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STACK-SORTING WITH CONSECUTIVE-PATTERN-AVOIDING STACKS

COLIN DEFANT AND KAI ZHENG

ABSTRACT. We introduce consecutive-pattern-avoiding stack-sorting maps SC,, which are natural
generalizations of West’s stack-sorting map s and natural analogues of the classical-pattern-avoiding
stack-sorting maps s, recently introduced by Cerbai, Claesson, and Ferrari. We characterize the
patterns o such that Sort(SC,), the set of permutations that are sortable via the map soSC,, is a
permutation class, and we enumerate the sets Sort(SC,) for o € {123,132,321}. We also study the
maps SC, from a dynamical point of view, characterizing the periodic points of SC, for all o € S5
and computing maxes, |SC, ' ()| for all o € {132,213,231,312}. In addition, we characterize
the periodic points of the classical-pattern-avoiding stack-sorting map si32, and we show that the
maximum number of iterations of s132 needed to send a permutation in S, to a periodic point is
n — 1. The paper ends with numerous open problems and conjectures.

1. INTRODUCTION

1.1. Background. Let S,, denote the set of permutations of the set [n] := {1,...,n}, which we
write as words in one-line notation. The investigation of pattern avoidance in permutations began
in 1968, when Knuth [28] introduced a stack-sorting machine and showed that a permutation can
be sorted to the identity permutation using this machine if and only if it avoids the pattern 231 (we
define pattern containment and avoidance formally below). In his 1990 Ph.D. dissertation, West [37]
introduced a deterministic variant of Knuth’s machine; this variant is a function s : S,, — S,,. As
in Knuth’s case, a permutation 7 € S,, satisfies s(7w) = 123---n if and only if it avoids 231. More
recently, Albert, Homberger, Pantone, Shar, and Vatter [2] introduced a vast generalization of
Knuth’s stack-sorting machine by considering C-machines. Roughly speaking, a C-machine is a
sorting machine that uses a stack whose entries, when read from top to bottom, must have the
same relative order as an element of the permutation class C. Even more recently, Cerbai, Claesson,
and Ferrari [11] generalized West’s stack-sorting map in a similar manner. For each permutation
pattern o, they defined a map s, : S, — S, that sends each permutation through a stack in a
right-greedy manner, insisting that the contents of the stack must avoid the pattern ¢ when read
from top to bottom. In this more general setup, West’s stack-sorting map is just s2;. Although
the article [11] is quite recent, it has already spawned several subsequent papers [3,5,10,12].

In this article, we introduce consecutive-pattern-avoiding stack-sorting maps SC,. In order to
define the maps s, and SC, formally and simultaneously, it is helpful to define more general maps
T 4 dependent on sets A of permutations. Assume we are given an input permutation 7 = 71 - - - 7.
Throughout this procedure, we consider the permutation obtained by reading the contents of a
vertical stack from top to bottom. If moving the next entry in the input permutation to the top of
the stack results in a stack whose contents have the same relative order as any element of A, then
the next entry in the input permutation is placed at the top of the stack (this operation is called
a push). Otherwise, the entry at the top of the stack is annexed to the end of the growing output
permutation (this operation is called a pop). This procedure stops when the output permutation has

length n. We then define T'4(7) to be this output permutation. When A is the set of permutations
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that avoid o, the map T4 is s,. Our focus in this article is on the case in which A is the set of
permutations that avoid o as a consecutive pattern, in which case we write T4 = SC,.

Example 1.1. The following diagram portrays the steps involved in sending the permutation
265413 through a consecutive-231-avoiding stack, showing that SCas;(265413) = 653142.

265413 65413 5413 6 5413 6 413 65 413 65 13
. - - - -
L2] 2 2 L2] L2] 2
65 3 65 653 6531 65314 653142
3
i j SN Y B . .
4 4 4 4
12 2 2 L2] L2]

Notice that there is one step where the contents of the stack, when read from top to bottom, form
the permutation 3142. The permutation 3142 contains the pattern 231 classically (i.e., nonconsec-
utively), but avoids 231 consecutively, which is why it is allowed to be in the stack. On the other
hand, this would not be allowed if we were using a classical-231-avoiding stack. In that case, the
steps would proceed as in the following diagram, which shows that ss31(265413) = 651432.

265413 65413 5413 6 5413 6 413 65 413 65 13
2 2 2 2 2 2
65 3 651 3 6514 3 6514 65143 651432

2 2 2 2 2

Our newly-defined maps SC, serve as perfectly legitimate generalizations of West’s stack-sorting
map because SCy; is the same as s, which is also the same as s9; (a permutation avoids the pattern
21 classically if and only if it avoids 21 consecutively). However, when the length of o is at least 3,
the maps SC, and s, exhibit different behaviors.

The decision to consider stacks that avoid consecutive patterns, rather than stacks that avoid
classical patterns, is very natural. Indeed, when one actually works through the process of sending
a permutation through a classical-21-avoiding stack, one checks at each step whether the next
entry in the input permutation is greater than the entry currently sitting at the top of the stack.
One does not bother checking if the next entry in the input is greater than all of the entries in
the stack because the smallest number in the stack is necessarily the top entry (this is another
manifestation of the simple observation that a permutation avoids 21 classically if and only if it
avoids 21 consecutively). If o has length & > 3, then when one sends a permutation through a
classical-o-avoiding stack, one must check all of the entries in the stack to see if the addition of the
next entry produces an occurrence of the pattern o. By contrast, when one sends a permutation
through a consecutive-o-avoiding stack, it is only necessary to compare the next entry in the input
permutation with the top k — 1 entries in the stack. In this way, the mechanics governing the maps
SC, are in some sense “closer” to those governing West’s stack-sorting map than those of the maps
S are.

Typically, researchers have approached West’s stack-sorting map from a “sorting” point of view.
The usual questions concern structural and enumerative aspects of t-stack-sortable permutations,
which are permutations that get sorted to the identity using at most t iterations of the map
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s [6-8,13,15,17,22,37,38]. On the other hand, there are now several articles that study the stack-
sorting map from a “dynamical” point of view (see [9,14,16,18,19] and the references therein). In
this approach, we view the stack-sorting map as an interesting combinatorially-defined function,
without caring so much about trying to sort permutations. The typical questions concern the
number of preimages of a permutation under s, which is called the fertility of the permutation. The
investigation of fertilities of permutations has revealed unexpected patterns and connections with
several other aspects of combinatorics [9,14,16,19,31,33], including a very surprising and useful link
with the combinatorics of cumulants in noncommutative probability theory [18]. This dynamical
approach concerning fertilities has also shed new light on the t-stack-sortable permutations studied
from the sorting point of view [15,17].

In this paper, we consider the maps SC, from both the sorting point of view and the dynamical
point of view. All of the sorting questions we consider are analogues of questions asked about the
maps S, in [11,12]. On the other hand, our dynamical approach is completely novel in the realm
of pattern-avoiding stack-sorting maps (other than s itself). We will also see that there are several
dynamical questions that one can ask about the maps SC,, that are trivial when o = 21 (i.e., when
SC, = s), but which become much more interesting when the length of o is at least 3.

1.2. Outline and Summary of Main Results. The articles [11,12] focus primarily on the
set Sort(s,) of permutations that get sorted to the identity using a c-avoiding stack followed
by a classical-21-avoiding stack. Since the set of permutations that s maps to the identity is
the set Av(231) of 231-avoiding permutations, we have Sort(s,) = s;!(Av(231)). Note that
Sort(se1) = s 1(Av(231)) consists of the 2-stack-sortable permutations, which have received an
enormous amount of attention since their inception in West’s dissertation [6-8,15,17,22, 37, 38].
Let us also remark that the articles [3,10] have studied other close variants of these sets; for ex-
ample, the paper [3] explores the sets Sort(sqr) = s, 1(Av(231)), where s, is the map that sends
a permutation through a right-greedy stack whose contents avoid both ¢ and 7 (using our earlier
notation, sy r = Tav(s,r))- In Section 2, we define Sort(SC,) = SC, (Av(231)), which can similarly
be seen as the set of permutations that get sorted into the identity by a consecutive-o-avoiding stack
followed by a 21-avoiding stack. We will prove that if o € Sy for some k > 3, then Sort(SC,) is a
permutation class if and only if o and & both contain the pattern 231, where & is the permutation
obtained by swapping the first 2 entries in ¢; this is a direct analogue of one of the main results
from [11].

