Kangaroo: Caching Billions of Tiny Objects on Flash

Sara McAllister”, Benjamin Berg®, Julian Tutuncu-Macias®, Juncheng Yang*

Sathya Gunasekar®, Jimmy Lu®, Daniel S. Berger’, Nathan Beckmann®, Gregory R. Ganger*
*Carnegie Mellon University SFacebook TMicrosoft Research/University of Washington

Abstract

Many social-media and IoT services have very large work-
ing sets consisting of billions of tiny (100 B) objects. Large,
flash-based caches are important to serving these working
sets at acceptable monetary cost. However, caching tiny
objects on flash is challenging for two reasons: (i) SSDs
can read/write data only in multi-KB “pages” that are much
larger than a single object, stressing the limited number of
times flash can be written; and (ii) very few bits per cached
object can be kept in DRAM without losing flash’s cost advan-
tage. Unfortunately, existing flash-cache designs fall short of
addressing these challenges: write-optimized designs require
too much DRAM, and DRAM-optimized designs require too
many flash writes.

We present KANGAROO, a new flash-cache design that opti-
mizes both DRAM usage and flash writes to maximize cache
performance while minimizing cost. Kangaroo combines
a large, set-associative cache with a small, log-structured
cache. The set-associative cache requires minimal DRAM,
while the log-structured cache minimizes Kangaroo’s flash
writes. Experiments using traces from Facebook and Twitter
show that Kangaroo achieves DRAM usage close to the best
prior DRAM-optimized design, flash writes close to the best
prior write-optimized design, and miss ratios better than
both. Kangaroo’s design is Pareto-optimal across a range
of allowed write rates, DRAM sizes, and flash sizes, reduc-
ing misses by 29% over the state of the art. These results
are corroborated with a test deployment of Kangaroo in a
production flash cache at Facebook.

CCS Concepts: « Information systems — Information
retrieval; Flash memory.
Keywords: Flash, Caching, Tiny objects

1 Introduction

Many web services require fast, cheap access to billions
of tiny objects, each a few hundred bytes or less. Exam-
ples include social networks like Facebook or LinkedIn [16,

(OMom

This work is licensed under a Creative Commons Attribution International 4.0 License.

SOSP 21, October 26-29, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483568

243

\
Dcl;ébﬁlg/l Log Structured (LS)
KLog pr KSet Kangaroo
Kangaroo 010 0.1 (?.2 .0.3 0.4
Miss Ratio

(a) Overview. (b) Kangaroo reduces misses by 29%.

Fig. 1. (a) High-level illustration of Kangaroo’s design. (b) Miss
ratio achieved on a production trace from Facebook by different
flash-cache designs on a 1.9 TB drive with a budget of 16 GB DRAM
and three device-writes per day. Prior designs are constrained by
either DRAM or flash writes, whereas Kangaroo’s design balances
these constraints to reduce misses by 29%.

25, 71], microblogging services like Twitter [74, 75], ecom-
merce [18], and emerging sensing applications in the Internet
of Things [38, 48, 49]. Given the societal importance of such
applications, there is a strong need to cache tiny objects at
high performance and low cost (i.e., capital and operational
expense).

Among existing memory and storage technologies with ac-
ceptable performance, flash is by far the most cost-effective.
DRAM and non-volatile memories (NVMs) have excellent
performance, but both are an order-of-magnitude more ex-
pensive than flash. Thus, cost argues for using of large amounts
of flash with minimal DRAM.

Flash’s main challenge is its limited write endurance; i.e.,
flash can only be written so many times before wearing out.
Wearout is especially problematic for tiny objects because
flash can be read and written only at multi-KB granularity.
For example, writing a 100 B object may require writing a
4 KB flash page, amplifying bytes written by 40x and rapidly
wearing out the flash device. Thus, cost also argues for mini-
mizing excess bytes written to flash.

The problem. Prior flash-cache designs either use too much
DRAM or write flash too much. Log-structured caches write
objects to flash sequentially and keep an index (typically in
DRAM) that tracks where objects are located on flash [20,
35, 47, 63, 64, 67]. By writing objects sequentially and batch-
ing many insertions into each flash write, log-structured
caches greatly reduce the excess bytes written to flash. How-
ever, tracking billions of tiny objects requires a large index,
and even a heavily optimized index needs large amounts of
DRAM ([35]. Set-associative caches operate by hashing objects’
keys into distinct “sets,” much like CPU caches [16, 25, 55].
These designs do not require a DRAM index because an

https://doi.org/10.1145/3477132.3483568
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/

SOSP 21, October 26-29, 2021, Virtual Event, Germany

object’s possible locations are implied by its key. However,
set-associative caches write many excess bytes to flash. Ad-
mitting a single small object to the cache requires re-writing
an entire set, significantly amplifying the number of bytes
written to the flash device.

Our solution: Kangaroo. We introduce Kangaroo, a new
flash-cache design optimized for billions of tiny objects. The
key insight is that existing cache designs each address half
of the problem, and they can be combined to overcome each
other’s weaknesses while amplifying their strengths.

Kangaroo adopts a hierarchical design to achieve the best
of both log-structured and set-associative caches (Fig. 1a).
To avoid a large DRAM index, Kangaroo organizes the bulk
of cache capacity as a set-associative cache, called KSet. To
reduce flash writes, Kangaroo places a small (e.g., 5% of flash)
log-structured cache, called KLog, in front of KSet. KLog
buffers many objects, looking for objects that map to the
same set in KSet (i.e., hash collisions), so that each flash
write to KSet can insert multiple objects. Our insight is that
even a small log will yield many hash collisions, so only a
small amount of extra DRAM (for KLog’s index) is needed
to significantly reduce flash writes (in KSet).

The layers in Kangaroo’s design complement one another
to maximize hit ratio while minimizing system cost across
flash and DRAM. Kangaroo introduces three techniques to
efficiently realize its hierarchical design and increase its effec-
tiveness. First, Kangaroo’s partitioned index lets it efficiently
find all objects in KLog that map to the same set in KSet while
using a minimal amount of DRAM. Second, since Kangaroo
is a cache, not a key-value store, it is free to drop objects
instead of admitting them to KSet. Kangaroo’s threshold ad-
mission policy exploits this freedom to admit objects from
KLog to KSet only when there are enough hash collisions —
i.e., only when the flash write is sufficiently amortized. Third,
Kangaroo’s “RRIParoo” eviction policy improves hit ratio by
supporting intelligent eviction in KSet, even though KSet
lacks a conventional DRAM index to track eviction metadata.

Summary of results. We implement Kangaroo as a mod-
ule in CacheLib [16] (available at cachelib.org). We evaluate
Kangaroo by replaying production traces on real systems
and in simulation for sensitivity studies. Prior designs are
limited by DRAM usage or flash write rate, whereas Kan-
garoo optimizes for both constraints. For example, under
typical DRAM and flash-write budgets, Kangaroo reduces
misses by 29% on a production trace from Facebook (Fig. 1b),
lowering miss ratio from 0.29 to 0.20. Moreover, in simula-
tion, we show that Kangaroo scales well with flash capacity,
performs well with different DRAM and flash-write budgets,
and handles different access patterns well. We break down
Kangaroo’s techniques to see how much each contributes.
Finally, we show that Kangaroo’s benefits hold up in the real
world through a test deployment at Facebook.

Contributions. This paper contributes the following:

244

McAllister et al.

e Problem: We show that, for tiny objects, prior cache
designs require either too much DRAM (log-structured
caches) or too many flash writes (set-associative caches).
Key idea: We show how to combine log-structured and
set-associative designs to cache tiny objects on flash
at low cost, and we give a theoretical justification for
this design.

e Kangaroo design & implementation: Kangaroo intro-
duces three techniques to realize and improve the basic
design: its partitioned index, threshold admission, and
RRIParoo eviction. These techniques improve hit ratio
while keeping DRAM usage, flash writes, and runtime
overhead low.

Results: We show that, unlike prior caches, Kangaroo’s
design can handle different DRAM and flash-write
budgets. As a result, Kangaroo is Pareto-optimal across
a wide range of constraints and for different workloads.

2 Background and related work

This section discusses the important class of applications
relying on billions of tiny objects, why flash is needed to
cache them and the challenges flash brings, and the short-
comings of existing flash-cache designs.

2.1 Tiny objects are important and numerous

Tiny objects are prevalent in many large-scale systems:

e At Facebook, small objects are prevalent in the social
graph. For example, the average social-graph edge size
is under 100 B. Across edges, nodes, and other objects,
the average object size is less than 700 B [16, 25]. This
has led to the development of a dedicated flash caching
system for small objects [16].

At Twitter, tweets are limited to 280 B, and the average
tweet is less than 33 characters [57]. Due to the massive
and growing number of tweets, Twitter seeks a cost-
effective caching solution [76].

At Microsoft Azure, a growing use case is processing
updates from sensor data, such as from IoT devices in
Azure Streaming Analytics. Before an update can be
processed (e.g., to trigger a real-time action), the server
must fetch metadata (the sensor’s unit of measurement,
geolocation, owner, etc.) with an average size of 300 B.
For efficiency and availability, it caches the most pop-
ular metadata [38]. Another use case arises in search
advertising, where Azure caches predictions and other
results [48, 49].

Each of these systems accesses billions of objects that are
each significantly less than the 4 KB minimum write granu-
larity of block-storage devices. For example, Facebook logs
1.5 billion users daily [9] and just friendship connections
alone account for hundreds to thousands of edges per user [25,
68]. Twitter logs over 500 million new tweets per day and
serves over 190 million daily users [10]. While IoT update
frequencies and ad impressions are not publicly available,

cachelib.org

Kangaroo: Caching Billions of Tiny Objects on Flash

the number of connected devices is estimated to have sur-
passed 50 billion in 2020 [33], and the average person was
estimated to see 5,000 ads every day as early as 2007 [65].

2.2 Caching tiny objects in flash is hard

While individual objects in the above applications are tiny,
application working sets on individual servers still add up to
TBs of data. To reduce throughput demands on back-end data-
management systems, applications rely on large-scale, cost-
efficient caches, as a single caching server can replace tens
of backend servers [16]. Unfortunately, as described below,
current caching systems are inefficient for tiny objects. There
is therefore a need for caching systems optimized specifically
for large numbers of tiny objects.

Why not just use memory? DRAM is expensive, both in
terms of acquisition and power cost per bit. This makes tradi-
tional DRAM caches hard to scale, particularly with data sizes
increasing exponentially [4]. DRAM capacity is also often
limited due to operational concerns. Data-center operators
generally provision a limited number of server configura-
tions to reduce management complexity. It is not possible in
some real deployments to fine-tune server configuration for
caching [66]. Moreover, DRAM is often in high demand, so
all applications are encouraged to minimize DRAM usage.
For example, the trend in recent years at Facebook is towards
less DRAM and more flash per server [16, 66].

Why flash? Flash currently provides the best combination
of performance and cost among memory and storage tech-
nologies, and is thus the technology of choice for most large-
scale caches [16, 22, 23, 35, 64]. It is persistent, cheaper and
more power-efficient than DRAM, and much faster than me-
chanical disks. While flash-based caches do use DRAM for
metadata and “hot” objects, the bulk of the cache capacity is
flash to reduce end-to-end system cost.

Challenges in flash caching. Flash presents many prob-
lems not present in DRAM caches. A big one is that flash
has limited write endurance, which means there is a limit
on the number of writes before the flash device wears out
and must be replaced [24, 42, 46]. Without care, caches can
quickly wear out flash devices as they rapidly admit and
evict objects [16, 35]. Hence, many existing flash caches
over-provision capacity, suffering more misses in order to
slow wearout [16, 23]. New flash technologies, such as multi-
layer QLC (four bits per cell) and PLC (five bits per cell) [28],
increase capacity and decrease cost but significantly reduce
write endurance.

Exacerbating the endurance issue, flash drives suffer from
write amplification. Write amplification occurs when the
number of bytes written to the underlying flash exceeds the
number of bytes of data originally written. Write amplifi-
cation is expressed as a multiplier of the number of bytes
written, and thus a value of of 1X is minimal, indicating no

245

SOSP 21, October 26-29, 2021, Virtual Event, Germany

-
o

Device Write
Amplification
(6]

o

0 25 50 75
Flash Capacity Utilization [%]

100

Fig. 2. The effect of flash over-provisioning on device-level write
amplification (DLwA) of random writes of various sizes. DLWA in-
creases as over-provisioning decreases.

extra writes. Flash devices suffer from both device-level write
amplification and application-level write amplification [42].

