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Drug delivery mitigates toxic side effects and poor pharmacokinet-
ics of life-saving therapeutics and enhances treatment efficacy. How-
ever, direct cytoplasmic delivery of drugs and vaccines into cells has
remained out of reach. We find that liposomes studded with 0.8 nm
carbon nanotube porins (CNTPs) function as efficient vehicles for
direct cytoplasmic drug delivery by facilitating fusion of lipid mem-
branes and complete mixing of the membrane material and vesicle
interior content. Fusion kinetics data and coarse-grained MD simu-
lations reveal an unusual mechanism where CNTP dimers tether the
vesicles, pull the membranes into proximity, and then fuse their outer
and inner leaflets. Liposomes containing CNTPs in their membranes
and loaded with an anticancer drug, doxorubicin, were effective in
delivering the drug to cancer cells, killing up to 90% of them. Our
results open an avenue for designing efficient drug delivery carriers
compatible with a wide range of therapeutics.

Carbon nanotube porins | Membrane fusion | Drug delivery | Liposomes

M odern medicine relies on an extensive arsenal of drugs
to combat deadly diseases such as pneumonia, tubercu-
losis, HIV-AIDS, and malaria (1). Chemotherapy agents have
prolonged lives for millions of cancer patients, and in some
cases, cured the disease or turned it into a chronic condition
(2). Yet, the safe and efficient delivery of drugs to target
tissues remains a major challenge. Drugs are often poorly
soluble, strongly toxic to other tissues or face rapid degrada-
tion in the different chemical environments in an organism
(3). They can accumulate in non-target tissues, bind to other
cellular components, or may not internalize efficiently into the
target cells (4). Liposomal delivery systems aim to mitigate
these problems by encapsulating drugs in external carriers
that circulate through the bloodstream (5-7). However, these
strategies involve a trade-off between enhancing liposomal
stability on the way to the target and easing payload release
into the cytosol of the target cell (5). Most current liposomal
delivery strategies rely on the endosomal pathway for cell entry,
which is inherently inefficient and often results in degradation
of the cargo (8). Commonly used cationic lipids, which en-
hance liposomal fusion with the target membrane and thus
enhance endosomal escape, proved to be toxic (9, 10). Another
method attempting direct delivery via the plasma membrane
required the placement of SNARE-like peptides on the target
membrane, which severely limits clinical applications (11).
An alternative approach would facilitate direct payload
delivery from liposomes through the plasma membrane into
the cell interior by facilitating direct fusion of the carrier
membrane with the cell. Our previous molecular dynamics
(MD) simulations (12) indicated that carbon nanotube porins

www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

(CNTPs)—short pieces of carbon nanotubes inserted into lipid
membranes (13)—could potentially facilitate fusion of lipid
membranes. That theoretical study raised the intriguing possi-
bility that ten nanometer-long and 1.5 nanometer-wide CNTPs,
which resemble hydrophobic stalks of influenza hemagglutinin
and HIV-1 Env (14-17), can insert into opposite membranes,
promote the formation of a short-lived hourglass-shaped fusion
intermediate where the inner leaflets are still intact, and then
drive a transition to full fusion (12). However, the simulation
study left open many questions, whether CNTP mediated
fusion was even practically possible, and whether the concept
was applicable for drug delivery. Moreover, how additional
parameters such as thickness or aggregation of CNTPs might
affect the fusion kinetics in a real-world setting remains largely
unclear. In this study we explore the hypothesis that small di-
ameter CNTPs can serve as generic minimal synthetic analogs
of viral fusion machines. We show that 0.8 nm diameter
CNTPs indeed facilitate efficient membrane fusion. Moreover,
our in vitro experiments demonstrate that CNTP-studded lipo-
somes loaded with an anticancer drug enable efficient payload
delivery into target cells. Our studies also reveal a surpris-
ing mechanism of fusion, where CNTP dimers show strong
fusogenic activity.
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pharmacology and medicine. We developed and demonstrated
a simple nanomaterial platform—a dimer of small diameter
carbon nanotube porins (CNTPs)—which functions as a po-
tent membrane fusogen. Molecular simulations revealed a
distinct fusion mechanism. CNTP-studded vesicles loaded with
a chemotherapeutic agent, doxorubicin, delivered the drug to
cancer cells, killing a majority of them. Our work opens up new
opportunities for understanding membrane fusion mechanisms,
designing synthetic fusogens, and developing simple and effi-
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Results and Discussion

