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First passage time in multistep stochastic processes with applications to dust charging
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An approach was developed to describe the first passage time (FPT) in multistep stochastic processes with
discrete states governed by a master equation (ME). The approach is an extension of the totally absorbing
boundary approach given for calculation of FPT in one-step processes [N. G. Van Kampen, Stochastic Processes
in Physics and Chemistry (Elsevier Science Publishers, North Holland, Amsterdam, 2007)] to include multistep
processes where jumps are not restricted to adjacent sites. In addition, a Fokker-Planck equation (FPE) was
derived from the multistep ME, assuming the continuity of the state variable. The developed approach and an
FPE based approach [C. W. Gardiner, Handbook of Stochastic Methods, 3rd ed. (Springer-Verlag, New York,
2004)] were used to find the mean first passage time (MFPT) of the transition between the negative and positive
stable macrostates of dust grain charge when the charging process was bistable. The dust was in a plasma and
charged by collecting ions and electrons, and emitting secondary electrons. The MFPTs for the transitioning
of grain charge from one macrostate to the other were calculated by the two approaches for a range of grain
sizes. Both approaches produced very similar results for the same grain except for when it was very small. The
difference between MFPTs of two approaches for very small grains was attributed to the failure of the charge
continuity assumption in the FPE description. For a given grain, the MFPT for a transition from the negative
macrostate to the positive one was substantially larger than that for a transition in a reverse order. The normalized
MFPT for a transition from the positive to the negative macrostate showed little sensitivity to the grain radius.
For a reverse transition, with the increase of the grain radius, it dropped first and then increased. The probability
density function of FPT was substantially wider for a transition from the positive to the negative macrostate, as
compared to a reverse transition.
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I. INTRODUCTION

An intrinsic noise, characterized by random fluctuations,
is inherent in the systems with particles [1]. An electrically
charged dust grain is an example of such systems where the
charging is attributed to the ion and electron particles that
are attached to or emitted from the grain. The electron and
ion attachment events occur at time intervals characterized by
randomness. Hence, the net charge of the grain exhibits ran-
dom fluctuations over time. Intrinsic noises can be described
by a master equation (ME) governing the probability density
function (PDF) of the state of the system [1]. The ME of
the dust charging system admits different forms where the
functionality of the transition probability rates in terms of the
charge state depends on the mechanisms that are responsible
for charging. These forms are previously constructed when the
charging mechanisms are the collisional collection of elec-
trons and singly charged positive ions [2–5], the collisional
collection of electrons and multiply charged ions [6,7], and the
collisional collection of ions and electrons combined with the
secondary emission of electrons (SEE) from the grain [8–10].

Intrinsic charge fluctuations of a grain were the subject of
several investigations [2–18]. Let Z (t ) indicate the instanta-
neous net elementary charge (charge state) of the grain. It
is an integer variable and a function of time t . When, for
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example, five singly charged positive ions and eight electrons
are collected on the grain at a given time, the grain is at
charge state Z = +5 − 8 = −3. Here, Z (t ) experiences step-
wise variation over time, because it can only have integer
values, as a consequence of discreteness nature of charge.
Morfill et al. [11] suggested that intrinsic fluctuations of Z (t )
follows Z2

rms ∝ |〈Z〉|, where 〈Z〉 and Z2
rms denote the mean and

variance of Z (t ), respectively. At the limit of large |Z (t )|, the
charge is assumed to continuously vary and, accordingly, the
grain charge probability distribution is shown to be Gaussian
with the mean and variance found to respect the proportional-
ity correlation above [2,5,6]. This Gaussianity was determined
for situations where the mechanism of charging was the col-
lisional collection of plasma particles. A similar finding was
also made for situations where the thermionic emission or UV
irradiation mechanisms are active dust charging mechanisms
in addition to the collisional collection mechanism [13]. On
the other hand, it was shown that when |Z (t )| is smaller than
tens of elementary charges, the charge probability distribution
can significantly deviate from Gaussianity [2,5]. This devi-
ation is attributed to the significance of charge discreteness
effects in the time evolution of |Z (t )| when it is small. The
smaller |Z (t )| is, the larger the deviation is. In the studies
reviewed above, the dust charge fluctuations were stable, a
feature characterized by fluctuations around a fixed stable
point (stationary stable macrostate).