The other main results from [11] concern the enumeration of the sets Sort(sjes) and Sort(ssai).
Extending this work, the article [12] focuses on the enumeration of the set Sort(s132). In Sections 4
and 6, we give analogues of these results by characterizing and enumerating the sets Sort(SCia3),
Sort(SCs21), and Sort(SCis2). More precisely, we will see that Sort(SCje3) is enumerated by the
first differences of Motzkin numbers, that Sort(SCss;) is enumerated by the Motzkin numbers, and
that Sort(SCi32) is enumerated by the Catalan numbers.

In Section 3, we adopt the dynamical point of view and consider the periodic points of the maps
SC,, which we view as functions from S,, to S, for each n > 1. It is easy to show that the only
periodic point of s : S, — 5, is the identity permutation 123 ---n. By contrast, if the length of &
is at least 3, then SC, has multiple periodic points. We will prove that if o € S3, then the periodic
points of SC, : 5, — S, are precisely the permuatations in S,, that avoid ¢ and its reverse as
consecutive patterns.

It is known that the identity permutation 123 - - - n, which has C,, := n%q (27:”) preimages under s,
has strictly more preimages under s than every other permutation in S,, (see [6, Chapter 8, Exercise
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23]). The analogous results for the maps SC, are more difficult. In Section 4, we study preimages
under the maps SCi32 and SCs;o, proving in particular that

—1 —1 n—1
fé%if |SCgp(m)| = ?é%f |SCpa(m)| = <L7L21J>
(along the way, we obtain a simple formula for | SC 3, (m)| for all reverse-layered permutations 7).
In Section 5, we prove a similar result for the maps SCo3; and SCs13, showing that

SCoqy (m)| = SCyk(m)| = 2"2
max | SCos1(m)] max | SCyqy3(m)|
when n > 2.

Section 7 is a little different from the rest of the paper because it focuses on classical-pattern-
avoiding stack-sorting maps instead of consecutive-pattern-avoiding stack-sorting maps. The pur-
pose of this section is to prove dynamical results about the maps si132 and s312. Such questions
have not previously been considered for these maps, and we believe our results open the gate for
interesting further developments. Specifically, we prove that the periodic points of si32 (respec-
tively, s312) are precisely the permutations that avoid 132 and 231 (respectively, 312 and 213). We
also prove the the maximum number of iterations needed for sj3o (respectively, s312) to send a
permutation to one of its periodic points is n — 1 (these results are much more difficult than the
analogous results for West’s stack-sorting map).

Finally, Section 8 collects a large number of open problems, conjectures, and other suggestions
for future work.

1.3. Terminology and Notation. Recall that in this article, a permutation is an ordering of the
elements of the set [n] for some n. If 7 is a sequence of n distinct integers, then the standardization
of 7 is the permutation in S, obtained by replacing the ¢th-smallest entry in m with ¢ for all i.
For example, the standardization of 4829 is 2314. We say two sequences have the same relative
order if their standardizations are equal. We say a permutation o contains a permutation 7 as a
pattern if there is a (not necessarily consecutive) subsequence of o that has the same relative order
as T; otherwise, o avoids 7. We say o contains T consecutively if o has a consecutive subsequence
with the same relative order as 7; otherwise, ¢ avoids the consecutive pattern 7. When we wish to
stress that pattern containment (or avoidance) is nonconsecutive, we will sometimes call it classical
pattern containment (or avoidance). We refer to the standard references [6, 20,27, 30] for more
information about classical and consecutive permutation patterns.

We denote consecutive patterns by underlining them (or referring to them as consecutive pat-
terns). If 7(0, 7). is a (finite or infinite) list of classical or consecutive patterns, then we
write AVn(T(l),T(2), ...) for the set of permutations in S,, that avoid W 7@ We also write
AV(T(I),T(2), ) =Un>o Avn(r(l),v'@), ...). For example, Av(231,321) is the set of permutations
that avoid 231 and 321, while Av(321) is the set of permutations that avoid the consecutive pattern
321. If 7 is an arbitrary unspecified permutation, then we let Av(7) be the set of permutations
that consecutively avoid 7.

Given a permutation o = o1 --- 0}, of length k > 2, we let ¢ = 090103 - - - 0 denote the permu-
tation obtained by swapping the first two entries in 0. We also let rev(c) = oy --- 01 denote the
reverse of 0. If o € S, then we write comp(c) = (k+1—o01)--- (k+1— 0y) for the complement of
o. A descent (respectively, ascent) of o is an index i such that o; > 0,41 (respectively, o; < 0i11).
An ascending run of ¢ is a maximal consecutive increasing subsequence of 7, while a descending
run is a maximal consecutive decreasing subsequence. For example, the ascending runs of 7862351
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are 78, 6, 235, and 1, while the descending runs of 7862351 are 7, 862, 3, and 51. We write |7| for
the length of a sequence 7 of positive integers.

1.4. A Preliminary Lemma. Before we proceed, it will be helpful to record the following lemma,
which will allow us to simplify many of our considerations. The proof of this lemma is immediate
from the definitions of s, and SC,.

Lemma 1.2. If 0 € S; for some k > 2, then

Scomp(o) = comp osy o comp  and  SCeomp(s) = comp o SCy 0 comp .

2. WHEN 18 Sort(SC,) A PERMUTATION CLASS?

A permutation class is a set C of permutations that is closed under classical pattern containment.
Said differently, this means that if o, 7 are permutations such that ¢ contains 7 classically and o € C,
then 7 € C. Equivalently, a set of permutations is a permutation class if and only if it is of the
form AV(T(I), @, .) for some classical patterns W 7@

Recall that o is the permutation obtained by swapping the first two entries in o. Furthermore,
Sort(s,) = s, (Av(231)) is the set of permutations that get sorted into the identity by the map
50 85. The following theorem is one of the main results in [11].

Theorem 2.1 ([11]). Let o € Sy for some k > 2. The set Sort(s,) is a permutation class if and
only if 0 = 12 or ¢ contains the pattern 231 classically.

Our goal in this section is to prove the following analogue of Theorem 2.1 for the consecutive-
pattern-avoiding stack-sorting maps SC,. Recall that Sort(SC,) = SC,'(Av(231)) is the set of
permutations that get sorted into the identity by the map s o SC,.

Theorem 2.2. The set Sort(SCi2) is equal to the permutation class Av(213), while Sort(SCay) is
not a permutation class. If o € Sk for some k > 3, then the set Sort(SC,) is a permutation class
if and only if o and & both contain the pattern 231 classically. In this case, Sort(SC,) = Av(132).

We will prove Theorem 2.2 via the following two lemmas. Recall that rev(o) denotes the reverse
of the permutation o.

Lemma 2.3. Let o0 € Sk for some k > 3. If & contains 231 classically, then Sort(SC,) is the set

Av (132,rev(0)) of permutations that avoid 132 classically and avoid rev(c) consecutively.

Proof. In general, it is immediate from the definition of SC, that SC,(7m) = rev(mw) whenever 7
avoids rev(o) consecutively. Indeed, in this case, all of the entries in 7 enter the stack and then
proceed to exit the stack in the reverse of the order in which they entered. It follows that if 7 avoids
rev(o) consecutively and avoids 132 classically, then SC,(7) = rev(m) € Av(231). Furthermore,
if m contains 132 classically and avoids rev(c) consecutively, then SC,(7) = rev(m) contains 231
classically. This implies that m ¢ Sort(SC,).

