

An outcome (𝑋1, 𝑋2) indicates that Alice receives (𝑋1, 𝑋2) and Bob

receives (𝑋1, 𝑋2). Alice’s types are also given by the set T𝐴 = 𝑌

and her utility function 𝑢𝐴 : T𝐴 ×𝑌 → R is defined by 𝑢𝐴 ((𝑆1, 𝑆2),

(𝑋1, 𝑋2)) = 𝑢𝐴,1 (𝑆1, 𝑋1) +𝑢𝐴,2 (𝑆2, 𝑋2), where, for 𝑖 ∈ [2], we have:

𝑢𝐴,𝑖 (𝑆𝑖 , 𝑋𝑖 ) =




4, if 𝑆𝑖 = 𝑋𝑖

1, if 𝑆𝑖 = 𝑋𝑖

0, otherwise.

Bob’s type set T𝐵 is the collection of all pairs (𝑣𝐵,1, 𝑣𝐵,2), where for

𝑖 ∈ [2], the function 𝑣𝐵,𝑖 maps a subset of𝑀𝑖 of size𝑚/2 to the set

9We restrict the auction to always award half of the items in𝑀𝑖 to each bidder, for
each 𝑖 ∈ [2]. This restriction is without loss of generality, because the social choice
function 𝑓 always outputs allocations with this property, but it simplifies the notation
slightly.
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{0, 5} such that for each set𝑇 ⊆ 𝑀𝑖 , |𝑇 | =𝑚/2, we have 𝑣𝐵,𝑖 (𝑇 ) = 5

and 𝑣𝐵,𝑖 (𝑇 ) = 0 or vice-versa. Bob’s utility function is:

𝑢𝐵 ((𝑣𝐵,1, 𝑣𝐵,2), (𝑋1, 𝑋2)) = 𝑣𝐵,1 (𝑋1) + 𝑣𝐵,2 (𝑋2) .

Finally, the goal of the auctioneer is to maximize the welfare.

Observe that, if Alice’s type is (𝑆1, 𝑆2) ∈ T𝐴 and Bob’s type is

(𝑣𝐵,1, 𝑣𝐵,2) ∈ T𝐵 , this corresponds to computing the outcome (𝑋1,

𝑋2), where, for 𝑖 ∈ [2], 𝑋𝑖 = 𝑆𝑖 if 𝑣𝐵,𝑖 (𝑆𝑖 ) = 5 and 𝑆𝑖 otherwise. For

the rest of this section, let 𝑓 denote this social choice function.

High Level Intuition. We use the instance above to separate the

communication complexity of EPIC and DSIC implementations.

First, we consider themechanismMpar which runs two instances of

the mechanismM★ from Section 4.1.2 in parallel. More formally, in

the first round we ask Alice to report {𝑆1, 𝑆1} and {𝑆2, 𝑆2}, without

differentiating between sets up to complements. Bob then picks

the allocation on both sets of items in round two. This mechanism

EPIC implements 𝑓 with communication cost O(𝑚). However, as

we show next,Mpar fails to be DSIC.

Observe the following crucial detail of the social choice environ-

ment: when Alice’s true type is (𝑆1, 𝑆2), Alice has utility 4when she

receives (𝑆1,𝑇2) for any 𝑇2 ∉ {𝑆2, 𝑆2}, but she has utility 2 when

she receives (𝑆1, 𝑆2). This motivates us to construct the following

strategy 𝑠𝐵 of Bob inMpar: for some fixed sets 𝑆∗1 ⊆ 𝑀1, 𝑆
∗
2 ⊆ 𝑀2, if

Alice reports {𝑆∗1 , 𝑆
∗
1 } and {𝑆∗2 , 𝑆

∗
2 } in round one, then Bob will give

Alice (𝑆∗1 , 𝑆
∗
2 ). But if Alice reports {𝑆∗1 , 𝑆

∗
1 } and {𝑇2,𝑇2} in round

one, for any 𝑇2 ∉ {𝑆∗2 , 𝑆
∗
2 }, then Bob will give Alice (𝑆∗1 ,𝑇

′
2 ) (for

𝑇 ′
2 ∈ {𝑇2,𝑇2} chosen arbitrarily). When Alice’s true type is (𝑆∗1 , 𝑆

∗
2 ),

truth telling is not a best response of Alice against this strategy 𝑠𝐵 .

Thus, Mpar is not DSIC.

We now argue informally that the existence of a łcrazyž strategy

like this for Bob is not an accident, but a property which is neces-

sary in any communication efficient mechanism. Intuitively, this is

because for the mechanism to be efficient, Alice must reveal a lot

of information about both sets of items (implementing Item a from

Section 4.1.1). Regardless of the order in which this is done, at the

first point Bob learns about Alice’s type on one set of items𝑀𝑖 , he

can condition his response on the other set of items𝑀3−𝑖 based on

the information from𝑀𝑖 This allows him to give Alice two sets she

values at 1 when she tells the truth, yet at least one set which she

values at 4 when she deviates (implementing Item b).

For a concrete example, we can also considerMseq, which de-

notes the mechanism which runsM★ on the first set of items𝑀1,

commits to the allocation on𝑀1, then runsM★ on the second set

of items𝑀2. Then the same argument as forMpar shows that there

is a strategy of Bob against which truth telling is not a best re-

sponse. However, we now need to change the argument so that Bob

conditions his response on 𝑀2 on Alice’s actions on 𝑀1, because

Bob commits to a result on𝑀1 before he acts on𝑀2. Because Alice

must reveal lots of information about her type on both 𝑀1 and𝑀2,

this argument should go through in any communication efficient

mechanism.

4.3 Technical Considerations and Difficulties

In Section 4.2, we argued informally that at the earliest where Alice

reveals information, it should be possible to construct a strategy

of Bob against which truth telling is not a best response for Alice.

Unfortunately, this is not literally true for every mechanism, and

our proof must circumvent this fact. In this section, we first explain

in more detail how such łcrazyž strategies are constructed, and

demonstrate that the needed łcrazyž strategy cannot necessarily

be constructed at the first node where Alice acts.

Consider a communication efficientmechanismM = (𝐺, 𝑆𝐴, 𝑆𝐵),

and for simplicity assume that M is perfect information10. This

assumption allows us to not worry about situations where the

mechanism asks Alice for information, but does not reveal all of

that information to Bob.

Our goal is to construct a łcrazy strategyž of Bob, against which

truth-telling is not a best response for Alice. To construct this

strategy, we want to find a node ℎ in the game tree of M where

Alice communicates information which Bob can respond to in the

following way: when Alice tells the truth, Bob must be able to give

Alice a bad result, but if Alice deviates from truth telling, Bob can

give Alice a good result on at least one of the sets of items. To

explain this fully, we use the language of Section A.1. Specifically,

we use T𝐴 (ℎ),T𝐵 (ℎ) to denote the types of Alice and Bob for which

the computation of𝐺 under truth-telling passes throughℎ. We need

ℎ to satisfy the following:

(A) Alice acts at ℎ, and there exist two of Alice’s types (𝑆1, 𝑆2),

(𝑇1,𝑇2) ∈ T𝐴 (ℎ) atℎ such that 𝑆𝐴 ((𝑆1, 𝑆2)) (ℎ) ≠ 𝑆𝐴 ((𝑇1,𝑇2)) (ℎ)

(that is, (𝑆1, 𝑆2) and (𝑇1,𝑇2) take different actions at ℎ under

truth telling), and moreover, we either have 𝑆1 = 𝑇1 or 𝑆2 = 𝑇2.

For concreteness, suppose that 𝑆1 = 𝑇1.

(B) There exist types (𝑣𝐵,1, 𝑣𝐵,2), (𝑣
′
𝐵,1
, 𝑣 ′
𝐵,2

) ∈ T𝐵 (ℎ) such that

𝑣𝐵,1 (𝑆1) = 5, 𝑣𝐵,1 (𝑆2) = 5, and 𝑣 ′
𝐵,1

(𝑆1) = 0.

These correspond to Item a and Item b of Section 4.1.1, instantiated

for the specific social choice function 𝑓 .

Claim 4.1. If there exists a node ℎ at which Item A and Item B are

both satisfied, thenM is not DSIC.