It was shown [10] that if both collisional collection and
SEE mechanisms were active, charge fluctuations could be
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unstable. This instability was characterized by a substantial
deviation of the grain charge PDF from Gaussianity in some
cases. Moreover, it was shown that if the SEE was active,
fluctuations could be bistable. This bistability is associated
with a bifurcation phenomenon of the grain charge, known
from the investigations of Meyer-Vernet [19] and Horányi
et al. [20] who accounted for SEE while neglecting intrinsic
charge fluctuations. In this phenomenon, two identical grains
in the same plasma environment exhibit two distinct (mean)
charge values, one positive and the other negative. Shotorban
[10] showed that these values correspond to two macrostates
[1] between which the charge intrinsic fluctuations of a
grain can switch. This behavior is known as metastability in
stochastic processes and it is a state where the fluctuations are
characterized by two distinct time scales—one associated with
the fluctuations at either macrostate and the other with the
spontaneous transition between the macrostates. It was shown
that a switch from the negative macrostate to the positive
macrostate is attributed to a sequence of incidents with ion
attachment or primary electron attachment that resulted in
emission of secondary electrons [10]. On the other hand, a
reverse switch is attributed to a sequence of incidents most of
which are the attachments of primary electrons that result in
no emission of secondary electrons.

The current study was motivated by a need to determine
the first-passage time (FPT) [1] of grain charge fluctuations:
Starting from a given charge, how long does it take for the
grain to posses a specified charge? The FPT is of particular
interest in metastable fluctuations, as it quantifies the time
scales of the transitions between the macrostates. The FPT
is a random quantity whose behavior can be described by
the calculation of its statistical properties. For example, the
growth and dissipation times, calculated by Matsoukas and
Russell [4] for grain charging due to collisional collection of
plasma particles, are special cases of the mean first passage
time (MFPT). The growth time is defined as the mean time
for the transition from the mean charge to a specified charge,
and the dissipation time is the mean time to revert from the
specified charge to the mean charge. Recently, Matthews et al.
[18] used Matsoukas and Russell’s [4] formulation for the
growth and dissipation times, to validate a discrete stochastic
model for the charging of aggregate grains. This formulation
is limited to the grain charging described by a linear Fokker-
Planck equation (FPE) [1] derived from the ME of a one-step
process. In the next section, mathematical approaches are
proposed to calculate the FPT of multistep processes. Then,
they are used to investigate the FPTs in the grain charging
system with a focus on bistable situations.

II. FIRST PASSAGE TIME IN MULTISTEP PROCESSES

Consider a stochastic process with a discrete set of states
governed by the following master equation:

dP(Z )
dt

=
N∑

n=1

[rn(Z + n)P(Z + n) − rn(Z )P(Z )]

+
M∑

n=1

[gn(Z − n)P(Z − n) − gn(Z )P(Z )], (1)

where Z is an integer indicating the state variable (site), e.g.,
the net elementary charge possessed by a grain, and P(Z ) is
the probability density function. Here, rn(Z ) is the probability
per unit time that, being at Z a jump occurs to Z − n and
gn(Z ) is the probability per unit time that, being at Z , a
jump occurs to Z + n. The process modeled by Eq. (1) can
be regarded as a “multistep process”, a generalized notion of
the one-step process [1], where jumps can also occur between
nonadjacent sites. The change of the grain charge by multiple
units as a result of collecting multiply charged ions [21]
is an example of a jump between nonadjacent sites [6,7,9].
The other example is when multiple secondary electrons are
emitted when a primary electron impacts the grain [6,9]. The
one-step process master equation is a special case of Eq. (1)
with N = M = 1. The master equations formulated for grain
charging in multicomponent plasma [6] and in cases where
the SEE is active [10], can be readily recast in the form given
in Eq. (1), as illustrated in Sec. III.