CNTPs-mediated vesicle fusion. We first tested our hypothesis

that CNTPs can promote vesicle fusion by adopting a widely
used de-quenching lipid mixing assay (18). We mixed large
unilamellar 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)
vesicles containing 0.8 nm CNTPs in the lipid bilayer (CNTP-
LUVs) with another population of pure DOPC vesicles con-
taining lipids labeled with an NBD dye (NBD-LUVs) at a
concentration just above the self-quenching threshold (19). As
the lipids from different vesicles mixed during fusion, the NBD
dye de-quenched (Fig. 1A,B), allowing us to quantify this pro-
cess by monitoring the change in the dye fluorescence. Indeed,
after mixing of these two vesicle populations the fluorescence
signal rose on the timescale of tens of minutes before eventu-
ally plateauing. By contrast, fluorescence kinetics recorded in
control experiments where CNTP-LUVs were replaced by pure
DOPC vesicles (LUVs) did not show de-quenching (Fig. 1B,
inset), indicating that the presence of CNTPs in the vesicle
shell was critical to inducing fusion. As the CNTP concentra-
tion in vesicles increased, the de-quenching signal reached the
plateau faster (Fig. 1B), again indicating that CNTPs were
responsible for the fusion events. Surprisingly, the fusion rate,
calculated as 2/7, with 7 the fusion half-time (see Methods for
details), did not scale linearly with the CNTP concentration.
Instead, it followed an inverse quadratic dependence (Fig. 1D),
suggesting that the key fusion step was mediated by a CNTP
dimer, formed by CNTPs associating in the membrane. Dock-
ing leveled experiments, designed to separate vesicle docking
kinetics from the fusion kinetics (20), indicate that docking
kinetics may also contribute to the overall kinetics at higher
CNTP concentrations (see SI Appendiz, Fig. S1).

To verify that our system proceeded to full fusion and
complete mixing of the vesicular compartments, we set up a
different dye de-quenching assay, in which the target DOPC
vesicles were filled with a solution of sulforhodamin B (SRB)
dye in a concentration above its self-quenching threshold. After
these vesicles were mixed with the CNTP-LUVs, we observed
gradual de-quenching of the SRB dye fluorescence (Fig. 1E,
see also SI Appendiz, Fig. S2), indicating full vesicle con-
tent mixing. Content mixing kinetics proceeded in a CNTP
concentration-dependent manner and followed the same in-
verse quadratic dependence observed in the membrane mixing
assay (Fig. 1E, inset). We also confirmed vesicle fusion, full
content mixing, and the absence of content leakage in similar
CNTP-mediated experiments with smaller, 100 nm diameter
DOPC vesicles with 30% cholesterol (SI Appendiz, Fig. S3).

As a function of temperature, the fusion rate followed an
Arrhenius dependence (Fig. 1C, inset) with an activation
energy, E,, of ca. 25 kJ/mol or 10 kT (Fig. 1C). This
value is significantly smaller than the activation energy of 30

ksT that was recently reported for the spontaneous fusion
of small vesicles (21), indicating that CNTPs indeed lower
the energy barrier for membrane fusion. Interestingly, the
activation energy showed a weak dependence on pH (Fig.
1C) with the barrier dropping by an additional 2 kgT at pH
values between 4 and 5, and recovering back to the original
value of 10 kgT at pH values below 4. DOPC remains in a
zwitterionic charge state over the whole range of pH used in
our measurements. Therefore, we believe that this behavior
must originate in the charge state of the CNTP ends, which
start to become protonated (22) at pH 4-5. We, therefore,
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Fig. 1. CNTPs facilitate membrane fusion. (A) Schematics of the vesicle
fusion assay. CNTP-LUVs fuse with the vesicles containing DOPC lipid
labeled with NBD dye in self-quenching concentration, de-quench the
dye, and increase its fluorescence signal. (B) Kinetics of the vesicle
fusion recorded as NBD-LUVs were mixed with CNTP-LUVs with different
average numbers of CNTPs per vesicle (as indicated on the graph). Solid
lines represent best fits to the Hill equation. (C) Activation energy, E, for
vesicle fusion plotted as a function of pH. The inset shows a representative
Arrhenius plot used to obtain the F, values. (n=3). (D) Plot of the fusion
half time as a function of the average number of CNTPs per vesicle (n=3
for 10, 20, and 30 CNTP/LUV and n=2 for 5 CNTP/LUV). The blue dashed
line represents a fit to the second order kinetics. The dash-dotted black
line, which corresponds to the first order kinetics, is provided as a guide
to the eye. (E) Content-mixing assay showing fluorescence signal kinetics
recorded as CNTP-LUVs were exposed to LUVs encapsulating SRB dye
(each curve is an average of two runs, see S/ Appendix, Fig. S2 for raw
traces). An inset shows the plot of the fusion half time as a function of the
average number of CNTPs per vesicle.