Device-level write amplification (DLwA) [35, 47, 67] occurs
when the flash translation layer (FTL) writes more flash pages
than asked for by the storage application (e.g., file system,
database, or cache). Current flash drives implement the age-
old block-storage interface, wherein hosts read and write
logical blocks in a numerical logical-block address (LBA)
namespace. Generally, the internal flash-page size and the
external logical-block size are the same, with 4KB being
common, even though the flash device can only erase pages
in much larger (e.g., 256 MB) “erase blocks”. Most DLWA is
caused by cleaning activity that copies live pages elsewhere
before an erase block is cleared.

Generally speaking, bLwa worsens as more of the raw
flash capacity is utilized and as access patterns consist more
of small, random writes. A common approach to reduce bLwa
is over-provisioning, i.e., only exposing a fraction of the raw
flash capacity in the LBA namespace, so that cleaning tends
to find fewer live pages in victim erase blocks [16, 23]. Fig. 2
shows DLwA vs. utilized capacity for random 4 KB writes to a
1.9 TB flash drive. As expected, bLwa significantly increases
as over-provisioning decreases, from ~1X at 50% utilization
to 10X at 100% utilization.

Application-level write amplification (ALWA) occurs when
the storage application re-writes some of its own data as part
of its storage management. One form of this is akin to FTL
cleaning, such as cleaning in log-structured file systems [46,
59] or compaction in log-structured merge trees [6, 8]. An-
other form is caused by having to write an entire logical
block. To write a smaller amount of data, the application
must read the block, install the new data, and then write the
entire block [54]. For example, installing 1 KB of new data
into a 4 KB logical block involves rewriting the other 3 KB,
giving ALWA of 4X. Ideally, the unmodified data in the block
would not have been rewritten.

Why caching tiny objects is hard. The size of tiny objects
makes caching them on flash challenging. Tracking billions
of tiny objects individually in large storage devices can re-
quire huge metadata structures [35], which either require
a huge amount of DRAM, additional flash writes (if the in-
dex lives on flash), or both. To amortize tracking metadata,
one could group many tiny objects into a larger, long-lived

SOSP 21, October 26-29, 2021, Virtual Event, Germany

“meta-object”. This can be inefficient, however, if individual
objects in the meta-object are accessed in disparate patterns.

Tiny objects are also a major challenge for write amplifica-
tion. Traditional cache designs (i.e., for DRAM caches) freely
re-write objects in place, leading to small, random writes; i.e.,
the worst case for DLwA. Since tiny objects are much smaller
than a logical block, re-writing them in place would addi-
tionally involve substantial ALwa — 40x for a 100 B object
in a 4KB logical block — which is multiplicative with DLwWA.
Grouping tiny objects into larger meta-objects, as mentioned
above, shifts ALwa from logical blocks to meta-objects but
does not address the problem.

2.3 Current approaches and related work

This section discusses existing solutions for flash caching
and their shortcomings for caching tiny objects.

Key-value stores: Flash-efficient key-value stores have been
developed and demonstrated [8, 34, 50, 58, 72], and it is tempt-
ing to consider them when a cache is needed. But key-value
stores generally assume that deletion is rare and that stored
values must be kept until told otherwise. In contrast, caches
delete items frequently and at their own discretion (i.e., every
time an item is evicted). With frequent deletions, key-value
stores experience severe write amplification, much lower
effective capacity, or both [15, 23, 35, 67, 72].

As a concrete example, consider SILT [50], the key-value
store that comes closest to Kangaroo in its high-level design.
Like Kangaroo, SILT uses a multi-tier flash design to balance
memory index size vs. write amplification. Unfortunately,
SILT’s design is poorly suited to caching. For example, SILT’s
two main layers, which hold >99% of entries, are immutable.
Because those layers are immutable, DELETE operations are
logged and do not immediately reclaim space. Thus, cache
evictions result in holes (i.e., reduced cache capacity) until the
next compaction (merge and re-sort) occurs. One can reduce
the lost cache capacity with more frequent compactions, but
at a large penalty to performance and ALwWA.

Similar issues with DELETEs affect most key-value stores,
often with this same trade-off between compaction frequency
and holes in immutable data structures. One may be able to
reduce these overheads somewhat by coordinating eviction
with compaction operations, but this is not trivial and not
how these systems were designed. For instance, Netflix used
RocksDB [8] as a flash cache and had to over-provision by
67% due to this issue [23]. Some key-value stores reduce ALwa
by making reads less efficient [51, 58, 72], but do not sidestep
the fundamental challenge of DELETEs wasting capacity. In
contrast, flash caches have the freedom to evict objects when
convenient. This lets flash caches co-design data structures
and policies so that DELETEs are efficient and minimal space
is wasted.

Log-structured caches: To reduce write amplification, many
flash caches employ a log structure on flash with an index

246

McAllister et al.

in DRAM to track objects’ locations [20, 35, 47, 63, 64, 67].
While this solution often works well for larger objects, it re-
quires prohibitively large amounts of DRAM for tiny objects,
as the index must keep one entry per object. The index can
spill onto flash [72], but spilling adds flash reads for lookups
and flash writes to update the index as objects are admitted
and evicted.

Even Flashield [35], a recent log-structured cache design
for small objects, faces DRAM problems for larger flash de-
vices. After optimizing its DRAM usage, Flashield needs 20
bits per object for indexing plus approximately 10 bits per
object for Bloom filters. Thus, Flashield would need 75 GB
of DRAM to track 2 TB of 100 B objects. In fact, Flashield’s
DRAM usage is much higher than this because it relies on
an in-memory cache to decide which objects to write to
flash. The DRAM cache must grow with flash capacity or
else prediction accuracy will suffer, leading to more misses.

Thus, the total DRAM required for a log-structured cache
can quickly exceed the amount available and significantly
increase system cost and power. Technology trends will make
these problems worse over time, since cost per bit continues
to decrease faster for flash than for DRAM [28, 73].

Set-associative flash caches: Metadata to locate objects
on flash can be reduced by restricting their possible loca-
tions [55]. Facebook’s CacheLib [16] implements such a
design for small objects (<2KB), e.g., items in the social
graph [25]. CacheLib’s “small-object cache” (SOC) is a set-
associative cache with variable-size objects, using a hash
function to map each object to a specific 4KB set (i.e., a flash
page). With this scheme, SOC requires no index and only
~3 bits of DRAM per object for per-set Bloom filters.

Although more DRAM-efficient, set-associative designs
suffer from excessive write rates. Inserting a new object into
a set means rewriting an entire flash page, most of which is
unchanged, incurring 40X aLwa for a 100 B object and 4 KB
page as discussed above. In addition, flash writes are a worst
case for pLwA: small and random (Fig. 2). The multiplicative
nature of ALwa and pLwA compounds the harmful effect on
device lifetimes.

Set-associative flash caches limit their flash write-rate
through two main techniques. To reduce DLwA, set-associative
flash caches are often massively over-provisioned. For exam-
ple, CacheLib’s SOC is run in production with over half of
the flash device empty [16]. That is, the cache requires more
than twice the physical flash to provide a given cache capac-
ity. Additionally, to limit ALwa, CacheLib’s SOC employs a
pre-flash admission policy [16, 35] that rejects a fraction of
objects before they are written to flash. Unfortunately, both
techniques reduce the cache’s achievable hit ratio.

Summary: Prior work does not adequately address how to
cache tiny objects in flash at low cost. Log-structured caches
require too much DRAM, and set-associative caches add too
much write amplification.

Kangaroo: Caching Billions of Tiny Objects on Flash

KLog Index Bloomfilters

DRAM
@ Cache @ @ _—
> g —| _/g]:lj:ll:l Cache

DRAM l Miss
Flash
KLog KSet| |m

(a) A lookup in Kangaroo.

SOSP 21, October 26-29, 2021, Virtual Event, Germany

©)

]
DRAM
Flash

(b) Insertion and eviction in Kangaroo.

Fig. 3. Overview of Kangaroo. Objects first go to a tiny DRAM cache; then KLog, a small on-flash log-structured cache with an in-DRAM
index; and finally KSet, a large on-flash set-associative cache. KLog minimizes flash writes, and KSet minimizes DRAM usage.

3 Kangaroo Overview and Motivation

Kangaroo is a new flash-cache design optimized for bil-
lions of tiny objects. Kangaroo aims to maximize hit ratio
while minimizing DRAM usage and flash writes. Like some
key-value stores [27, 50, 52], Kangaroo adopts a hierarchical
design, split across memory and flash. Fig. 3 depicts the two
layers in Kangaroo’s design: (i) KLog, a log-structured flash
cache and (ii) KSet, a set-associative flash cache; as well as a
DRAM cache that sits in front of Kangaroo.

Basic operation. Kangaroo is split across DRAM and flash.
As shown in Fig. 3a, (D lookups first check the DRAM cache,
which is very small (<1% of capacity). 2) If the requested
key is not found, requests next check KLog (~5% of capacity).
KLog maintains a DRAM index to track objects stored in a
circular log on flash. (3 If the key is not found in KLog’s
index, requests check KSet (~95% of capacity). KSet has no
DRAM index; instead, Kangaroo hashes the requested key
to find the set (i.e., the LBA(s) on flash) that might hold the
object. If the requested key is not in the small, per-set
Bloom filter, the request is a miss. Otherwise, the object is
probably on flash, so the request reads the LBA(s) for
the given set and scans for the requested key.

Insertions follow a similar procedure to reads, as shown
in Fig. 3b. @ Newly inserted items are first written to the
DRAM cache. This likely pushes some objects out of the
DRAM cache, where they are either dropped by KLog’s
pre-flash admission policy or added to KLog’s DRAM
index and @ appended to KLog’s flash log (after buffering
in DRAM to batch many insertions into a single flash write).
Likewise, inserting objects to KLog will push other objects
out of KLog, which are either dropped by another ad-

mission policy or inserted into KSet. Insertions to KSet
operate somewhat differently than in a conventional cache.
For any object moved from KLog to KSet, Kangaroo moves
all objects in KLog that map to the same set to KSet, no matter
where they are in the log. Doing this amortizes flash writes
in KSet, significantly reducing Kangaroo’s ALwA.

Design rationale. Kangaroo relies on its complementary
layers for its efficiency and performance. At a high level,
KSet minimizes DRAM usage and KLog minimizes flash
writes. Like prior set-associative caches, KSet eliminates
the DRAM index by hashing objects’ keys to restrict their
possible locations on flash. But KSet alone suffers too much

write amplification, as every tiny object writes a full 4KB
page when admitted. KLog comes to the rescue, serving as a
write-efficient staging area in front of KSet, which Kangaroo
uses to amortize KSet’s writes.

On top of this basic design, Kangaroo introduces three
techniques to minimize DRAM usage, minimize flash writes,
and reduce cache misses. (i) Kangaroo’s partitioned index
for KLog can efficiently find all objects in KLog mapping
to the same set in KSet, and is split into many independent
partitions to minimize DRAM usage. (ii) Kangaroo’s threshold
admission policy between KLog and KSet only admits objects
to KSet when at least n objects in KLog map to the same set,
reducing ALwa by > nX. (iii) Kangaroo’s “RRIParoo” eviction
improves hit ratio in KSet by approximating RRIP [43], a
state-of-the-art eviction policy, while only using a single bit
of DRAM per object.

Theoretical foundations. We develop a Markov model of
Kangaroo’s basic design, including threshold admission (fully
described in Appendix A). This model rigorously demon-
strates that Kangaroo can greatly reduce ALwa compared to
a set-only design, without any increase in miss ratio. (In fact,
RRIParoo, which is not modeled, significantly improves miss
ratio with negligible impact on ALwA.)

Formally, we assume the commonly used independent ref-
erence model [11, 17, 31, 32, 40, 44], in which objects are
referenced independently with fixed probability per object.
However, we make no assumptions about the object popu-
larity distribution, so Theorem 1 holds across any popularity
distribution (uniform, Zipfian, etc.). Suppose that KLog con-
tains q objects; KSet contains s sets with w objects each;
objects are admitted to flash with a p probability; and objects
are only admitted to KSet if at least n new objects are being
inserted.

Theorem 1. Kangaroo’ app-level write amplification is

Wl_‘"x(")
Fx(WE[X|X > n] |

ALWAKangaroo = P 1+ (1)
where X ~ Binomial(q,1/s) and Fx(n) = S PIX =i]
is the probability of a set being re-written. Furthermore, the
probability of admitting an object to KSet isP [X > n|X > 1].

For example, a reasonable parameterization of Kangaroo
on a 2 TB drive with 5% of flash dedicated to KLog is ¢ = 5-108,
s = 4.6-10%, w = 40, p = 1, and n = 2, which results in

247

SOSP 21, October 26-29, 2021, Virtual Event, Germany

ALWAKangaroo ~ 5.8. In contrast, a set-associative cache of the
same size and admission probability, P [X > n|X > 1] = 0.45,
gets ALWAsets = W+ 0.45 = 17.9X. That is, Kangaroo improves
ALWA by ~ 3.08x, a large decrease in ALwa with only a small
percentage of flash dedicated to KLog.