The notion of the macroscopic or phenomenological equa-
tion illustrated by Van Kampen [1] for one-step processes
is extended here to include multistep processes. That is a
deterministic differential equation where the fluctuations of
Z (t ) is ignored and treated as a non-stochastic quantity. An
approach to obtain this equation is to multiply master Eq. (1)
by Z and sum over Z:

d〈Z〉
dt

= −
N∑

n=1

n〈rn(Z )〉 +
M∑

n=1

n〈gn(Z )〉, (2)

where 〈〉 indicates the mean defined for a function such as
α(Z ) by 〈α(Z )〉 =

∑
Z α(Z )P(Z ). In the derivation of Eq. (2),

the index shift identity of the summation manipulation rule
is used and P(Z ) = 0 is assumed at the boundaries. Unless
rn(Z ) and gn(Z ) are linear functions of Z , Eq. (2) is not a
closed equation. However, if they are nonlinear, they may be
expanded about 〈Z〉, e.g.,

〈rn(Z )〉 = rn(〈Z〉) + 1
2 〈(Z − 〈Z〉)2〉r′′

n (〈Z〉) + · · · . (3)

This expansion shows that higher-order moments play a role
in the time evolution of 〈Z〉 through Eq. (2). Nonetheless,
retaining only the first term in the expansion above and the
one for 〈gn(Z )〉, the macroscopic equation is obtained

dZ
dt

= −
N∑

n=1

nrn(Z ) +
M∑

n=1

ngn(Z ), (4)

where Z ≡ 〈Z〉.

A. First passage time in master equation

Here, to calculate the FPT, the absorbing boundary ap-
proach available for one-step processes [1], is extended to
include multistep processes:

Suppose that the system is at state Z = m at t = 0. To
calculate the escape time to a state Z ! R, where R is located
on the right of m, i.e., m < R, Eq. (1) is solved in the range
Z < R with the initial condition P(Z ) = δZ,m (Kronecker δ
function) while, R is set as the totally absorbing boundary
condition by setting P(Z ) = 0 if Z ! R for all times.
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The probability for the system to be at a site in the domain −∞ < Z < R is ∑R−1
Z=−∞ P(Z ). Now let fR,m(t )dt indicate the

probability that starting at site m, the system reaches R or beyond at a time between t and t + dt . Then

fR,m(t ) = − d
dt

R−1∑

Z=−∞
P(Z, t ) =

M∑

n=1

R−1∑

Z=R−n

gn(Z )P(Z, t ), (5)

where the second line is derived after substitution for dP(Z )/dt from Eq. (1) and the manipulation below:

R−1∑

Z=−∞

dP(Z )
dt

=
N∑

n=1

R−1∑

Z=−∞
[rn(Z + n)P(Z + n) − rn(Z )P(Z )] +

M∑

n=1

R−1∑

Z=−∞
[gn(Z − n)P(Z − n) − gn(Z )P(Z )]

=
N∑

n=1

[
R−1+n∑

Z=−∞
rn(Z )P(Z ) −

R−1∑

Z=−∞
rn(Z )P(Z )

]

+
M∑

n=1

[
R−1−n∑

Z=−∞
gn(Z )P(Z ) −

R−1∑

Z=−∞
gn(Z )P(Z )

]

=
N∑

n=1

R−1+n∑

Z=R

rn(Z )P(Z ) −
M∑

n=1

R−1∑

Z=R−n

gn(Z )P(Z )

= −
M∑

n=1

R−1∑

Z=R−n

gn(Z )P(Z ) (6)

noting that in the line before the last one, the first term
vanishes since P(Z ) = 0 for Z ! R.

