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ABSTRACT 
Database management systems (or DBMSs) have been around 
for decades, and yet are still difficult to use, particularly when 
trying to identify and fix errors in user programs (or queries). 
We seek to understand what methods have been proposed 
to help people debug database queries, and whether these 
techniques have ultimately been adopted by DBMSs (and 
users). We conducted an interdisciplinary review of 112 pa-
pers and tools from the database, visualization and HCI com-
munities. To better understand whether academic and industry 
approaches are meeting the needs of users, we interviewed 
20 database users (and some designers), and found surprising 
results. In particular, there seems to be a wide gulf between 
users’ debugging strategies and the functionality implemented 
in existing DBMSs, as well as proposed in the literature. In 
response, we propose new design guidelines to help system 
designers to build features that more closely match users de-
bugging strategies. 

Author Keywords 
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CCS Concepts 
•Human-centered computing → User studies; Field stud-
ies; •Information systems → Query languages; 

INTRODUCTION 
Analysts and developers need an efficient way to articulate how 
they want a computer to process large datasets [62], such as by 
combining multiple data sources (or tables), clustering specific 
data records, or calculating aggregate statistics [9]. Database 
management systems (DBMSs) like PostgreSQL1 and Mi-
crosoft SQL Server2 enable users to specify their desired anal-
ysis output by issuing declarative programs (or queries) on 
datasets. To process queries, the DBMS first translates them 
1https://www.postgresql.org/ 
2https://www.microsoft.com/en-us/sql-server/default.aspx 
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into a logical query plan that represents the operations that 
must be executed on the data to produce the specified output. 
Then the logical query plan is compiled into a physical query 
plan that executes the specified steps efficiently on the under-
lying hardware (e.g., the user’s laptop or a remote server). 

However, as with any complex programming language, it is 
rare for users to be able to write “perfect” database queries on 
their first try (i.e., without any errors). Hence, the debugging 
of queries is a necessary step towards learning to use DBMSs 
effectively. Debugging a query often requires more than sim-
ply fixing syntax issues. Query errors can manifest as vague 
exceptions thrown by the DBMS, or unexpected behavior like 
returning zero results or duplicate entries in the results. De-
bugging these errors requires an intuitive understanding of not 
only the structure of the corresponding queries but also the 
DBMS itself, which can be difficult to interpret [9]. Multiple 
communities have studied how to help users debug queries: 
the database community has proposed algorithms to detect 
specific errors (e.g., [22, 77]), the visualization community 
more intuitive visual representations of queries (e.g., [92, 95]), 
and the HCI community new mechanisms for real-time feed-
back as users write programs (e.g., [71]). However, users are 
unlikely to adopt all these different techniques just to address a 
single problem. Our communities should rather work together 
to develop interdisciplinary tools to ease the burden on users. 

Unfortunately, little work has been done to synthesize and 
integrate ideas from across these different research areas. To 
better understand how these efforts can be combined to pro-
vide holistic debugging support for end users, we performed 
an interdisciplinary review of 112 papers and tools of the past 
25 years. These works ranged from formalised debugging al-
gorithms to visual query interfaces to interviews with industry 
analysts to standard debugging features provided by current 
commercial tools (e.g., breakpoints). We found promising 
hybrid techniques proposed in the literature (e.g., “why” and 
“why not” debugging [66, 22], iterative debugging [3]), yet we 
also saw a lack of adoption of these techniques in industry. 

To better understand how techniques in the literature translate 
into the real world, we conducted an interview study with 20 
database users, ranging from students in database courses to 
full-time industry analysts. Participants shared some of their 
own queries, as well as tools and evaluation strategies they 
employed to debug queries. Even though we observed a num-
ber of strategies, we found that participants rarely use (and 
many had never heard of) the proposed debugging techniques 
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from the literature, and seldom used the debugging features in 
commercial tools. Participants primarily evaluated and fixed 
their queries manually. We summarize recurring activities 
and steps used to debug database queries, and identify com-
mon pain points in the debugging process, including: vague 
SQL exceptions, lack of access to the database schema while 
debugging, and having to systematically test by hand each 
component of the query (e.g., SQL clause or sub-query). 

Our findings uncover several promising techniques in the liter-
ature that do seem to match user’s debugging strategies, such 
as illustrating intermediate results (e.g., [45, 9]). Based on 
the debugging strategies we observed, we believe that cer-
tain techniques from the literature could prove very useful to 
implement in commercial systems, particularly features that 
support the process of incremental query building and recur-
sive error checking. Furthermore, overall debugging time can 
be significantly reduced by incorporating few simple utilities 
into existing tools, such as automated translators from queries 
written in older SQL standards to newer dialects. 

To better understand the industry perspective, we reached out 
to six database tool designers. We found that even though 
query debugging is valued in industry, database companies 
have other more pressing needs, suggesting that researchers 
could have a big impact by partnering with industry to build 
the debugging tools that we need today. 

LITERATURE REVIEW 
In this section, we review the relevant literature in debugging 
and understanding query behavior. We highlight overlaps 
between query and general program debugging techniques, as 
well as alternatives that seek to circumvent the introduction of 
errors in queries (e.g., intuitive query interfaces). 
Methods 
Query debugging spans multiple areas, such as databases, visu-
alization, and HCI. To address this challenge, we implemented 
the steps below to select papers for our literature review. We 
define our review topic as: algorithms, interfaces and tools de-
signed to support the debugging of database queries. A paper 
or tool was considered relevant if it addressed this topic or a 
related topic, understanding: query behavior (query and pro-
gram comprehension); user debugging behavior; user querying 
and analysis behavior; visualizing queries; or query interfaces; 
interactive debugging interfaces. 
1. Relevant papers from the last five years of conferences 

in databases (e.g., SIGMOD, VLDB), visualization (VIS, 
VISSOFT), and HCI (CHI) were added to our review list. 

2. We performed targeted online searches to identify papers 
and tools outside of the venues or dates mentioned above. 
Relevant search results were added to our review list. 