speculate that COOH/COO™ interactions stabilize the CNTP
dimers that facilitate fusion. This finding indicates that end
group functionalization may be exploited to further tune the
selectivity and efficiency of CNTP-mediated fusion.

Molecular dynamics simulations of vesicle fusion. We con-
firmed the enhanced fusogenic properties of CNTP dimers
and elucidated the underlying fusion mechanism using coarse-
grained MD simulations. The simulation systems contained
two 15 nm DOPC vesicles with a bridging CNTP monomer,
dimer, or trimer of 0.8 nm diameter inserted in their mem-
branes (Fig. 2A, SI Appendiz, Fig. S4, movie S1, SI Appendiz,
Table 1). To control the driving force and kinetic rate of vesi-
cle fusion, we varied the asymmetry in the number of lipids
in the outer and inner leaflets of the two vesicles, defined as
AN = Niipids—outer — MNiipids—inner- By increasing the number
asymmetry, we lowered the bilayer strain and fusion propensity
of vesicles, allowing us to differentiate more clearly between
the fusogenic characteristics of CNTP monomers, dimers, and
trimers.

Surprisingly, CNTP dimers rapidly fused vesicles without
any significant changes in fusion time over the full range
of tested asymmetries. By contrast, CNTP monomers and
trimers fused only vesicles with low number asymmetry, i.e.,
only in the presence of significant bilayer strain (Fig. 2B). At
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high number asymmetry, monomer and trimer fusion, but not
dimer fusion, slowed down dramatically, with only a few fusion
events observed during the simulation time.
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Fig. 2. Coarse-grained MD simulations of CNTP-mediated vesicle fu-
sion. (A) Snapshots of simulated systems of a CNTP monomer (magenta),
dimer (gray) and trimer (cyan) (AN = 632). Lipid phosphate groups are
colored uniquely for each leaflet and vesicle (outer leaflets: blue/green for
top/bottom vesicle; inner leaflets: red/yellow for top/bottom vesicle). Inner
leaflet phosphate groups are drawn larger for clarity. Times of snapshots
are indicated (see also movie S1). (B) Cumulative number of CNTP-
mediated vesicle fusion events as a function of time at different number
asymmetries AN. Monomer (magenta), dimer (black), and trimer (cyan)
simulations are compared. A total of 30 simulations were performed for
each starting configuration (indicated as black dashed line). Simulations
were 1.7 us long. (C) Minimal distance of C5A/B tail beads of the opposing
inner leaflet lipids at AN = 632. Exemplary trace shown for monomer,
dimer, and trimer respectively. All traces for all systems are shown in S/
Appendix, Fig. S6. The dashed line at 8 A indicates contact of the oppos-
ing leaflets. (D) Zoom-in on CNTP dimer mediated fusion. Time points of
snapshots are indicated. Lipids within 8 A of the CNTP are shown. Color
scheme as in (A). Inner leaflet lipids are drawn thicker for clarity. Outer
leaflet phosphate groups are omitted for clarity (see also Movie S2).

We gained a more detailed insight into the fusion mechanism
by monitoring the minimal distance between any two lipid
tail groups in the inner leaflets of the two vesicles. In all
simulations, CNTP dimers achieved initial inner-leaflet contact,
which is a prerequisite for fusion, more rapidly than CNTP
monomers (Fig. 2C, SI Appendiz, Fig. S6). Consistently, in
all relaxed pre-fusion systems, CNTP dimers distorted inner
leaflets to a higher degree than monomers and trimers, leading
to rapid inner leaflet contact and subsequent fusion (Fig. 2C,
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SI Appendiz, Fig. S6, movie S1).