On the other hand, the total probability of reaching a state
at Z ! R is calculated by

πR,m =
∫ ∞

0
fR,m(t )dt

= 1 −
R−1∑

Z=−∞
P(Z, t = ∞)

=
M∑

n=1

R−1∑

Z=R−n

gn(Z )
∫ ∞

0
P(Z, t )dt, (7)

and the MFPT is

τR,m = 1
πR,m

∫ ∞

0
t fR,m(t )dt

= 1
πR,m

M∑

n=1

R−1∑

Z=R−n

gn(Z )
∫ ∞

0
tP(Z, t )dt . (8)

Likewise, for the calculation of the FPT from the state m to
the state Z " L, where L < m, Eq. (1) is solved for P(Z ) in
the domain L < Z with L set as the totally absorbing boundary
condition, i.e., P(Z ) = 0 if Z " L. Then

fL,m(t ) = − d
dt

∞∑

Z=L+1

P(Z, t ) =
N∑

n=1

L+n∑

Z=L+1

rn(Z )P(Z, t ). (9)

The total probability of reaching L or beyond is

πL,m =
∫ ∞

0
fL,m(t )dt

= 1 −
∞∑

Z=L+1

P(Z, t = ∞)

=
N∑

n=1

L+n∑

Z=L+1

rn(Z )
∫ ∞

0
P(Z, t )dt, (10)

and the MFPT is

τL,m = 1
πL,m

∫ ∞

0
t fL,m(t )dt

= 1
πL,m

N∑

n=1

L+n∑

Z=L+1

rn(Z )
∫ ∞

0
tP(Z, t )dt . (11)

B. Mean first passage time in Fokker-Planck equation

If rn(Z ) and gn(Z ) are smooth functions of Z , i.e., con-
tinuous and differentiable a number of times, gn(Z ) slightly
change between Z and Z + M, and rn(Z ) slightly between
Z and Z + N , Z may be treated as a continuous variable.
Hence, expanding the first terms in the summations in Eq. (1)
by Taylor’s series and retaining the terms up to the second
derivative, e.g.,

rn(Z ± n)P(Z ± n) = rn(Z )P(Z ) ± n
∂

∂Z
[rn(Z )P(Z )]

+ n2

2
∂2

∂Z2
[rn(Z )P(Z )], (12)

a (forward) Fokker-Planck equation can be derived:

∂P(Z, t )
∂t

= − ∂

∂Z
A(Z )P(Z ) + 1

2
∂2

∂Z2
B(Z )P(Z ), (13)

where the drift and diffusion functions are

A(Z ) = −
N∑

n=1

nrn(Z ) +
M∑

n=1

ngn(Z ), (14)

B(Z ) =
N∑

n=1

n2rn(Z ) +
M∑

n=1

n2gn(Z ), (15)

respectively. Equation (13) is identical to the Fokker-Planck
equation (A1) in Appendix A, where the formulation provided
by Gardiner [22] for the calculation of MFPT in the FPE, is
illustrated. It is noted that the drift A(Z ), given in Eq. (14), is
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identical to the right-hand side (r.h.s.) of Eq. (4). On the other
hand, since rn and gn are positive functions, the positivity of
the diffusion coefficient B(Z ) is secured in Eq. (15).

The macroscopic equation associated with Eq. (13) is
obtained by integrating it after multiplication by Z , using
an expansion similar to Eq. (3) and retaining the lowest
order term. The resulting macroscopic equation is identical to
Eq. (4), which is the macroscopic equation associated with
the master equation (1). The stationary macrostates of the
system is defined by the roots of the r.h.s. of Eq. (4), viz.
A(Zs) = 0. If the condition A′(Zs) < 0 is satisfied, the asso-
ciated macrostate is stable. A detail discussion on stability,
instability and bistability of stochastic processes can be found
in Ref. [1].

In general, function A(Z ) is nonlinear. However, if
A(Z ) = 0 has only one stable root Z = Zs (stable stationary
macrostate), or there are more but at least one root is suffi-
ciently away from the rest, then A(Z ) can be linearized about
this macrostate. Consequently, a linear FPE, where drift is
linear and diffusion coefficient is constant [1], can be derived.
This derivation is achieved by expanding A(Z ) and B(Z ) about
Zs, retaining the lowest nonzero term, and substituting them
in Eq. (13):

∂P(Z, t )
∂t

= −A′(Zs)
∂

∂Z
(Z − Zs)P(Z ) + 1

2
B(Zs)

∂2

∂Z2
P(Z ),

(16)

where, using Eq. (14),

A′(Z ) = dA
dZ

= −
N∑

n=1

nr′
n(Z ) +

M∑

n=1

ng′
n(Z ). (17)