3. We scanned the references of the papers yielded by the 
previous steps, and added relevant references. 

4. We searched for later papers that cite papers yielded by the 
previous steps. Relevant papers were added to our list. 

Our selection process yielded 91 papers and tools. However, 
15 papers and 6 tools did not match the above filter criteria, but 
still provide useful information to understand related concepts 
(e.g., provenance, static program analysis). We include them 
as supplements to our analysis, resulting in 112 total papers 

and tools for our review. Papers and tools were reviewed to 
understand strategies and processes that users may employ 
to reason about and debug queries, as well as for existing 
algorithms and features to aid users in debugging queries. 
Understanding User Analysis and Query Behavior 
Understanding the Data Analysis Process. Several projects 
analyze the specific strategies and processes of data ana-
lysts and data scientists. These processes can be investigated 
through interviews (e.g., [62, 6, 63, 93, 65]), as well as through 
quantitative evaluation of user logs collected by data analy-
sis tools (e.g., [10, 49, 47, 44]). For example, Kandel et 
al. interviewed 35 analysts and found three different analyst 
archetypes (“hackers”, “scripters”, and “application user[s]”), 
where the “hackers” and “scripters” are typically proficient 
in writing code and scripts, including queries [62]. Gotz and 
Zhou analyze user interaction logs, and find that analysts tend 
to decompose the (visual) analysis process into a hierarchy of 
more targeted subtasks [44]. These projects provide a broader 
perspective on the larger data analysis process, like which 
tasks comprise the core stages of data analysis and data sci-
ence, and where analysts tend to spend their time, but may 
lack specifics in terms of how individual stages are carried out 
(e.g., the stages of the query debugging process). Petrillo et 
al. present a tool for visualizing logs from users’ program de-
bugging sessions, which could shed light on users’ debugging 
strategies, given sufficient data for analysis [84]. 
Patterns in SQL Usage. Several projects analyze users’ query 
patterns [72, 60]. For example, Jain et al. analyzed query logs 
collected from years of running the SQLShare system [60]. 
Their findings suggest that improving ease-of-use can influ-
ence a user’s continued interaction with DBMSs. However 
these projects do not discuss how users debug their queries, or 
how the debugging process could be improved. 
Takeaways. Investigating the broader data analysis process can 
provide insight into how more targeted tasks–in this case query 
debugging–may generally be structured. For example, Kandel 
et al. found that a notable number of analysts are comfortable 
writing queries by hand [62]. Users may decompose a high 
level debugging task into smaller targeted tasks (i.e., similar 
to observations by Gotz and Zhou [44]). Analyses of users’ 
querying behavior (e.g., [60]) can also provide insight into 
how query interfaces are used. However, the granularity of 
these insights are too coarse to speak to the specific strategies 
and experiences related to query debugging, and thus are of 
limited use in determining how best to design debugging tools. 
Alternatives to Writing SQL Queries 
Many projects develop alternative user interfaces for DBMSs, 
and fall into two groups: using other (written or spoken) lan-
guages or visual interfaces to formulate queries, which map to 
an existing query language behind the scenes (primarily SQL). 
Programming Languages to SQL. Several techniques trans-
late programming languages to SQL [38, 37, 70], for exam-
ple, DBridge translates imperative code (e.g., Java) into SQL 
queries, and aims to make the program’s execution more effi-
cient, for example by reducing communication and data trans-
fer between a user program and the DBMS [38, 37]. Li et 
al. propose a variant of SQL called “Schema-free SQL” [70], 
where users can write queries without perfect recall of the 
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database schema; for example, users can guess forgotten at-
tribute names as they write a query, which are corrected using 
schema-free SQL, but throw errors using standard SQL. 

Object-relational mapping (ORM) languages (e.g., 
SQLAlchemy3, Django4) and related frameworks (e.g., 
Ibis5) enable programmers to integrate local programming 
environments (e.g., Pandas6) directly with DBMSs. 

A range of domain-specific languages have also been devel-
oped to query relational data in various contexts beyond just 
SQL (e.g., MyriaL [102]), and even extend query support to 
other dataset types (e.g., GraphQL [39], SPARQL [87]). 
Natural Language to SQL. Other systems avoid code alto-
gether, and instead translate natural language (e.g., English) 
directly to SQL queries [73, 69]. For example, the NaLIR 
system translates English descriptions of queries into proper 
SQL [69]. However, current methods are still too restrictive 
for wide adoption, necessitating further research in this area. 
Visual Query Interfaces. Many systems provide graphical 
interfaces for constructing queries using direct manipulation 
[19]. These interfaces vary across a spectrum from more literal 
query building interfaces [105, 30, 5, 97], to more abstract 
exploration interfaces (e.g., [95, 74]). Query builder-style 
interfaces have users construct a tree or graph representation 
of the query, where nodes denote input data or query operators, 
and directed edges give the flow of data through operators [105, 
30, 5, 97, 3]. These interfaces can be made more intuitive 
for specific dataset types [25], such as temporal data (e.g., 
filtering for specific patterns of events [52, 104, 53, 74, 107]) 
or network data (e.g., searching for structural patterns in sub-
graphs [85, 35, 57]). In the case of network data, a graph 
representation for queries mimics the structure of the graph 
itself. Zhang et al. generate interactive query interfaces for 
DBMSs by analyzing query logs: they map groups of queries 
to interaction widgets that produce equivalent results [110]. 

On the exploration side of the spectrum, a strong emphasis 
is placed on dynamic queries [92]. Instead of manipulating a 
representation of the query, dynamic queries allow users to ma-
nipulate the data directly [50]. For example, Spotfire supports 
interactions like brushing and linking, zooming, and range 
sliders, to perform query operations (e.g., joining, aggregating, 
and filtering, respectively) [4]. Polaris [95] (now Tableau [99]) 
uses the VizQL language to map any visualization design in 
the interface to a corresponding SQL query. To construct visu-
alizations, users drag attributes to encoding “shelves”, where 
each completed interaction translates to a SQL query. 

However, complicated queries are difficult to write with vi-
sual query interfaces, often requiring many direct manipula-
tion interactions to construct the queries. Furthermore, these 
graphical interfaces generally lack the debugging infrastruc-
ture available when working with programming languages. 
Takeaways. Many have observed that traditional query inter-
faces are overly complex, potentially leading to more (and 
3https://www.sqlalchemy.org/ 
4https://www.djangoproject.com/ 
5https://docs.ibis-project.org/ 
6https://pandas.pydata.org/ 

more complex) errors in users’ queries. Many projects and 
some commercial tools have developed more intuitive inter-
faces for interacting with database systems. While these tools 
work very well for some analysts (e.g., the “application user[s]” 
[62]), it seems that many users still prefer traditional query 
interfaces (e.g., the “hackers” [62]). Furthermore, data science 
and database courses may still emphasize traditional query 
methods (e.g., [75]). Thus, many users may opt out of using 
these interfaces, but still need debugging support. 