Proof. Define a łcrazy strategyž of Bob as follows: Bob acts

according to (𝑣1
𝐵
, 𝑣2
𝐵
) in all nodes except those in the subtree where

Alice plays the action chosen by (𝑇1,𝑇2) at ℎ, where Bob acts ac-

cording to (𝑣1
𝐵
′
, 𝑣2
𝐵
′
). Suppose Alice’s true type is (𝑆1, 𝑆2). When

Bob plays the above strategy and Alice tells the truth, Alice re-

ceives (𝑆1, 𝑆2), which she values at 2. But if Alice deviates and plays

strategy corresponding to (𝑇1,𝑇2), then she receives 𝑆1 on𝑀1, and

receives a utility of 4. Thus, truth-telling is not a best response for

Alice with type (𝑆1, 𝑆2), andM is not DSIC. □

Neither of the above conditions Item A or Item B on node ℎ are

very strong independently. For example, at any node ℎ which is the

first time Alice takes a nontrivial action, Item A will be satisfied

for some set (𝑆1, 𝑆2). Furthermore, Item B will be satisfied at the

root node of the game tree for every Alice type (𝑆1, 𝑆2). However,

together these two requirements become somewhat subtle. Before

we proceed to the formal proof, we highlight two cases of this

subtlety, and briefly hint at how we address them.

10We prove in the appendix of the full version that this assumption is without loss of
generality for our specific social choice function 𝑓 .

953



STOC ’21, June 21ś25, 2021, Virtual, Italy Aviad Rubinstein, Raghuvansh R. Saxena, Clayton Thomas, S. Matthew Weinberg, and Junyao Zhao

(i) Suppose the first thing the mechanism does is ask Bob łis your

type (𝑣∗
𝐵,1
, 𝑣∗
𝐵,2

)?ž (for some (𝑣∗
𝐵,1
, 𝑣∗
𝐵,2

) fixed by the mecha-

nism). If the answer is yes, then all types of Alice have a

dominant strategy in the corresponding subtree. Moreover,

if the first question is to just ask Bob łis your full type on

𝑀1 equal to 𝑣
∗
𝐵,1

?ž (for some fixed 𝑣∗
𝐵,1

, regardless of his type

on 𝑀2) then it is possible that Alice always has a dominant

strategy in that subtree11. This shows that we cannot hope to

construct the needed łcrazy strategyž of Bob in every subtree

of the game.

(ii) Suppose the first question is to ask Bob łwhat is your value

on sets {𝑇 ∗
1 ,𝑇

∗
1 } ⊆ 𝑀1 and sets {𝑇 ∗

2 ,𝑇
∗
2 } ⊆ 𝑀2 (for some set

𝑇 ∗
1 ,𝑇

∗
2 fixed by the mechanism). At the (four nodes of the) next

layer of the tree, ask Alice łDo you have 𝑆1 ∈ {𝑇 ∗
1 ,𝑇

∗
1 } AND

𝑆2 ∈ {𝑇 ∗
2 ,𝑇

∗
2 }?ž It turns out that truth-telling is a dominant

action at every node in the first layer where Alice acts12. This

shows that we cannot hope to construct the needed łcrazy

strategyž of Bob at every layer of the game tree.

Intuitively, we address the first issue by noting that, because Bob

has more types than there are nodes in the game tree, we can safely

ignore any node in which Bob has few types. We fix the second

issue by changing the proof outline overall. Instead of taking an

efficient mechanism M and finding a node ℎ satisfying Item A

and Item B (thus showing thatM is not DSIC), we use a proof by

contradiction. Intuitively, we consider an efficient mechanism in

which no such łcrazy strategyž of Bob be constructed, and show that

the questions such a mechanism can ask to Alice are so restrictive

that the mechanism cannot possibly handle all types Alice might

have.

4.4 Separation of DSIC and EPIC without
Transfers

We now prove that, without transfers, social choice function 𝑓 from

Section 4.2 requires an exponential amount of communication to

implement in dominant strategies.

Theorem 4.2. Any DSIC implementation of 𝑓 without transfers

has communication cost Ω̃(2𝑚).

Proof. Fix a DSIC mechanism M and let 𝐶M be the commu-

nication ofM. At the cost of blowing up the communication by a

factor of two, we can assume by Lemma B.1 (in the full version of

this paper) that M is perfect information. Let M = (𝐺, 𝑆𝐴, 𝑆𝐵), i.e.

𝐺 is the perfect information extensive form game used by M, and

𝑆𝐴, 𝑆𝐵 are the dominant type-strategy profile implementing 𝑓 . By

Section A.1, each node ℎ of the game tree𝐺 corresponds to a set of

11Observe that Alice already knows what will happen on𝑀1 . Thus, in this subtree the
mechanism can thus run the DSIC mechanism M★ described in Section 4.1.1 on𝑀2 .
Then, as a final step the mechanism can ask Alice her type on𝑀1 . Intuitively, Alice
already knows what will happen on𝑀1 (and can always grantee her best attainable
outcome on𝑀1 at the end), so she might as well try to get her full value on𝑀2 .
12Formally, truth-telling is a dominant action at node ℎ if 𝑆𝐴 (𝑡𝐴) gets utility at least
as high as all strategies 𝑠′

𝐴
such that 𝑠′

𝐴
(ℎ) ≠ 𝑆𝐴 (𝑡𝐴) (ℎ) .

Clearly Alice has a dominant strategy if indeed she should answer łyesž in this
layer. If not, either one or both of her sets are not in the specified pair. If both are not,
she gets zero utility from lying. If one of her sets is in the specified pair, the outcome on
the matching set of items is already fixed, so Alice might as well łcontinuež (answering
łnož) and hope for more utility on the other set of items, knowing she can always
grantee her utility on the matching set of items.

Bob
Do you have type

𝑣∗
𝐵,1

on𝑀1?

Alice

Run DSIC mechanism M★ on𝑀2 ,
then query Alice’s value on𝑀1 .

yes

. . .

no

Bob

Alice Do you have 𝑆1 ∈ {𝑇 ∗
1 ,𝑇

∗
1 }

and 𝑆2 ∈ {𝑇 ∗
2 ,𝑇

∗
2 }?

The mechanism
knows the outcome

yes

. . .

no

What is your value on
𝑇 ∗
1 ⊆ 𝑀1 and𝑇

∗
2 ⊆ 𝑀2?

Figure 1: Examples of the technical difficulties our proof

needs to handle. These figures illustrate the first few layers

of the game trees, while the remainder of the game is un-

specified. Regardless of how the rest of the game computes

𝑓 , these examples illustrate that the required strategy of Bob

cannot always be constructed based on the first node where

Alice acts (i.e. the first node where Alice acts may not satisfy

Item A and Item B for any (𝑆1, 𝑆2), (𝑇1,𝑇2)).

types T𝐴 (ℎ) of Alice and T𝐵 (ℎ) of Bob, and each action taken at ℎ

corresponds to partitioning the types of the player P(ℎ) ∈ {𝐴, 𝐵}

who acts at this node. This partition is given by 𝑆𝑖 (·), specifically,

for each node ℎ′ immediately after ℎ in𝐺 , a type 𝑡 ∈ T𝑖 (ℎ) remains

in T𝑖 (ℎ
′) if and only if 𝑆𝑖 (𝑡) plays the action at ℎ which corresponds

to ℎ′. We say that type 𝑡 takes action 𝑎 at ℎ if 𝑆𝑖 (𝑡) plays 𝑎 at ℎ.

Observe that for each 𝑖 and nodes ℎ,ℎ′ where ℎ is an ancestor of

ℎ′, we have T𝑖 (ℎ
′) ⊆ T𝑖 (ℎ).

Define 𝐾 :=
( 𝑚
𝑚/2

) /
2 and observe that 𝐾 = Θ̃(2𝑚). Observe

that, for 𝑖 ∈ [2], we can partition all subsets of𝑀𝑖 of size𝑚/2 into

(unordered) pairs of the form (𝑇,𝑇 ), and there will be exactly 𝐾

such pairs. Call these pairs 𝑃𝑖,1, · · · , 𝑃𝑖,𝐾 in some canonical order.

For the rest of this section, we equivalently view a type (𝑣𝐵,1, 𝑣𝐵,2)

of Bob as a pair of bit-strings 𝐵 = (𝐵1, 𝐵2) ∈ {0, 1}𝐾×{0, 1}𝐾 , where

𝐵𝑖,𝑘 for 𝑘 ∈ [𝐾] specifies which set in 𝑃𝑖,𝑘 Bob values at 5. Similarly,

we can view Alice’s type (𝑆1, 𝑆2) as a tuple (𝑘1, 𝑘2, 𝑏1, 𝑏2) where

𝑘1, 𝑘2 ∈ [𝐾] are indices and 𝑏1, 𝑏2 are bits, and, for 𝑖 ∈ [2], 𝑆𝑖 is the

𝑏th𝑖 element in 𝑃𝑖,𝑘𝑖 . As 𝑏1, 𝑏2 are irrelevant to the outcome of the
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mechanism, using Lemma B.3 (in the full version)13, we can assume

without loss of generality that for all 𝑘1, 𝑘2 ∈ [𝐾], and nodes ℎ, we

either have that all Alice’s types of the form (𝑘1, 𝑘2, ·, ·) ∈ T𝐴 (ℎ) or

all types of the form (𝑘1, 𝑘2, ·, ·) ∉ T𝐴 (ℎ). Thus, when talking about

the sets T𝐴 (ℎ) for nodes ℎ, we can view Alice’s type as simply a

pair of indices (𝑘1, 𝑘2). We adopt this convention for the rest of this

proof, and we consider T𝐴 (ℎ) ⊆ [𝐾] × [𝐾]. Correspondingly, we

consider 𝑆𝐴 (·) to be a map from [𝐾] × [𝐾] to strategies in M, and

refer to the actions taken by pairs (𝑘1, 𝑘2) ∈ [𝐾] × [𝐾].