Suppose now that 7 contains rev(c) consecutively, and let ¢ be the minimal index such that
i+ Mirk—1 1S a consecutive occurrence of the pattern rev(c). Consider sending 7 through a
consecutive-c-avoiding stack. When ;11 is about to enter the stack, the top k — 1 entries in the
stack, read from top to bottom, are m;yx—2,...,m;. The entry m;;r_o pops out of the stack, and the
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entry ;1 _1 enters the stack immediately afterward. Once all of the entries have finally exited the

stack, the entries m; o, Titk—1, Ti+k—3, .., T; Will appear in this order in the output permutation
SCy(m). However, 74 g—omitk—1Ti+k—3 - - - T; has the same relative order as o, which in turn contains
231 classically by hypothesis. This shows that SC,(7) ¢ Av(231), so m & Sort(SCy). O

Lemma 2.4. If 0 € Avi(231) for some k > 3, then Sort(SC,) is not a permutation class.

Proof. We first dispose of the case in which o = 231. A simple computation yields SCa3;(2413) =
3142 ¢ Av(231) and SCa31(25314) = 54132 € Av(231). This shows that 25314 is in Sort(SCas1)
while 2413 is not. Since 25314 classically contains 2413, it follows that Sort(SCas;) is not a per-
mutation class. We may now assume o # 231. Because the length of o is at least 3, we have
SC,(132) = 231. This shows that 132 ¢ Sort(SC,).

Let us now assume that o classically contains 231 but is not equal to 231. One can easily check
that SC,(rev(c)) = o, and we assumed that o € Av(231). This shows that rev(o) € Sort(SC,).
Now note that rev(o) contains 132 classically and that 132 ¢ Sort(SC,). It follows that Sort(SC,)
is not a permutation class in this case.

Next, assume o € Av(23l), 01 < 02, and o9 > 2. These assumptions force o1 = 1 since,
otherwise, the entries o1, 02, 1 would form a classical 231 pattern in o. Let 7 = oy, - - - 0507 02, where
o} =0, if 0; < 03 and o] = 0; + 1 if 0; > 05. We will prove that 7 € Sort(SC,). Since the entries
2, 0%, 09 form an occurrence of the classical pattern 132 in 7 and 132 ¢ Sort(SC, ), this will imply
that Sort(SCy) is not a permutation class. One can easily compute that SC, (1) = 04020705 - - - 0}..
Notice that the permutation oo0c%-- -0} has the same relative order as &, which avoids 231
classically by hypothesis. Therefore, if SC,(7) contains 231, then the first entry in the occurrence
of the 231 pattern must be of. Since 04 = 02 + 1, we can replace o4 with o3 in this subsequence in
order to obtain an occurrence of the pattern 231 in SC,(7) that starts with the entry o2. However,
this contradicts our earlier observation that oo0f % - - - 0} avoids 231.

For our next case, we assume o € Av(231), 01 =1, and 09 = 2. Let m = 0 - -- 0321(k+ 1) be the
concatenation of rev(c) with the entry k+ 1. Let 7/ = oy - - - 032(k + 1)1(k + 2). The first 3 entries
of the permutation SC,(7) = 2(k + 1)los--- o form a 231 pattern, so 7 & Sort(SC,). On the
other hand, since 7’ certainly avoids the pattern rev(c) consecutively, we have SC, (7') = rev(n’) =
(k+2)1(k + 1)203- - 0. The assumption o € Av(231) guarantees that SC,(7') € Av(231), so
7’ € Sort(SC,). The permutation 7’ contains 7 classically, so Sort(SC,) is not a permutation class
in this case.

The final case we need to consider is that in which ¢ € Av(231) and o1 > 02. Notice that
the hypothesis & € Av(231) forces o3 = 1 in this case. Let m = o} --- 05012, where o5 = 1 and
o, = 0; + 1 for all i # 2. We have SC,(m) = 12005 ---0}; note that this permutation avoids
231 because o avoids 231. Therefore, m € Sort(SC,). The entries o5, 01,2 form an occurrence
of the pattern 132 in 7, and we have seen that 132 ¢ Sort(SC,). Therefore, Sort(SC,) is not a
permutation class in this final case. ]

Proof of Theorem 2.2. 1t is straightforward to check that if 7 € S, for some n > 1, then the
last entry in SCia(m) is 1. It follows that SCia(w) avoids 231 if and only if it avoids 12. Using
Lemma 1.2, we find that

Sort(SC12) = SCp5 (Av(231)) = SC, (Av(12)) = comp(SC5;! (comp(Av(12))))

= comp(s~H(Av(21))) = comp(Av(231)) = Av(213).
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On the other hand, the set Sort(SCs;) is not a permutation class because it includes the permutation
35241 but not the permutation 3241.

Now assume o € S for some k > 3. If 0 and & both contain 231 classically, then it follows from
Lemma 2.3 that
Sort(SCy) = Av (132, rev(o*)) = Av(132).

If o € Av(231), then Lemma 2.4 tells us that Sort(SC,) is not a permutation class. Now assume
o € Av(231) and o € Av(231). Note that this implies that o1 > o9 > 1. Since SC,(rev(c)) = 7, the
permutation rev(o) is not in Sort(SC,). However, the permutation 7 = (o5 +1) - - - (02+1)1(01+1),
which contains rev(co) classically, is in Sort(SC,). To see this, note that the condition o1 > g2 > 1
guarantees that 7 avoids rev(o) consecutively. Therefore, SC,(7) = 1(o1 + 1)(o2 + 1) - -+ (o + 1),
and this permutation avoids 231 because o does. Hence, Sort(SC,) is not a permutation class. [

3. PERIODIC POINTS

In this section, we prove the following theorem, which completely classifies the periodic points
of the consecutive-o-avoiding stack-sorting map for o € Ss.

Theorem 3.1. Let 0 € S3. The periodic points of the map SC, : S, — S, are precisely the

permutations in Avy, (g, rev(a)). When n > 2, each of these periodic points has period 2.

Lemma 1.2 tells us that for each permutation pattern o, the maps SC, and SC,gpp(s) are
topologically conjugate (with the discrete topology), with the complementation map comp serving
as the topological conjugacy. It follows that if Theorem 3.1 holds when o is some specific pattern
7, then it also holds when o = comp(7). Thus, we really only need to prove the theorem when
o € {123,132,231}. We first handle the case in which ¢ € {132,231}.

Proposition 3.2. For o € {132,231}, the set of periodic points of the map SCy : S, — Sy, is the
set Avy,(132,231) of permutations in S, that avoid 132 and 231 consecutively (these permutations
also avoid 132 and 231 classically). When n > 2, these points have period 2.

Proof. Note that {132,231} = {o,rev(o)}. It is clear that if 7 € Av(132,231), then SC,(7w) =
rev(m) € Av(132,231), so SC2(7) = 7. Hence, 7 is a periodic point of SC,, and the period is 2 if
n > 2.

We now prove that every periodic point of SC, : S, — Sy, is in Av(132,231). This is trivial if
n < 2, so we may assume n > 3 and induct on n. Given 7 € S,,, let 7* be the permutation in S,,_1
obtained by deleting the entry 1 from 7 and then decreasing all remaining entries by 1. Observe
that if the entries 1 and 2 appear consecutively in 7, then they also appear consecutively in SC, ()
and that (SC,(7))* = SC,(7*). Now fix 7 € S,. By induction, we have SC’ (7*) € Av(132,231)
for all sufficiently large t. We will prove that if ¢ is sufficiently large, then the entries 1 and 2
appear consecutively in SC’ (7). It will then follow that (SC! (7))* = SC! (7*) € Av(132,231) for
all sufficiently large ¢, which will imply that SC% (7) € Av(132,231) for all sufficiently large ¢.