Data Debugging 
Sometimes, the underlying data itself may contain errors that 
need to be fixed [62], which we call “data debugging”. 
Data Profiling. Several systems provide graphical interfaces 
to inspect issues with the data. A number of systems sup-
port “data profiling”, which help users calculate data quality 
characteristics (e.g., the presence of nulls or duplicate values), 
and identify potential data errors [2, 62]. For example, Pro-
filer provides an intuitive visual interface for summarizing and 
interacting with data quality measures for tabular data [62]. 
Identifying Causes of Data Errors. Some systems aim to 
explain the causes for data errors. For example, Scorpion 
searches for patterns that could explain data errors and trans-
lates these patterns into queries [108]. QFix seeks to explain 
how errors occur in a dataset by analyzing the queries that 
have modified the data in the past, and detecting which queries 
may have contributed to the errors [103]. 
Data Cleaning. Several projects suggest best practices [106, 
27], and automated features to ease the burden of system-
atically cleaning large datasets [61, 96, 90]. For example, 
Holoclean models inconsistencies within a dataset using ran-
dom variables, and uses probabilistic inference to reason about 
possible strategies to clean groups of data records [90]. 
Takeaways. Analysts spend considerable time on fixing data 
errors, before moving to writing (and debugging) queries [62], 
and a variety of “data debugging” tools have been developed. 
However, since data debugging occurs before data analysis 
(and thus query debugging), we consider data debugging to be 
orthogonal to query debugging, and do not touch on it further. 

Query and Program Debugging 
We now turn our focus to how systems help users debug their 
analysis programs, and database queries in particular. These 
systems generally use one or both of the following strategies, 
which we use to organize the remainder of our review: 1) 
modeling the logical structure of the query (i.e., using static 
program analysis methods, e.g., [8, 66]), or 2) modeling execu-
tion output from the query (i.e., dynamic analysis, e.g., [109, 
66]). Systems use these models to illustrate the behavior of 
the given query, or to make predictions about the cause of the 
error(s). We also highlight non-database debugging projects 
that could be relevant to database debugging use cases. 

Analyzing Logical Structure. 
Many debugging methods aim to infer specific characteristics 
from the logical structure of queries. Logical structure refers 
to the organization and meaning of operations within a query 
(or its corresponding query execution plan). These techniques 
need only the user’s written query (or generated query plan) 
to facilitate debugging, and avoid executing the query. 
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Illustrating Logical Structure. One class of techniques illus-
trates the structure of a query via static analysis of the query 
[79, 33, 11, 18]. For example, QueryViz summarizes the 
behavior of queries by generating diagrams to capture the rela-
tionships between operators (e.g., execution flow, containment, 
inclusion/exclusion of tuples) [33]. QueryViz diagrams use 
nodes and links to denote relationships between operators, 
similar to query-builder interfaces, and provides example out-
puts to demonstrate the behavior of query operators. Mou et 
al. illustrate the execution flow of entire data science work-
flows, which may consist of multiple black-box components, 
some of which may not involve a DBMS. VisTrails considers 
a similar problem, but focuses on visualization workflows [11, 
18]. As mentioned previously, Zhang et al. analyze the logi-
cal structure of queries, but perform this analysis across full 
DBMS query sessions, to generate an equivalent interactive 
user interface for executing similar queries [110]. 

Several projects apply similar techniques, but for other lan-
guages [48, 7]. For example, Scoped depicts the execution 
scope of variables by analyzing program source code [7]. 
These principles could be applied to database debugging con-
texts. For example to visualize relationships between different 
query components (e.g., SQL clauses, sub-queries). 
Inferring Structural Properties. A second class of techniques 
focuses on inferring specific characteristics of queries through 
static analysis [26, 101]. For example, Cosette can determine 
whether two queries are semantically equivalent [26]. These 
techniques could also be used for debugging purposes, e.g., 
Cosette could be used to identify a simpler, more succinct 
query to display when recommending solutions to errors. 
Predicting Causes of Errors. A third class of techniques uses 
static analysis to predict potential causes of errors in programs 
[81, 94], including queries [17, 16]. These techniques focus 
on analyzing the “declarative meaning” [81], or the intent 
behind the query components and not their implementation. 
These methods often involve searching for structural patterns 
of programs that denote errors, when compared to a descrip-
tion of program intent specified by the user. However, these 
techniques may not be intuitive to users, since they require the 
user to write a second program, in order to debug the first one. 
Takeaways. A number of query and program debugging strate-
gies analyze the logical structure of queries without executing 
them. Some systems visualize or illustrate this logical struc-
ture to improve users’ understanding of query behavior, while 
others infer correctness of queries using theoretical proofs or 
counter-examples. By avoiding execution of queries, these 
strategies can be scaled to big data use cases. However, users 
may want a deeper understanding of how the underlying data 
are affected by different stages of a query’s execution, which 
these techniques are unable to provide. 

Analyzing Execution Structure. 
In contrast to static analysis techniques, others focus on collect-
ing intermediate results at various stages of query execution, 
and using this data to model query behavior. These techniques 
can be thought as provenance-based debugging techniques, 
given that they require the collection of provenance metadata. 

Empty Answer Problem. One class of debugging projects 
focuses specifically on analyzing a common database query 
error, known as the “empty answer problem” [77, 78, 100]. 
This problem occurs when a user writes a very restrictive 
query. Since DBMSs are designed to return exact answers, 
overly-restrictive queries often produce zero records, making 
it difficult for users to identify the cause of the error (i.e., the 
filter that is eliminating results). The empty answer problem 
has also been observed in visual analytics (e.g., [47]). Empty 
answer debugging techniques generate a less restrictive version 
of the original query, such that fuzzy results are returned to 
the user, but may not be exactly what the user was looking for. 
However, the empty answer problem error is only a fraction of 
the errors that a user encounters with DBMSs. For example, 
prior work has found that users often run into situations where 
queries produce non-zero yet undesired results [9]. 
Recording Query Provenance. Database provenance (or lin-
eage) records the behavior of a query at each stage of execu-
tion, and thus can capture the execution behavior of a query. 
However, constantly recording detailed information about the 
execution of queries (and programs) can consume considerable 
time and storage. The database community has extensively 
studied how to quickly and efficiently record provenance for 
queries [51, 98, 15, 64, 42, 31, 32, 83] (including over prob-
abilistic datasets [13]), as well as for more general analy-
sis workflows [41, 59, 11, 18]. Database provenance shares 
some similarities with provenance in the visualization litera-
ture [88, 49]. However, the database community focuses more 
on data provenance (i.e., the history and source of program 
results), rather than analytic provenance (i.e., the sequence 
of visualizations, interactions, and insights produced by the 
user). Database provenance is an active area of research in 
the database community, but query debugging is only a small 
fraction of this sub-area, from our observation. 
Illustrating Execution Structure. Given recorded provenance 
data for a query, a second class of debugging projects focus 
on providing intuitive visual representations of the results [9, 
34, 45, 46, 82, 76]. For example, StreamTrace generates visu-
alizations and interactive widgets that enable users to explore 
the execution of a temporal SQL query, step-by-step [9]. They 
provide interactive debugging visualizations by rewriting the 
original query as a series of intermediate queries, and record-
ing which input events and query operators contributed to 
specific output events. Grust et al. use a similar technique, 
where instead of an interactive visualization they allow users 
to click on any query component qi to observe the intermediate 
database table produced at that point [45]. RATest records 
provenance data by comparing execution of a given user query 
to an existing “solution” query (e.g., database homework prob-
lems) [75]. Perfopticon visualizes performance characteristics 
for each machine and progress across all machines for given 
query on a distributed (i.e., parallel) database. [76]. 