The asymmetric shape of the CNTP dimer explains its
distinct fusogenic properties. The energetic drive to cover the
hydrophobic surface of the wide faces by lipid tails (Fig. 2D,
Movie S2) pulls the two vesicles together and causes significant
distortion of the distal leaflets. The narrow edges of the CNTP
dimer facilitate tail-tail contacts between the opposing inner
leaflets. By contrast, single thin CNTPs are not coated as
densely with lipid tails and consequently do not distort the
distal leaflets significantly (Fig. 2A,C, SI Appendiz, Fig. S6),
impeding fusion. Trimers are too thick to establish sufficient
tail-tail interactions (Fig. 2A,C, SI Appendiz, Fig. S6), and
thus fail to induce fusion on the MD simulations timescale. We
emphasize that this mechanism, where the distinct geometry
of the hydrophobic CNTP dimer surface facilitates lipid migra-
tion and subsequent fusion, is distinct from the common viral
fusion mechanism, which relies on structural rearrangements
of the fusion peptide stalks to bring the interacting membranes
together (14-17). Our results may also point to the simplest
structure of a membrane fusogen.

Our simulations also probed whether such dimer-based fu-
sion mechanism is unique to the 0.8 nm CNTPs by testing the
performance of CNTP monomers and dimers with larger di-
ameters of 1.2 and 1.5 nm. We found that at larger diameters,
the difference in fusion performance between the dimers and
monomers vanished (SI Appendiz Figs. S7-S11) and monomers
could also catalyze fusion. This is not surprising, as CNTP
monomers with a larger diameter provide sufficient hydropho-
bic surface to pull the lipid tails from the opposite bilayers into
proximity. Conversely, the diameter is still small enough to
allow contact between tails of the inner leaflets. Our previous
simulations of fusion with CNTPs of 1.5 nm diameter already
showed that they could catalyze membrane fusion (12). Even
though CNTP dimers with larger diameters also catalyzed
fusion, they did not further increase the already fast fusion
rates. However, we cannot rule out that the differential dimer
effect might reemerge for the larger diameter vesicles where
the bilayer stress is significantly reduced, such as those typi-
cally used in the experiments. These findings align with our
mechanistic model and show that the key structural features
of a fusogen can be realized in multiple ways. We also note
that only the dimer-based fusion mechanism is relevant for
our experiments, which used a tight diameter distribution of
the CNTPs (0.81 + 0.14 nm) (23).

We observed that not all CNTP fusion simulations pro-
ceeded directly to fusion pore formation. In several replicas
across parameter sets, we noticed the formation of an interme-
diate with a 25 A minimum headgroup distance (SI Appendiz,
Fig. S12). Visual inspection revealed a hemifusion diaphragm,
where the lipids of the inner leaflets form a bilayer-like struc-
ture (SI Appendiz Fig. S12, top), which was in some instances
stable for long times. In this intermediate state that followed
the stalk state, the outer leaflet lipids could equilibrate, while
the vesicle content remained separated. The hemifusion di-
aphragm spontaneously opened in a distinct step, typically
away from the CNTP, forming a fusion pore that completed
the fusion process. The formation of hemifusion diaphragms
was particularly pronounced in systems with low asymmetry
(i-e., higher lipid density), where the diaphragm accommo-
dated excess lipids of the inner leaflet. In systems with larger
diameters, i.e., 1.2 and 1.5 nm, where fusion was observed over
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the full range of asymmetries, high asymmetry systems fused
faster because the formation of hemifusion diaphragms was
disfavored.

Drug delivery with carbon nanotube porins. To demonstrate
drug delivery to cancer cells using CNTP-mediated membrane
fusion (Fig. 3A), we encapsulated a widely-used first line
of defense chemotherapeutic agent, doxorubicin (DOX), in
CNTP-LUVs. Systemic administration of DOX is complicated
by its significant cardiac toxicity, which is often mitigated by
encapsulating high amounts of the drug into PEGylated lipo-
somal carriers (used widely in cancer treatment in commercial
formulation as Doxil or Caelyx) (24). Doxil liposomes have a
very slow background DOX release profile (25) that protects
healthy tissues during circulation and allows the carriers to
accumulate in tumors passively and then enter the tumor cells
via endocytosis (26). Replacing endocytosis with a more direct
fusion-based entry pathway could significantly improve the
delivery efficiency for the liposome-encapsulated drugs.