The social choice function 𝑓 is determined by Alice’s index on

both sets of items, as well as Bob’s value on those two indices. Thus,

for each leaf ℓ , we have T𝐴 (ℓ) = {(𝑘1, 𝑘2)} a singleton
14, which will

be a key observation in our proof.

We now begin to build the language and tools needed to address

the considerations highlighted in Section 4.3.

Definition 4.3 (Shattered pairs). Letℎ be a node and (𝑘1, 𝑘2) ∈

[𝐾] × [𝐾]. We say that (𝑘1, 𝑘2) is shattered at ℎ if Bob’s types 𝐵 =

(𝐵1, 𝐵2) ∈ T𝐵 (ℎ), when restricted to coordinates 𝑘1, 𝑘2, take on all

four possible values. In other words,
��{(𝐵1,𝑘1 , 𝐵2,𝑘2 ) | (𝐵1, 𝐵2) ∈ T𝐵 (ℎ)}

�� = 4.

We use T Sh (ℎ) ⊆ [𝐾] × [𝐾] to denote the set of all pairs (𝑘1, 𝑘2)

that are shattered at ℎ.

For convenience, we define the łneighborsž of a pair (𝑘1, 𝑘2) to

be all those pairs with (at least) one index in common with (𝑘1, 𝑘2).

Note that (𝑘1, 𝑘2) ∈ nbr(𝑘1, 𝑘2).

Definition 4.4 (Neighbors). Let (𝑘1, 𝑘2) ∈ [𝐾] × [𝐾]. A neigh-

bor of (𝑘1, 𝑘2) is any pair of the form form (𝑘1, 𝑘
′) or (𝑘 ′, 𝑘2) for

some 𝑘 ′ ∈ [𝐾]. We use nbr(𝑘1, 𝑘2) to denote the set of all neighbors

of (𝑘1, 𝑘2).

Our first two lemmas show that a pair being shattered at a node

ℎ severely restricts which questions the mechanism can ask at ℎ.

The first lemma corresponds to Claim 4.1, recast in the language of

this proof. More specifically, Item B from Section 4.3 corresponds

to a pair (𝑘1, 𝑘2) being shattered at ℎ, and Item A from Section 4.3

corresponds to (𝑘1, 𝑘2) taking a different action than one of its

neighbors. These two items cannot simultaniously occur in a DSIC

mechansism.

Lemma 4.5. Consider any nodeℎ withP(ℎ) = 𝐴 and shattered pair

(𝑘1, 𝑘2) ∈ T Sh (ℎ) ∩ T𝐴 (ℎ). Then every pair in nbr(𝑘1, 𝑘2) ∩ T𝐴 (ℎ)

must take the same action as (𝑘1, 𝑘2) at ℎ.

Proof. Fix a (𝑘1, 𝑘2) ∈ T Sh (ℎ) ∩ T𝐴 (ℎ). Suppose for contradic-

tion that there exists a neighbor of (𝑘1, 𝑘2) which is in T𝐴 (ℎ), yet

takes a different action from (𝑘1, 𝑘2) at ℎ. Without loss of generality,

assume this neighbor is of the form (𝑘1, 𝑘
′
2). We derive a contra-

diction by constructing a łcrazyž strategy for Bob, exactly as in

Claim 4.1, that violates the DSIC property.

13More formally, consider the partition of Alice’s types given by
{{(𝑘1, 𝑘2, 𝑏1, 𝑏2) }(𝑏1,𝑏2 )∈{0,1}×{0,1} }(𝑘1,𝑘2 )∈[𝐾 ]×[𝐾 ] . For all fixed types of Bob,

𝑓 is constant on the above partition, and thus by Lemma B.3 in the full version, we
can assume that for all ℎ, if one element of a set {(𝑘1, 𝑘2, 𝑏1, 𝑏2) }(𝑏1,𝑏2 )∈{0,1}×{0,1} is

in T𝐴 (ℎ) , then all elements of that set are in T𝐴 (ℎ) .
14Bob’s type, on the other hand, need only be determined on indices 𝑘1, 𝑘2 . That is, for
each leaf ℓ , if we have T′

𝐴
(ℓ) = {(𝑘1, 𝑘2) }, then for each (𝐵1, 𝐵2), (𝐵

′
1, 𝐵

′
2) ∈ T𝐵 (ℓ) ,

we have 𝐵1,𝑘1 = 𝐵′
1,𝑘1

and 𝐵2,𝑘2 = 𝐵′
2,𝑘2

.

Pick some (𝐵1, 𝐵2), (𝐵
′
1, 𝐵

′
2) ∈ T𝐵 (ℎ) with 𝐵1,𝑘1 = 𝐵2,𝑘2 = 1 and

𝐵′
1,𝑘1

= 0 (these exist by Definition 4.3). We define a strategy 𝑠𝐵
of Bob such that in subtree where Alice plays the action taken by

(𝑘1, 𝑘
′
2) at ℎ, 𝑠𝐵 plays the action played by 𝑆𝐵 ((𝐵

′
1, 𝐵

′
2)). In every

other node of the game tree, 𝑠𝐵 plays the same action played by

𝑆𝐵 ((𝐵1, 𝐵2)). This completely specifies 𝑠𝐵 .

Suppose Alice has type (𝑘1, 𝑘2, 1, 1) (that is, for 𝑖 ∈ [2], her

desired sets are in 𝑃𝑖,𝑘𝑖 , and her most preferred set is the one from

𝑃𝑖,𝑘𝑖 which (𝐵1, 𝐵2) values at 5). When Alice plays 𝑆𝐴 ((𝑘1, 𝑘2)), she

is allocated her less preferred set on both𝑀1 and𝑀2, and thus gets

utility 2. But if Alice deviates and plays 𝑆𝐴 ((𝑘1, 𝑘
′
2)), on 𝑀1 she

receives her most preferred set, which she values at 4. Thus, truth

telling is not a best response for Alice with type (𝑘1, 𝑘2), and thus

M is not DSIC. □

We just showed that if some pair is shattered and lies in some

T𝐴 (ℎ), then all of its neighbors who are also in T𝐴 (ℎ) must take

the same action. Next, we need something stronger, namely that all

shattered pairs at ℎ take the same action. Along the way we prove

that additionally that if a pair is shattered and lies in T𝐴 (ℎ), then

all of its neighbors must lie in T𝐴 (ℎ).

Lemma 4.6. Let ℎ be any node, and consider the set

T Sh-nbr
𝐴 (ℎ) :=

⋃

(𝑘1,𝑘2) ∈TSh (ℎ)∩T𝐴 (ℎ)

nbr(𝑘1, 𝑘2).

Then we have that T Sh-nbr
𝐴

(ℎ) ⊆ T𝐴 (ℎ). Moreover, if P(ℎ) = 𝐴, then

all types in T Sh-nbr
𝐴

(ℎ) must take the same action at ℎ.

Proof. First, we prove that T Sh-nbr
𝐴

(ℎ) ⊆ T𝐴 (ℎ). Suppose for

contradiction that this is not the case. This means that there exists

(𝑘1, 𝑘2) ∈ T Sh (ℎ) ∩T𝐴 (ℎ) and (𝑘 ′1, 𝑘
′
2) ∈ nbr(𝑘1, 𝑘2), but (𝑘

′
1, 𝑘

′
2) ∉

T𝐴 (ℎ).

Consider the node ℎ′ which is the latest Alice node along the

path from the root to ℎ at which (𝑘 ′1, 𝑘
′
2) ∈ T𝐴 (ℎ

′). By definition,

(𝑘1, 𝑘2) and (𝑘 ′1, 𝑘
′
2) take different actions at ℎ

′. Observe that, be-

cause T𝐵 (ℎ) ⊆ T𝐵 (ℎ
′), we also have T Sh (ℎ) ⊆ T Sh (ℎ′), and thus

(𝑘1, 𝑘2) is shattered at ℎ′. But then, by Lemma 4.5, (𝑘1, 𝑘2) and

(𝑘 ′1, 𝑘
′
2) must take the same action at ℎ′, a contradiction.