There are entire conferences devoted to visualizing programs 
and software (in particular VISSOFT [1]); we direct readers 
to the VISSOFT proceedings for more details. However, a 
subset of these projects visualize software execution behav-
ior for program debugging [71, 89, 86], summarization and 
comprehension [40, 12]. For example, Lieber et al. use online 
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(i.e., live) provenance data to report line and method execu-
tion statistics using in-situ visualizations within the code [71]. 
Similar principles are used by Hoffswell et al. to help Vega-
Lite[91] users debug their visualization designs [54, 55]. 
Takeaways. Provenance-based debugging tools aim to cap-
ture the execution structure of queries and programs, and give 
the user different ways to “open the hood” and observe how 
a query or program was executed. Some systems integrate 
tightly with the underlying DBMS, providing users with a 
closer connection to the behavior of the DBMS [45, 9, 76]. 
However, it is still up to the user to interpret the provenance 
data, identify errors, and devise solutions. Unlike static analy-
sis techniques, dynamic provenance-based debugging relies 
on a potentially resource-heavy data collection process. As we 
will see ahead, these techniques can be combined to provide 
the benefits of both strategies. 
Debugging Both Logical and Execution Structure 

“Why” and “Why Not” Debugging. A number of systems 
construct models of queries using both the logical and execu-
tion structure of the query [16, 56, 22, 68, 14]. Many of these 
systems aim to answer “why” and “why not” questions: why 
a particular result appears in the output, or why a given input 
data record fails to appear in the final result [21]. For example, 
Chapman et al. answer “why not” questions by constructing 
a logically derived directed acyclic graph of the query, and 
then conducting top-down and bottom-up searches over this 
graph to identify points in the query where key results are 
eliminated from the output [22]. As each node in the graph 
is reached by the “why not” search algorithms, provenance 
data is collected. The search stops when offending nodes are 
found, avoiding recording of provenance for irrelevant nodes 
(i.e., query operators that may not be a cause of the missing 
“why not” tuples). “Why” and “why not” debugging has been 
implemented for other languages as well [80, 67, 66, 21]. For 
example, the WhyLine combines static and dynamic analysis 
techniques–including provenance recording–to answer “why” 
and “why not” questions about Java programs [67, 66, 80]. 

“Why” and “why not” debugging strategies are particularly 
interesting because they enable users to reason about the be-
havior of programs and queries at a conceptual (i.e., not code) 
level. Furthermore, these techniques combine previous al-
gorithmic approaches in ways that magnify their strengths. 
For example, by constructing an initial graph using logical 
structures, and then pruning irrelevant query operators, one 
can spend less time on executing the query and thus improve 
the speed at which a debugging system can identify errors. 
However one drawback of these systems is their complexity, 
which makes them difficult to implement and maintain within 
already large and complicated development environments. 
Query Steering. Some techniques allow users to modify 
queries by manipulating the execution outputs; called “query 
steering” [20, 3, 36], also called “query by example”. These 
techniques allow users to add or remove tuples to the output 
to tell what should (or should not) be in the result. These 
methods then modify or add query predicates to capture the 
changes from the augmented results. 
Takeaways. Hybrid debugging strategies rely on analysis of 
both the logical structure and execution structure of erroneous 

queries (or programs). These techniques answer “why” or 
“why not” questions about a query’s behavior, and use logical 
query structure to efficiently model and search the space of 
possible query errors. They strategically collect partial prove-
nance information and avoid executing the full query, saving 
both computation and storage. However, implementation chal-
lenges could pose an issue for commercial adoption. 
Commercial Database Debugging Tools 
We found several commercial query debugging tools: Em-
barcadero Technologies RapidSQL [58], Keeptool’s PL/SQL 
Debugger [43], and Microsoft’s T-SQL [29]. These are cross-
platform tools that can be used with other programming tools 
like Eclipse7 and Visual Studio8. They can connect to vari-
ous DBMSs, including PostgreSQL1, Microsoft SQL Server2, 
Oracle9, etc. Common features of these tools overlap with 
standard debugging tools, such as the ability to set breakpoints, 
to check dependencies between variables, and save input vari-
able values to a file for later use. 

Microsoft’s U-SQL [28], provides performance-based debug-
ging support. U-SQL is a big data query language and execu-
tion platform that combines declarative SQL with imperative 
custom languages, such as C# and Python. U-SQL decom-
poses a user’s query into a workflow of smaller connected 
jobs. Similar to academic tools like Perfopticon [76], U-SQL 
reports on various performance characteristics as the query 
executes across multiple machines. However, this information 
is not presented to U-SQL users through visualizations. 
Takeaways. Interestingly, commercial debugging tools do not 
seem to implement the state-of-the-art in query or program 
debugging research. As observed by Reiss for program debug-
ging tools, it seems that database debugging tools also “...have 
not changed significantly over the last fifty years.”[89] 
Summary and Discussion 
Here, we summarize our findings and highlight research ques-
tions for further investigation. 
DBMS Users are Commonly Scripters and Programmers. a 
notable number of analysts use DBMSs regularly for data 
analysis, where many are comfortable with writing their own 
queries. Research across databases, visualization and HCI 
touches on how users interact with and analyze queries, but do 
not consider the challenge of debugging complex SQL queries. 
Users’ Database Debugging Strategies are Not Emphasized. 
Much of the relevant visualization and HCI literature is de-
voted to intuitive query interfaces. The relevant database liter-
ature focuses on efficiently recording execution behavior (i.e., 
database provenance and lineage), not debugging. Across ar-
eas, we see a dearth of rich information about users’ database 
debugging strategies and tools. We also see relatively little 
work on query debugging tools for more code-savvy users. 
Effective Debugging Tools Incorporate Features from Mul-
tiple Areas. Query debugging features seem to be more effec-
tive if adopted from multiple research areas, such as visual-
izations of program behaviour, intuitive interaction widgets, 
and efficient database provenance recording strategies. For 
7http://eclipsesql.sourceforge.net/ 
8https://visualstudio.microsoft.com/vs/features/ssdt/ 
9https://www.oracle.com/index.html 
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example, the works of Abouzied et al. [3], Grust et al. [45], 
Moritz et al. [76] and Battle et al. [9] present systems that 
leverage database debugging techniques to produce effective 
human-centered query debugging interfaces. Furthermore, 
“why” and “why not” techniques seem to provide the best of 
all worlds in terms of efficiency and debugging support. 
Gaps Between the Literature and Commercial Systems. Pro-
posed debugging techniques have been around for over a 
decade. Yet none of the existing commercial database de-
bugging tools that we reviewed seem to use these techniques. 
One reason could be that commercial tools assume that users 
debug queries the same way that they would debug Java or 
C++ programs (e.g., setting breakpoints, tracking variables, 
etc.) and thus lack techniques that go beyond this design. 
Further Research Questions. From our review, we have the 
following questions we seek to answer through interviews 
with database users and designers: 
• R1: What query interfaces (1) and debugging tools (2) do 