4 Kangaroo Design and Implementation

This section describes the techniques introduced in KLog
and KSet to reduce DRAM, flash writes, and miss ratio.

4.1 Pre-flash admission to KLog

Like previous flash caches, Kangaroo may not admit all
objects evicted from the DRAM cache [16, 29, 30, 35-37]. It
has a pre-flash admission policy that can be configured to
randomly admit objects to KLog with probability p, decreas-
ing Kangaroo’s write rate proportionally without additional
DRAM overhead. Compared to prior designs, Kangaroo can
afford to admit a larger fraction of objects to flash than prior
flash caches due to its low ALwa; in fact, except at very low
write budgets, Kangaroo admits almost all objects to KLog.

4.2 Klog

KLog’s role is to minimize the flash cache’s ALwa without
requiring much DRAM. To accomplish this, it must support
three main operations: LookuP, INSERT, and ENUMERATE-
SET. ENUMERATE-SET allows KLog to find all objects mapping
to the same set in KSet. LookuP and INSERT operate similarly
to a conventional log-structured cache with an approximate
index. However, the underlying data structure is designed so
that ENUMERATE-SET is efficient and has few false positives.

Operation. Like other log-structured caches, KLog writes
objects to a circular buffer on flash in large batches and tracks
objects via an index kept in DRAM. To support ENUMERATE-
SET efficiently, KLog’s index is implemented as a hash ta-
ble using separate chaining. Each index entry contains an
offset to locate the object in the flash log, a tag (partial
hash of the object’s key), a next-pointer to the next en-
try in the chain (for collision resolution), eviction-policy
metadata (described in Sec. 4.4), and a valid bit.

Lookup: To look up a key (Fig. 4a), (D KLog determines
which bucket it belongs to by computing the object’s set in
KSet. @ KLog traverses index entries in this bucket, ignoring
invalid entries, until a tag matches a hash of the key. If there
is no matching tag, KLog returns a miss. 3) KLog reads the
flash page at of fset in the log. After confirming a full key
match, KLog returns the data and updates eviction-policy
metadata.

INserT: To insert an object (Fig. 4b), (D KLog creates an index
entry, adds it to the bucket corresponding to the key’s set
in KSet, and appends the object to an in-DRAM buffer. The
on-flash circular log is broken into many segments, one of
which is buffered in DRAM at a time. 2) Once the segment
buffer is full, it is written to flash.

248

McAllister et al.

Partitions Partitions Partitions
hash(key) @
Tables @ __ Tables Tables @
Set —» [_Jext]] M Lﬂt_asmtt
@ < offsetftaginext
loffsctlEBl__1[|
DRAM \
Flash O @ KSet
KLog =
(a) KLog lookup. (b) KLog insertion. (c) KLog eviction.
Fig. 4. Overview of KLog operations.
Component Naive Log-Only Naive Kangaroo Kangaroo
» offset 29b 25b 19b
g tag 29b 29b 9b
5 next-pointer 64b 64b 16b
¥ Eviction metadata 67b 58b 3b
2 valid 1b 1b 1b
Sub-total 190 bits/obj 177 bits/obj 48 bits/obj
~ Bloom filter - 3b 3b
) L
‘Q Eviction - 5b 1b
Sub-total - 8 bits/obj 4 bits/obj
= Index buckets ~3.1b ~3.1b ~0.8b
g Log size 100% = 181b 5% =8.9b 5% =2.4b
5 Set size 0% 95% =7.6b 95% = 3.8b
Total 193.1 bits/obj 19.6 bits/obj 7.0 bits/obj

Table 1. Breakdown of DRAM per object for a 2 TB cache, compar-
ing Kangaroo to a naive log-structured cache and Kangaroo with a
naive log index. Bucket and LRU overhead assume 200 B objects.

ENUMERATE-SET: The ENUMERATE-SET(x) operation returns
a list of all objects currently in KLog that map to the same
set in KSet as object x. This operation is efficient because,
by construction, all such objects will be in the same bucket
in KLog’s index. That is, KLog intentionally exploits hash
collisions in its index so that it can enumerate a set simply
by iterating through all entries in one index bucket.

Internal KLog structure. As depicted in Fig. 4, KLog is
structured internally as multiple partitions. Each partition is
an independent log-structured cache with its own flash log
and DRAM index. Moreover, each partition’s index is split
into multiple tables, each an independent hash table.

This partitioned structure reduces DRAM usage, as de-
scribed next, but otherwise changes the operation of KLog
little. The table and partition are inferred from an object’s
set in KSet. Hence, all objects in the same set will belong to
the same partition, table, and bucket; and operations work
as described above within each table.

Reducing DRAM usage in KLog. Table 1 breaks down Kan-
garoo’s DRAM usage per object vs. a naive log-structured
design as a standalone cache (“Naive Log-Only”) and as a
drop-in replacement for KLog (“Naive Kangaroo”).

The flash of fset must be large enough to identify which
page in the flash log contains the object, which requires
log,(LogSize/4KB) bits. By splitting the log into 64 parti-
tions, KLog reduces LogSize by 64X and saves 6b in the
pointer.

Kangaroo: Caching Billions of Tiny Objects on Flash

The tag size determines the false-positive rate in the index;
i.e., a smaller tag leads to higher read amplification. KLog
splits the index into 2%° tables. Since the table is inferred
from the key, all keys in one table effectively share 20 b of
information, and KLog can use a much smaller tag to achieve
the same false positive rate as the naive design.!

KLog’s structure also reduces the next-pointer size. We
only need to know the offset into memory allocated to the
object’s index table. Thus, rather than using a generic mem-
ory pointer, we can store a 16 b offset, which allows up to
216 items per table. KLog can thus index 23¢ items as param-
eterized (12.5 TB of flash with 200 B objects), which can be
increased by splitting the index into more tables.

In a naive cache using LRU eviction, each entry keeps
a pointer to adjacent entries in the LRU list. This requires
2 - log,(LogSize/Ob jectSize) bits. In contrast, Kangaroo’s
RRIParoo policy (Sec. 4.4) is based on RRIP [43] and only
needs 3 b per object in KLog (and even less in KSet).

Finally, each bucket in KLog’s index requires one pointer
for the head of the chain. In naive logs, this is a 64 b pointer.
In KLog, it is a 16 b offset into the table’s memory. KLog
allocates roughly one bucket per set in KSet. With 4 KB sets
and 200 B objects, the per-object DRAM overhead is 3.1b
(Naive) or 0.8b (KLog) per object.

All told, KLog’s partitioned structure reduces the per-
object metadata from 190 b to 48 b per object, a 3.96X savings
vs. the naive design. Compared to prior index designs, KLog’s
index uses slightly more DRAM per object than the state-
of-the-art (30 b per object in Flashield [35]), but it supports
ENUMERATE-SET and has fewer false positives. Most impor-
tantly, KLog only tracks ~5% of objects in Kangaroo, so index-
ing overheads are just 3.2 b per object. Adding KSet’s DRAM
overhead gives a total of 7.0 b per object, a 4.3X improvement
over the state-of-the-art.

4.3 KLog — KSet: Minimizing flash writes

Write amplification in KLog is not a significant concern
because it has a ALwA close to 1x and writes data in large
segments, minimizing bLwA. However, KSet’s write ampli-
fication is potentially problematic due to its set-associative
design. Kangaroo solves this by using KLog to greatly reduce
ALWA in KSet: namely, by amortizing each flash write in KSet
across multiple admitted objects.

Moving objects from KLog to KSet. A background thread
keeps one segment free in each log partition. This thread
flushes segments from the on-flash log in FIFO order, moving
objects from KLog to KSet as shown in Fig. 4c. For each
victim object in the flushed segment, this thread @ calls
ENUMERATE-SET to find all other objects in KLog that should
be moved with it; (2a) if there are not enough objects to move
(see below), the victim object is dropped or, if popular, is

IProcessor caches reduce tag size vs. a fully associative cache similarly;
each index table in KLog corresponds to a “set” in the processor cache.

249

SOSP 21, October 26-29, 2021, Virtual Event, Germany

100
©
]
£ 50/
e
<
X

1 2 3 4 1 2 3 4
Threshold Threshold
(a) Percent of objects admitted. (b) ALWA.

Fig. 5. Modeled (a) admission percentage and (b) ALwa for Kangaroo
with different threshold values and object sizes, assuming 4 KB sets
and KLog w/ 5% of capacity.

re-admitted to KLog; otherwise, the victim object and all
other objects returned by ENUMERATE-SET are moved from
KLog to KSet in a single flash write.

Instead of flushing one segment at a time, one could fill
the entire log and then flush it completely. But this leaves
the log half-empty, on average. Flushing one segment at
a time keeps KLog’s capacity utilization high, empirically
80-95%. Incremental flushing also increases the likelihood of
amortizing writes in KSet, since each object spends roughly
twice as long in KLog and is hence more likely to find another
object in the same set when flushed.

Threshold admission to KSet. Kangaroo amortizes writes
in KSet by flushing all objects in the same set together, but
inevitably some objects will be the only ones in their set
when they are flushed. Moving these objects to KSet would
result in the same excessive ALWA as a naive set-associative
cache. Thus, Kangaroo adds an admission policy between
KLog and KSet that sets a threshold, n, of objects required to
write a set in KSet. If ENUMERATE-SET(x) returns fewer than
n objects, then x is not admitted to KSet.

Fig. 5 shows the effect of thresholding on ALwa and KSet’s
admission probability for different object sizes using The-
orem 1, keeping KLog at 5% of cache size. With no thresh-
olding (n = 1), no objects are rejected; but as the threshold
increases more objects are rejected (Fig. 5a). Also, since more
objects fit in the KLog when objects are smaller, smaller
objects are more likely to be admitted. Thresholding sig-
nificantly reduces Atwa (Fig. 5b). Importantly, the Atwa
savings are larger than the fraction of objects rejected, un-
like purely probabilistic admission. For instance, with 100 B
objects, threshold n = 2 admits 44.4% of objects, but its write
rate is only 22.8% of the write rate with threshold n = 1.

To avoid unnecessary misses to popular objects that do
not meet the threshold when moving from KLog to KSet,
Kangaroo readmits any object that received a hit during its
stay in KLog back to the head of the log. This lets Kangaroo
retain popular objects while only slightly increasing overall
write amplification (due to KLog’s minimal ALwa).

4.4 KSet

KSet’s role is to minimize the overall DRAM overhead
of the cache. KSet employs a set-associative cache design
similar to CacheLib’s Small Object Cache [16]. This design

SOSP 21, October 26-29, 2021, Virtual Event, Germany

splits the cache into many sets, each holding multiple objects;
by default, each set is 4 KB, matching flash’s read and write
granularity. KSet maps an object to a set by hashing its key.
Since each object is restricted to a small number of locations
(i-e., one set), an index is not required. Instead, to look up a
key, KSet simply reads the entire set off flash and scans it for
the requested key.

To reduce unnecessary flash reads, KSet keeps a small
Bloom filter in DRAM built from all the keys in the set. These
Bloom filters are sized to achieve a false positive rate of
about 10%. Whenever a set is written, the Bloom filter is
reconstructed to reflect the set’s contents.

RRIParoo: Usage-based eviction without a DRAM index.
Usage-based eviction policies can significantly improve miss
ratio, effectively doubling the cache size (or more) with-
out actually adding any resources [12, 20, 21, 43, 64]. Un-
fortunately, implementing these policies on set-associative
flash caches is hard, as such policies involve per-object meta-
data that must be updated whenever an object is accessed.
Since KSet has no DRAM index to store metadata and can-
not update on-flash metadata without worsening ALwa, it
is not obvious how to implement a usage-based eviction
policy. For these reasons, most flash caches use FIFO evic-
tion [2,5,7,8, 16, 26, 38, 41, 62, 69], which keeps no per-object
state. Unfortunately, FIFO significantly increases miss ratio
because popular objects continually cycle out of the cache.

Kangaroo introduces RRIParoo, a new technique to effi-
ciently support usage-based eviction policies in flash caches.
Specifically, RRIParoo implements RRIP [43], a state-of-the-
art eviction policy originally proposed for processor caches,
while using only ~1 bit of DRAM per object and without any
additional flash writes.

Background: How RRIP works. RRIP is essentially a multi-bit
clock algorithm: RRIP associates a small number of bits with
each object (3 bits in Kangaroo), which represent reuse pre-
dictions from NEAR reuse (000) to FAR reuse (111). Objects
are evicted only once they reach rAr. If there are no FAR
objects when something must be evicted, all objects’ predic-
tions are incremented until at least one is at FAR. Objects
are promoted to NEAR (000) when they are accessed. Finally,
RRIP inserts new objects at LONG (110) so they will be evicted
quickly, but not immediately, if they are not accessed again.
This insertion policy handles scans that can degrade LRU’s
performance.