Let D(7) denote the number of entries between 1 and 2 in 7 (regardless of whether 1 appears
before or after 2 in 7). First, note that neither 1 nor 2 will get popped from the stack until after
all of the entries of 7 have entered the stack because neither 1 nor 2 can trigger the consecutive-o-
avoiding restriction when at the top of the stack. This immediately implies that D(7) < D(SC,(7)).
We further show that if D(7) > 0, then D(SC2(7)) < D(7), implying that 1 and 2 are consecutive
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entries in SC! () for all sufficiently large t. Let {1,2} = {;, T4} so that D(r) = c¢—1, and assume
¢ > 2. The consecutive subsequence 7;7;11 - - - Ti+. of T contains a consecutive occurrence of either
o or rev(o). If it contains a consecutive occurrence of rev(o), then when 7, . enters the stack, the
entries between 7; and 7,4, form a strict subset of {7;t1,...,Titc—1}. Moreover, these entries are
precisely the entries between 1 and 2 in SC,(7) since neither 1 nor 2 is popped until all entries of 7
have entered the stack. This implies that D(SC,(7)) < D(7). If there is no consecutive occurrence
of rev(o) in the consecutive subsequence 7;7;41 - - Titc of 7, then 7,4 Tiyc—1 -7 is a consecutive
subsequence of SC,(7) that contains a consecutive occurrence of rev(o), so the previous argument
guarantees that D(SC2(7)) < D(SC, (7)) < D(1). O

Next, we consider the periodic points of SCi93 and SCs391. By complementing, it suffices to
just consider SCs21. To understand this map, it helps to decompose a permutation 7 by writing
T = ap - - ag, where the a;’s are the ascending runs (maximal consecutive increasing subsequences).
In addition, let a]" be the subsequence of a; consisting of the entries that are not the first or last
entries in a;, and let af be the sequence obtained from a; by deleting a[*. If |a;| is 1 or 2, then
¢ = a; and a!" is an empty sequence. For example, the ascending runs of 4572136 are a; = 457,

a;
az = 2, and az = 136, with af = 47, a5 = 2,a5 = 16,a]" = 5, a5’ empty, and a3’ = 3.

Lemma 3.3. Keeping the notation above, let 1 = a1 ---ay, where the a;’s are ascending runs.
Then SCsa1(m) = ai"---a)'rev(af - --af) = ai*---aj' rev(ag) - - - rev(af).

Proof. When the ascending run a; enters the consecutive-321-avoiding stack, each entry in a™ is
popped immediately after it enters while af remains in the stack. After all entries have been pushed
into the stack, the entries remaining in the stack are popped out in the reverse of the order in which
they entered and thus the output is a{* - - - aj' rev(a{ - - -af) = af" - - - a)' rev(ag) - - - rev(af). O

To identify the periodic points of SC391, we analyze how the number of peaks and valleys of a
permutation 7 changes as SCso; is iteratively applied to m. A peak (respectively, valley) of m =
71T is an index i € {2,...,n — 1} such that m;_; < m; > w41 (respectively, mi_1 > m; < Tit1).
If 7 is a peak (respectively, valley) of 7, then the entry ; is called a peak top (respectively, valley
bottom) of m. We let g(m) denote the total number of indices that are either peaks or valleys of 7.

Lemma 3.4. Let 1 = ay---a € S,, where aq,...,a are the ascending runs of w. We have
g(m) < g(SCso1(m)). Moreover, if |ax| > 2, then this inequality is an equality if and only if
al®---a'rev(af) is a decreasing sequence. If |ai| = 1, then g(m) = g(SCsa1(m)) if and only if

al*---a)'rev(af,) is an increasing sequence.

Proof. We specifically show that the peak tops and valley bottoms of 7 are still peak tops and
valley bottoms in SCsz;1 (7). The key observation is that each peak top (valley bottom) of 7 is the
second (first) entry of a; for some ascending run a; of length at least 2, and it is not the first or
last entry of 7.

Suppose the entry m; is a peak top of m. Then ; is the last entry of some ascending run a; of
length at least 2. We have aj = mpm; for some 7, < m;. Similarly, m; 11 is the first entry of the
ascending run a;t+1 and is less than ;. By Lemma 3.3, the sequence rev(a$ ) rev(a$), which itself
has 7; 4177, as a consecutive subsequence, is a consecutive subsequence of SC391 (7). Consequently,
m; is still a peak top of SCsa1 (7). A completely analogous argument shows that every valley bottom
of 7 is also a valley bottom of SCs91(7), so g(m) < g(SCsa1(m)).
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For the equality cases, suppose first that a; has length at least 2. Note that g(7) = g(SCsa1(m))
if and only if no entry in af"---a}’ rev(af) except for the last entry is a peak top or valley bot-
tom in SCspq(m). This happens if and only if af*---a}'rev(af) is an increasing or decreasing
sequence. Since rev(af,) is a decreasing sequence, it follows that g(m) = g(SCsgq()) if and only if
at*---ap' rev(af) is a decreasing sequence.

Now suppose aj has length 1. We again have g(m) = g(SCs21(7)) if and only if no element in
al’---a)'rev(af) is a peak top or valley bottom in SC3o1 (7). Note that af” - - - a}' rev(ag) is part of
the consecutive subsequence ai” - - - aj* rev(aj,) rev(af,_;) in SCz;1 (7). Since aj, has length 1, it is a
single entry that is less than the entry before it in 7; this entry before it is also the entry after it
in ai”---ay' rev(aj) rev(af_;). Thus, no entry in a"---a} rev(af) is a peak top or valley bottom
if and only if af* - - - a] rev(af) is an increasing sequence. O

By the previous lemma, it is clear that if g(7m) < g(SCse1(7)), then 7 cannot be a periodic point.
We make use of this fact when proving the next few results.

Corollary 3.5. Let m = ay - - - a, where the a;’s denote ascending runs. If |ax| > 3 or |a1]| = |ag| =
1, then 7 is not a periodic point of SCsa.

Proof. If |ax| > 3, then a}'rev(af) is not a decreasing sequence, so g(m) < ¢(SCsa2i(7)) by
Lemma 3.4. Hence, 7 is not a periodic point of SCso1. If |a1| = |ag| = 1, then SCsoi(7) is a
permutation ending in an ascending run of length at least 3, so it follows from the preceding argu-
ment that SCsa1(7) is not a periodic point of SCsz1. Hence, 7 is not a periodic point in this case
either. O

Corollary 3.6. Let m = ay---ax € S, for some n > 3, where the a;’s denote ascending runs. If
la1| > 3 or |ag—1| = |ag| = 1, then 7 is not a periodic point of SCsa1.

Proof. Suppose 7 is a periodic point of SC391 and |aj| > 2. Let ¢ be the period of 7 so that
SC%, () = m. Let 1 denote the first entry of 7. By Lemma 3.4, we must have g(r) = g(SC%y, (7))
for all ¢ > 1. By Lemma 3.3, the last two entries of SCgg1(7) form the sequence rev(af); in
particular, the last ascending run of SCsg;(7) has length 1 and is simply 7;. Since SCs21(7) ends
in an ascending run of length 1 and g(7) = g(SCs21(7)), Lemma 3.4 guarantees that SC3,(7)
begins with an ascending run that contains my, so SC%y; ()1 < 71. In fact, the first ascending run
of SC3,, (7) must actually contain a$, so SC3y; () is a periodic point of SC3g1 that starts with an
ascending run of length at least 2. Moreover, if SC321(7) has an ascending run of length at least
3, then the first ascending run of SC3,; () actually begins with an entry that is smaller than 7y,
implying that SC3,,(7); < 7. Repeating this argument shows that (SC25,(7)1)i>1 is a weakly
decreasing sequence and is nonconstant if SC%;Il(ﬂ') contains an ascending run of length at least
3 for some t > 1. Since SCAS,(n) = 7 for all integers k > 1, it follows that for every t > 1, the
permutation SC%tﬁl(w) does not have an ascending run of length at least 3. This implies that
SC2L, () = rev(SC2 () for all t > 1.