people use, and how and why did they select these tools? 
• R2: What kinds of strategies (1) and visual aids (2) do users 

employ when debugging their database queries? 
• R3: Why are state-of-the-art database debugging techniques 

in the literature not used in commercial tools? 
To answer R1 and R2, we interview a range of database users. 
To answer R3, we (informally) polled six database experts. In 
the next section, we discuss our study design and findings. 

STUDY DESIGN 
Here, we describe the details and intuition for our study design. 
Participants 
We conducted 18 in-person and two remote interviews with 
20 database users total, a number consistent with other similar 
studies (e.g., [65]). We interviewed three different groups (16 
male / 4 female, 18-54 years old): 
• Undergraduate Students (6) – Participants pursuing or 

just completed undergraduate degrees in Computer Science 
or Information Systems. 

• Graduate Students (4) – Participants pursuing graduate 
degrees in Computer Science and Business Analytics. 

• Industry Professionals (10) – Participants working in in-
dustry for 3-25 years. 

Our aim was to capture a diverse range of database users. 
In this case, students are relevant because they are actively 
learning how to use DBMSs, and thus may have insights into 
the debugging process that seasoned analysts no longer have. 

We recruited all participants through public-facing online re-
sources (e.g., mailing lists, online contact pages) and profes-
sional networks. Most participants were based near our home 
institution. However, participants came from the USA (12), 
India (6), China (1) and Croatia (1). 
Protocol 
Each participant first signed a consent form, then was asked to 
complete a demographic questionnaire (recording age group, 
gender, occupation, etc.). We also noted participants’ expe-
rience levels with databases and SQL. We then followed a 
semi-structured approach to conduct interviews. First, we 
asked participants to walk us through two to three queries they 

had written in the past. We then asked about the strategies 
they used to debug their queries. Based on the responses, our 
follow-up questions fell into one of the following categories: 
• Strategies for comparing actual and expected query results 
• Debugging tools and techniques used to verify query results 
• Strengths/weaknesses of mentioned tools and approaches 
• Use of visual aids to help with debugging queries 
Table 1 lists our interview questions. Interviews typically 
lasted one hour. Participants were given $20 compensation. 
This study was approved by our home institution’s IRB. 

ANALYSIS OF STUDY DATA 
We analyzed our interview data (audio transcripts and hand-
written notes) using an iterative coding method inspired by 
grounded theory [23]. We organize our findings around four 
themes derived from the data, which deviated somewhat from 
the categories outlined in section 3: 
• Usage of general tools for querying DBMSs 
• Awareness and usage of query debugging tools 
• (High-level) Debugging strategies 
• Use of visual aids for debugging queries 
We iterated and refined these categories as we gathered more 
data through our interview studies. 
Querying Tools Used (R1-1) 
Participants shared a wide range of tools for querying DBMSs, 
ranging from minimalistic tools like text editors and command 
line interfaces, to powerful products like SAP Hana10 and 
ORM languages (e.g., SQLAlchemy3). Other querying tools 
included database IDE’s like MySQL Workbench11, Oracle 
SQL Developer12 and DBViewer13. We saw greater variety in 
tools used to query DBMSs with an increase in experience. 
Undergraduates Preferred Simple Tools. We observed that 5 
of 6 undergraduates favored the simplest tools for writing SQL 
queries (i.e., text editors and command line). The remaining 
participant (P2) was introduced to ORM frameworks in a 
summer internship, and prefers them over the “direct querying” 
approach used by other undergraduates. However, queries of 
undergraduate students were fairly simple (i.e., less than 15 
lines long, executed on relatively small datasets), and many 
shared queries written as part of a database course. Thus, there 
did not appear to be a great need for powerful database tools. 
Graduate Students Preferred IDEs. The 4 graduate students 
we interviewed showed a mix of tools used for querying, and 
reportedly used command line interfaces and database IDEs 
interchangeably. They mentioned that, IDEs saved querying 
time by providing predictive text and formatting the results 
in a more readable ways. While most of this group preferred 
IDEs, participants with additional DBMS experience preferred 
simpler tools. One participant responded: 

There is no space for an entire heavy-weighted IDE... 
when you go into a cluster and need to perform queries 
like update[s], deletion or migration in stipulated time 

10https://www.sap.com/products/hana.html 
11https://www.mysql.com/products/workbench/ 
12https://www.oracle.com/database/technologies/appdev/ 
sql-developer.html 

13https://marketplace.eclipse.org/content/dbviewer-plugin 
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Table 1. Interview Questions 
Sr. 
No. 

Category of 
Questions 

Questions 

Strategies for comparing What strategies do you use to evaluate whether database results match your expected results? 
1 actual and expected What are some of the tools that help you through this evaluation process? 

query results Roughly how much time do you spend on debugging and updating your database queries? 

2 
Debugging tools and 
techniques used to verify 
query results 

Are you aware of some tools for debugging database queries? 
What are some of the tools that you use to debug your queries? 
(If they do not use the tools) How are you confident of your queries and results? 
(If they do not use the tools) Why would you not use debuggers? 

3 
Strengths/weaknesses of 
mentioned tools and 
approaches 

(If they use some tools) What are some of the features you like and some features that you dislike about these tools? 
(If they do not use the tools) What are some of the features you would like in a tool that could help you debug your queries? 
Do you use your own scripts or techniques instead of the debugging tools? 
(If they use scripts or own techniques) What additional benefits do you see in using your techniques? the debugging faster? If so, 
roughly by how much with respect to using the existing tools? 
Can you share examples of your visual aids? 