RRIParoo’s key ideas. There are two ideas to support RRIP
in KSet. First, rather than tracking all of RRIP’s predictions
in a DRAM index, RRIParoo stores the eviction metadata in
flash and keeps only a small portion of it in DRAM. Second,
to reduce DRAM metadata to a single bit, we observe that
RRIP only updates predictions upon eviction (incrementing
predictions towards FAR) and when an object is accessed
(promoting to NEAR). Our insight is that, so long as KSet
tracks which objects are accessed, promotions can be deferred

250

McAllister et al.

(1) Start Bloomiilt (2) (3) (4)
; oomtilters | Update |Increment Merge
Compaction CEEE
[E]6] [E]6]
RRIP bits
DRAM (0TOT0T (O]0TOT (07010 0]
Flash n
BJo]
cl1]

KLog KSet

Fig. 6. RRIParoo implements RRIP eviction with only 1 b in DRAM
per object and no additional flash writes.

to eviction time, so that all updates to on-flash RRIParoo
metadata are only made at eviction, when the set is being
re-written anyway. Hence, since KSet can track whether an
object has been accessed using only single bit in DRAM, KSet
achieves the hit-ratio of a state-of-the-art eviction policy
with one-third of the DRAM usage (1b vs. 3b).

RRIParoo operation. RRIParoo allocates enough metadata to
keep one DRAM bit per object on average; e.g., 40 b for 4KB
sets and 100 B objects. Objects use the bit corresponding to
their position in the set (e.g., the i object uses the i? bit), so
there is no need for an index. If there are too many objects,
RRIParoo does not track hits for the objects closest to NEAR,
as they are least likely to be evicted.

Kangaroo also uses RRIP to merge objects from KLog.
Tracking hits in KLog is trivial because it already has a DRAM
index. Objects are inserted into KLog at LONG prediction (like
usual), and their predictions are decremented towards NEAR
on each subsequent access. Then, when moving objects from
KLog to KSet, KSet sorts objects from NEAR to FAR and fills
up the set in this order until out of space, breaking ties in
favor of objects already in KSet.

Example: Fig. 6 illustrates this procedure, showing how a
set is re-written in KSet. 1) We start when KLog flushes a
segment containing object F, which maps to a set in KSet.
KLog finds a second object, E, elsewhere in the log that also
maps to this set. Meanwhile, the set contains objects /', B, C,
and D with the RRIP predictions shown on flash, and B has
received a hit since the set was last re-written, as indicated
by bits in DRAM. (2) Since B received a hit, we promote its
RRIP prediction to NEAR and clear the bits in DRAM. (3) Since
no object is at FAR, we increment all objects’ predictions by 3,
whereupon object / reaches FAR. @ Finally, we fill up the set
by merging objects in DRAM and flash in prediction-order
until the set is full. The set now contains B, F, D, and C;

was evicted, and E stays in KLog for now since its KLog
segment was not flushed. (The set on flash is only written
once, after the above procedure completes.)

DRAM usage. As shown in Table 1, KSet needs up to 4
bits in DRAM per object: one for RRIParoo and three for
the Bloom filters. Combined with the DRAM usage of KLog
that contains about 5% of objects, Kangaroo needs =7.0b

Kangaroo: Caching Billions of Tiny Objects on Flash

Parameter Value

Total cache capacity 93% of flash

Log size 5% of flash
Admission probability to log from DRAM 90%
Admission threshold to sets from log 2

Set size 4KB

Table 2. Kangaroo’s default parameters.

per object, 4.3 less than Flashield [35]. Moreover, the 1b
per object DRAM overhead for RRIParoo can be lowered
by tracking fewer objects in each set. Taken to the extreme,
this would cause the eviction policy to decay to FIFO, but it
allows Kangaroo to adapt to use less DRAM if desired.

5 Evaluation

This section presents experimental results from Kanga-
roo and prior systems. We find that: (i) Kangaroo reduces
misses by 29% under realistic system constraints. (ii) Kanga-
roo improves the Pareto frontier when varying constraints.
(iii) In a production deployment, Kangaroo reduces flash-
cache misses by 18% at equal write rate and reduces write
rate by 38% at equal miss ratios. We also break down Kanga-
roo by technique to see where its benefits arise.

5.1 Experimental setup

Implementation. We implement Kangaroo in C++ as amod-
ule within the CacheLib caching library [16]. Table 2 de-
scribes Kangaroo’s default parameters; we evaluate sensitiv-
ity to these parameters in Sec. 5.4.

We run experiments on two 16-core Intel Xeon CPU E5-
2698 servers running Ubuntu 18.04, one with 64 GB of DRAM
and one with 128 GB of DRAM. We use Western Digital
SN840 drives with 1.92 TB rated at three device-writes per
day. This gives a sustained write budget of 62.5 MB/s. We
chose these configurations to be similar to those deployed
in the large-scale production clusters that contributed traces
to this work, but with extra DRAM to let us explore large
log-structured caches.

Comparisons. We compare Kangaroo to (i) CacheLib’s small
object cache (SA), a set-associative design that currently
serves the Facebook Social Graph [25] in production; and
(ii) an optimistic version of a log-structured cache (LS) with
a full DRAM index. For LS, we configure KLog to index the
entire flash device and use FIFO eviction.

Except where noted, all experiments are configured to stay
within 16 GB of DRAM (all-inclusive — DRAM cache, index,
etc.); 62.5 MB/s flash writes, as measured directly from the
device (i.e., including prwa); and 100 K requests/s, similar
to what is achieved by flash caches in production [16, 23].
To mimic a memory-constrained system, we limit LS’s flash
capacity to the maximum allowed by a 16 GB index assuming
30 b/object, the best reported in the literature [35], but also
grant LS an additional 16 GB for its DRAM cache. Note that
this is optimistic for LS, as DRAM is LS’s main constraint.

251

SOSP 21, October 26-29, 2021, Virtual Event, Germany

We use this variant as we were unable to compare to state-
of-the-art systems: the source code of Flashield [35] is not
available, and we were unable to run FASTER [26] as a cache.
All systems use CacheLib’s probabilistic pre-flash admission
policy.

Simulation. To explore a wide range of parameters and
constraints, we implemented a trace-driven cache simula-
tor for Kangaroo. The simulator measures miss ratio and
application-level write rate. We estimate device-level write
amplification based on our results in Sec. 2, using a best-fit
exponential curve to the pLwa of random, 4 KB writes for
SA and Kangaroo, and assuming a bLwA of 1X (no write am-
plification) for LS. Note that this is pessimistic for Kangaroo,
since writes to KLog incur less bLwa than SA. Comparing
the results with our experimental data shows the simulator
to be accurate within 10%. The simulator does not imple-
ment some features of CacheLib including promotion to the
memory cache, which can affect miss ratios, but we have
found it able to give a good indication of how the full system
would perform as parameters change.

Workloads. Our experiments use sampled 7-day traces from
Facebook [16] and Twitter [75]. These traces have average
object sizes of 291B and 271 B, respectively. For systems
experiments, we scale the Facebook trace to achieve 100K
reqs/s by running it 3x concurrently in different key spaces.

The simulator results use sampled-down traces, and we
scale-up the measurements to a full-server equivalent based
on the server’s flash capacity and desired load as described in
Appendix B. We use 1% of the keys for the Facebook trace and
10% of the keys for the Twitter trace. Unless otherwise noted,
we report numbers for the last day of requests, allowing the
cache to warm up and display steady-state behavior.

Metrics. Kangaroo is designed to balance several compet-
ing constraints that limit cache effectiveness. As such, our
evaluation focuses on cache miss ratio, i.e., the fraction of
requests that must be served from backend systems, under
different constraints. We further report on Kangaroo’s raw
performance, showing it is competitive with prior designs.

5.2 Main result: Kangaroo significantly reduces
misses vs. prior cache designs under realistic
constraints

Kangaroo aims to achieve low miss ratios for tiny objects
within constraints on flash-device write rate, DRAM capac-
ity, and request throughput. This section compares Kangaroo
against SA and LS on the Facebook trace, running our Cache-
Lib implementation of each system under these constraints.
We configure each cache design to minimize cache miss ratio
while maintaining a device write rate lower than 62.5 MB/s
and using up to 16 GB of memory and 1.9 TB of flash. Later
sections will consider how performance changes as these
constraints vary.

SOSP 21, October 26-29, 2021, Virtual Event, Germany

0.6

0.5
2 0.41
]
3 0.3
= 0.21 LS

— SA
0.1
Kangaroo
0.0 " ' " ; ; |
0 1 2 3 4 5 6 7

Days
Fig. 7. Miss ratio for all three systems over a 7-day Facebook trace.
All systems are run with 16 GB DRAM, a 1.9 TB drive, and with
write rates less than 62.5 MB/s.

Miss ratio: Fig. 7 shows that Kangaroo reduces cache misses
by 29% vs. SA and by 56% vs. LS. This is because Kangaroo
makes effective use of both limited DRAM and flash writes,
whereas prior designs are hampered by one or the other.
Specifically, SA is limited primarily by its high write rate,
which forces it to admit a lower percentage of objects to
flash and to over-provision flash to reduce device-level write
amplification. SA uses only 81% of flash capacity. Similarly,
LS is limited by the reach of its DRAM index. LS warms up
as quickly as Kangaroo until it runs out of indexable flash
capacity at 61% of device capacity, even though we provision
LS extra DRAM for both an index and DRAM cache (Sec. 5.1).

By contrast, Kangaroo uses 93% of flash capacity, increas-
ing cache size by 15% vs. SA and by 52% vs. LS. On top of its
larger cache size, Kangaroo’s has lower ALwa than SA and
its RRIParoo policy makes better use of cache space.

Request latency and throughput: Kangaroo achieves rea-
sonable throughput and tail latencies. When measuring flash
cache performance without a backing store, Kangaroo’s peak
throughput is 158 K gets/s, LS’s is 172K gets/s, and SA’s is
168K gets/s. Kangaroo achieves 94% of SA’s throughput and
91% of LS’s throughput, and it is well above typical produc-
tion request rates [16, 23, 71].

In any reasonable caching deployment, request tail latency
will be set by cache misses as they fetch data from backend
systems. However, for completeness and to show that Kanga-
roo has no performance pathologies, we present tail latency
at peak throughput. Kangaroo’s p99 latency is 736 ps, LS’s is
229 ps, and SA’s is 699 ps. All of these latencies are orders-
of-magnitude less than typical SLAs [1, 3, 23, 77], which are
set by backend databases or file systems. For instance, in
production, the p99 latency in Facebook’s social-graph cache
is 51 ms and Twitter’s is 8 ms, both orders-of-magnitude
larger than Kangaroo’s p99 latency. In addition, Kangaroo
might reduce p99 latency in practice because its improved
hit ratio reduces load on backend systems.

5.3 Kangaroo performs well as constraints change

Between different environments and over time, system
constraints will vary. Using our simulator, we now evaluate

252

McAllister et al.

0.5 0.5

0.4 : _ 0.4
=] e | L
©0.3 ©0.3 T o—|
o o
202] —e— SA 20.2] —— sA
= LS = LS

0.1 0.1

Kangaroo Kangaroo
0.05 50 100 0-05 50 100
Avg. Device Write Rate (MB/s; Avg. Device Write Rate (MB/s;
(a) Facebook (b) Twitter

Fig. 8. Pareto curve of cache miss ratio at different device-level
write rates under 16 GB DRAM and 2 TB flash capacity. At very low
write rates, LS is best, but it is limited by DRAM from scaling to
larger caches. Thus, for most write rates, Kangaroo outperforms
both systems because it can take advantage of the entire cache
capacity, has a lower write rate than SA, and has a better eviction
policy than the other two systems.

how the cache designs behave when changing four parame-
ters: device write budget, DRAM budget, flash capacity, and
average object size.

Device write budget. Device write budgets change with
both the type of flash SSD and the desired lifetime of the
device. To explore how this constraint effects miss ratio, we
simulate the spread of miss ratios we can achieve at different
device-level write rates. To change the device-level write
rate, we vary both the utilized flash capacity percentage and
the admission policies for all three systems while holding
the total DRAM and flash capacity constant. Note that LS
can never use the entire device in these experiments because
its index is limited by DRAM capacity.

Figure 8 shows the tradeoff between device-level write
rate budget and miss ratio. At 62.5 MB/s (the default) on both
the Facebook and Twitter workloads, Kangaroo consistently
performs better than both SA and LS. At higher write budgets,
Kangaroo continues to have lower miss ratio. In this range,
SA suffers both due to its FIFO eviction policy and its higher
ALWA, which shifts points farther right vs. similar Kangaroo
configurations. LS is mostly constrained by DRAM capacity,
which is why its achievable miss ratio does not change above
15 MB/s for both traces. However, at very low device-level
write budgets, LS performs better than Kangaroo. This is
because Kangaroo is designed to balance pLwa and DRAM
capacity, whereas LS focuses only on DLwA. At extremely
low write budgets, Kangaroo’s higher prwa (in KSet) forces
it to admit fewer objects. (Kangaroo configurations where
KLog holds a large fraction of objects, which we did not
evaluate, would solve this problem.)