Conclude using T Sh-nbr
𝐴

(ℎ) ⊆ T𝐴 (ℎ) and Lemma 4.5 that, if

(𝑘1, 𝑘2) ∈ T Sh (ℎ) ∩ T𝐴 (ℎ), then each pair in nbr(𝑘1, 𝑘2) takes

the same action at ℎ. Thus, to prove that all types in T Sh-nbr
𝐴

(ℎ)

take the same action, it suffices to show that if (𝑘1, 𝑘2), (𝑘
′
1, 𝑘

′
2) ∈

T Sh (ℎ)∩T𝐴 (ℎ) with 𝑘1 ≠ 𝑘
′
1 and 𝑘2 ≠ 𝑘

′
2, then (𝑘1, 𝑘2) and (𝑘 ′1, 𝑘

′
2)

must still take the same action at ℎ.

To prove this, we make use of the fact that T Sh-nbr
𝐴

⊆ T𝐴 (ℎ). In

particular, means that (𝑘1, 𝑘
′
2) ∈ nbr(𝑘1, 𝑘2) ⊆ T𝐴 (ℎ). By Lemma 4.5,

(𝑘1, 𝑘
′
2) must take the same action as (𝑘1, 𝑘2). By the exact same

logic, (𝑘1, 𝑘
′
2) must take the same action as (𝑘 ′1, 𝑘

′
2). Thus, (𝑘1, 𝑘2)

and (𝑘 ′1, 𝑘
′
2) take the same action at ℎ, and so does every pair in

T Sh-nbr
𝐴

(ℎ).

□

While T Sh (ℎ) ⊆ [𝐾] × [𝐾] is defined entirely in terms of Bob’s

types, T Sh-nbr
𝐴

(ℎ) ⊆ T𝐴 (ℎ) tells us information about Alice’s types

as well. This provides us with a convenient way to describe the rest

of the proof, in terms of the following observation:
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Observation 4.7. For all leaves ℓ of the game tree, we have

T Sh-nbr
𝐴

(ℓ) = ∅ (that is, T Sh (ℓ) ∩ T𝐴 (ℓ) = ∅).

Proof. Recall that social choice function 𝑓 is determined by Al-

ice’s index on both sets of items, as well as Bob’s value on those two

indices. In particular, at every leaf node, the mechanism must com-

pletely know Alice’s pair in order to correctly compute 𝑓 . Thus, for

all leaves ℓ of the game tree, T𝐴 (ℓ) is a singleton. Using Lemma 4.6

and the fact that |nbr(𝑘1, 𝑘2) | > 1, this is possible only if all leaves

ℓ satisfy T Sh-nbr
𝐴

(ℓ) = ∅. □

Our task in the remainder of the proof is to show that, if the

communication cost𝐶M ofM is sufficiently small, then there must

exist a leaf ℓ with T Sh-nbr
𝐴

(ℓ) ≠ ∅.

Note that it is possible for a mechanism with exponential com-

munication to satisfy T Sh-nbr
𝐴

(ℓ) = ∅ at every leaf. Indeed, in the

direct revelation mechanism where Bob reveals his entire type,

T𝐵 (ℓ) is singleton for every leaf, and thus T Sh (ℓ) = ∅. However,

our next two lemmas shows that in low-communication mecha-

nisms, very few types of Bob can ever end up at leafs ℓ in which

|T Sh (ℓ) | is small. This serves to address Item i from Section 4.3. Our

next lemma is a standard communication complexity argument,

and intuitively states that łtypicalž Bob types always end up in

leaves with a large number of Bob types.

Lemma 4.8. Let T
Typ
𝐵

⊆ T𝐵 denote the set of all Bob types 𝐵 ∈ T𝐵
such that for all leaves ℓ with 𝐵 ∈ T𝐵 (ℓ), we have |T𝐵 (ℓ) | ≥ |T𝐵 | ·

4−2𝐶M . We have ���T Typ
𝐵

��� ≥ |T𝐵 | · (1 − 4−𝐶M )

Proof. We show that
���T𝐵 \ T

Typ
𝐵

��� ≤ 4−𝐶M · |T𝐵 |. Indeed, for

all 𝐵 ∈ T𝐵 \ T
Typ
𝐵

, there exists a leaf ℓ such that 𝐵 ∈ T𝐵 (ℓ) and

|T𝐵 (ℓ) | < |T𝐵 | · 4
−2𝐶M . There are at most 2𝐶M leaves in 𝐺 . This

gives:
���T𝐵 \ T

Typ
𝐵

��� ≤
∑

leaf ℓ such that
|T𝐵 (ℓ) |< |T𝐵 | ·4

−2𝐶M

|T𝐵 (ℓ) |

≤
∑

leaf ℓ

|T𝐵 | · 4
−2𝐶M ≤ |T𝐵 | · 4

−𝐶M .

□

Next, we show that in all łtypical nodesž (that is, nodes contain-

ing even one type from T
Typ
𝐵

), most of the pairs in [𝐾] × [𝐾] are

shattered. This follows from a combinatorial argument ś if a lot of

pairs are not shattered at ℎ, then there cannot possibly be enough

types in T𝐵 (ℎ) for ℎ to be łtypicalž.

Lemma 4.9. For any node ℎ such that T𝐵 (ℎ) ∩ T
Typ
𝐵

≠ ∅, we have��T Sh (ℎ)
�� ≥ 𝐾2 − 10𝐾𝐶M .

Proof. Fix a node ℎ with T𝐵 (ℎ) ∩T
Typ
𝐵

≠ ∅. Some descendent of

ℎ is a leaf node ℓ where T𝐵 (ℓ)∩T
Typ
𝐵

≠ ∅. By the definition of T
Typ
𝐵

,

this means |T𝐵 (ℓ) | ≥ |T𝐵 | · 4
−2𝐶M . Thus |T𝐵 (ℎ) | ≥ |T𝐵 | · 4

−2𝐶M as

well. This condition will suffice to bound
��T Sh (ℎ)

��.
We consider the set T Sh (ℎ) = [𝐾] × [𝐾] \T Sh (ℎ) of unshattered

pairs, and proceed by showing that |T Sh (ℎ) | ≤ 10𝐾𝐶M . To this end,

observe that each unshattered pair (𝑘1, 𝑘2) can be uniquely written

as (𝑘, 𝑘 + 𝑑) for some values of 𝑘, 𝑑 ∈ [𝐾] (where we take indexes

mod 𝐾 ). To show that |T Sh (ℎ) | ≤ 10𝐾𝐶M , we actually show that

for all 𝑑 ∈ [𝐾], the number of pairs of the form (𝑘, 𝑘 +𝑑) ∈ T Sh (ℎ)

is at most 10𝐶M . Summing over all 𝑑 ∈ [𝐾] then proves the lemma.

Fix a 𝑑 and suppose for contradiction that there were more than

𝑅 = 10𝐶M pairs in T Sh (ℎ) of the form (𝑘, 𝑘 + 𝑑). For any fixed

𝑑 , all of the 4𝐾 types of Bob in T𝐵 can be uniquely described by

specifying Bob’s value on (𝑘, 𝑘 + 𝑑) for each 𝑘 ∈ [𝐾], that is, by

specifying for each 𝑘 ∈ [𝐾] one of the four possible values of

(𝐵1,𝑘 , 𝐵2,𝑘+𝑑 ) ∈ {0, 1} × {0, 1}.

If (𝑘, 𝑘 + 𝑑) is shattered at ℎ, then the types of Bob in T𝐵 (ℎ)

can take on all 4 possible values on indexes (𝑘, 𝑘 + 𝑑). However,

if (𝑘, 𝑘 + 𝑑) is unshattered at ℎ, then there is at least one of the 4

options for Bob’s type on indexes (𝑘, 𝑘 + 𝑑) which never occurs

in T𝐵 (ℎ). Thus, the types of Bob in T𝐵 (ℎ) can take on at most 3

possible values on indices (𝑘, 𝑘 + 𝑑). Thus, the number of types in

T𝐵 (ℎ) satisfies

|T𝐵 (ℎ) | ≤ 3𝑅 · 4𝐾−𝑅 = 4𝐾−(1−log4 3)𝑅 < 4𝐾−(1/5)𝑅 .

Plugging 𝑅 = 10𝐶M , we have |T𝐵 (ℎ) | < 4𝐾−2𝐶M = |T𝐵 | · 4
−2𝐶M ,

which contradicts what we know about |T𝐵 (ℎ) |.

□

Even in communication efficient mechanisms, there can be leaf

nodes with T Sh-nbr
𝐴

(ℓ) = ∅. The right hand side of Figure 1, illus-

trating Item ii in Section 4.3, gives an example. Looking into this

example deeper, we see the reason: at the node ℎ where Alice acts,

if we take the action not taken by the pairs in T Sh (ℎ), then we

arrive at a leaf node with T Sh (ℓ) ∩T𝐴 (ℓ) = ∅. Thus, intuitively, our

approach for the remainder of this proof is to follow the actions

taken by T Sh (ℎ) in order to arrive at a node with T Sh-nbr
𝐴

(ℓ) ≠ ∅.