Use of visual aids to Can you explain how you used these visual aids during the debugging process? 
4 help with debugging How helpful were these visual aids when debugging your queries? 

queries (If they do not use visual aids) How helpful do you believe visual aids might be when debugging queries? 
(If they do not use visual aids) Can you think of any ways in which visual aids could be used to help you during the debugging process? 

to keep the system up-to-date. I would just prefer the 
command line straight-up. (P4) 

A reason for a mix of tools seen in graduate students was 
perhaps that queries spanned from 30-50 lines long. 
Industry Participants Varied Widely in Preference. On the 
other hand, we see a wide range in usage among the 10 industry 
participants. Three participants (P15, P16, P17) primarily 
mentioned using IDEs for querying DBMSs, driven by the 
conventions of their respective teams at work. Two participants 
(P1, P14) preferred command line interfaces; these participants 
were experienced analysts and not developers (i.e., 20+ years 
industry experience). Two other participants (P5, P9) preferred 
ORMs, where they could avoid writing SQL; one responded: 

Never directly, would I fire up a SQL interface to see 
the schema because I see it in a more readable format on 
the ORM! (P5) 

Two participants (P18, P19) mentioned using Oracle Hyper-
ion14 and SAP Hana6. These participants are research analysts 
at large companies, and dealt with querying massive datasets. 
These participants shared that their queries were generally 200-
3000 lines long and handling these large queries that pulled 
data from many sources and served millions of customers was 
possible only by these modern DBMSs. One participant said: 

I have written reports that are 100-150 pages long. 
The queries used to generate these reports are very very 
complex and intertwined in nature. I heavily rely on 
Hyperion. (P18) 

Takeaways. We find that users use and learn tools only with 
the effort that is absolutely necessary to get their work done. 
Many of our participants (8 of 20) still preferred command 
line interfaces for writing and issuing queries, regardless of 
experience level. In case of students, where they are still 
learning how to use DBMSs, there is low risk and low reward 
in putting significant effort into learning new database tools. 
However, with industry professionals, we see much more 
variety in their tool usage, because their database needs differ 
widely. At the extreme, we have serious database users with 

long, complicated queries which could affect thousands of 
customers. In this case, we see users preferring top-of-the-line 
database products to craft and execute their DBMS queries. 
Debugging Tools Used (R1-2) 
Few Participants Knew of SQL Debuggers. 16 of 20 (80%) 
participants were unaware of any database debugging tools. 
Of 4 participants who knew of debuggers, only 2 had used 
them, while others were unable to name any SQL debuggers. 
We found these results surprising, given IDEs usage of many 
participants’ and the prevalence of debugging offerings in both 
the academic literature and across industry tools (section 2). 
Undergraduates Were Wary of Debuggers. 5 of 6 undergrad-
uate students were unaware of any database debuggers. The 
remaining participant stated: “I am aware that database de-
buggers exist, but I haven’t used any of them.”(P2). In general, 
undergraduate students expressed a collective dislike for pro-
gramming debuggers and used them very rarely. 
Graduate Students Knew Program but Not SQL Debuggers. 
3 of 4 graduate students reported using debuggers for other 
languages, and posited that there might be plug-ins for DBMSs 
(as seen in section 2), but have never seen or used them. 

The remaining graduate participant (P11) had worked exten-
sively with the SAP ABAP15 debugger after her undergraduate. 
She reported being “extremely daunted” by debuggers in un-
dergraduate, and only grew comfortable with debuggers after 
working in industry as a technical analyst. She describes using 
the debugger to set breakpoints, check values, change them if 
incorrect, and repeating this process until all conditions were 
passed successfully. Even when using the debugger, she re-
calls the process being tedious and highly repetitive, as she 
had to manually click buttons many times in the interface, 
and memorize the schema of different workflows if she was 
changing some variable values. Nevertheless, she was still 
grateful for having the debugger and states: 

...it would roughly take me an hour and a half to debug 
[10 queries], but with plain SQL querying on command 
line, it could take up the whole day or even more... who 
knows? (P11) 

14https://www.oracle.com/corporate/acquisitions/hyperion/ 15https://developers.sap.com/topics/abap-platform.html 
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Industry Participants were Also Unaware of SQL Debug-
gers. 7 of 10 industry participants were also oblivious of 
database debuggers. One participant was “not even sure if 
something like that even exists!”(P9) The remaining 3 partic-
ipants mentioned being aware of stack traces or debuggers 
provided by modern frameworks, but never used them. 
Takeaways Awareness of database debuggers was low amongst 
participants (less than 20%). Except for one participant who 
was a debugging expert, database debuggers (and even pro-
gram debuggers) were reportedly rarely used. 

(High level) Debugging Strategies (R2-1). 
Most Participants use Trial-and-Error. Most participants 
seem to use a crude trial-and-error approach, regardless of 
database query tool: they try writing or updating their query, 
and then manually review the raw results from the DBMS. For 
example, one graduate student said: “I don’t have a systematic 
way of doing it and I kind of go by trial and error.”(P3) Many 
industry participants also seemed to rely heavily on raw errors, 
for example one participant said they only used “the errors 
SQL gives [him]” (P16) to debug queries. 
Raw DBMS Errors are Difficult to Interpret and Debug. Our 
participants stressed how painful it is for them to try and 
interpret raw exceptions from the DBMS, and how little help 
the exceptions are in understanding the errors in queries. A 
participant commented on database errors: 

SQL errors are like just the worst. They just tell you you 
messed up and not what [is messed up/wrong]? Some-
times, it’s also difficult to google it! (P19) 

Scanning Unexpected Results for Common Error Indica-
tors. All 20 participants pointed to some key factors that 
they checked for in the case where the query didn’t throw 
errors, but still exhibited unexpected behavior. Some partic-
ipants mentioned that summary metrics output by database 
query tools (e.g., IDEs) could be useful for debugging, such 
as how long the query took to execute, or the number of rows 
returned. Common (manual) debugging metrics included: 
• No records are returned (i.e., empty answer, subsection 2.7) 
• Presence of NULL entries 
• Presence of multiple entries (i.e., duplicates) 
• Total rows returned for a query component 
Even though these metrics seem simple to report, participants 
mentioned that none of their chosen tools reported these met-
rics by default; and they had to manually review the query 
results to compute them. Participants often used Microsoft 
Excel16 for this purpose. They exported the results to a spread-
sheet and used filters to evaluate their query results. However, 
this had clear limitations, for example a participant said that 

“this can’t work for complex and bigger queries.” (P11) 
Debugging Complex Queries Using Nested Error Checking. 
We asked participants how they circumvented the above limi-
tations with complex DBMS queries. We learned of the nested 
error checking, as a seemingly universal debugging strategy, 
used across nearly our entire participant pool. In one variant 
of this approach, participants break a complex query into a 
workflow of simpler components (e.g., SQL clauses, inner 

16https://office.live.com/start/Excel.aspx 

sub-queries), and debug the simplest component first. Once 
the first component is returning expected results, then the user 
moves on to the next simplest component (e.g., another clause, 
or outer sub-query), and so on. This strategy seems to align 
well with certain provenance-focused debugging techniques 
proposed in prior work (e.g., step-by-step illustrations of exe-
cution structure and why-not strategies). 