To evaluate this hypothesis, we tested DOX-CNTP-LUV
performance in a series of cell viability assays on two different
cell lines: NG108-15 (mouse neuroblastoma and rat glioma hy-
brid cells) and MDA MB-231 (human breast cancer cells) (Fig.
3). For these experiments we loaded CNTP-LUVs with a rela-
tively low encapsulated DOX concentration of 10 pg/ml. DOX
molecule size is larger than the CNTP pore size, excluding
the possibility that DOX would leak through the nanotubes.
Control experiments (SI Appendiz, Fig. S13) also confirm
the absence of long-term drug leakage from CNTP-LUVs. To
mimic some of the current liposomal delivery strategies, we
used smaller, 100 nm diameter liposomes with lipid compo-
sition of 70% DOPC and 30% of cholesterol. This vesicle
composition also showed high fusion efficiency with an average
7 of less than 1 hour, similar to what we observed for the pure
DOPC vesicles at a similar size (SI Appendiz, Fig. S3A, S3B),
indicating the cholesterol presence did not interfere with the
fusion mechanism.

After 48 hours exposure to DOX-loaded CNTP-LUVs, cell
viability decreased significantly compared to the PBS control,
with only 9% of NG108 cells and 16% of MDA cells surviving
the treatment (Figs. 3B, 3D(iv), 3E(iv)). The efficiency of
the CNTP-LUVs loaded with 10 pug/ml of DOX (Figs. 3B,
3C, 3D(v), 3E(v)) was mostly comparable to administering
20 pg/ml of free DOX (Figs. 3B,C, D(v), E(v)). This obser-
vation is significant because DOX-CNTP-LUVs used in our
experiments contain a much smaller overall amount of drug
(10 pg/ml) compared to what is used in commercial Doxil
formulation (2 mg/ml) (27). Thus, CNTP-LUV carriers could
potentially exhibit dramatically lower systemic toxicity and
still would maintain the high efficiency of drug release.

By contrast, control experiments (Figs. 3B, 3D(i,ii,iii) and
3E(4,ii,iii)) with cells exposed to CNTP-LUVs and free CNTPs
showed very low cytotoxicity, with typically over 85% of the
cells remaining alive after the same 48 hours of exposure.
These viability numbers were on par with those measured
after exposure to pure PBS buffer (88% and 94% for NG108
and MDA cells, respectively). Interestingly, when pure LUVs
were loaded with 20 pug/ml of DOX, their cytotoxicity was
also on par with control experiments (Figs. 3B, 3D(i), 3E(i)),
showing little to no efficiency without the presence of a viable
delivery mechanism.

Cell proliferation (MTT) assays results (Fig. 3C) tracked
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Fig. 3. Doxorubicin (DOX) delivery with CNTPs. (A) Schematic showing
CNTP-LUV loaded with the DOX payload fusing to a cancer cell and
delivering DOX to the cell interior. (B) Cell survival in live/dead assay after
48-hr exposure of neuroblastoma-glyoma (NG-108) and human breast
cancer (MDA) cell cultures to DOX-CNTP-LUVs, CNTP-LUVs, free CNTPs,
DOX-LUVs, free DOX, and PBS buffer. (N=9). (C) Results of MTT cell
proliferation assay after 48-hr exposure of neuroblastoma-glyoma (NG-
108) and human breast cancer (MDA) cell cultures to DOX-CNTP-LUVs,
CNTP-LUVs, free CNTPs, DOX-LUVs, free DOX, and PBS buffer. (NG-
108 cells: N=9; MDA cells: N=15). (D) Fluorescence microscopy images
of NG108 cell culture with live and dead cells stained with green and
red dye, respectively. Prior to imaging the cells were exposed for 48 hrs
to (i) PBS buffer; (ii) CNTP-LUVs without the drug payload; (iii) CNTP
solution; (iv) LUVs encapsulating DOX; (v) 20 pg/ml of DOX; (vi) CNTP-
LUVs with encapsulated DOX. (E) Fluorescence microscopy images of
MDA cell culture with live and dead cells stained with green and red dye,
respectively. Prior to imaging the cells were exposed for 48 hrs to (i) PBS
buffer; (ii) CNTP-LUVs without the drug payload; (iii) CNTP solution; (iv)
LUVs encapsulating DOX; (v) 20 pg/ml of DOX; (vi) CNTP-LUVs with
encapsulated DOX.