Equation (16) is a linear FPE, which is valid for fluctuations
at the vicinity of Zs. This equation describes the Ornstein-
Uhlenbeck process with a Gaussian solution at a stationary
state with a mean and variance of

〈Z〉s = Zs, (18)

〈〈Z〉〉s = −1
2

B(Zs)
A′(Zs)

, (19)

respectively, and a correlation of

〈〈Z (t )Z (t + u)〉〉s = 〈〈Z〉〉s exp
(

− u
τ0

)
, (20)

where τ0 = −1/A′(Zs).
The procedure outlined in Appendix A can be also used to

calculate MFPT in the linear FPE. Two specific MFPTs are
the growth and dissipation times defined in Sec. I. The growth
time is calculated by setting L = Zs − Z , R = Zs + Z , and
y = Zs in the integral solution in Eq. (A3), which is simplified
for the linear FPE to

τZ (Zs)
τ0

= &2
Z

2 2F2

(
1, 1;

3
2
, 2;

&2
Z

2

)
, (21)

where &Z = |Z − Zs|/
√

〈〈Z〉〉s is the dimensionless deviation
from the mean and 2F2 is a generalized hypergeometric func-
tion [23]. On the other hand, the dissipation time is calculated

FIG. 1. Dimensionless growth (solid line) and dissipation
(dashed line) times vs dimensionless deviation from the mean when
the PDF is governed by a linear FPE.

by Eq. (A6)

τs(Z )
τ0

= 1
2
π erfi

(
&Z√

2

)
− τZ (Zs)

τ0
. (22)

Equations (21) and (22) are in a simplified form of the integral
solutions previously provided [1,4] for a linear FPE. It is
noted that, here, the process is not restricted to the one step
assumption previously made [4].

Figure 1 displays the dimensionless growth time τZ (Zs)/τ0
and the dimensionless dissipation time τs(Z )/τ0 versus &Z .
Both times increase monotonically from zero. The dissipation
time experiences a steep increase initially but its rate of in-
crease rapidly drops. The growth time starts off with a slower
rate but intersects with the dissipation time at &Z = 1.26278
and τZ (Zs)/τ0 = τs(Z )/τ0 = 1.06319. Then, the difference
between the growth and dissipation times grows, becoming
an order of magnitude larger at &Z ∼ 3.

III. STOCHASTIC CHARGING OF A GRAIN IN A PLASMA

Consider a plasma with ion (electron) density of ni(e), tem-
perature of Ti(e), and mass of mi(e), and let λD =

√
ε0kBTe/nee2

and ωpe =
√

nee2/ε0me represent the Debye length and
plasma frequency, respectively. Moreover, let Ii(Z ), Ie(Z ), and
Is(Z ) indicate the currents of ions, primary electrons, and sec-
ondary emitted electrons from the grain, respectively. Ions are
assumed singly positively charged, however, the discussion
here can be extended to include multiply charged ions [6].
Let f j (Z ) represent the probability distribution of j electrons
emitted from the grain in a single incident of primary electron
attachment. This quantity is equivalent to the fraction of
primary electrons that cause j secondary electrons to emit in
a single primary electron attachment incident. If K represents
the maximum number of secondary electrons that can be
emitted in a single incident of the electron attachment, then
0 " j " K and

∑K
j=0 f j (Z ) = 1. It can be shown that Is(Z ) =

Ie(Z )
∑K

j=1 f j (Z ). If N = 1, r1(Z ) = f0(Z )Ie(Z ), M = K − 1,
and gn(Z ) = fn+1(Z )Ie(Z ) + δ1nIi(Z ) in Eq. (1), where δmn is
the Kronecker delta function, the master equation governing
grain charging with ions, electrons and SEE in a plasma [10].
Using the rate equations above, the drift coefficient in Eq. (13)
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FIG. 2. Stationary macrostates (roots of the macroscopic equa-
tion at a stationary state) against EM/4kTe near a triple-root situation
for EM/4kTs = 30 (solid line), 32 (dashed line), 35 (dot-dashed line),
and 40 (dotted line); δM = 15.

is simplified to A(Z ) = −Ie(Z ) + Ii(Z ) + Is(Z ) and the r.h.s.
of the macroscopic Eq. (4) is the net current to the grain.