Now consider g, the second entry of m. As previously stated, SCgo1(7) ends in rev(af), so the
second-to-last entry of SCsa1(7) is greater than or equal to me. This implies that the second entry
of SC3,, () is greater than or equal to ma, as SCy; (1) = rev(SCs21(7)). Repeating this argument
shows that the sequence (SC25;(7)2)i>1 is weakly increasing. As SC2!(7) = 7 for all k > 1, this
sequence must actually be constant. If |a;| > 3, then the second-to-last entry of SCsa; (), which
is also the second entry of SC§21(7T), is actually strictly greater than my. This is a contradiction.
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Now suppose 7 is a periodic point and |ax—1| = |ax| = 1. This means we must have g(7) =
g(SCs21(m)), so it follows from Lemma 3.4 that a"- - - a]' rev(af) is an increasing sequence. Notice
also that the first 3 entries of the sequence rev(af,) rev(aj,_,)rev(af,_,) appear in increasing order

(we must have k > 3 since n > 3 and |ax_1| = |ax| = 1). This shows that SCge; () is a periodic
point beginning with an ascending run of length at least 3, which contradicts what we found in the
previous two paragraphs. O

The following proposition proves Theorem 3.1 for o = 321, thereby completing the proof of the
entire theorem. Indeed, we already proved the theorem for o € {132,213,231,312}, and we can use
Lemma 1.2 to see that the next proposition implies Theorem 3.1 for o = 123 as well.

Proposition 3.7. The set of periodic points of SCsa1 : S, — Sy is Av,(123,321), the set of
permutations in S, that avoid 123 and 321 consecutively. When n > 2, these points have period 2.

Proof. Tt is clear that if 7 € Av(123,321), then SC3z; (7) = rev(m) € Av(123,321), so SC,, (1) = 7.
Hence, 7 is a periodic point of SC391, and the period is 2 if n > 2.

Suppose that m ¢ Av(123,321); we will show that 7 is not a periodic point of SCs21. If 7 does
not contain a consecutive 321 pattern but does contain a consecutive 123 pattern, then SCgo1(7) =
rev(m) contains a consecutive 321, so we may simply assume that 7 ¢ Av(321) (otherwise, the
same analysis applies to SCs21(7)). Suppose instead that 7 is a periodic point, and let ay,...,ax
be its ascending runs. Note that we have g(7) = g(SCs21(m)). Furthermore, the sequence af* - - - a}"
is nonempty because 7 contains a consecutive 321 pattern. It then follows from Lemma 3.3 that
SCsa1(7) is a periodic point of SC3; that begins with the sequence af*---a}* rev(af). If |ax| > 2,
then a” - - - a}* rev(aj,) has length at least 3, and Lemma 3.4 tells us that this sequence is decreasing.
This implies that the periodic point SCs91(7) starts with a decreasing sequence of length at least
3, contradicting Corollary 3.5. Hence, we must have |aix| = 1. Consider m,_1, which is last entry
in ay—1. We must have m,_1 > m,, so it follows from Lemma 3.4 that a{"---a}' rev(af)m,—1 is an
increasing sequence of length at least 3. This shows that SCs21(7) is a periodic point whose first
ascending run has length at least 3, which contradicts Corollary 3.6. O

4. THE MAPS SCi39 AND SC319

In this section, we explore the maps SCi132 and SCs1o from both a sorting point of view and a
dynamical point of view. We do not have much to say about SCsio from a sorting point of view
because we were not able to enumerate the set Sort(SCsiz). The initial values of the sequence
(| Sortn(SC;ﬂg)Dnzo are

1,1,2,5,15,50,179,675, 2649, 10734;

this sequence appears to be new. However, we will be able to characterize and enumerate the
permutations in Sort(SCisz). Specifically, we show that they are in bijection with Dyck paths and
are thus enumerated by the Catalan numbers.

From a dynamical point of view, we will be interested in the number of preimages of permutations
under SCy39 and SCs19. In this setup, it suffices to focus our attention on SCi32. Indeed, since 312 =
comp(132), Lemma 1.2 implies that | SC3}(7)| = | SCz5(comp(7))| for all 7 € S,,. Consequently,
we will not need to discuss the map SCgs;o directly in this section.
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Let us begin with the set Sort(SCi32). Recall that a left-to-right minimum of a permutation
T = m---Ty is an entry m; such that m; < 7; for all 1 < j < 4. For example, the left-to-right
minima of 4572163 are 4, 2, and 1.

Proposition 4.1. Let m = a1 ---ar € Sy, where the subsequences a; are the ascending runs of .
For each i, let us write a; = mt;, where m; is the first entry of a; and t; is the (possibly empty)
string obtained by removing m; from a;. Then SCisa(m) € Av(231) if and only if each m; is a
left-to-right minimum of m and the concatenation rev(ty)---rev(ty) is a decreasing sequence.

Proof. Let us first assume SCisa(m) € Av(231). We will prove by induction that the entries
mi,...,my are all left-to-right minima of w. Since m; is the first entry of =, it is trivially a
left-to-right minimum. Now consider 1 < i < k, and suppose that m1,...,m; are all left-to-right
minima. Suppose by way of contradiction that m;y; is not a left-to-right minimum. This implies
that if we write ¢; = by - - - bj, where j = [t;], then j > 1 and m; < m;;1 < b;. Let £ be the smallest
index such that by > m;;+;. When we send 7 through the consecutive-132-avoiding stack, the con-
secutive subsequence a; will enter the stack consecutively, so rev(a;) = b; - - - bym; will be at the top
of the stack when m;1 is next in line to be pushed into the stack. The entries b;, ..., b1 will be
popped, and then m;1; will be pushed into the stack on top of by. Since by > m; 1, the entry m;41
will not get popped out of the stack until after all of the entries of m have entered the stack. It
follows that m;1,bg, m; form an occurrence of the classical pattern 231 in SCy32(7); this is our de-
sired contradiction. It is straightforward to see that SCisa(ay - - - ax) = rev(ty) - - -rev(tg)my - - - ma,
where my = 1. Since we are assuming SCisa(a; - - - ax) avoids 231, the sequence rev(ty) - - - rev(ty)
must be decreasing.

For the reverse direction, suppose that the entries my, ..., my are left-to-right minima and that
the sequence rev(ty)---rev(ty) is decreasing. As above, SCisa(m) = rev(ty)---rev(ty)my---mq,
which is a decreasing sequence followed by an increasing sequence. Such a permutation necessarily
avoids 231. g

Remark 4.2. The proof of Proposition 4.1 yields the somewhat-unexpected fact that if a permu-
tation is in the image of SCi32 and avoids the pattern 231, then it also avoids 132.

Proposition 4.1 tells us that each m € Sort(SCis2) is determined by the first entries m; of

its ascending runs as well as the lengths |aq|,...,|ag| of its ascending runs. Furthermore, these
quantities must satisfy n 4+ 1 —m; > |ai| + - - - + |a;| for all 7. Indeed, the entries in ¢; must be the
|a1| — 1 largest elements of [n] \ {mi,...,my}, the entries in t2 must be the next |ag| — 1 largest

elements, and so on. The condition that n +1 —m; > |aj| + - - + |a;| for all i guarantees that the
m;’s are left-to-right minima.

A Dyck path of semilength n is a word over the alphabet {U, D} that contains n copies of
each letter and has the additional property that each of its prefixes contains at least as many
occurrences of U as occurrences of D. Let D,, denote the set of Dyck paths of semilength n. It
is well known that |D,| = C, = n%rl(zr’:) is the nth Catalan number. Given 7w € S, such that
SCisa(m) € Av(231), write m = a1 - - - ax and a; = m;t; as in Proposition 4.1. Let ®(7) be the Dyck

path Umo—m plailgrmi—ma plas| ... gyme-1=mk Dokl where we make the convention mg = n + 1.

Example 4.3. Let 7 = 589436712, and note that SCy3o(7) = 987621345 € Av(231). We have
a1 = 589, as = 4, ag = 367, and aq4 = 12. The first entries of these ascending runs are m; = 5,
mg =4, mz = 3, and my = 1. Therefore, ®(r) = UUUUUDDDUDUDDDUUDD.