We now begin to wrap up our proof. Assume for contradiction

that 𝐶M < 𝐾/10. By Lemma 4.8, we get that 𝐶M < 𝐾/10 implies

that T
Typ
𝐵

≠ ∅. Fix an arbitrary 𝐵★ ∈ T
Typ
𝐵

. From Lemma 4.9, for

any node ℎ such that 𝐵★ ∈ T𝐵 (ℎ), we have T
Sh (ℎ) ≠ ∅.

Define a collection of nodes 𝐻★ in 𝐺 as follows:

𝐻★
= {ℎ | 𝐵★ ∈ T𝐵 (ℎ), T

Sh (ℎ) ⊆ T𝐴 (ℎ)}

Observe that the root ℎ0 of 𝐺 is in 𝐻★ (because T𝐴 (ℎ0) = T𝐴 and

T𝐵 (ℎ0) = T𝐵 ), and thus 𝐻★
≠ ∅. Now, define ℎ★ to any node in 𝐻★

for which no descendent of ℎ★ is in 𝐻★15.

First, we claim that ℎ★ cannot be a node where Bob acts. Other-

wise, consider the child ℎ′ of ℎ★ corresponding to the action taken

by 𝐵★ at ℎ★. At ℎ′, Alice’s type set remains the same, while sets

T𝐵 (ℎ
′) and thus T Sh (ℎ′) have only decreased from ℎ★. Thus,

T Sh (ℎ′) ⊆ T Sh (ℎ★) ⊆ T𝐴 (ℎ
★) = T𝐴 (ℎ

′),

and ℎ′ ∈ 𝐻★. This contradictions the choice of ℎ★.

Next, we claim ℎ★ cannot be a node where Alice acts. Sup-

pose otherwise. Because T Sh (ℎ★) ⊆ T𝐴 (ℎ
★), we have T Sh (ℎ★) ⊆

T Sh-nbr
𝐴

(ℎ★). Because T Sh (ℎ★) ≠ ∅, we have T Sh-nbr
𝐴

(ℎ★) ≠ ∅. By

Lemma 4.6, there is thus a single child ℎ′ of ℎ★ such that every pair

15One can use Lemma 4.6 to show that ℎ★ is unique and 𝐻 ∗ forms a path from the
root to a leaf. However, this is not needed for our argument to go through.
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in T Sh-nbr
𝐴

(ℎ★) takes the action leading to ℎ′. As Bob’s type set is

unchanged at ℎ′, we thus get

T Sh (ℎ′) = T Sh (ℎ★) ⊆ T Sh-nbr
𝐴 (ℎ★) ⊆ T𝐴 (ℎ

′),

and ℎ′ ∈ 𝐻★. This contradictions the choice of ℎ★.

This means that ℎ★ must be a leaf node. But then we have ∅ ≠

T Sh (ℎ★) ⊆ T𝐴 (ℎ
★), and thus T Sh-nbr

𝐴
(ℎ∗) ≠ ∅. This contradicts

Observation 4.7.

Thus, for any mechanism𝑀 which DSIC implements 𝑓 without

transfers, 𝐻𝑀 ≥ (1/10)𝐾 = Ω̃(2𝑚).

□

We remark that this theorem is tight up to constants, as the

direct revelation mechanism asking Bob to reveal his entire type

has communication cost O(𝐾).

4.5 Extension to the Case with Transfers

We have shown that social choice function 𝑓 , which is incentive

compatible without transfers, cannot be efficiently DSIC imple-

mented without transfers. However, this does not yet rule out the

existence of certain transfer functions which can efficiently DSIC

implement 𝑓 16.

Modified construction. We now describe how to modify our con-

struction to prove our separation even in the regime with transfers.

For each 𝑖 ∈ [2] and each pair of subsets of items of the form

{𝑇,𝑇 } ⊆ 𝑀𝑖 where |𝑇 | =𝑚/2, we add a type of Alice which values

every set at 0. The outcome when Alice has such a type on 𝑀𝑖 is

identical to if Alice had positive utility for 𝑇 and 𝑇 originally. That

is, Bob receives whichever set among {𝑇,𝑇 } he values at 5, and

Alice receives the complement.

More formally, the set of outcomes and Bob’s types (and Bob’s

utility for each outcome) remains unchanged, but Alice’s type set

changes. For 𝑖 ∈ [2], we let Q𝑖 denote the collection of all subsets

of𝑀𝑖 of size𝑚/2, and let R𝑖 denote the collection of all unordered

pairs of subsets of 𝑀𝑖 of the form {𝑇,𝑇 } with |𝑇 | = 𝑚/2. Alice’s

new set of types are then T ′
𝐴

= (Q1 ∪ R1) × (Q2 ∪ R2). We use R𝑖
to represent the cases where Alice gets 0 value from sets of items

in 𝑀𝑖 . Specifically, Alice’s utility function 𝑢 ′
𝐴

: T ′
𝐴

× 𝑌 → R is

now defined by 𝑢 ′
𝐴
((𝑆1, 𝑆2), (𝑋1, 𝑋2)) = 𝑢

′
𝐴,1

(𝑆1, 𝑋1) +𝑢
′
𝐴,2

(𝑆2, 𝑋2),

where, for 𝑖 ∈ [2], we have:

𝑢 ′𝐴,𝑖 (𝑆𝑖 , 𝑋𝑖 ) =




4, if 𝑆𝑖 ∈ Q𝑖 and 𝑆𝑖 = 𝑋𝑖

1, if 𝑆𝑖 ∈ Q𝑖 and 𝑆𝑖 = 𝑋𝑖

0, otherwise.

In particular, 𝑢 ′
𝐴,𝑖

(𝑆𝑖 , 𝑋𝑖 ) = 0 whenever 𝑆𝑖 ∈ R𝑖 .

We define the social choice function 𝑓 ′ as follows: Let 𝑓 ′
(
(𝑆1, 𝑆2),

(𝑣𝐵,1, 𝑣𝐵,2)
)
= (𝑋1, 𝑋2), where for 𝑖 ∈ [2], if 𝑆𝑖 ∈ R𝑖 , then 𝑋𝑖 ∈ 𝑆𝑖

is such that 𝑣𝐵,𝑖 (𝑋𝑖 ) = 5, and if 𝑆𝑖 ∈ Q𝑖 , then 𝑋𝑖 = 𝑆𝑖 if 𝑣𝐵,𝑖 (𝑆𝑖 ) = 5

16Note that in principle it is possible for certain transfer functions to make a mech-
anism DSIC, but for others to render a mechanism EPIC but not DSIC. For exam-
ple, suppose Alice has two types 𝐿, 𝑅 and Bob has two types 𝑎,𝑏, and we have
𝑓 (𝐿, 𝑎) = 1, 𝑓 (𝐿,𝑏) = 2, 𝑓 (𝑅, 𝑎) = 3, 𝑓 (𝑅,𝑏) = 4. Let Alice with type 𝐿 value
1, 2, 3, 4 at 10, 7, 8, 1 respectively, and Alice with type 𝑅 value 1, 2, 3, 4 at 0, 0, 10, 10
respectively. Bob’s valuations are irrelevant. Consider the perfect information mech-
anism sequentially asking Alice for her type, then Bob for his. If no transfers are
included (that is, all transfers are 0) then this mechanism is EPIC but not DSIC. If the
transfers to Alice when the outcome is 1, 2, 3, 4 are 0, 2, 0, 0 respectively (that is, we
pay Alice 2 when outcome 2 is selected), then this mechanism is DSIC.

and 𝑋𝑖 = 𝑆𝑖 if 𝑣𝐵,𝑖 (𝑆𝑖 ) = 5. Observe that 𝑓 ′ is still welfare maxi-

mizing (although we use a very specific tie-breaking rule for those

Alice types with 𝑆𝑖 ∈ R𝑖 ).

Intuitively, the addition of Alice types which are irrelevant to

all outcomes allows us to say that the mechanism cannot award

transfer to Alice in a nontrivial way. This allows us to reduce to

the case without transfers. We make this formal below.

Theorem 4.10. There exists an EPIC implementation of 𝑓 ′ with

communication cost O(𝑚). However, any DSIC implementation of 𝑓 ′

with transfers has communication cost Ω̃(2𝑚). That is,

𝐶𝐶𝐸𝑃𝐼𝐶 (𝑓 ′) = O(𝑚) 𝐶𝐶𝐷𝑆𝐼𝐶 (𝑓 ′) = Ω̃(2𝑚).

Proof. Consider the mechanism which asks Alice to reveal her

entire type, tells that type to Bob, and asks Bob to choose an out-

come. All transfers are 0. This is EPIC, for the exact same reason

that Mpar in Section 4.2 is EPIC. Moreover, the communication

cost is O(𝑚), as desired.

Now, consider a mechanism M0 which DSIC implements 𝑓 ′

with transfers.