DRAM capacity. Over time, the typical ratio of DRAM to
flash in data-center servers is decreasing in order to reduce
cost [66]. Figure 9 compares miss ratios for DRAM capaci-
ties up to 64 GB, holding flash-device capacity fixed at 2 TB
and device-write rate at 62.5 MB/s. DRAM capacity does not
greatly affect SA. Larger DRAM capacity allows Kangaroo to
use a larger log. Even so, both of these systems are mainly

Kangaroo: Caching Billions of Tiny Objects on Flash

0.5 0.5
0.41 o—gn 0.4
o e hd o 00— 0—o—o———
©0.3 ©0.3
-4 -4
$0.21 —e— SA $0.2{ —e— SA
= LS = LS
0.1 0.1
Kangaroo Kangaroo
O'00 20 40 60 0'00 20 40 60
DRAM (GB) DRAM (GB)
(a) Facebook (b) Twitter

Fig. 9. Pareto curve of cache miss ratio as DRAM capacity varies
from 5 to 64 GB. Flash capacity is fixed at 2TB and device write
rate is capped at 62.5 MB/s. The amount of DRAM does not greatly
affect SA or Kangaroo, which are both write-rate-constrained, but
has a huge effect on LS by increasing its cache size.

ot S

;% 0.3 \‘\o § 0.3 \

0.5

0.5

n 0.2 —e— SA 0 0.21 —e— SA
=
01 LS 01 LS
Kangaroo Kangaroo
0.0 0.0
0 1000 2000 3000 0 1000 2000 3000
Flash Device Capacity (GB) Flash Device Capacity (GB)
(a) Facebook (b) Twitter

Fig. 10. Pareto curve of cache miss ratio at different device sizes.
The DRAM capacity is limited to 16 GB and the device write rate
to 3 device writes/day (e.g., 62.5 MB/s for a 2 TB drive).

constrained by device-level write rate. By contrast, LS is very
dependent on DRAM capacity. LS approaches, though does
not reach, Kangaroo’s miss ratio at 64 GB of DRAM on the
Facebook trace and at 40 GB on the Twitter trace. At this
point, Kangaroo is constrained from reducing misses further
by device write rate (see Fig. 8).

Larger flash capacities will shift the lines right as the
DRAM : flash ratio decreases. Assuming write budget and
request throughput scale with flash capacity, a 4 TB flash
device requires 60 GB DRAM to achieve the same miss ratio
as a 2 TB flash device with 30 GB DRAM. This makes the left
side of the graph particularly important when comparing
flash-cache designs.

Flash-device capacity. As stated in the previous section,
the size of the flash device greatly impacts miss ratio and the
significance of write-rate and DRAM constraints. As we look
forward, flash devices are likely to increase while DRAM
capacity is unlikely to grow much and may even shrink [66].
Fig. 10 shows the miss ratio for each system as the device
capacity changes. Each system can use as much of the device
capacity as it desires while staying within 16 GB DRAM and
3 device writes per day.

Except at smaller flash capacities, Kangaroo is Pareto-
optimal across device capacities. At smaller device capacities
(<1.2 TB for the Facebook trace and <1 TB for the Twitter

253

SOSP 21, October 26-29, 2021, Virtual Event, Germany

0.5 0.5

0.4 \ 0.4 \
° e °
©0.3 © 0.3
o o
$0.21 —e— SA $0.21 —e— SA
= LS = LS

0.1 0.1

Kangaroo Kangaroo
0.0 0.0
0 200 400 0 200 400
Average Object Size Average Object Size
(a) Facebook (b) Twitter

Fig. 11. Pareto curve of cache miss ratio vs. average object size. Ob-
ject sizes are limited to [1 B, 2048 B]. The write rate is constrained
to 62.5 MB/s for a 2 TB flash drive with 16 GB of DRAM.

trace), Kangaroo and SA are increasingly write-rate-limited
while LS is decreasingly DRAM-limited. However, as flash
capacity increases, LS is quickly constrained by DRAM ca-
pacity. In contrast, Kangaroo and SA both take advantage
of the additional write budget and flash capacity. Kangaroo
is consistently better than SA due to lower ALwa (allowing
larger cache sizes) and RRIParoo.

Object size. The final feature that we study is object sizes.
Fig. 11 shows how miss ratio changes for each system as
we artificially change the object sizes. For each object in the
trace, we multiply its size by a scaling factor, but constrain
the size to [1 B, 2 KB]. To study the impact of cache design as
object sizes change, we keep the working-set size constant
by scaling up the sampling rate (Appendix B).

The cache designs are affected differently as object size
scales. SA writes 4 KB for every object admitted, independent
of size, so its ALWA grows in inverse proportion to object size,
and SA is increasingly constrained by flash writes as objects
get smaller. Similarly, LS can track a fixed number of objects
due to DRAM limits, so its flash-cache size in bytes shrinks
as objects get smaller. Both SA and LS suffer significantly
more misses with smaller objects.

Kangaroo is also affected as objects get smaller, but not as
much as prior designs. KSet’s ALwa increases with smaller
objects, but less than SA. For example, as avg object size
goes from 500 B to 50 B, Kangaroo’s ALwA increases by 4X,
while SA’s ALwa increases by 10x (Fig. 5). Similarly, KLog
uses more DRAM with smaller objects, but, unlike LS, Kan-
garoo can reduce DRAM usage by decreasing KLog’s size
without decreasing overall cache size. The tradeoff is that
ALWA increases slightly (see below). Kangaroo thus scales
better than prior flash-cache designs as objects get smaller:
on the Twitter trace, Kangaroo reduces misses by 7.1% vs. LS
with 500 B avg object size and by 41% vs. LS with 50 B avg
object size.

5.4 Parameter sensitivity and benefit attribution

We now analyze how much each of Kangaroo’s techniques
contributes to Kangaroo’s performance and how each should
be parameterized. Fig. 12 evaluates Kangaroo’s sensitivity to
four main parameters on the Facebook trace: KLog admission

SOSP 21, October 26-29, 2021, Virtual Event, Germany

McAllister et al.

0.5 0.5 0.5 0.5
10%

0.4 0.4 0.4 041 4
o 25% o o o
503 50% oo 503 8931 30% 10% 5% 2% 0% 8031 3

o 909,
84, 90% g Bool 20% 7% 3% 1% 80> 2 1
59 £ 02 =0 59
Percent admitted to flash
01 0.1 0.1 KLog Percent 0.1 Threshold
0.0 0.0 0.0 0.0
0 25 50 75 100 FIFO 1 2 3 4 0 25 50 75 100 0 25 50 75 100
Write Rate (MB/s) RRIParoo Bits Write Rate (MB/s) Write Rate (MB/s)
(a) Probabilistic admission. (b) + RRIParoo (c) + KLog. (d) + Threshold.

Fig. 12. Miss ratio vs. application-level write rate based on various design parameters in Kangaroo: (a) KLog admission probability, (b)
RRIParoo metadata size, (c) KLog size (% of flash-device capacity), and (d) KSet admission threshold.

probability, KSet eviction policy, KLog size, and KSet admis-
sion threshold. All setups use the full 2 TB device capacity
and 16 GB of memory. We build up their contribution to miss
ratio and application write rate from a basic set-associative
cache with FIFO eviction.

Pre-flash admission probability. Fig. 12a varies admis-
sion probability from 10% to 100%. As admission probabil-
ity increases, write rate increases because more objects are
written to flash. However, the miss ratio does not decrease
linearly with admission probability. Rather, it has a smaller
effect when the admission percentage is high than when
the admission percentage is low. Since Kangaroo’s other
techniques significantly reduce aALwa, we use a pre-flash
admission probability of 90%.

Number of RRIParoo bits. Fig. 12b shows miss ratios for
FIFO and RRIParoo with one to four bits. Although chang-
ing the eviction policy does slightly change the write rate
(because there are fewer misses), we show only miss ratio
for readability. RRIParoo with one bit suffers 3.4% fewer
misses vs. FIFO, whereas RRIParoo with three bits suffers
8.4% fewer misses. Once RRIParoo uses four bits, the miss
ratio increases slightly, a phenomenon also noticed in the
original RRIP paper [43]. Since three-bit RRIParoo uses the
same amount of DRAM as one-bit RRIParoo (Sec. 4.4), we
use three bits because it achieves the best miss ratio.

KLog size. Fig. 12c shows that, as KLog size increases, the
flash write rate decreases significantly, but the miss ratio is
unaffected (<.05% maximum difference). However, a bigger
KLog needs more DRAM for its index. Thus, KLog should
be as large enough to substantially reduce write amplifica-
tion, but cannot exceed available DRAM nor prevent using
a DRAM cache. Flash writes can be further reduced via ad-
mission policies or by over-provisioning flash capacity as
needed. We use 5% of flash capacity for KLog.

KSet admission threshold. Fig. 12d shows the impact of
threshold admission to KSet. Thresholding reduces flash
write rate up to 70.4% but increases misses by up to 72.9% at
the most extreme. Note that these results assume rejected
objects are re-admitted to KLog if they have been hit, since
re-admission reduces misses without significantly impacting

254

flash writes. We use a threshold of 2, which reduces flash
writes by 32.0% while only increasing misses by 6.9%.

Benefit breakdown. In this configuration, Kangaroo reduces
misses by 2% and decreases application write rate by 67% vs.
a set-associative cache that admits everything. Most of the
miss ratio benefits over SA come from RRIParoo. Kangaroo
also improves miss ratio vs. SA at a similar write rate by re-
ducing ALwa, which allows it to admit more objects than SA.
Each of Kangaroo’s techniques reduces write rate: pre-flash
admission by 8.2%, RRIParoo by 8.3%, KLog by 42.6%, and
KSet’s threshold admission by 32.0%. Kangaroo’s techniques
have more varied effects on misses: pre-flash admission in-
creases them by 1.9%, RRIParoo decreases them by 8.4%, KLog
changes them little (<0.05% difference), and KSet’s threshold
admission increases them by 6.9%. We found similar results
on the trace from Twitter.

5.5 Production deployment test

Finally, we present results from two production test de-
ployments on a small-object workload at Facebook, com-
paring Kangaroo to SA. Each deployment receives the same
request stream as production servers but does not respond to
users. Due to limitations in the production setup, we can only
present application-level write rate (i.e., not device-level)
and flash miss ratio (i.e., for requests that miss in the DRAM
cache). In addition, both systems use the same cache size (i.e.,
Kangaroo does not benefit from reduced over-provisioning).

To find appropriate production configurations, we chose
seven configurations for each system that performed well
in simulation: four with probabilistic pre-flash admission
and three with a machine-learning (ML) pre-flash admission
policy. The first production deployment ran all probabilistic
admission configurations and the second ran all ML admis-
sion configurations. Since these configurations ran under
different request streams, their results are not directly com-
parable.

Fig. 13a and Fig. 13b present results over a six-day request
stream for configurations with similar write rates (“equiv-
alent WA”) as well as configurations that admit all objects
to the flash cache (“admit-all”). Kangaroo reduces misses by
18% vs. SA in the equivalent-WA configurations, which both

Kangaroo: Caching Billions of Tiny Objects on Flash

SOSP 21, October 26-29, 2021, Virtual Event, Germany

1.0

4
®

%

—— SA equivalent WR
—— SAadmitall

Kangaroo equivalent WR
—— Kangaroo admit all

o
o

Miss Ratio

)
F'S
Write Rate (MB/s)

o
N}

SA equivalent WR
SA admit all

Kangaroo equivalent WR
Kangaroo admit all

80 — SAw/ML

Kangaroo w/ ML

o
=]

Write Rate (MB/s)
B
S

N
1=}

4
o
o

1 2 3 4 5 6 1 2
Days

(a) Flash miss ratio.

(b) Application flash write rate.

0.5 1.0 15

Days

(c) ML admission.

2.0 2.5 3.0

Fig. 13. Results from two production test deployments of Kangaroo and SA, showing (a) flash miss ratio and (b) application flash write rate
over time using pre-flash random admission and (c) application flash write rate over time using ML admission. With random admission at
equivalent write-rate, Kangaroo reduces misses by 18% over SA. When Kangaroo and SA admit all objects, Kangaroo reduces write rate by
38%. With ML admission, Kangaroo reduces the write rate by 42.5%.

have similar write rates at ~33 MB/s. The admit-all config-
urations achieve the best miss ratio for each system at the
cost of additional flash writes. Here, Kangaroo reduces flash
misses by 3% vs. SA while writing 38% less.