Theorem 4.4. The map P : Sort, (SCi32) — Dy, is a bijection. Consequently,
| Sortn(SC132)| = Cn
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Proof. Preserve the notation from above. The total number of occurrences of the letter U in ® ()
is (mg—mq)+- -+ (mg_1 —mg) = mg—my = (n+1)—1 = n, and the total number of occurrences
of Dis |ai|+- -+ |ax| = n. As mentioned above, we have n+1—m; > |a1|+- - -+ |a;| for all 4; this
guarantees that ®(7) is indeed a Dyck path of semilength n. Moreover, by the previous discussion,
® is injective.

To prove surjectivity, suppose we are given a Dyck path A = UM DU D% ... U D% for some

positive integers 71, ..., vk, 01,...,0k. Define m; =n+1—~; —--- — ;. Using the fact that A is
a Dyck path, one can verify that there exists a permutation = € S,, with ascending runs a1, ..., ax
satisfying the conditions in Proposition 4.1 with a; = m;t; and |a;| = §; for all i. This permutation
is in Sort, (SCi32) and satisfies ®(7) = A. O

The next series of results determines the maximum number of preimages of permutations under
SCi32 and SCs12. As mentioned above, it is only necessary to consider SC3s.

Lemma 4.5. Let m € S,,. Suppose there exists an entry i € [n — 1] that occurs before i + 1 but not
immediately before i + 1 in w. Let ©' be the permutation obtained by swapping i and i + 1 in 7.
Then,

|SCgp(m)] < | SCray ().

Proof. Suppose SCi32(7) = 7, and let 7’ be the permutation obtained by swapping 7 and 7 + 1 in
7. We will prove that SCy32(7") = 7. To do so, it suffices to show that the sequence of “push” and
“pop” operations that is used to send 7 through the consecutive-132-avoiding stack is exactly the
same as the sequence used to send 7’ through the stack.

When sending 7 through the consecutive-132-avoiding stack, the entries ¢ and ¢ + 1 are never
consecutive entries in the stack. Indeed, if they were, then ¢ would sit on top of ¢ + 1 because i
appears before ¢ + 1 in the output permutation w. However, if i sits on top of ¢ 4+ 1, then these
two entries will appear consecutively in the output 7, contrary to our hypothesis. Now consider
the sequences of “push” and “pop” operations that send 7 and 7/ through the stack. Note that in
each sequence, the first two operations are necessarily pushes. Now suppose the first two sequences
agree in their first k& operations. Suppose further that after the first k& operations, the stack-sorting
procedure that is being applied to 7 (respectively, 7') has b (respectively, V') as the top entry in the
stack, has ¢ (respectively, ¢’) as the second-to-top entry in the stack, and has a (respectively, a’) as
the entry next in line to enter the stack. We show that the next operation is the same as well.

If none of a, b, and ¢ are i or i + 1, then it must be that a = @/, b = ¥/, and ¢ = ¢, so the
claim is trivially true. Next, if exactly one of a, b, and c is ¢ or 7 + 1, then abc and a'b'c’ have
the same relative order, so the claim is true is in this case as well. Finally, suppose exactly two
of a,b,c are i or i + 1. Because ¢ and 7 + 1 cannot appear consecutively in the stack, we cannot
have {b,c} = {i,i+ 1}. If {a,b} = {i,i + 1}, then one of the two sorting procedures (sorting 7 or
7’) would have i and i + 1 appear consecutively in the stack, which is again impossible. Therefore,
it must be that (a,c) = (i, + 1) or (a/,¢/) = (i,i + 1). The two cases are symmetric, so we may
assume the former. Note that abc cannot have the same relative order as 132 as, otherwise, ¢ and
141 would end up being consecutive in the stack once b gets popped out and ¢ = i+ 1 gets pushed
in. Thus, the next operation for the 7 case is to push a into the stack. Likewise a’ = ¢ + 1 and
c =1, so a'b'cd cannot have the same relative order as 132. The next operation in the 7/ case is
therefore to push a’ into the stack. By induction, the sequences of operations when sending 7 and
7/ through the consecutive-132-avoiding stack are identical.
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Since the map 7+ 7/ is one-to-one, this shows that | SC1z5(7)| < | SCiay(7')], as desired. O

Corollary 4.6. For every positive integer n, we have

WEAVI,?(??}){Q,QB)‘ 12(7)] fé?ﬂ 132())|

Proof. Suppose m € S,. If m classically contains an occurrence of either 132 or 213, then there
exists some i € [n — 1] such that ¢ and ¢ + 1 are not consecutive in 7 and i occurs before 7 + 1.
Lemma 4.5 tells us that swapping these entries yields a permutation with at least as many preimages
under SCi32. By repeatedly performing such swaps, we must eventually reach a permutation in
Av,,(132,213) (the sequence of swaps must terminate because each swap decreases the number of

inversions in the permutation by 1), and this permutation has at least as many preimages under
80132 as T. O

A permutation in .S, is called reverse-layered if the set of entries in each of its ascending runs
forms an interval of consecutive integers. For example, 5674231 is reverse-layered because the
sets of entries in its ascending runs are {5,6,7}, {4}, {2,3}, and {1}. It is well known [30] that
Av,,(132,213) is precisely the set of reverse-layered permutations in S,. Note that each reverse-
layered permutation is uniquely determined by its set of descents, which we can encode via a
word of length n over the alphabet {A, D} that starts with A. More precisely, the reverse-layered
permutation 7 = my - - - 7, corresponds to the word by - - - b,, where by = A and for 2 < j < n, we
have b; = Aif mj_1 < mj and b; = D if mj_1 > m;. Let dr(k) denote the number of occurrences of D
in the subword by - - - b. Let ar(k) denote the number of occurrences of A in the word by 1 - - - by, that
appear to the right of an occurrence of the letter D in bgy1 - - - b,. For example, the reverse-layered
permutation m = 78634512 corresponds to the word AADDAADA. We have

(dr(0),...,d-(8)) = (0,0,0,1,2,2,2,3,3) and (ar(0),...,ax(8)) = (3,3,3,3,1,1,1,0,0).
Using this notation, we can obtain a nice formula for |SC3,(7)| when 7 is reverse-layered. The

reader may find it helpful to refer to Example 4.8 while reading the following proof.

Theorem 4.7. Let m € Av,(132,213) be a reverse-layered permutation in Sy, and preserve the
definitions of d-(k) and ar(k) from above. We have

EerIGIEDY (d”(k) ZG”U“)).

k=0

Proof. Let SC13, () denote the set of permutations 7 € SCy3(7) such that when 7 is sent through
the consecutive-132-avoiding stack, exactly k entries get popped out of the stack before all entries
have entered the stack. We will show that

8ChumI = (0 7).

which will complete the proof. Note that |SCl_312’0(7r)| = 1 because the only element of SCI_31270(7T)
is rev(m). Indeed, SCi32 does actually send rev(m) to m because 7 is reverse-layered (hence, rev(m)
avoids 231). Therefore, we may assume that k£ > 1 in what follows.

Suppose T € SC1_312 w(m). When we send 7 through the consecutive-132-avoiding stack, the k

entries popped before all entries have entered the stack must be exactly y, ..., 7, and they must
be popped in that order. The other entries mpy1,...,m, get popped out of the stack later in
this order, so they must appear in 7 in the order m,,...,7g4+1. Thus, when constructing such a

preimage 7, we first insert each entry m; with 1 <14 <k between a pair of entries 7;(;), 7;(;)41 with
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k+1 < j(i) < n and then reverse the entire permutation. When we do so, the following conditions
must be satisfied:

e the string ;)i (;)+1 has the same relative order as 132;
o j(1)>--- > j(k);
e if j(i) = j(i+ 1), then m; > m;41 and m;117; is a consecutive subsequence of 7.

The first and third conditions ensure that the entries m1,..., 7 actually get popped before all
entries have entered the stack; the second and third conditions ensure that they are popped in the
correct order. Moreover, each placement of the entries m1,..., 7, between consecutive entries in
Tk+1 - - Tp, such that the three conditions are satisfied yields a unique preimage 7 € SCl_312’ ().