The calculation of the currents of ions, primary electrons,
and secondary electrons and the probability distribution of
emission of secondary electrons is illustrated in Appendix B
with the significant parameters noted below. A reference grain
charge is defined by

* = 4πε0akBTe

e2
, (23)

where a represents the radius of the grain. It is noted that
* defined by Eq. (23) was used as the system size [1] in
the stochastic description of grain charging [5,6,10]. Also, a
reference charging time scale is defined by

τc = *

+
=

√
2πλD

ωpea
, (24)

where

+ = πa2ne

√
8kBTe

πme
=

*ωpea
√

2πλD
, (25)

which indicates the electron current to the uncharged grain.
For SEE from the grain, Ts represents the temperature of
the emitted secondary electrons, δM is the maximum yield
which is around unity for metals and at the order 2 to 30
for insulators, and EM is the peak primary electron energy,
a model constant ranging from 300 to 2000 eV. The values of
these two parameters for various dust materials can be found
in Ref. [19].

The stationary grain charge macrostates, which correspond
to the roots of Eq. (4) with the left-hand side (l.h.s.) set to
zero, are plotted against EM/4kTe in Fig. 2. Here, z = Z/*
indicates the normalized charge. The four curves correspond
to four different values of EM/4kTs. It could be seen in this
figure that they collapse into a single curve for z < 0, which
is attributed to the SEE current being independent from the
SEE temperature as evident in Eq. (B3) for z < 0. A triple root
situation is observed for EM/4kTs = 30, 32, and 35 while this
situation does not encounter for EM/4kTs = 40. In the triple
root situations, one of the roots is negative and stable (negative

FIG. 3. Probability density function of the normalized grain
charge (z = Z/*) at a bistable state for grain radius of 100, 30, and
10 nm shown by solid, dashed, and dotted-dashed lines, respectively,
through the Fokker-Planck equation, and shown by ◦, ×, and +,
respectively, through the master equation; δM = 15, EM/4kTe = 45,
EM/4kTs = 32.

charge state) and the other two positive. The larger positive
root is stable (positive charge state) and the smaller one is
unstable. A single positive root situation is encountered on
the left of the triple root region while a single negative root
situation is on the right of this region.

IV. RESULTS AND DISCUSSION

Grains with a radius in the range of 10 to 100 nm sus-
pended in a hydrogen plasma with ni(e) = 104 m−3, Ti =
Te = 2 × 104 K were considered. These values are relevant
to interstellar dusty plasma condition [24].

Figure 3 shows the PDF of the normalized charge obtained
by solving the master equation and separately by solving the
Fokker-Planck equation, for a bistable state of grain charging
(a triple root situation where there are two stable stationary
macrostates) for three different grain sizes. The agreement
between ME and FPE solutions is excellent. A bimodal dis-
tribution is distinguishable for a grain radius of 100 nm. The
distribution of the grain charge exhibits bimodality however it
is less obvious for a grain radius of 30 nm.

Figure 4 displays MFPT normalized by τc, versus grain
radius. MFPT is calculated, using ME, and separately using
the FPE. In the former approach, MFPT is obtained by inte-
grating the PDF of FPT given in Eqs. (5) and (9). In the latter
approach, it is obtained by Eqs. (A5) and (A6). Except for R <
30 nm, excellent agreement is seen between two approaches in
Fig 4. For R < 30 nm, the difference between the approaches
is much more pronounced for the dimensionless MFPT of a
transition from the negative to positive macrostate, compared
to the one from the positive to negative macrostate. The
significant difference between ME and FPE results here could
be attributed to the discreteness of charge, which is neglected
in FPE but it is more critical for smaller grains. For the grain
radius range considered here, the dimensionless MFPT of a
transition from the stable positive charge macrostate to the
negative charge macrostate experiences little change, exhibit-
ing a constant value of around 2.5. On the other hand, the
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FIG. 4. MFPT normalized by τc, versus grain radius for a transi-
tion from the negative macrostate to the positive macrostate through
master equation (+) and Fokker-Planck equation (©) and for a
transition from the positive macrostate to the negative macrostate
through master equation (×) and Fokker-Planck equation (!); see
caption of Fig. 3 for parameter values.