We observed a variant of this strategy that involves participants 
constructing their own unit tests in the form of small, targeted 
inputs. For example, one participant said: 

I would go to lower level development environments and 
work with a mock data which is similar to my actual data 
but just smaller, to try out my queries there. (P4) 

This debugging strategy has also been observed by Battle et al. 
for temporal queries [9]. Given a particular unit (represented 
by one or more records in the output), participants would 
manually evaluate this unit, to assess the correctness of their 
query. If the result(s) did not match expectations, the same 
iterative debugging strategies were used to add conditions to 
fix the unit. However, with this technique, participants could 
only hope that they had covered all of the needed test cases to 
ensure the query’s correctness. 
Alternative Debugging Methods. Some industry participants 
use conventional print statements after every query component 
to visit their query and find possible errors. 

An alternative program debugging technique "rubber duck 
debugging" was discussed by an industry professional (P19), 
where you explain your code logic line by line and in the 
process understand the error for yourself. He explained: 

90% of the times you understand what you’re doing 
wrong if you talk. You think you’ve stared at the query 
long enough, and it’s weird but talking helps logic, since 
you can’t really ask people around you always as they 
are busy or have headphones on. (P19) 

Many participants also verified their logic by writing pseudo-
code, as comments situated within their queries and code. 
Debugging is not Formally Taught. Both students and indus-
try professionals believe that debuggers are not formally taught 
in undergrad or grad courses. 4 of 10 industry participants 
pointed to rely on their colleagues and bosses too to learn how 
to evaluate their queries. One participant pointed out: 

I did a lot of pair programming with my boss when query-
ing databases. It was the way I learnt. I still use a lot 
of the same techniques and behaviours that I learnt from 
my boss. (P1) 

However, apparently none of our participants’ colleagues or 
senior mentors were seen regularly using debuggers either. 
One industry participant said: 

I haven’t seen any of my colleagues use debuggers. Also, 
during my training at [a major tech company], they would 
have told us if there were some tools much earlier. But, 
they haven’t. (P16) 

Thus, there seems to be a lack of educational infrastructure for 
debugging in general, which may explain in part the deficien-
cies in participants’ database debugging strategies. 
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Takeaways. Participants’ debugging strategies seem to coa-
lesce around a low-level, trial-and-error process, which can 
lead to considerable (and unpleasant) effort spent debugging 
database queries. Even worse, participants seemed to actively 
dislike using standard program debuggers until developing a 
mastery of them. Lack of educational support seems to be a 
key issue highlighted by multiple participants, which future 
debugging tools could address. However, observed debugging 
strategies do seem to align with proposed solutions, such as 
step-by-step illustration of execution structure (e.g., [45, 9] 
and “why” and “why not” debugging (e.g., [22, 21, 66]). 

Visual Aids Used (R2-2) 
We asked about any visual aids that might be used by the 
participants to help them debug their queries. Most observed 
techniques were based off manual drawing of flowcharts, show-
ing the process to be followed to reach the final results (also 
observed by Battle et al. [9]). However, participants generally 
tracked only part of the results to test certain conditions (i.e., 
the unit-test scenario mentioned above). Some participants 
would also write down the database schema(s) to have them on 
hand while writing the queries. In general, 9 of 20 participants 
created their own visual aids on paper. 
ER Diagrams are Bad for Debugging. The visual aid rec-
ommended most by participants was the Entity Relationship 
(ER) diagram [24], which illustrates the structure of a database 
schema. However, only 50% of the participants, mostly indus-
try participants, actually used this visual aid, and generally 
not for debugging. ER diagrams were mostly drawn as part of 
documentation, or by hand on white boards in team meetings 
(i.e., for communication purposes). A participant notes the 
limitations of ER diagrams for debugging: 

ER diagram helps in understanding the schema but I want 
to see how something in the beginning of the my query 
affects something at the end of my query. This knowledge 
is lost in the ER diagram. This is the minute thing I want 
the visual aid to capture, especially if it is complex! (P8) 

Other Debugging Visualizations from Commercial Tools. 
Some participants mentioned that powerful tools like 
Hadoop17 and SAP Hana6 provide features of visualising the 
data as bar charts, though a participant pointed out that: 

It’s not really helpful, as it only visualises up to 10,000 
rows. Having a visualization of only 10,000 rows in a 
database of a million rows, is not really helpful, making 
the feature useless. (P19) 

Participant Recommendations for Visual Aids. Many of the 
participants had recommendations of visual aids that could 
aid their debugging process. Most suggestions involved dis-
playing intermediate results of specific portions of the queries 
(similar to the approach proposed by Grust et al. [45]), high-
lighting the trace of where certain tuples came from (similar 
to the approach proposed by Battle et al. [9]), and having 
some kind of documentation for keywords, especially when 
working with different standards of one database language. 
One participant suggested a visualization showing how certain 
attributes transformed over the iterations of building the query, 
which could be interesting future work. 

17https://hadoop.apache.org/ 

9 of 20 participants mentioned that they derive query logic 
entirely in their heads. Of these participants, 7 said visual 
aids could still be helpful, mostly for tracking the nested error 
checking debugging strategy, which sounds similar to the 
visualization technique proposed by Battle et al. [9]. The 
remaining 2 said that visual aids would not help them and they 
would stick with the command line, as one said, “It’s faster 
for me to process it in my head than it is for me to put it down 
somewhere.” (P1) 
Takeaways. Some visual aids mentioned by users already have 
some support in commercial database tools (e.g., very sim-
ple charts, ER diagrams, and basic flow charts of low-level 
query operators). Interestingly, many of the visual aids recom-
mended by our participants have already been developed in the 
debugging literature, providing further support for these tech-
niques. However, most of these visual aids are not supported 
by existing commercial tools (as observed in section 2). 