To determine the number of valid placements, let 7y be the last entry in the ascending run of 7
that includes m;. When we insert the entry mj between the entries 74y, 7;(x)+1, the first condition
above guarantees that j(k) > ¢+ 1, so it follows from the second condition that j(1) > --- > j(k) >
¢+ 1. Thus, for each i € [k], the possible choices for the index j(i) are precisely the ascents counted
by ar(k). To satisfy the third condition, note that we can have j(i) = j(i + 1) only if 7 is a descent
of m. In summary, this proves that the number of ways to choose a preimages 7 is equal to the
number of ways to choose the indices j(1),...,j(k) from among the ascents counted by a,(k) such
that j(1) > --- > j(k), where the inequality j(i) > j(i+ 1) is actually strict whenever 7 is an ascent
of 7. If we decide that there are precisely ¢ descents ¢ such that j(i) = j(i + 1), then there are
(d”t(k)) choices for these descents. There are then (k’i .) choices for the set {j(1),...,5(k)} of values
taken by the indices j(1),..., (k). These choices uniquely determine j(1),...,j(k). Together, this
shows that

dr (k)

_ dr(k)\ [ax(k) dr(k) + ar(k)
1 _ _
seibami= 3 (M) () = (),
t=0
where the second equality is due to Vandermonde’s Identity. ]

Example 4.8. Let us take m to be the permutation 12131189106751234. Suppose we want
to construct a preimage 7 € SC1_31275(7r). The ascents counted by a,(5) are 7,10,11,12, which
correspond to the following blanks: 6_751_2_3_4. Therefore, a,(5) = 4. We need to insert the
entries 12,13,11,8,9 into some of these blanks. As an example illustrating the notation from the
proof of Theorem 4.7, placing the entry mo = 13 in the blank between the entries 79 = 1 and
m11 = 2 would correspond to setting j(2) = 10. The indices in {1,...,5} that are descents of
7 are 2 and 3 (meaning d.(5) = 2), so the proof of the theorem tells us that we must choose
J(1),...,4(5) € {7,10,11,12} such that j(1) > j(2) > 5(3) > j(4) > j(5). The number of ways to

make this choice is
2 (2)( 4 ) (2+4>
Z t)\b—t 5 ’
t=0

For one specific choice, we can take j(1) = 12, j(2) = j(3) = j(4) = 10, and j(5) = 7. This corre-
sponds to inserting the entries into the blanks to produce the permutation 697511311823 124.
Reversing this permutation produces 7 =412328111315796, which is indeed in SCI312’5(7T).

Lemma 4.9. Let # = my---mp, € Sp \ {123---n}, and let b = by --- b, be its corresponding word
over the alphabet {A, D} as above. Let i be the smallest positive integer such that b;y1 = A, and
let a = ax(i —1). Finally, let 7" be the permutation whose corresponding word over {A, D} is the
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following modification of b:

AD---DDbiyy---b, ifa>1i;
b/: +1
AD---Dbiyo---b, A ifa<i.

)

Then | SCgy(m)| < | SCras ().

Proof. Suppose a > i. Then b= AD---DAb;1o- by, and b’ = AD---DDb;ys---b,, with permu-
i+1 i+1

tations 7 and 7’ corresponding to b and b’ respectively. Note that a = a(i — 1) = -+ = ar(1).

Furthermore, d,(r) =r — 1 for all 1 <r <i. By Theorem 4.7 and the Hockey Stick Identity,

SCEh(m) =1+ (‘f) - (a v 2> s <dﬂ(r) jaw(r)>

at+i—1\ | = (de(r) + ax(r)
()t
It is straightforward to see that d (i) = dr(i 4+ 1) and ar(i) = a(i + 1), so by Pascal’s Identity,

SO (m) = 1+ <a+i— 1) N <dﬂ(i+1)+aﬂ(z’+1)+1> N Z": (dw(r) +aﬂ(r)>'

7—1 1+ 1 s r

As for the preimages of 7/, notice that for r > i+1, we have d/(r) = dr(r)+1 and a/ (r) = ax(r).
Furthermore, we have d/(r) = d;(r) =r — 1 and a, (r) > ar(r) — 1 for all 1 <r <. Thus,

o - L,
ISCI:),E(?T')|21+<Q1 >+---+<a;r_21 3>+<a+z )

N (dﬂ(i+1)+aﬂ(i+1)+1> N Z”: <d7,(r)+a,r(r)>

1+ 1 s r

s <a+§ - 1) N (dw(w 1) jiﬂl(wr 1) + 1) N z”: (dw(r)i-aﬂ(r))

r=i+2

This proves that if a = ax(i — 1) > i, then | SC35 ()| < | SCrap ()| as desired.

Now suppose a < i so that b = AD---DAb;jio---b, and b/ = AD---Db;yo---b, A, with per-
i+1 i
mutations 7 and 7’ corresponding to b and b’ respectively. We may suppose that b; = D for some
j > i+ 2 as, otherwise, b = b’ and the inequality is trivially true. Thus, a,/ (i) = ar(i) + 1
and dn/(i) = dr(i). It is straightforward to see that d(r) = d(r) and am(r) = ar(r) for
1 <r <i—1. Furthermore, d.(r) = dp(r — 1) and ar(r) < ay/(r — 1) for r > ¢ + 2. Observe also
that (d”’("):’;“ﬁ’(")) = (d“’n(")) = 0. It follows that,

1SCTL ()| — | SCTL(n)| = (dw(z’) + C;ﬂ(i) + 1) B (dn(i) J; aﬂ(z’)> B <d7r(z' + 12 I iLﬂ(i + 1))

s (dmjaﬂf(r)) S <dw<r>jaﬂ<r>>

r=i+1 r=i1+2



16

. (dw(i) +ax(i) + 1> B (dw(i) + aw(i)) B (dﬁ(z’ +1) + ax (i + 1)>

7 7 141

C S [y ()

r=i+2

Since a < ¢ by assumption, a(r) < a < i < r for all » > i+ 2. Moreover, d.(r) < r trivially, so
it follows that 2r > d(r) + ar(r) and

() + ax(r))  (d=(r) + ax(r)
( r—1 >_< r >

for all » > 7 4+ 2. This shows that the summation in the above inequality is nonnegative.

Finally, we also have that d.(i) = d(i+1) = i—1 and ar(i) = ax(i+ 1), so by Pascal’s Identity,

|SCrL ()] — | SCrgy ()| > (d,r(z') + ?w(i) + 1> B (dﬂ(i) ;L aﬁ(z’)) B (dﬂ(z’ + 12 I iL,r(z' + 1)>

_ (i—kc;ﬂ(i)) - (ﬁiﬂl@)) S0

as desired. The last inequality follows from the fact that a,(i) < ar(i —1) =a < i. O

If we start with a permutation = € Av(132,213) whose corresponding word over {A, D} is not
of the form AD---DA--- A (i.e., the permutation is not simply a decreasing sequence followed by
an increasing sequence), then the previous lemma allows us to alter the permutation and obtain
a new permutation 7’ with at least as many preimages under SCi32 as w. This is stated in the
following corollary. It is well known that a permutation can be written as a decreasing sequence
followed by an increasing sequence if and only if it avoids 132 and 231 classically. Therefore, the
set of permutations in Av(132,213) that can be written as a decreasing sequence followed by an
increasing sequence is precisely Av(132,213,231).