the trends obtained in the cell viability (live/dead) assay
across all samples that we tested. Exposure of both cell lines
to DOX-loaded CNTP-LUVs led to a significant decrease in
the cells’ proliferation ability. Control experiments where we
exposed cells to CNTPs and CNTP-LUVs in the presence of
free DOX in solution did not show a statistically significant
cell viability decrease (SI Appendiz, Figs. S14, S15), indicating
that CNTP-mediated fusion was indeed the main pathway
for the drug entry into the cancer cells, and that the drug
did not enter through defects on the cell membranes created
by free CNTPs or CNTP-LUVs. Additional experiments (S7
Appendiz, Fig. S16) also showed a dose-dependent cell response
to CNTP-DOX-LUYV treatment with higher doses resulting
in progressively lower cell survival probabilities. Additional
corroboration of the proposed delivery mechanism comes from
experiments in which we exposed MDA cells to CNTP-LUVs
loaded with a self-quenched concentration of SRB dye and
observed gradual dequenching of the dye as it entered the cells
(SI Appendiz, Fig. S17).

We also noticed that NG108 cells exposed to free CNTPs
and CNTP-LUVs showed a small decrease in the cell prolif-
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eration percentage relative to the PBS buffer control. Visual
observations of the NG108 cell morphology in the images of
those samples showed that cells in the cultures exposed to
CNTP and CNTP-LUV were still alive and building neural
networks (SI Appendiz, Fig. S18). Literature reports show
that neural cell hybrids, such as NG108, can differentiate
under certain stresses (28). Similar to the images of differen-
tiated NG108 cells in the literature, our cultures started to
form abundant neurites and varicosities after incubating them
with free CNTPs and CNTP-LUVs. By contrast, the control
populations of cells exposed only to the PBS buffer looked
more flat and circular and had significantly fewer neurite for-
mations (ST Appendiz, Fig. S18). Thus, we hypothesize that
the cells incubated with CNTP-containing samples started to
differentiate instead of growing.

Conclusions and Outlook. Our results establish CNTPs as
potent fusogens that exploit the unique structure and geom-
etry of CNTP dimers to facilitate membrane fusion. Our
molecular dynamics simulations revealed the mechanism of
CNTP-mediated fusion and explain the observed fusion kinet-
ics: CNTP dimers pull the membranes together with their
flat faces and bring the inner leaflets into contact across their
narrow faces. Researchers can apply the same principles that
enable CNTP-mediated membrane fusion to design other syn-
thetic fusogens for even more efficient and targeted delivery to
specific cell types. Computational screening by molecular sim-
ulations could be used to guide the systematic design of novel
nanomaterial-based fusogens and to improve the properties of
the accompanying liposomes.

Our experiments demonstrate that CNTP-studded lipo-
somes can provide the basis for constructing the long desired,
but so far elusive, inert versatile carrier for direct and highly
efficient delivery of drugs and DNA and RNA vaccines (29)
across the plasma membrane. This strategy could bypass
the endocytotic pathway entirely and thus avoid some of the
problems encountered by the previous delivery strategies.

Finally, the use of carbon nanomaterials for drug delivery
raises some understandable safety concerns. We note, however,
that recent studies of the in vivo biocompatibility of short
small diameter CNTs reported their efficient renal clearance
in mice (30, 31) and nonhuman primates (32), pointing to the
feasibility of using this material for therapeutics development.
Further research on the long-term fate and clearance mech-
anisms of ultrashort carbon nanotubes in the tissues should
clarify these important questions.