In principle, this mechanism may provide nonzero transfers to

Bob (specifically, if Alice acts at the root node, this action may

change the transfer to Bob arbitrarily). However, observe that if we

replace every transfer to Bob with 0, the result is still DSIC. This

is because incentives have changed only for Bob, but Bob can now

guarantee himself utility 10 when he follows 𝑆𝐵 (𝑡𝐵) (and this is the

highest utility he can achieve). Let M1 denote the mechanism that

sets every transfer to Bob inM0 to 0.

Now that Bob has constant utility in every outcome selected by

M1, let M2 denote the result of applying Lemma B.1 (from the

full version of this paper) to M1 to get a perfect information DSIC

mechanism. This leaves the transfers unchanged, and effects the

communication cost by only a constant factor.

We describe and partition Alice’s types T ′
𝐴
in a similar way to

how we partitioned them in the proof of Theorem 4.2. Let 𝐾 :=( 𝑚
𝑚/2

) /
2 and, for 𝑖 ∈ [2], recall that R𝑖 denotes a partition of subsets

of𝑀𝑖 of size𝑚/2 into pairs {𝑇,𝑇 }. Index the pairs in this partition

by 𝑘 ∈ [𝐾]. Then the type of Alice can be described by tuple

(𝑘1, 𝑘2, 𝑣1, 𝑣2) where 𝑘1, 𝑘2 ∈ [𝐾] and 𝑣1, 𝑣2 ∈ {0, 1, 2}. Specifically,

for 𝑖 ∈ [2], the index 𝑘𝑖 specifies which set in R𝑖 Alice’s type

corresponds to, and 𝑣𝑖 ∈ {0, 1, 2} specifies whether Alice’s most

preferred set is 𝑇 (when 𝑣𝑖 = 0), 𝑇 (when 𝑣𝑖 = 1), or neither (i.e. if

𝑣𝑖 = 2, then Alice receives 0 utility from all subsets of𝑀𝑖 ).

Observe that for every type of Bob, 𝑓 ′ is independent of the

values 𝑣1, 𝑣2, and depends only on the indices (𝑘1, 𝑘2). That is, 𝑓
′ is

constant on every element of the partition of Alice’s types given by

{{(𝑘1, 𝑘2, 𝑣1, 𝑣2)}𝑣1,𝑣2∈{0,1,2}}(𝑘1,𝑘2) ∈[𝐾 ]×[𝐾 ] .

We can thus apply Lemma B.3 (in the full version) toM2 to get a

mechanismM3, which is still DSIC and has the same communica-

tion cost asM2, and additionally never distinguishes between types

of the form (𝑘1, 𝑘2, ·, ·). Formally, inM3, if we have (𝑘1, 𝑘2, 𝑣1, 𝑣2) ∈

T𝐴 (ℎ) for some 𝑣1, 𝑣2, thenwe have (𝑘1, 𝑘2, 𝑣1, 𝑣2) ∈ T𝐴 (ℎ) for every

𝑣1, 𝑣2.

In principle, M3 can provides non-constant transfers to Alice.

Specifically, Bob can act at the root node in a way which changes

the transfer to Alice arbitrarily. However, it turns out that this
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is all that is possible. Namely, there cannot be any Alice node ℎ

with two leaf nodes, ℓ1, ℓ2 which are descendants of ℎ, such that

Alice receives different transfers in ℓ1 and ℓ2, If there were, Alice

would have a strategic manipulation when her type is indifferent on

both sets of items, i.e. when 𝑣1 = 𝑣2 = 2. Specifically, suppose the

transfer at ℓ1 is higher than the transfer at ℓ2. Because the game is

perfect information, there is some strategy of Bob such that, when

Alice follows actions directed towards ℓ1, Bob takes actions directed

towards ℓ1, and when Alice takes actions directed toward ℓ2, Bob

takes actions directed towards ℓ2. Then, whichever Alice type takes

ℓ2 has a strategic manipulation against this strategy of Bob when

her type has 𝑣1 = 𝑣2 = 2.

Now, consider replacing every transfer to Alice in M3 with 0 to

get a mechanismM4. By the reasoning in the preceding paragraph,

the strategic situation for Alice has not changed at any node. More

specifically, for each Alice node ℎ, the transfers in M3 were con-

stant at every leaf below ℎ. This is still true inM4. Thus, if there

were no strategic manipulations inM3, there can be no strategic

manipulations inM4.

Thus, M4 constitutes an implementation of 𝑓 ′ in which the

transfers to both agents are always 0. By simply ignoring the values

of 𝑣1, 𝑣2, this constitutes an implementation of 𝑓 from Section 4.2.

By Theorem 4.2, this means that the communication cost of M4

(and thusM0) is Ω̃(2𝑚).

□

A FORMAL DEFINITIONS AND
PRELIMINARY ANALYSIS

Environments and Implementations. An environment for a set of

𝑛 players 𝑖 = 1, . . . , 𝑛 is a tuple 𝐸 = (𝑌,T1, . . . ,T𝑛, 𝑢1, . . . , 𝑢𝑛). Here,

𝑌 is the set of outcomes and each T𝑖 is the set of types of player 𝑖 .

Each 𝑢𝑖 : T𝑖 × 𝑌 → R is the utility function of player 𝑖 . We say that

a type 𝑡𝑖 ∈ T𝑖 has utility 𝑢𝑖 (𝑡𝑖 , 𝑎) ∈ R for an outcome 𝑎 ∈ 𝑌 . A social

choice function 𝑓 over 𝐸 is a mapping T1 × . . .×T𝑛 → 𝑌 . We restrict

attention to deterministic social choice functions.

We say that a social choice function 𝑓 : T1 × . . . × T𝑛 → 𝑌 is

incentive compatible (or implementable) (without transfers) if for

any 𝑖 , 𝑡1 ∈ T1, . . . , 𝑡𝑛 ∈ T𝑛 , and 𝑡
′
𝑖 ∈ T𝑖 , we have

𝑢𝑖 (𝑡𝑖 , 𝑓 (𝑡𝑖 , 𝑡−𝑖 )) ≥ 𝑢𝑖 (𝑡𝑖 , 𝑓 (𝑡
′
𝑖 , 𝑡−𝑖 )) .

That is, each agent (weakly) maximizes their utility by reporting

their true type, regardless of the types of other agents.

Our paper works with the paradigm of monetary transfers and

quasilinear utilities. Unlike many prior papers, we make the distinc-

tion between environments with transfers and without transfers

explicit. For any environment 𝐸 = (𝑌,T1, . . . ,T𝑛, 𝑢1, . . . , 𝑢𝑛), the

corresponding quasilinear environment with transfers is 𝐸 ′ = (𝑌 ×

R
𝑛,T1, . . . ,T𝑛, 𝑢

′
1, . . . , 𝑢

′
𝑛), where 𝑢

′
𝑖 (𝑡𝑖 , (𝑦, 𝑝1, . . . , 𝑝𝑛)) = 𝑢𝑖 (𝑡𝑖 , 𝑦) +

𝑝𝑖 . That is, the quasilinear environment adds transfers 𝑝1, . . . , 𝑝𝑛 to

each agent, and the agents quasilinear utility is the sum of its utility

for the outcome and the transfer. In this context, we call𝑢𝑖 (𝑡𝑖 , 𝑎) the

value agent 𝑖 gets (in order to distinguish it from agent 𝑖’s utility of

𝑢𝑖 (𝑡𝑖 , 𝑎) + 𝑝𝑖 ). We say that a social choice function 𝑓 ′ over 𝐸 ′ com-

putes a social choice function 𝑓 over 𝐸 if 𝑓 ′ satisfies 𝑓 ′(𝑡1, . . . , 𝑡𝑛) =

(𝑓 (𝑡1, . . . , 𝑡𝑛), 𝑝1, . . . , 𝑝𝑛) for each (𝑡1, . . . , 𝑡𝑛) ∈ T1, . . . ,T𝑛 . (That is,

the function must agree on 𝑌 , but can be arbitrary on the transfers.)

We treat transfers primarily as a tool for encouraging truthful

behavior in mechanisms17. Thus, a social choice function 𝑓 : T1 ×

. . . × T𝑛 → 𝑌 over an environment 𝐸 is incentive compatible (or

implementable) (with transfers) if there exists a function 𝑓 ′ : T1 ×

. . .×T𝑛 → 𝑌 ×R𝑛 which computes 𝑓 and is incentive compatible in

the quasilinear environment 𝐸 ′. This is equivalent to the existence

of 𝑛 transfer functions18 𝑝1, . . . , 𝑝𝑛 : T1 × . . . × T𝑛 → R such that

𝑢𝑖 (𝑡𝑖 , 𝑓 (𝑡𝑖 , 𝑡−𝑖 )) + 𝑝𝑖 (𝑡𝑖 , 𝑡−𝑖 ) ≥ 𝑢𝑖 (𝑡𝑖 , 𝑓 (𝑡
′
𝑖 , 𝑡−𝑖 )) + 𝑝𝑖 (𝑡

′
𝑖 , 𝑡−𝑖 ) .