We also tested both systems with the ML pre-flash admis-
sion policy that Facebook uses in production [16]. Fig. 13c
presents results over a three-day request stream. The trends
are the same: Kangaroo reduces application flash writes by
42.5% while achieving a similar miss ratio to SA. Kangaroo
thus significantly outperforms SA, independent of pre-flash
admission policy.

6 Conclusion

Kangaroo is a flash cache for billions of tiny objects that
handles a wide range of DRAM and flash-write budgets.
Kangaroo leverages prior log-structured and set-associative
designs, together with new techniques, to achieve the best of
both designs. Experiments using traces from Facebook and
Twitter show DRAM usage close to the best prior DRAM-
optimized design, flash writes close to the best prior write-
optimized design, and miss ratios better than either. Kan-
garoo has been implemented in CacheLib [16] and will be
open-sourced for use by the community. Kangaroo shows
that flash caches can support tiny objects, an adversarial
workload for DRAM usage and write amplification, while
maintaining flash’s cost advantage.

Acknowledgments

Sara McAllister is supported by an NDSEG Fellowship,
Benjamin Berg and Juncheng Yang by Facebook Graduate
Fellowships, and Nathan Beckmann by a Google Research
Scholar Award. This work was supported by NSF-CMMI-
1938909, NSF-CSR-1763701, and a 2020 Google Faculty Award.
We thank Facebook, Twitter, and the members and compa-
nies of the PDL Consortium (Alibaba, Amazon, Datrium,
Facebook, Google, HPE, Hitachi, IBM, Intel, Microsoft, Ne-
tApp, Oracle, Pure Storage, Salesforce, Samsung, Seagate,
Two Sigma and Western Digital) and VMware for their inter-
est, insights, feedback, and support. We thank our shepherd,
Ding Yuan, and our anonymous reviewers for their helpful
comments and suggestions.

255

References

[1] Amazon dynamodb. https://aws.amazon.com/dynamodb/features/
5/5/21.

[2] Apache traffic server. https://trafficserver.apache.org. Accessed: 2019-
04-22.

[3] Azure cache for redis. https://azure.microsoft.com/en-us/services/
cache/#what-you-can-build 5/5/21.

[4] Big data statistics, growth, and facts 2020. https://saasscout.com/
statistics/big-data-statistics/ 5/6/21.

[5] Fatcache. https://github.com/twitter/fatcache.

[6] Leveldb. https:/github.com/google/leveldb.

[7] Redis on flash. https://docs.redislabs.com/latest/rs/concepts/memory-

architecture/redis-flash/.

[8] Rocksdb. http://rocksdb.org.

[9] Facebook reports first quarter 2020 results. investor.fb.com, Apr 2020.
[10] Twitter first quarter 2021 results. investor.twitterinc.com, May 2021.
[11] Alfred V. Aho, Peter J. Denning, and Jeffrey D. Ullman. Principles of

optimal page replacement. §. ACM, 1971.
[12] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. Lhd: Improving
hit rate by maximizing hit density. In USENIX NSDI, 2018.
[13] Nathan Beckmann and Daniel Sanchez. Talus: A simple way to remove
cliffs in cache performance. In IEEE HPCA, 2015.
Nathan Beckmann, Po-An Tsai, and Daniel Sanchez. Scaling distributed
cache hierarchies through computation and data co-scheduling. In
IEEE HPCA, 2015.
Michael A. Bender, Alex Conway, Martin Farach-Colton, William Jan-
nen, Yizheng Jiao, Rob Johnson, Eric Knorr, Sara McAllister, Nirjhar
Mukherjee, Prashant Pandey, Donald E. Porter, Jun Yuan, and Yang
Zhan. Small refinements to the dam can have big consequences for
data-structure design. In ACM SPAA, 2019.
Benjamin Berg, Daniel S. Berger, Sara McAllister, Isaac Grosof, Sathya
Gunasekar, Jimmy Lu, Michael Uhlar, Jim Carrig, Nathan Beckmann,
Mor Harchol-Balter, and Gregory G. Ganger. The CacheLib caching
engine: Design and experiences at scale. In USENIX OSDI, 2020.
Daniel S. Berger, Nathan Beckmann, and Mor Harchol-Balter. Prac-
tical bounds on optimal caching with variable object sizes. In ACM
SIGMETRICS, 2018.
Daniel S Berger, Benjamin Berg, Timothy Zhu, Siddhartha Sen, and
Mor Harchol-Balter. Robinhood: Tail latency aware caching—-dynamic
reallocation from cache-rich to cache-poor. In USENIX OSDI, 2018.
Daniel S Berger, Philipp Gland, Sahil Singla, and Florin Ciucu. Exact
analysis of ttl cache networks. Performance Evaluation, 79:2-23, 2014.
Daniel S. Berger, Ramesh K. Sitaraman, and Mor Harchol-Balter. Adapt-
size: Orchestrating the hot object memory cache in a content delivery
network. In USENIX NSDI, 2017.
Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. Hyper-
bolic caching: Flexible caching for web applications. In USENIX ATC.,
2017.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

https://aws.amazon.com/dynamodb/features/
https://trafficserver.apache.org
https://azure.microsoft.com/en-us/services/cache/#what-you-can-build
https://azure.microsoft.com/en-us/services/cache/#what-you-can-build
https://saasscout.com/statistics/big-data-statistics/
https://saasscout.com/statistics/big-data-statistics/
https://github.com/twitter/fatcache
https://github.com/google/leveldb
https://docs.redislabs.com/latest/rs/concepts/memory-architecture/redis-flash/
https://docs.redislabs.com/latest/rs/concepts/memory-architecture/redis-flash/
http://rocksdb.org

SOSP 21, October 26-29, 2021, Virtual Event, Germany

[22]

(23]

[24]

[25]

[26

—

[27]

(28]

[29]

(30]

(31]
(32]
(33]
(34]

(35]

[41]

(42]

(43]

Netflix Technology Blog. Application data caching using
ssds. https://netflixtechblog.com/application-data-caching-using-
ssds-5bf25df851ef, 2016.

Netflix Technology Blog. Evolution of application data caching : From
ram to ssd. https://netflixtechblog.com/evolution-of-application-data-
caching-from-ram-to-ssd-a33d6fa7a690, 2018.

Simona Boboila and Peter Desnoyers. Write endurance in flash drives:
Measurements and analysis. In USENIX FAST, 2010.

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song,
and Venkat Venkataramani. Tao: Facebook’s distributed data store for
the social graph. In USENIX ATC, 2013.

Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levan-
doski, James Hunter, and Mike Barnett. Faster: an embedded concur-
rent key-value store for state management. VLDB, 2018.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Debo-
rah A Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E Gruber. Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems (TOCS), 26(2):1-26, 2008.
Andromachi Chatzieleftheriou, Ioan Stefanovici, Dushyanth
Narayanan, Benn Thomsen, and Antony Rowstron. Could cloud
storage be disrupted in the next decade? In USENIX HotStorage, 2020.
Asaf Cidon, Assaf Eisenman, Mohammad Alizadeh, and Sachin Katti.
Cliffhanger: Scaling performance cliffs in web memory caches. In
USENIX NSDI, 2016.

Asaf Cidon, Daniel Rushton, Stephen M Rumble, and Ryan Stutsman.
Memshare: a dynamic multi-tenant key-value cache. In USENIX ATC,
2017.

Edward G. Coffman and Peter J. Denning. Operating Systems Theory.
Prentice Hall Professional Technical Reference, 1973.

Asit Dan and Don Towsley. An approximate analysis of the lru and
fifo buffer replacement schemes. In ACM SIGMETRICS., 1990.

Gary Davis. 2020: Life with 50 billion connected devices. In IEEE
International Conference on Consumer Electronics, pages 1-1, 2018.
Biplob Debnath, Sudipta Sengupta, and Jin Li. Skimpystash: Ram space
skimpy key-value store on flash-based storage. In ACM SIGMOD, 2011.
Assaf Eisenman, Asaf Cidon, Evgenya Pergament, Or Haimovich, Ryan
Stutsman, Mohammad Alizadeh, and Sachin Katti. Flashield: a hybrid
key-value cache that controls flash write amplification. In USENIX
NSDI, 2019.

Bin Fan, David G Andersen, and Michael Kaminsky. MemC3: Compact
and concurrent memcache with dumber caching and smarter hashing.
In USENIX NSDI, 2013.

Brad Fitzpatrick. Distributed caching with memcached. Linux journal,
2004(124):5, 2004.

Peter Freiling and Badrish Chandramouli. Microsoft. personal com-
munication.

Christine Fricker, Philippe Robert, and James Roberts. A versatile and
accurate approximation for Iru cache performance. In IEEE ITC, 2012.
Massimo Gallo, Bruno Kauffmann, Luca Muscariello, Alain Simonian,
and Christian Tanguy. Performance evaluation of the random replace-
ment policy for networks of caches. SIGMETRICS Perform. Eval. Rev.,
40(1):395-396, June 2012.

Alex Gartrell, Mohan Srinivasan, Bryan Alger, and Kumar
Sundararajan. Mcdipper: A key-value cache for flash storage.
https://www.facebook.com/notes/facebook-engineering/mcdipper-
a-key-value-cache-for-flash-storage/10151347090423920/.

Jun He, Sudarsun Kannan, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. The unwritten contract of solid state drives. In ACM
EuroSys, 2017.

Aamer Jaleel, Kevin Theobald, Simon Steely Jr, and Joel Emer. High
performance cache replacement using re-reference interval prediction.
In ISCA-37, 2010.

256

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

McAllister et al.

E. G. Coffman Jr and Predrag Jelenkovi¢. Performance of the move-to-
front algorithm with markov-modulated request sequences. Oper: Res.
Lett., 25(3):109-118, October 1999.

Richard E. Kessler, Mark D Hill, and David A Wood. A comparison of
trace-sampling techniques for multi-megabyte caches. IEEE Transac-
tions on Computers, 43(6):664—675, 1994.

Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho.
F2fs: A new file system for flash storage. 2015.

Cheng Li, Philip Shilane, Fred Douglis, and Grant Wallace. Pannier:
Design and analysis of a container-based flash cache for compound
objects. ACM Transactions on Storage, 13(3):24, 2017.

Conglong Li, David G Andersen, Qiang Fu, Sameh Elnikety, and Yux-
iong He. Workload analysis and caching strategies for search advertis-
ing systems. In ACM SoCC, 2017.

Conglong Li, David G Andersen, Qiang Fu, Sameh Elnikety, and Yux-
iong He. Better caching in search advertising systems with rapid
refresh predictions. In WWW, pages 1875-1884, 2018.

Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky.
Silt: A memory-efficient, high-performance key-value store. In ACM
SOSP, 2011.

Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. Wisckey: Separating keys
from values in ssd-conscious storage. In USENIX FAST, 2016.

Mike Mammarella, Shant Hovsepian, and Eddie Kohler. Modular data
storage with anvil. In ACM SOSP, 2009.

Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. Whirlpool:
Improving dynamic cache management with static data classification.
In ASPLOS, 2016.

[54] James O’Toole and Liuba Shrira. Opportunistic log: Efficient installa-

[55]

[56]

[57]

[58]

[59]
[60]
[61]
[62]

[63]

[64]

[65]

[66]

tion reads in a reliable storage server. In USENIX OSDI, 1994.

David A. Patterson and John L. Hennessy. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1990.

Ramtin Pedarsani, Mohammad Ali Maddah-Ali, and Urs Niesen. Online
coded caching. IEEE/ACM Transactions on Networking, 2016.

Sara Perez. Twitter’s doubling of character count from 140 to 280 had
little impact on length of tweets. Tech Crunch, 2018. Available at
https://techcrunch.com/2018/10/30/twitters-doubling-of-character-
count-from-140-to-280-had-little-impact-on-length-of-tweets/,
5/4/2021.

Pandian Raju, Rohan Kadekodi, Vijay Chidambaram, and Ittai Abra-
ham. Pebblesdb: Building key-value stores using fragmented log-
structured merge trees. In ACM SOSP, 2017.

Mendel Rosenblum and John K. Ousterhout. The design and imple-
mentation of a log-structured file system. In ACM SOSP, 1991.

Elisha J. Rosensweig, Jim Kurose, and Don Towsley. Approximate
models for general cache networks. In IEEE INFOCOM, 2010.

Rathijit Sen and David A. Wood. Reuse-based online models for caches.
In ACM SIGMETRICS., 2013.

Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. Optimizing
flash-based key-value cache systems. In USENIX HotStorage, 2016.
Zhaoyan Shen, Feng Chen, Yichen Jia, and Zili Shao. Didacache: an
integration of device and application for flash-based key-value caching.
ACM Transactions on Storage (TOS), 14(3):1-32, 2018.