Materials and Methods

Materials and Equipment. All the lipids (1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC), 1-oleoyl-2-6-[(7-nitro-2-1,3-benzoxadiazol-
4-yl)amino]hexanoyl-sn-glycero-3-phosphocholine (NBD-PC), and
cholesterol) were obtained from Avanti. All the other chemicals were
purchased from Sigma-Aldrich and used as received, unless speci-
fied. Live/Dead assay and MTT cellular assay kits were obtained
from Abcam. The size exclusion columns for LUV separation used
Sepharose CL-6B (Sigma Aldrich). The ultra short carbon nanotube
porins were synthesized by sonication-assisted cutting of 0.8 nm
SWCNT according to the previously published procedure(33). Pre-
vious studies have confirmed that this procedure produces CNTPs
with an extremely tight diameter distribution of 0.814+0.14 nm as
measured by TEM (23). Some CNTP batches were chemically
coupled to the 6-amino fluorescein (6-AF) dye using an 1-Ethyl-3-
(3-dimethylaminopropyl)carbodiimide (EDC) coupling procedure
based on a published protocol(34). All fluorescence and absorbance
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spectra was measured with the Spectramax iD3 Microplate Reader
(Molecular Devices) and Cytation 5 (Biotek). Vesicle size was
measured using a dynamic light scattering (DLS) setup (Malvern
Analytical).

Large Unilamellar Vesicles formation. The LUVs and CNTP-LUVs
were formed and characterized using previously described protocols
(33). Briefly, the CNTPs were added to the lipid mixtures prior
to rehydration and extrusion. The average number of CNTPs per
vesicle was quantified using assays described in the same protocol
(33). We note that this procedure is based on a calibrated proton
permeability of an individual CNTP and thus could introduce a
small systematic error. LUV and CNTP-LUVs loaded with DOX
were prepared using the same protocol, but the sonication time was
extended to 10 min from 2 min. To form NBD-LUVs we used 85%
of DOPC and 15% of NBD-DOPC, for SRB-LUVs we added 28
mM sulforhodamine B (SRB) to the solution before sonication. All
LUVs went through 10 freeze-thaw cycles to remove multilamellar
vesicles. LUVs used for drug delivery experiments followed the same
protocol, except that the lipid composition was 70% DOPC and
30% cholesterol, 300 mM solution of ammonium sulfate was used
instead of buffered KCI solution, and the vesicles were extruded
through a 100 nm membrane filter. In the final step the vesicles were
purified on a column conditioned with phosphate-buffered saline
(PBS) at pH 7.4. The size of LUVs were determined using DLS. The
drug encapsulation efficiency was 10%, as determined by literature
protocols (35). To quantify DOX leakage from DOX-loaded LUVs
and CNTP-LUVs we monitored fluorescence (480ex/590em) for 18
hours at 37°C, SI Appendiz, Fig. S13.

Lipid mixing and content mixing assays. To obtain a self-quenched
concentration of NBD dye in LUVs we used 15% NBD-PC and
85% DOPC mixture, as determined from calibration experiments.
Lipid fusion assays were performed at different pH (2, 3.15, 4.11,
5.15, 6.11, and 8.7) with buffer pH adjusted with 1 M HCL. In each
fusion assay CNTP-LUVs and NBD-LUVs were mixed at 1:1 volume
ratio and the fluorescence kinetics (474ex/530em) was recorded for
at least 3 hours at a preset temperature maintained by the plate
reader. Each assay was repeated at least 3 times. For content
mixing assays, CNTP-LUVs were mixed with SRB-LUVs at 1:1
ratio in the presence of tetramethylrhodamine polyclonal antibody
from Thermo Fisher to quench the signal from any leaked SRB dye.
The amount of antibody used was calculated to quench at least
80% of all SRB dye contained in the sample LUV. The fluorescence
kinetics (550ex/595em)was monitored for at least 18 hours at 24°C.
All content fusion assays were repeated at least 2 times.

To extract fusion half-times from the fusion kinetics data we
fitted the fluorescence traces to the Hill-like equation (36):

F=(1+ (/") (1]

where F is normalized fluorescence signal; 7 is the fusion half time;
t is the time; and n is Hill coefficient. The fusion rate was then
calculated as 2/7. The values of the fit parameter n typically varied
between 2 and 3.

Doxorubicin delivery to NG108-15 and MDA-MB231 cells. NG108-15
(mouse neuroblastoma x rat glioma hybrid) and MDA-MB231 cell
lines were obtained from ATCC. The NG108 cells were cultured in
growth media (Dulbecco’s Modified Eagle Medium 1% Penicillin-
Streptomycin and Hypoxanthine-Aminopterin-Thymidine 1X with
10% fetal bovine serum from Gibco) at 37°C 5% COsz. The MDA-
MB-231 cells were cultured in DMEM/F-12; GlutaMAX™ supple-
ment (Thermo Fisher) with 10% fetal bovine serum from Gibco)
at 37°C 5% COsg. The cells were seeded in 96-well plate at 5000
cells/well and cultured for 2 days before experiment. Each well was
treated with growth media and sample at 1:1 volume ratio for 48
hours. Drug delivery experiments were conducted using different
batches of cells purchased and cultured at different times and the
results were averaged between batches wherever possible.