In this case, we say the transfer functions (𝑝𝑖 )𝑖=1,...,𝑛 incentivize

social choice function 𝑓 .

A mechanism M = (𝐺, 𝑆1, . . . , 𝑆𝑛) over an environment 𝐸 =

(𝑌,T1, . . . ,T𝑛, 𝑢1, . . . , 𝑢𝑛) consists of

• An extensive form game 𝐺 for 𝑛 players with perfect recall

and consequences in 𝑌 (defined below).

• A type-strategy 𝑆𝑖 for each player 𝑖 , which maps types T𝑖
to (behavioural) strategies 𝑠𝑖 of player 𝑖 in game𝐺 (defined

below).

Mechanism M over 𝐸 computes (without transfers) a social choice

function 𝑓 over 𝐸 if we have 𝐺 (𝑆1 (𝑡1), . . . , 𝑆𝑛 (𝑡𝑛)) = 𝑓 (𝑡1, . . . , 𝑡𝑛)

for each profile of types 𝑡1, . . . , 𝑡𝑛 ∈ T1 × . . . × T𝑛 . A mechanism

M over 𝐸 ′ computes (with transfers) a social choice 𝑓 over 𝐸 ifM

computes 𝑓 ′, for some 𝑓 ′ computing 𝑓 .

We now present our incentive compatibility notions for mecha-

nisms, bothwith andwithout transfers (recall that, if themechanism

has transfers, then𝑢𝑖 (𝑡𝑖 , (𝑦, 𝑝1, . . . , 𝑝𝑛)) denotes the quasilinear util-

ity 𝑢𝑖 (𝑡𝑖 , 𝑦) + 𝑝𝑖 ). An implementationM is ex-post Nash incentive

compatible (EPIC) if, for any 𝑖 , any types 𝑡1 ∈ T1, . . . , 𝑡𝑛 ∈ T𝑛 , and

any behavioral strategy 𝑠 ′𝑖 of player 𝑖 , we have (letting 𝑆−𝑖 (𝑡−𝑖 ) =

(𝑆 𝑗 (𝑡 𝑗 ))𝑗≠𝑖 ):

𝑢𝑖 (𝑡𝑖 ,𝐺 (𝑆𝑖 (𝑡𝑖 ), 𝑆−𝑖 (𝑡−𝑖 ))) ≥ 𝑢𝑖 (𝑡𝑖 ,𝐺 (𝑠 ′𝑖 , 𝑆−𝑖 (𝑡−𝑖 ))).

An implementation is dominant strategy incentive compatible (DSIC)

if, for any 𝑖 , type 𝑡𝑖 of player 𝑖 , behavioral strategies 𝑠
′
𝑖 and 𝑠−𝑖 of

all players,

𝑢𝑖 (𝑡𝑖 ,𝐺 (𝑆𝑖 (𝑡𝑖 ), 𝑠−𝑖 )) ≥ 𝑢𝑖 (𝑡𝑖 ,𝐺 (𝑠 ′𝑖 , 𝑠−𝑖 )).

Thus, ex-post Nash implementations are weaker, as they only re-

quire 𝑆𝑖 (𝑡𝑖 ) to be a best response when other agents are playing

strategies consistent with some 𝑆−𝑖 (𝑡−𝑖 ).

A direct revelation mechanism is one in which each agent is asked

to simultaneously reveal their type to the mechanism, and then the

outcome is computed. In such a mechanism, every possible strategy

corresponds to some type, and thus the mechanism is EPIC if and

only if it is DSIC.

Extensive Form Games. A deterministic extensive form game with

perfect recall and consequences in 𝑌 (hereafter called a game) is a

tuple 𝐺 = (𝐻, 𝐸,P, 𝐴,A, (I𝑖 )𝑖∈[𝑛] , 𝑔) such that

• 𝐻 is a set of states (also called nodes), and 𝐸 is a set of

directed edges between the states, such that (𝐻, 𝐸) forms

a finite directed tree (where every edge points away from

17Alternative paradigms include studying łbudget balancedž mechanisms or mecha-
nisms that maximize revenue.
18We do not make any assumptions (such as łno positive transfersž or łindividual ratio-
nalityž) on the transfers the mechanism is allowed to use. This makes our imposibility
results only stronger.
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the root). We denote typical elements of 𝐻 by ℎ19. Define 𝑍

as the set of leafs, and let the root be called ℎ0. Moreover,

define 𝜎𝐸 : 𝐻 → 2𝐸 such that 𝜎𝐸 (ℎ) is the set of edges

leading out of state ℎ (that is, leading to successor nodes),

and 𝜎𝐻 : 𝐻 → 2𝐻 such that 𝜎 (ℎ) is the set of states which

are immediate successors of ℎ in the game tree. We write

edges like (ℎ,ℎ′) ∈ 𝐸, where ℎ is between the root and ℎ′.

• P : 𝐻 → {1, . . . , 𝑛} is the player choice function, which

labels each non-leaf node in 𝐻 \ 𝑍 with the player who

acts at that node. Define 𝐻𝑖 := {𝑠 ∈ 𝑆 |P(𝑠) = 𝑖} as the

set of states where player 𝑖 is called to act. We assume that

no player takes a consecutive turn, that is, for any ℎ and

ℎ′ ∈ 𝜎𝐻 (ℎ), we have P(ℎ) ≠ P(ℎ′)20.

• 𝐴 is the set of actions, and A : 𝐸 → 𝐴 labels each edge with

an action. A must be injective on each set 𝜎𝐸 (ℎ) ⊆ 𝐸 (that

is, two edges below the same node cannot be labeled with

the same action). Define 𝐴 : 𝐻 → 2𝐴 such that 𝐴(ℎ) is the

set of actions available at state ℎ (that is, {A(𝑒) |𝑒 ∈ 𝜎𝐸 (ℎ)}).

• For each player 𝑖 , the set I𝑖 (the information partition) is

a partition of 𝐻𝑖 (the set of states where 𝑖 is called to act)

such that for every set 𝐼𝑖 ∈ I𝑖 , the set of actions available

to 𝑖 are exactly the same at every set in 𝐼𝑖 (that is, 𝐴(𝑠) =

𝐴(𝑠 ′) for each 𝑠, 𝑠 ′ ∈ 𝐼𝑖 ). The elements 𝐼𝑖 ∈ I𝑖 are called the

information sets of player 𝑖 . Abusing notation slightly, we

denote 𝐴 : I𝑖 → 𝐴 such that 𝐴(𝐼𝑖 ) = 𝐴(𝑠) for any 𝑠 ∈ 𝑁 .

When a player acts in 𝐺 , all that player knows is which

information set they are in. The information sets must satisfy

the following (known as the łperfect recallž assumptions21):

ś Any path from the root to a leaf can cross a specific infor-

mation set only once. That is, for any path 𝑝 = (ℎ0, ℎ1, . . . ,

ℎ𝑘 ) from the root to a leaf, we never have ℎ𝑖 , ℎ 𝑗 ∈ 𝐼𝑖 ∈ I𝑖
for 𝑖 ≠ 𝑗 .

ś If two nodes are in the same information set of player

𝑖 , then 𝑖’s experience in reaching those nodes must be

identical. More specifically, for node ℎ ∈ 𝐻𝑖 , we define

𝜓𝑖 (𝑝), the experience of player 𝑖 reaching ℎ as follows: take

the (unique) path 𝑝 = (ℎ0, ℎ1, . . . , ℎ𝑘 = ℎ) from the root

to ℎ, and for each 𝑗 ∈ [𝑘] at which P(ℎ 𝑗 ) = 𝑖 , write

(𝐼
𝑗
𝑖 , 𝑎

𝑗 ) in order, where 𝐼
𝑗
𝑖 ∋ ℎ 𝑗 is the information set

containing ℎ 𝑗 and 𝑎
𝑗 is the (unique) action which player

𝑖 takes at ℎ 𝑗 to move the game to ℎ 𝑗+1. So 𝜓𝑖 (𝑝) is an

ordered, alternating list of information sets and actions

𝑖 takes at those information sets. We must have 𝜓𝑖 (ℎ) =

19This follows from the economics convention of identifying states with łhistoriesž,
that is, the (unique) sequence of actions taken to arive in a certain node. We describe
the game more concretely in terms of nodes of a tree because in some arguments we
need to directly manipulate and change the game tree, which can alter these histories.
20Note that this assumption is without loss of generality. Condensing consecutive
actions by the same player into a single node leaves the game essentially unchanged.
In particular, the communication cost does not increase and if the mechanism was
already DSIC, then it is still DSIC.
21These assumptions just mean that the mechanism is not able to force agents to
forget things they knew in the past of the game. While some of the game theory
literature relaxes this assumption, we do not consider games without perfect recall
here. This is in accordance with our adversarial model: we consider agents who know
the already know the entire game tree in advance (although when they actually act
in the mechanism, they only know what the mechanism tells them, that is, which
information set they are in).