Summary 
Here, we summarise the key takeaways of our interview study. 
Lack of Training and Awareness of Database Debugging 
Tools (R1). 19 of 20 participants we interviewed relied on 
informal, manual debugging techniques developed or learned 
on their own regardless of the size and complexity of the 
queries. 17 of 20 participants were unaware of any kind of 
database debuggers. Of 20, only one had actually used a 
database debugger. Many participants mentioned a lack of 
training in school and their workplace for proper usage of 
debugging tools in general. 
Participants Favor Nested Debugging Strategies (R2-1). All 
20 participants used the common strategy of breaking down a 
query into a workflow of simpler components, and debugging 
incrementally to get to a final, error-less query. All participants 
seemed to perform this process manually, oftentimes on paper. 
However, techniques are proposed in the literature to provide 
similar visual aids automatically (e.g., [45, 9]). 
Participants See Value in Having Better Visual Aids (R2-2). 
15 of 20 participants described using some form of visual aid 
to write and debug queries. The most common visual aids used 
for querying were ER diagrams, though they were not helpful 
in debugging. For debugging, participants pointed to vast 
use of flowcharts, scribbling names of tables and attributes, 
writing pseudo codes to get to final results and highlighting 
rows in tables as visual aids. Of the 5 participants that did 
not actively use visual aids, 4 could still see their value for 
debugging, especially if queries were long and complex. 

FEEDBACK FROM DATABASE EXPERTS (R3) 
Our analysis provided interesting insights, however, one ques-
tion remained: if users want new debugging functionality, and 
this functionality has already been proposed in the academic 
literature, why is it not available in commercial tools? We 
reached out to six database experts with experience in building 
commercial database tools. We asked them two questions to 
both sanity check and to provide additional context for our 
findings: 1) is there interest in industry in database query 
debugging; and 2) why have proposed techniques not been im-
plemented in commercial tools? The expert’s key takeaways: 
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Query Debugging is Important, But Not the Top Priority. 
We found that all experts agreed that query debugging is an im-
portant research problem to address and there is some industry 
interest. Most experts suggested that may be more pressing 
concerns for database companies, such as supporting database 
automation and performance, which could explain in part why 
we observe a gap between the literature and commercial tools. 
Collaborations With Industry May Be Critical to Improving 
Debugging Tools. One expert noted that some techniques may 
be too complicated and too specific to be useful in most real-
world debugging contexts. In particular, why not debugging 
requires users to carefully articulate positive and negative ex-
amples, either using a programming language or by manually 
labeling individual records, neither of which may be any easier 
or faster to execute over a basic nested debugging strategy. 
We see active efforts in developing new debugging methods in 
academia but limited resources to rigorously test techniques, 
and limited efforts in industry to improve debugging methods 
but many opportunities for testing them with real users. Thus 
there seems to be an opportunity for academics to effect strong 
positive change in industry through an active collaboration. 

SUMMARY AND DISCUSSION 
In this paper, we aim to understand how database users debug 
their database queries, summarize what techniques have been 
proposed in the literature to support query debugging, and 
ultimately identify specific ways in which we can better help 
these users to utilize DBMSs more effectively moving forward. 
To better understand what query debugging techniques exist 
in the literature, we reviewed 112 papers and tools across 
databases, visualization, and HCI. Hybrid techniques from 
multiple research areas seem to provide better user support 
and improved system performance. However, commercial 
tools seem to only provide basic program debugging support. 

To contextualize proposed techniques with users’ experience, 
we interviewed 20 database users, ranging from undergraduate 
students just learning how to use DBMSs, to industry veterans 
leveraging powerful, top-of-the-line DBMSs. However, across 
expertise levels, we saw roughly the same story: participants 
were largely unaware of database debugging tools (even com-
mercial ones), and resorted to low-level, manual debugging 
strategies that relied heavily on raw output from the DBMS. 
We noted an aversion to using standard debugging tools (even 
general program debuggers), which participants suggested 
could stem from a lack of educational infrastructure for how 
to use these tools. However users’ debugging strategies do 
seem to align well with some existing solutions (e.g., [45, 9]). 

Finally, we polled six database experts and learned: debugging 
support is important but not a high priority in industry; and 
proposed techniques need more rigorous evaluation to clarify 
how helpful they truly are in real-world debugging scenarios. 

Design Recommendations 
From our findings, we make the following suggestions for 
improving debugging tools in the future: 
Design Tools to Integrate into Existing Workflows. Many of 
our participants preferred their minimalist workflows. New de-
bugging tools may be more effective if they can be integrated 

with existing command line tools or IDEs. Furthermore, our 
participants worked with a range of commercial DBMSs, so 
it may prove useful to support multiple commercial DBMSs, 
which may have the added benefit of making it easier to estab-
lish collaborations in industry to build new tools. 
Prioritize Teaching Users How to Debug Queries Effectively. 
Our participants stressed a lack of formal training with debug-
ging tools. Educational modules could be developed to fill 
this gap. For example, to help new DBMS users, we can in-
corporate hover-triggered popups to explain database-specific 
terms as users interact with queries (and DBMS errors), such 
as what a relation is or how foreign keys work. However, our 
participants also seemed loath to learn how to use standard 
program debuggers, let alone query debuggers. Thus we see 
an opportunity to make debuggers easy to use and also easy 
for users to learn on their own. For example, we could analyze 
users’ interactions with the DBMS to detect experience levels, 
and use this information to deploy more learning-focused inter-
actions (e.g., novice users see terminology popups, but expert 
users do not). Furthermore, avoiding problematic assumptions 
about database expertise when designing new features, e.g., 
assuming all users are database (and data) experts (e.g., have 
the schema memorized), could benefit users. 
Automate Features to Support Nested Debugging Strategies. 
Our participants seemed to favor a nested approach to debug-
ging queries, and many hand-drew simple visual aids as part 
of this process. These visual aids seem straightforward to au-
tomate, and have been suggested in the literature (e.g., [45, 9]). 
These existing techniques should be prioritized as a starting 
point for improving query debugging features. Furthermore, 
we believe automated presentation of metadata for debugging 
purposes to be a potentially fruitful avenue for future work. 

Annotation features could also help users track their debugging 
progress. For example, color highlighting and text notes could 
help users keep track of query components already tested so 
far and employ nested debugging more effectively. Further-
more, these annotations could also be analyzed to develop 
smarter query testing features, such as generating unit tests 
automatically for specific query components. 
Limitations 
One limitation of this work is that we did not poll a large 
fraction of the database user population. As such, there may 
exist debugging strategies, tools, or visual aids that are not 
reflected in our results. However, our findings do corroborate 
key points and techniques observed in prior work on query 
debugging, suggesting that our users exhibit some known 
characteristics observed in other database user populations. 

Another potential limitation lies in the framing of our study 
design. By explicitly asking users in our study about how they 
incorporated visual aids in their debugging process, we may 
not have observed the participants’ natural usage of visual aids 
in terms of frequency and significance. However, we do find 
that users see value in visual aids, and some incorporate visual 
aids as part of their regular debugging process. 
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