Cell viability quantification using live/dead assay. The live/dead dye
was diluted in PBS to a final concentration of 5X (5 pl in 1 ml
of PBS). After exposure to the samples, the media was aspirated
from the well and replaced by 100 ul of dye solution. The cells
were incubated for 15 minutes. The fluorescent images of cells were
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recorded using a Leica fluorescence microscope with FITC (494/151
nm) and RHO (528/617 nm) filters to visualize live and dead
cells respectively. The number of live and dead cells was counted
using ImageJ and normalized to the total number of counted cells.
The experiment was repeated 3 times, 3 wells each time, using
at least 3 images per well. Since the distribution of our samples
averages were not normally distributed and the samples size was
less 50, we used Wilcoxon statistical analysis to test for significant
differences. For some of the experiments quantifying cell response
to free CNTPs, CNTPs were modified by covalent coupling of
a 6-aminofluorescein (6-AF) dye to the end of the CNTP (see
Materials subsection for details). Control experiments indicated
that even though this modification produced slower fusion, modified
and unmodified CNTPs produced similar outcomes in the fusion
experiments at the 1-2 hr timescale (SI Appendiz, Fig. S3C), which
is still much shorter than the 48 hour time scale of the cell viability
experiments.

Cell proliferation quantification using MTT assay. The media with
samples were removed from wells and 50 pl of MTT reagent and
50 ul of PBS was added to each well. The cells were incubated at
37°C for 3 hours. After the incubation, 150 ul of MTT solvent was
added into the well. The plate was incubated overnight at room
temperature in a dark box. We recorded the absorbance at 590
nm and used it (after subtracting background from PBS and MTT
reagent controls) to determine the number of cells in each sample
using a calibration curve established separately for each cell line.
The cell proliferation percentage was normalized using PBS-exposed
sample as a 100% reference.

Monitoring liposome content fusion with live cells.. MDA-MB231
cells were seeded at 10% cells per well in a 96-well plate and cultured
for 48 hours. Right before the measurement, the growth media
was removed from the cells and replaced with 1:1 mixture of cell
media and solution of CNTP-SRB-LUVs (20 CNTP/LUV). The
fluorescent signal (555ex/595em) was monitored in a plate reader.

Coarse-grained molecular dynamics simulations. All molecular dy-
namics simulations were setup and run as previously described (12)
using the MARTINI (v. 2.2) coarse-grained model (37). Simula-
tions were performed using GROMACS 2018.7 (38) with the rec-
ommended new parameter set for MARTINI simulations (39). The
Verlet neighbor search algorithm was used to update the neighbor
list, with the length and update frequency being automatically de-
termined (nstlist = 25, rlist = 1.259). Lennard-Jones and Coulomb
forces were cutoff at 1.1 nm with the potential shifted to 0 using
the Verlet-shift potential modifier. Pressure was maintained at 1
bar using the Parrinello-Rahman barostat and temperature was
maintained at 300 K using the velocity rescaling algorithm with
characteristic coupling times of 12 and 1 ps, respectively (40, 41),

CNTPs with 0.8/1.2/1.5 nm diameter consisted of 30 rings with
5/8/10 beads each, respectively. The total length of all three types of
CNTPs was 11.8 nm. For thin 0.8 nm nanotubes the force constant
of improper dihedrals, which maintains stiffness, was increased to
550 kJ mol~! rad—2, whereas the 1.2 and 1.5 nm used the default
values (12, 42). System starting configurations were set up following
the protocol for system A of Ref. (12), where two 15 nm DOPC
vesicles were stapled by a thin CNT monomer, dimer and trimer,
respectively (see SI Appendiz, Fig. S4) . The number asymmetry
was varied by removing lipids from the inner leaflets of both vesicles,
respectively. All simulated systems are summarized in SI Appendiz,
Table 1. For each setup, 30 replicates were run with different initial
velocities.
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