𝜓𝑖 (ℎ
′) for any two histories in the same information set

(ℎ,ℎ′ ∈ 𝐼𝑖 ∈ I𝑖 ).

• 𝑔 : 𝑍 → 𝑌 labels each leaf node with an outcome from 𝑌 .

A (behavioral) strategy 𝑠𝑖 of player 𝑖 is a function I𝑖 → 𝐴, such

that 𝑠𝑖 (𝐼𝑖 ) ∈ 𝐴(𝐼𝑖 ) is an action available to player 𝑖 at information set

𝐼𝑖 ∈ I𝑖 . The result of the mechanism under a behavioural strategy

profile (𝑠1, . . . , 𝑠𝑛) is the outcome in 𝑌 in the leaf node which you

arrive at by iteratively following the action selected by each 𝑠𝑖 .

We write this as𝐺 (𝑠1, . . . , 𝑠𝑛). That is, if (ℎ0, ℎ1, . . . , ℎ𝑘 ) is the path

from the root to a leaf such that each edge (ℎ 𝑗 , ℎ 𝑗+1) is the unique

edge such that A(ℎ 𝑗 , ℎ 𝑗+1) = 𝑠𝑖 (𝐼𝑖 ), for 𝑖 = P(ℎ 𝑗 ) and ℎ 𝑗 ∈ 𝐼𝑖 ∈ I𝑖 ,

then we set 𝐺 (𝑠1, . . . , 𝑠𝑛) = 𝑔(ℎ𝑘 ).

A game is perfect information if every information set is a sin-

gleton. Observe that perfect information games cannot hide in-

formation from players or allow more than one player to move

simultaneously.

For a state ℎ ∈ 𝐻 , define the communication cost of ℎ as

⌈log |𝐴(ℎ) |⌉, i.e. the number of bits needed for the agent acting at ℎ

to communicate their choice of action. Define the communication

cost of game 𝐺 as the maximum sum of the communication costs

of nodes on a path from the root to a leaf node in 𝐺22.

Consider an environment 𝐸 = (𝑌,T1, . . . ,T𝑛, 𝑢1, . . . , 𝑢𝑛) and an

extensive form game 𝐺 with consequences in 𝑌 . As we mentioned

above, a type-strategy 𝑆𝑖 is a mapping from T𝑖 to behavioural strate-

gies of player 𝑖 in game 𝐺 . Equivalently, a type-strategy is any

function 𝑆𝑖 : T𝑖 ×I𝑖 → 𝐴 such that 𝑠𝑖 (𝑡𝑖 , 𝐼𝑖 ) ∈ 𝐴(𝐼𝑖 ) for each 𝐼𝑖 ∈ I𝑖 .

We let 𝑆𝑖 (𝑡𝑖 ) denote the entire behavioural strategy. For clarity,

we capitalize type-strategies. We typically refer to behavioural

strategies simply as łstrategiesž, and specify explicitly when 𝑆𝑖 is a

type-strategy.

Notation. When describing games between two players, Alice

and Bob, we often use the terms łAlice nodež for a node where

Alice acts. We also denote such an ℎ with P(ℎ) = 𝐴. Similarly, Bob

nodes have P(ℎ) = 𝐵.

In auction-like domains, we typically identify the type with a

valuation function over the bundles of items received by a player.

For example, when the allowable types are some sets of functions

from subsets of 𝑀 , and the allowable outcomes are partitions of

the items to the 𝑛 players, we formally have 𝑢𝑖 (𝑣𝑖 , (𝐴1, . . . , 𝐴𝑛)) =

𝑣𝑖 (𝐴𝑖 ). Thus, we often write 𝑣𝑖 (𝐴𝑖 ) in place of the entire outcome

(𝐴1, . . . , 𝐴𝑛).

For a player 𝑖 with type 𝑡 , we say that 𝑆𝑖 (𝑡) is the łtruth-tellingž

strategy of player 𝑖 , and the action 𝑆𝑖 (𝑡) (ℎ) is the łtruth telling

actionž at node ℎ. A strategy is a best response to strategies (𝑠 𝑗 )𝑗≠𝑖
for player 𝑖 with type 𝑡 if the strategy maximizes player 𝑖’s utility

across all possible strategies of player 𝑖 .

22Some prior works [18] limit mechanisms to at most two actions per node and define
the communication cost as the maximum depth of the tree. This is equivalent to our
definition up to constants, and our definition allows us to assume without loss of
generality that no agent takes consecutive turns in the game.

As is standard in the literature, we do not count the communication which the
mechanism must send to the agents (to tell them which information set they are in). In
perfect information games, one can argue that this is because the mechanism is simply
run over a public communication channel. However, this does not apply in games of
partial information. We note that counting the communication the mechanism would
need to tell players their information set can increase the communication used by at
most a quadratic factor. This is because at worst the mechanism needs to repeat to
agent 𝑖 the messages of all agents which acted before 𝑖 .
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A.1 Describing the Game Tree via Sets of Types

We now give some ways to regularize and describe EPIC mecha-

nisms in a natural way in terms of the types of agents. Most of this

language has been considered before (see e.g. [6, 18]).

Let (𝐺, 𝑆1, . . . , 𝑆𝑛) be a deterministic mechanism EPIC imple-

menting 𝑓 over environment 𝐸 = (𝑌,T1, . . . ,T𝑛, 𝑢1, . . . , 𝑢𝑛). For

each node ℎ ∈ 𝐻 , let T (ℎ) ⊆ T1 × . . . × T𝑛 denote the set of types

(𝑡1, . . . , 𝑡𝑛) such that, when agents play strategies (𝑆1 (𝑡1), . . . , 𝑆𝑛 (𝑡𝑛)),

the computation of 𝐺 (𝑆1 (𝑡1), . . . , 𝑆𝑛 (𝑡𝑛)) enters state ℎ (that is,

ℎ is on the path from the root to a leaf taken when computing

𝐺 (𝑆1 (𝑡1), . . . , 𝑆𝑛 (𝑡𝑛))).

Lemma A.1. Each set T (ℎ) is a rectangle. That is, T (ℎ) = T1 (ℎ) ×

. . .×T𝑛 (ℎ) for some sets T1 (ℎ), . . . ,T𝑛 (ℎ). Moreover, if P(ℎ) = 𝑖 then

{T𝑖 (ℎ
′)}ℎ′∈𝜎𝐻 (ℎ) is a partition of T𝑖 (ℎ). If P(ℎ) ≠ 𝑖 then T𝑖 (ℎ

′) =

T𝑖 (ℎ) for all ℎ
′ ∈ 𝜎𝐻 (ℎ).

Proof. One can apply a standard rectangle argument to T (ℎ).

Specifically, suppose that 𝑡 = (𝑡1, . . . , 𝑡𝑛), (𝑡
′
1, . . . , 𝑡

′
𝑛) ∈ T (ℎ), and

consider some player 𝑖 and type profile (𝑡 ′𝑖 , 𝑡−𝑖 ). Every player other

than 𝑖 takes the same action under 𝑡 and (𝑡 ′𝑖 , 𝑡−𝑖 ). Because the

actions taken by each player along the path from the root to ℎ are

unique, 𝑆𝑖 (𝑡
′
𝑖 ) must play the same actions along this path as does

𝑆𝑖 (𝑡𝑖 ). Thus, 𝑖 will take the same action under 𝑡𝑖 and 𝑡
′
𝑖 at every

node along the path where 𝑖 is called to act. So (𝑡 ′𝑖 , 𝑡−𝑖 ) ∈ T (ℎ) as

well. Applying this for each player 𝑖 = 1, . . . , 𝑛 proves that T (ℎ) is

a rectangle. This makes T1 (ℎ), . . . ,T𝑛 (ℎ) well defined for each node

ℎ.

If a player does not act at node ℎ, then each successor of node

ℎ keeps the type set of that player the same, by definition. On

the other hand, when player 𝑖 acts at ℎ, every type in T𝑖 (ℎ) takes

exactly one action at ℎ. This proves T𝑖 (ℎ
′) partitions T𝑖 (ℎ) as we

let ℎ′ ∈ 𝜎𝐻 (ℎ) vary. □

Without loss of generality, we may assume that every node ℎ

of the game has T (ℎ) ≠ ∅23. Under this assumption, to specify an

EPIC mechanism, it suffices to specify a tree equipped with type

sets T𝑖 (ℎ) satisfying the conclusions of lemma A.1. In appendix B in

the full version, we often describe modifying extensive form games

in these terms.
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