one from the negative charge macrostate to the stable positive
charge macrostate first descends, reaching a minimum value
of around seven at a grain radius of around 30 nm, and then
gradually rises with the increase of radius. The radius at which
this minimum occurs seems to be correlated with how the
shape of PDF of the grain charge changes with radius (Fig. 3).
As seen in Fig. 3, there is a deep saddle point for the PDF
for a radius of 100 nm whereas it does not exist for a radius
of 10 nm. A saddle point is also seen for a radius of 30 nm;
however, it is very shallow. It is found that the saddle point
is deeper for a larger radius. At a given radius the MFPT
from the negative macrostate to the positive macrostate is
substantially larger than that from the positive macrostate to
the negative macrostate, indicating that the system fluctuates
longer at the negative charge state.

Figure 5 displays the PDF of the normalized FPT for three
grain radii of 10, 30, and 100 nm, which are calculated, using
Eqs. (5) and (9). The PDFs in the bottom panel, which is for
the transition from the stable positive to negative macrostate,
are wider than those in the top panel, which is for the re-
verse transition. In the top panel, the PDFs are similar for a
dimensionless FPT larger than around 2. The grain charge is
more populated around the negative charge macrostate for all
three grain charge sizes, compared to the stable positive
macrostate. That means a grain charge starting from the left
macrostate will overall remain longer in this macrostate before
transiting to the positive macrostate.

V. SUMMARY AND CONCLUSIONS

The absorbing boundary approach previously developed
for calculation of FPT in the stochastic processes that are
governed by one-step master equations [1], was extended to
include multistep master equations. The restriction of jumps
between adjacent sites in one step process is relaxed in multi-
step processes. The outcome of this extension was formulas
for calculation of MFPT and the PDF of FPT. The new
approach was used to study FPT in the grain charging system

FIG. 5. Probability density function of FPT normalized by τc for
grain radius of 100 (solid line), 30 (dashed line), and 10 nm (dotted-
dashed line) for grain charge transitioning (a) from the positive
macrostate to the negative macrostate; and (b) from the negative
macrostate to the positive macrostate. See the caption of Fig. 3 for
parameter values.

where a grain is charged by collecting ions and electrons from
a plasma, and emitting secondary electrons as a result of the
impact of the primary electrons. Depending on the plasma
and grain parameters, such a grain charge system could have
only one stationary stable macrostate or two stationary stable
macrostates (bistable), one negative and the other positive
that are separated by a third unstable positive macrostate.
Furthermore, assuming continuity for the state variable, a
Fokker-Planck equation was derived from the master equation
of multistep processes. The extended absorbing boundary
approach and a previous FPE based approach [22] were
used to calculate the MFPT of the transitioning of charge
between stable macrostates in bistable charging of grains for
various grain radii. The MFPTs calculated by two approaches
for a given grain radius were in excellent agreement except
for very small grains. Very small grains posses small net
elementary charges that the continuity assumption of charge,
critical in the FPE description, may not be valid. For a given
grain radius, the MFPT for a transition from the negative
macrostate to the positive one was substantially larger than
that for a transition in a reverse order. The dimensionless
MFPT for a transition from the positive stable macrostate to
the negative macrostate showed little sensitivity to the grain
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radius. On the other hand, with the increase of the grain
radius, it dropped first and then increased for the transition
from the negative to the positive macrostate. The PDF of FPT,
calculated by the extended absorbing boundary approach, was
found substantially wider for a transition from the positive
to negative macrostate, as compared to a transition from the
negative to the positive macrostate. Also, the derived FPE
was further simplified through a linearization approximation
about a stationary macrostate to obtain a linear FPE [1]. Such
an approximation is applicable about a macrostate if it is the
only macrostate or if it is sufficiently distant from the rest
of macrostates in a multiple macrostate situation. Using the
linear FPE, two equations for calculation of dissipation and
growth times were provided. When simplified to one-step pro-
cesses, they were consistent with the dissipation and growth
time equations previously provided [4] for grain charging
through one-step processes.
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APPENDIX A: CALCULATION OF MFPT IN THE
FOKKER-PLANCK EQUATION