Zhenyu Song, Daniel S Berger, Kai Li, and Wyatt Lloyd. Learning
relaxed belady for content distribution network caching. In USENIX
NSDI, 2020.

Louise Story. Anywhere the eye can see, it’s likely to see an ad. The
New York Times, 15(1), 2007. Available at https://www.nytimes.com/
2007/01/15/business/media/15everywhere.html, 9/6/2020.

Chungiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor,
Scott Michelson, Thawan Kooburat, Aravind Anbudurai, Matthew
Clark, Kabir Gogia, Long Cheng, Ben Christensen, Alex Gartrell,
Maxim Khutornenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas

https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://netflixtechblog.com/application-data-caching-using-ssds-5bf25df851ef
https://netflixtechblog.com/evolution-of-application-data-caching-from-ram-to-ssd-a33d6fa7a690
https://netflixtechblog.com/evolution-of-application-data-caching-from-ram-to-ssd-a33d6fa7a690
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://www.facebook.com/notes/facebook-engineering/mcdipper-a-key-value-cache-for-flash-storage/10151347090423920/
https://techcrunch.com/2018/10/30/twitters-doubling-of-character-count-from-140-to-280-had-little-impact-on-length-of-tweets/
https://techcrunch.com/2018/10/30/twitters-doubling-of-character-count-from-140-to-280-had-little-impact-on-length-of-tweets/
https://www.nytimes.com/2007/01/15/business/media/15everywhere.html
https://www.nytimes.com/2007/01/15/business/media/15everywhere.html

Kangaroo: Caching Billions of Tiny Objects on Flash

Pelkonen, Andre Rodrigues, Rounak Tibrewal, Vaishnavi Venkatesan,
and Peter Zhang. Twine: A unified cluster management system for
shared infrastructure. In USENIX OSDI, 2020.

[67] Linpeng Tang, Qi Huang, Wyatt Lloyd, Sanjeev Kumar, and Kai Li.
RIPQ: advanced photo caching on flash for facebook. In USENIX FAST,
2015.

[68] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Mar-
low. The anatomy of the facebook social graph. arXiv preprint
arXiv:1111.4503, 2011.

[69] Francisco Velazquez, Kristian Lyngstel, Tollef Fog Heen, and Jérome
Renard. The Varnish Book for Varnish 4.0. Varnish Software AS, March
2016.

[70] Carl Waldspurger, Trausti Saemundsson, Irfan Ahmad, and Nohhyun
Park. Cache modeling and optimization using miniature simulations.
In USENIX ATC, 2017.

[71] Rui Wang, Christopher Conrad, and Sam Shah. Using set cover to opti-
mize a large-scale low latency distributed graph. In USENIX HotCloud,
2013.

[72] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. Lsm-trie: An Ism-
tree-based ultra-large key-value store for small data items. In USENIX
ATC, 2015.

[73] Shuotao Xu, Sungjin Lee, Sang-Woo Jun, Ming Liu, Jamey Hicks, et al.
Bluecache: A scalable distributed flash-based key-value store. VLDB,
10(4):301-312, 2016.

[74] Juncheng Yang, Yao Yue, and KV Rashmi. A large-scale analysis of
hundreds of in-memory key-value cache clusters at twitter. ACM
Transactions on Storage (TOS), 17(3):1-35, 2021.

[75] Juncheng Yang, Yao Yue, and Rashmi Vinayak. A large scale analysis
of hundreds of in-memory cache clusters at twitter. In USENLX OSDI,
2020.

[76] Juncheng Yang, Yao Yue, and Rashmi Vinayak. Segcache: a memory-
efficient and scalable in-memory key-value cache for small objects. In
USENIX NSDI, 2021.

[77] Yao Yue. Taming tail latency and achieving predictability. https:
//twitter.github.io/pelikan/2020/benchmark-adq.html, 2020.

A Simplified Markov model of Kangaroo
(not peer-reviewed)

In this appendix, we develop a Markov model of Fig. 3
to analyze Kangaroo’s miss ratio and flash write rate. The
model is from the perspective of one object traversing the
cache [19, 39] and, for tractability, assumes a naive design
for KLog and KSet without the optimizations described in
Sec. 4. We build the Markov model first for a baseline set-
associative cache, then Kangaroo without any admission
policies, then add threshold admission before KSet, and and
finally probabilistic admission before KLog.

Assumptions. For tractability, this analysis makes several
simplifying assumptions that do not hold in our implemen-
tation (Sec. 4) or our evaluation (Sec. 5). We assume the
independent reference model (IRM), in which each object
has a fixed reference popularity, drawn independently from
a known probability distribution. We also assume that all ob-
jects are fixed-size and that KSet uses FIFO eviction. Similar
assumptions are common in prior cache models [11, 17, 20,
31, 32, 40, 44, 56, 60].

We model a cache consisting of two layers: alog-structured
cache and a set-associative cache, called KLog and KSet as
in Kangaroo—but note that the model simplifies Kangaroo’s

257

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Variable Description
o Out-of-cache state.
Q KLog state.
w KSet state.
w Capacity of each set.
s Number of sets in KSet.
q Capacity of KLog.
ri Probability of requesting object i.
m Miss probability.
f Flash write rate.
i X Stationary probability of object i in state X.
X — Y Transition from state X to state Y.

Table 3. Key variables in the Markov model.

operation significantly. We assume that an object is first ad-
mitted to KLog. Once KLog fills up, it flushes all objects to
KSet. KLog and KSet may employ an admission policy that
drops objects instead of admitting them, as described below.
Our goal is to compute the miss probability and flash writes
per cache access, and to show that Kangaroo improves miss
ratio for a given write rate vs. the baseline set-associative
cache.

Modeling approach. We model how a single object moves
through KLog and KSet. Fig. 14 shows our simple continuous-
time Markov model, which has three states: an object can be
out-of-cache (0), in KLog (Q), or in KSet (W). To compute
the miss probability m, we need to know each object’s prob-
ability of being requested, which is fixed according to the
IRM, and the probability that it is out-of-cache (in state O).
To find the latter, we need to know each state’s stationary
probabilities, 7, i.e., the likelihood of an object being in a
given state once the cache reaches its steady-state behavior.
To compute these probabilities and to find flash write rate,
we require the transition rates between states, e.g., how often
an object transitions O — Q when an object is admitted to
KLog. Table 3 summarizes the key variables in the model.

A.1 Baseline set-associative cache

We first analyze a baseline set-associative cache (i.e., with-
out KLog) and build up to Kangaroo. This design has all
objects admitted directly to KSet.

Transition rates: Each object i is requested with probability
r;. When an object is requested and not in the cache, there is
a miss and the object moves to KSet. So, the transition rate
from O — Wisr;.

Each set in KSet holds w objects. Since we are modeling
FIFO eviction of fixed-sized objects, KSet evicts each object
after w newer objects are inserted into the same set. With s
sets, each set only receives 1/s of misses, so the probability
of writing a new object to a set is . Since there needs to be
w newer objects in the set to evict an object, the transition

m/s

rate from W — O is vl

https://twitter.github.io/pelikan/2020/benchmark-adq.html
https://twitter.github.io/pelikan/2020/benchmark-adq.html

SOSP 21, October 26-29, 2021, Virtual Event, Germany

©)

%r{@

(b) + KLog.

m

SW

(a) Baseline.

McAllister et al.

(c) + Threshold. (d) + Probabilistic admission.

Fig. 14. The continuous Markov model for Kangaroo’s basic cache design (a) with no log, (b) with no admission policies, (c) with Kangaroo’s
threshold admission before KSet, and (d) with probabilistic admission before KLog.

Stationary probabilities: With the transition rates, we calcu-
late the stationary probabilities using two properties of sta-
tionary probabilities: (i) the sum of all the stationary proba-
bilities is 1 and (ii) the likelihood of entering and leaving a
state is equal since stationary probabilities occur at steady-
state behavior. From these, we reach the equations:

1 =m0+ mw (2)
m
N0 = —— Tiw ®3)
sw
which means that the stationary probabilities are:
m
Mo = ————— 4)
m+swr;
SwWr;
Tiw = =)
m+swr;

Miss ratio: The miss ratio is computed by summing the prob-
ability that an object will miss when it is requested for all
objects. Object i is requested with probability r; and misses
when it is out-of-cache with probability ;0. Hence, the
overall miss ratio ratio m is:

Mbpaseline = Z ri Tio = Z

i i

mr;

S 6
m+swr; (©)
Without knowing the popularity distribution {r;}, we can-
not go further than this; yet we will see it is sufficient to
show that Kangaroo’s design does not compromise miss ratio
under our model.

Flash writes: To compute the flash write rate, we assign a

write-cost to each edge in Fig. 14. For the baseline set-associative

cache, each transition O — W re-writes the entire set, and so
the transition has a write-cost of w. Transitions W — O do
not write anything to flash, and so they have no write-cost.
The flash write rate f is the average bytes written to flash
on each access; that is, we compute write rate in logical time.
In the baseline design, this is:

ﬁ)aseline = Z Ii* 7,0 *W = W * Mpaseline (7)
i
The application-level write amplification (ALwaA) is the
flash write rate divided by the miss rate, since each miss
should ideally write exactly one object. Hence, for the base-
line:
fbaseline
ALWApgseline = —————— = W,
Mpaseline

®)

258

which matches our expectations for set-associative designs,
since w is just the size of each set (Sec. 2.3).

A.2 AddKLog, no admission policies

Next we add KLog, a log-structured cache, in front of KSet,
as shown in Fig. 14b. KLog’s operation in our simple model
is to buffer objects until full, and then flush the log’s contents
to KSet.

Transition rates: The transition rate O — Q with KLog is the
same as O — W in the baseline, since the only difference is
that objects are written to KLog instead of KSet.

In our simplified Markov model, KLog flushes all objects
in KLog to KSet when KLog is completely full, i.e. it has
q objects. KLog starts with 0 objects and each miss inserts
one object, so KLog is half-full when an object is admitted
on average. Therefore, on average, q/2 objects need to be
inserted until the next flush, and the transition rate from
Q- Wis 2t = 27'". Finally, the transition rate from W — O

q/2 ~
is the same as the baseline.

Stationary probabilities:

2m m

Ti0 = ~ ©)

qri+2m+2swr; m+swr;

ri

M= ——1 (10)

qrit+2m+2swr;

2swr;

Tiw = : (11)

qri+2m+2swr;

The approximation for 7; o holds when ¢ < sw (i.e., when
KLog is much smaller than KSet). We find that Eq. 9 is the
same as Eq. 4, demonstrating that adding KLog does not
significantly affect the probability an object is out-of-cache,
so long as KLog is small.

Miss ratio: As a result, the miss ratio does not change either:

MKLog-only = Z ri Ti,0 (12)
i
2m

T P L T

- qri +2m+ 2swr;
m

< Srx (19
- m+ swr;

= Mbpaseline (15>

Kangaroo: Caching Billions of Tiny Objects on Flash

Flash write rate: Writes are much cheaper with KLog. Since
log-structured caches write out objects sequentially in batches,
newly admitted objects to KLog only write one object to flash
per miss. Hence the write-cost of O — Q edge is 1.

Writes to KSet are also cheaper because, even though w
objects are still written to flash at a time, these writes are
amortized across all objects in KLog that map to the same set.
The number of objects admitted to each set is a balls-and-bins
problem. Specifically, it follows a binomial distribution X ~
B(g, 1/s). Each transition is amortized across E [B|B > 1]
objects, as KSet only writes the set if at least one object is
admitted. The total flash write rate is:

2m w
Faagosy = e mo 1+ 5 mo Esy (9

Which means every object suffers write amplification of:

ALWAKLog-only = 1 (17)

w
+ _—

E[X|X > 1]
Deriving Eq. 17 in detail:

fKLog—only = Z

i

(lm)(z

i

2m w
ri~2m-l+7~qri-m

qri +2m+ 2swr;

2mr;
qri +2m+ 2swr;

w
= (1 + E [XlX > 1]) X mKLog—only

This means that KLog is responsible for 1 object write, and
the rest of the writes come from KSet.

A.3 Add threshold admission before KSet

Next, we consider the impact of adding Kangaroo’s thresh-
old admission policy (Sec. 4.3), which only admits objects to
a set in KSet if at least n objects map to that set. For instance,
a threshold of 2 means that if KLog has only one object map-
ping to a set, that object is dropped instead of being inserted
into KSet. To represent thresholding, we add an edge in the
Markov model (Fig. 14c) back from Q — O, denoting the
objects that are dropped from KLog.