Here, the methodology given by Gardiner [22] and Van
Kampen [1] for the calculation of MFPT for a continuous
stochastic process governed by a Fokker-Planck equation is
presented. For a given process, this equation is available in
two different forms, known as the forward equation and the
backward equation. However, they are equivalent, as dis-
cussed by Gardiner [22]. The forward Fokker-Planck equa-
tion, which is commonly referred just as the Fokker-Planck
equation, reads

∂P(y, t )
∂t

= − ∂

∂y
A(y)P + 1

2
∂2

∂y2
B(y)P. (A1)

The mean passage time τ (y) associated with this equation
obeys

A(y)
dτ

dy
+ 1

2
B(y)

d2τ

dy2
= −1, (A2)

which is derived by the use of a backward equation equivalent
to Eq. (A1), as illustrated by Gardiner [22]. Equation (A2)
can be solved by direct integration. Three solutions have been

previously developed for the range L < y < R, using three
different sets of left and right boundary conditions at y = L
and y = R. Gardiner [22] provided the solution below when
both boundary conditions are absorbing, i.e., τ (L) = τ (R) =
0, is

τ (y) = 2

[∫ y

L

dy′

ψ (y′)

∫ R

y

dy′

ψ (y′)

∫ y′

L

dy′′ψ (y′′)
B(y′)

−
∫ R

y

dy′

ψ (y′)

∫ y

L

dy′

ψ (y′)

∫ y′

L

dy′′ψ (y′′)
B(y′)

]/∫ R

L

dy′

ψ (y′)
,

(A3)

where

ψ (y) =
∫ y

L

2A(y′)
B(y′)

dy′. (A4)

Gardiner [22] and Van Kampen [1] gave the following solu-
tion to Eq. (A2) when the right boundary condition (BC) is
absorbing τ (R) = 0 and the left BC is reflecting dτ/dy = 0
at y = L:

τ (y) = 2
∫ R

y

dy′

eψ (y′ )

∫ y′

L

eψ (y′′ )

B(y′′)
dy′′. (A5)

Similarly, when the left BC is absorbing, i.e., τ (L) = 0 and the
right BC is reflecting, i.e., dτ/dy = 0 at y = R, the solution is
[22]

τ (y) = 2
∫ y

L

dy′

eψ (y′ )

∫ R

y′

eψ (y′′ )

B(y′′)
dy′′. (A6)

APPENDIX B: CALCULATION OF THE CURRENTS

The electron and ion currents to the the grain are calculated
by the following equations in a Maxwellian plasma [6,10,24]:

Ie(Z ) = + ×
{

1 + Z
*

Z ! 0,

exp
( Z

*

)
Z < 0,

(B1)

Ii(Z ) = +n̂i

√
T̂i

m̂i
×

{
1 − Z

T̂i*
Z " 0,

exp
(
− Z

T̂i*

)
Z > 0,

(B2)

where T̂i = Ti/Te, m̂i = mi/me, and n̂i = ni/ne. The SEE cur-
rent from the grain is calculated following Sternglass’ theory
[10,19,25]:

Is(Z ) = 3.7δM+ ×
{(

1 + Z
*T̂s

)
exp

(
− Z

*T̂s
+ Z

*

)
F5,B

( EM
4kBTe

)
Z ! 0,

exp
( Z

*

)
F5

( EM
4kBTe

)
Z < 0,

(B3)

where

F5(x) = x2
∫ ∞

0
u5 exp(−xu2 − u)du,

F5,B(x) = x2
∫ ∞

B
u5 exp(−xu2 − u)du,

where B =
√

4kBTeZ/*EM and T̂s = Ts/Te, where Ts is the temperature of the emitted secondary electrons. For the definition of
remaining parameters in this equation, readers are referred to Sec. III.
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