Transition rates: We denote the probability that a set has at
least n objects mapped to it during a flush of KLog as 7(n).
The exact value of 7 can be computed from the binomial
distribution, X, where X ~ Binomial(q, 1/s) given that there
is one object mapping the the set, i.e. X > 1. Since objects
are admitted to KSet if there are greater than n:

_ FX(”)
Fx(1)
or the probability that X has a value greater than n given
that X has a value greater than 1.
The stream of objects flushed from KLog are split between
the transition Q — O and Q — W. The added edge back
from Q — O, represents the 1 — 7 fraction of the flushed

(n) (18)

259

SOSP 21, October 26-29, 2021, Virtual Event, Germany

objects. The remaining 7 fraction transition Q — W as be-
fore. For the Markov model, the transition probabilities along
those edges are multiplied by their probability.

The admission policy also reduces the admission rate to
state W, which in turn causes an object to spend more time
in state W. This is reflected in the transition rate W — O,
which is scaled by 7.

Stationary probability and miss ratio: Threshold admission
adds an edge, which causes the stationary equations to be
more complicated:

1=mo+ TiQ + Tiw (19)
mrt 2m(1-1)
ri o= —7mw+t ———TQ (20)
sw
mrt 2mrt
— Tiw = Ti,0 (21)
sw

Surprisingly, the threshold admission policy does not change
the stationary probabilities in the Markov model. Hence, the
miss ratio is also unchanged:

Mihreshold = MKLog-only ~ Mbaseline (22)

Flash write rate: Threshold admission further reduces the
write rate in two ways: (i) objects are less likely to enter
KSet at all; and (ii) the write-cost of KSet is reduced because
at least n objects are written. This is reflected in the flash
write rate and write amplification:

ﬁhreshold = Ziri ‘mio- 1+ Zme Q- E[XI,‘;)(> Tl]
(23)
w
ALWAthreshold = 1 + m T 9

This formula is derived similar to Eq. 17 above. Note that
the ALwA can be easily read off from Fig. 14 at a glance by
“following the write loop” from O back to O, adding up write
costs for each edge and scaling them by their transition rate
relative to KLog-only; e.g., by a factor of 7 for the second
term.

Kangaroo’s threshold admission policy thus greatly de-
creases ALWA in KSet’s set-associative design by guarantee-
ing a minimum level of amortization on all flash writes.

A.4 Add probabilistic admission before KLog

The above techniques—KLog and threshold admission—
are Kangaroo’s main tricks to reduce flash writes. However,
the design thus far always has write amplification at least
1X because all objects are admitted to KLog. It is possible to
achieve write amplification below 1x by adding an admission
policy in front of KLog. We now consider the effect of adding
a probabilistic admission policy that drops objects with a
probability p before they are admitted to KLog, as shown in
Fig. 14d.

Transition rates: If only a fraction p of objects are admitted to
KLog, then the transition rate O — Q decreases by a factor

SOSP 21, October 26-29, 2021, Virtual Event, Germany

Param Description

R Request rate.

14 Relative load factor.

S Flash cache size.

w App-level write rate (w/out DLWA).
D Device-level write rate.

k Trace sampling rate.

Q Per-server DRAM capacity.
Xo Param x in original system.
Xm Param x in modeled system.
X Param x in simulated system.

Table 4. Key parameters in scaling methodology.

p. This factor of p propagates to all of the other transition
rates.
Stationary probability and miss ratio: As with the threshold
admission policy, stationary probabilities and miss ratio do
not change by adding a probabilistic admission policy before
KLog.

This insensitivity to admission probability reflects a limi-
tation of the model: we assume static reference probabilities,
so all popular objects will eventually make it into the cache.
In practice, object popularity changes over time, so miss ratio
decreases at very low admission probabilities because the
cache does not admit newly popular objects quickly enough.

Flash write rate: The write-cost of each edge does not change,
but probability of traversing each edge changes by a factor
p. Thus:

2mpr w
fKangaroo = Zp it mio 1+ : Q- E[X|X > n]
(25)
w
ALWAKangaroo = P 1 + m T (26)

This equation is Theorem 1, and Sec. 3 gives an example of
Kangaroo’s ALWA using reasonable parameters.

B Scaling Methodology for Experiments
(not peer-reviewed)

We evaluate Kangaroo on a wide range of environments.
This appendix gives the math behind our scaling methodol-
ogy, which allows us explore a wide range of system param-
eters. This methodology builds on prior analysis of scaling
caches [13, 14, 45, 53, 61, 70]. Table 4 summarizes the key
parameters in the methodology.

The model involves three free parameters that let us:
(i) choose the load on each server; (ii) choose the flash cache
size on each server; and (iii) down-sample requests to accel-
erate simulations. Moreover, the methodology incorporates
three constraints to exclude infeasible configurations: re-
quest throughput, flash write rate, and DRAM usage.

260

McAllister et al.

B.1 Overview and Goals

The starting point for our methodology is a trace collected
from a real, production system. For simplicity and without
loss of generality, we assume that the trace is gathered from
a single caching server. This trace’s requests arrive at a rate
R, (measured in, e.g., requests/s).

The goal of our methodology is to use this trace to explore
other system configurations. In particular, we want to ex-
plore caching systems with fewer or more caching servers
and with different amounts of resources at each individual
server. We do this by modeling the performance of a single
server in the desired system configuration. Last but not least,
we want to be able to do this efficiently, i.e., without need-
ing to actually duplicate the original production system, by
running scaled-down simulations.

B.2 Load factor and request rate

The first choice in the methodology is the load factor
on each server, which changes the number of servers in the
cluster. In the original system, each server serves requests at a
rate R, — by increasing or decreasing this rate, we effectively
scale the number of caching servers that are needed to serve
all user requests.

The parameter ¢ sets the relative load factor at each server.
That is, the request rate at each server in the modeled system
is

Ry =1{-R,, (27)

and the total number of caching servers in the modeled
system scales oc 1/¢.

The load factor is clearly an important parameter. In gen-
eral, a higher load factor is desirable, as higher load reduces
the number of servers needed to serve all user requests. How-
ever, load factor is constrained by the maximum request
throughput at a single server Rpy,x. Specifically, the maxi-
mum load factor is

fmax = maX/Ro- (28)
Higher load factors may also not be desirable because higher
load increases flash write rate and, at a fixed cache size per
server, increases miss ratio. Hence, the best load factor will
depend on a number of factors, including properties of the
trace like object size and locality (i.e., miss ratio curve).

B.3 Flash cache size

The next choice is the per-server flash cache size, Sy,. This
is a free parameter constrained only by flash write rate and
the size of the flash device. (A log-structured cache size is
also constrained by DRAM, as discussed below.)

This parameter is significant because it determines the
miss ratio at each server. A bigger cache is usually better,
until write amplification or DRAM usage exceed the server’s
constraints. For a given cache design, at cache size Sy, it will
achieve miss ratio of mp (S) and a flash write rate (excluding

Kangaroo: Caching Billions of Tiny Objects on Flash

DLWA) of

Wi « mm(sm) “Rin. (29)

The miss ratio m(S) depends on the system because load
factor varies between systems. Application-level write rate
W is scaled by an design-specific factor corresponding to the
cache design’s ALwa— this factor is large for set-associative
designs like SA, smaller for Kangaroo, and essentially 1x for
log-structured caches like LS.

The maximum cache size Sy, is determined from the
flash-write constraint, Dy.y. Specifically, we multiply the
application-level flash write rate Wy, by the pLwa, estimated
for each system as described in Sec. 5.1 to get the device-level
write rate Dy,. We then sweep the flash cache size Sy, to find
the sizes that stay within the constraint. Increasing cache
size has two competing effects on write rate: larger caches
generally have fewer misses, leading to fewer insertions, but
they also suffer higher prLwa, increasing the cost of each
insertion. As a result, the maximum size usually lies on the
“knee” of the pLwa curve (see Fig. 2), though which size hits
the knee depends on the cache design (via ALwa), the load
factor (via Ry,), and the trace itself (via my,).

We are now ready, in principle, to run experiments to
model the desired system. By replaying the original trace,
which has a request rate of R,, we are simulating a system
at 1/f-scale of the desired system (since R, = Ry, /f). We
therefore need to scale the cache size in our experiments by
the same factor, simulating a cache of size Sg = Sy, /¢. (This is
why increasing load factor can hurt miss ratio: all else equal,
a larger load factor reduces effective cache capacity.) We can
then interpret results by scaling them up by a factor ¢, e.g.,
rescaling the measured write rate W; to report a modeled
write rate of Wy, = ¢ - W;. We can accelerate experiments
further by employing the same trick more aggressively.

B.4 Accelerating simulations

To speedup simulation, we downsample the original trace
by pseudorandomly selecting keys to produce a new, sampled
trace that we will use in the actual simulation experiments.
This trace has a request rate of R;, yielding an empirically
measured sampling rate of

k =Rs/R, (30)

Downsampling by k <« 1 makes simulations take many
fewer requests and also lets simulated flash capacity fit in
DRAM, significantly accelerating each experiment.

We must scale down the other resources in the system to

match the downsampled trace. The simulated cache size is
Se=k-Sy. (31)

With this scaling, simulated write rate needs to be scaled up
by 1/k to compute the modeled system’s write rate

Wi = W/k. (32)

261

SOSP 21, October 26-29, 2021, Virtual Event, Germany

However, simulated miss ratio does not change

M (Sm) = M (Ss/k) = ms(Ss). (33)

(Miss ratio is invariant under sampling because it is the ratio
of rates, so the scaling factors cancel.)

B.5 DRAM constraints

In addition to other constraints, systems are constrained
in their DRAM usage. This is particularly important for log-
structured caches like LS, but every system includes a DRAM
cache that has a (modest) impact on results. We enforce
DRAM constraints by observing that the DRAM : flash ratio
should be held constant between the simulated and modeled
system. So, given a fixed DRAM capacity in the modeled
system Qy, (e.g., 16 GB), the flash cache size in the modeled
system S, and the simulated flash cache size S, it is trivial
to compute the simulated DRAM budget:

_ OmSs
= S

Qs (34)

For each simulation, we compute the DRAM overhead for
that cache design (e.g., for its DRAM index and Bloom filters),
and use the remaining DRAM capacity as a DRAM cache.
For LS, flash cache size is often limited by DRAM usage, not
the flash write rate or device size.

B.6 Applying the methodology

The above describes the methodology from a top-down
perspective, starting from the decisions that have the largest
impact on performance and cost. In practice, we use this
methodology to understand the parameter limitations for
the simulator. Then, the scaling methodology is applied in
the opposite direction, starting from the parameters of a
specific simulation experiment and backing out the modeled
system configuration for any given simulation.

Specifically, we run each simulation with a DRAM capacity
Qs, flash size S;, and trace sampled at rate k. These experi-
ments produce a miss ratio m(S;) and application-level flash
write rate W;.

Then, given a fixed DRAM budget in the modeled system
QOm, we compute the full properties of the modeled caching
system. We compute the size of the modeled flash cache as

_ OmSs
SO

This is the flash cache size that respects the modeled DRAM
constraint and keeps DRAM : flash ratio constant. Moreover,
to maintain miss ratio, the ratio of cache sizes Sy, /Ss must
equal the ratio of request rates Ry, /R;. We want to model
a system receiving Ry, = £ - R, requests, but actually run a
simulation with Rs = k - R, requests. Hence, the load factor
is

Sm (35)

(36)

SOSP 21, October 26-29, 2021, Virtual Event, Germany McAllister et al.

yielding a modeled request rate of Finally, we scale the write rate and estimate pDLwaA for size
R, = SnR (37) S W
mes e Dy, = DLWA(Sy,) - 75 (38)

This methodology lets us run short simulations to estimate
the behavior of a wide range of modeled caching systems,
while obeying constraints faced by production servers.

262

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Tiny objects are important and numerous
	2.2 Caching tiny objects in flash is hard
	2.3 Current approaches and related work

	3 Kangaroo Overview and Motivation
	4 Kangaroo Design and Implementation
	4.1 Pre-flash admission to KLog
	4.2 KLog
	4.3 KLog KSet: Minimizing flash writes
	4.4 KSet

	5 Evaluation
	5.1 Experimental setup
	5.2 Main result: Kangaroo significantly reduces misses vs. prior cache designs under realistic constraints
	5.3 Kangaroo performs well as constraints change
	5.4 Parameter sensitivity and benefit attribution
	5.5 Production deployment test

	6 Conclusion
	Acknowledgments
	References
	A Simplified Markov model of Kangaroo (not peer-reviewed)
	A.1 Baseline set-associative cache
	A.2 Add KLog, no admission policies
	A.3 Add threshold admission before KSet
	A.4 Add probabilistic admission before KLog

	B Scaling Methodology for Experiments (not peer-reviewed)
	B.1 Overview and Goals
	B.2 Load factor and request rate
	B.3 Flash cache size
	B.4 Accelerating simulations
	B.5 DRAM constraints
	B.6 Applying the methodology