Corollary 4.10. For every positive integer n, we have

ma SC_l = ma, SC_1 .
weAvn(132§13,231)| 132(m)] ﬂes’j‘ 132(7)]

Proof. Let M = max | SC45(m)|. By Corollary 4.6, there is a permutation 7 € Av,(132,213) such
TESN

that |SCay(7)] = M. Suppose 7 contains the pattern 231. We can alter 7 using Lemma 4.9
in order to obtain a new permutation 7’ with |SC35(7)| = M. Let b and ¥ be the words over
{A, D} corresponding to m and 7’ respectively. Given a word w over {A, D}, let fi(w) denote
the length of the longest consecutive string of D’s in w starting in the second position of w, and
let fo(w) be the length of the longest suffix of w that uses only the letter A. Because 7 contains
231, it is straightforward to check (using the definition of &’ given in the proof of Lemma 4.9) that
f1(b) < f1(b') and fa(b) < fo(b'), where at least one of these inequalities must be strict. This shows
that if we repeatedly use Lemma 4.9 to alter permutations, we must eventually reach a permutation
T € Av,(132,213,231) with | SC35(7)| = M. O

Theorem 4.11. The mazimum number of preimages under SCi32 or SCsio that a permutation in
Sn can have is given by

3 _ n—1
e |SC )] = mae sl = () )
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Proof. By complementing, it suffices to consider only the map SCiz2. Let M = max | SC (7).
TESH

By Corollary 4.10, there exists 7 € Av,,(132,213,231) with | SC ()| = M. Since 7 avoids 132,
213, and 231, it must be of the form

nn—1)---(n—r+1)123---(n—r).
The word over {A, D} corresponding to mis AD---DA---A. Observe that d.(k) = min(k — 1,r)
——

T n—r—1
for all 1 < k < n. Furthermore, we have ar(k) = n—r—1if 1 < k < r and ar(k) = 0 if
r+ 1<k <n. By Theorem 4.7 and the Hockey Stick Identity, we have

a=iseggm =1+ (") () o (07 = (7)< ()

Moreover, equality is achieved when r = L”T_lj, this completes the proof. ([l

5. THE MAPS SCa13 AND SCa31

We begin this section with a brief discussion of the sets Sort(SCa13) and Sort(SCas;). The initial
terms of the sequence (| Sort,,(SCa13)|)n>0 are

1,1,2,5,15, 50, 180, 686, 2731, 11254.
This sequence appears to be new. On the other hand, the first 10 terms of (| Sort,, (SCa13)|)n>0 are
1,1,2,6,21,79,311, 1265, 5275, 22431.

These numbers match the initial terms in the OEIS sequence A033321, which is the binomial
transform of Fine’s sequence. Fine’s sequence (F})i>0 can be defined via its generating function

E:ka:1—\/1—4a;
F 3_ 14z

Conjecture 5.1. For each positive integer n, we have

" n
|Sortn(SC231)| = Z (k) Fk+1.

k=0

k>0

Our main focus in this section will be on the maximum number of preimages a permutation in
S, can have under either SCs13 or SCa31.

Theorem 5.2. For every n > 2, we have

SCot = SCot =n—2,
fé%ﬁ 213(”)| ;%%};’ 231(77)|

Proof. The equality max |SCoy(m)| = max | SCo3; ()| follows directly from Lemma 1.2, so we can
TESH TESK

focus on the map SCo31. Now consider the process of sending a permutation 7 = 71 ---7, € S,
through a consecutive-231-avoiding stack. Say that the entry 7; is premature if it is popped out of
the stack before all of the entries of 7 enter the stack. The effect of sending 7 through the stack is
to shift all of the premature entries to the left while preserving their relative order and reverse the
remaining (non-premature) entries. More formally, if {7;,,---,7;, } are the premature entries of 7,
then SCos1(7) = 75, - - - 75, rev(7 \ {7j,,- - , 7. }), where 7\ {75,,--- , 7} is simply the sequence 7
with the terms in {7j,,--- , 7, } removed.
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Now fix m = 7y - - -, € Sy, and consider a preimage 7 of m under SCa31. Suppose that 7;,,..., 7,
are the premature entries of 7 (with j; < --- < ji). By the previous paragraph, 7 is obtained by
inserting the entries 7y, ..., g into rev(mg4q - - - ) so that the entry in position j; of 7 is m; for all
i € [k]. This shows that 7 is uniquely determined by specifying 7 and the set of indices {ji, ..., ji}-
Finally, notice that the first and last entries of a permutation cannot be premature. Therefore,
the positions of the premature entries of 7 must form a subset of {2,...,n — 1}. It follows that
|SCy ()] < 272

To complete the proof, it suffices to show that | SCy3(n(n — 1)---1)| > 2772, For each set
J = {j1,..., gk} € {2,...,n — 1} (with j; < --- < ji), let 7/ be the permutation obtained by
inserting the entries n,n —1,...,n —k+ 1 into the sequence 123 - -- (n — k) so that for each i € [k],
the entry n + 1 — i is in position j;. For example, if n = 8 and J = {2,3,5}, then 7/ = 18726345.
It is straightforward to check that SCas;(77) = n(n —1)---1 and that 77 # 77" whenever J # J'.
Consequently, | SCo3; (n(n — 1) ---1)| > 2772, O

6. THE MAPS SCi93 AND SCg91

Our goal in this section is to enumerate the sets Sort(SCia3) and Sort(SCsa), thereby proving
analogues of two more of the main theorems from [11]. Our enumeration of Sort(SCsg2;) generalizes
to Sort(SCp—1)...1), so we focus on Sort(SCyx_1)...1) first instead.

It follows immediately from Lemma 2.3 that Sort(SCy;_1)..1) = Av(132,12--- k) for k > 3. In
Proposition 3.2 of [24] it was shown that this set is enumerated by the so-called generalized Motzkin
numbers Mj,_1 p, which can be defined via the formula

[n/k] .
1 n+1\ [(2n— jk
Mi—10 = n+1 (_1)J< ' ) ( : >
j=0 J "

For k = 3,4,5, and 6, these numbers are given by OEIS sequences A001006, A036765, A036766,
and A036767 respectively [32].

Theorem 6.1 ([24]). For k > 3, the sets Sort,(SCp(x—1)..1) = Av,(132,12---k) are enumerated
by the generalized Motzkin numbers. More precisely,

| SOrtn(SCk(k_l)...1)| = Mk—l,n~

The above theorem completes our enumeration of Sort(SCpj—1)...1). We remark that when k = 3,
the generalized Motzkin numbers Ms,, are the same as the classical Motzkin numbers M,,. These
numbers will also be related to our enumeration of Sort(SCia3).

Corollary 6.2. The set Sort(SCse1) is enumerated by the Motzkin numbers. That is,
| SOI‘tn(SCngl)‘ =M,

The following is a well-known recurrence for the Motzkin numbers.

Lemma 6.3. We have My = My, =1 and, for n > 2,
n—2
M, = M,_1 + Z M;My 2.
i=0
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To begin enumerating Sort(SCia3), we first classify the set. In order to do this, it is helpful
to use the notion of a wvincular pattern. We refer the reader to [34] for a formal treatment of
vincular patterns; we will only need to consider the set Av(132,3214,4213,4312). This is the set of
permutations that avoid 132 and also do not contain any occurrences of the patterns 3214, 4213,
or 4312 in which the first 3 entries in the occurrence of the pattern appear consecutively in the
permutation. For example, 51324 belongs to this set of permutations because, although 5,3,2,4
form an occurrence of the pattern 4213, the entries 5,3,2 do not appear consecutively in 51324.

Theorem 6.4. The set Sort(SCia23) consists of the permutations m = my - - - m,, for some positive
integer n, that satisfy the following properties:

o 1€ Av(132)
o if mimiy1---mj s a descending run of w of length at least 3, then there are no entries bigger
than m;_1 to the right of mj_1 in w, and the entries miy1,...,Tj_1 are consecutive integers.

Alternatively, Sort(SCie3) = Av(132,3214,4213,4312).

Proof. Tt is straightforward to check that a permutation satisfies the two listed conditions if and
only if it is in Av(132,3214,4213,4312). The proof of the first statement is straightforward once we
find an expression for SCy93(7). Fortunately, this was done in Lemma 3.3 for the map SC321, so we
may use Lemma 1.2 to find a similar expression for SCya3(7m) by complementing. Namely, suppose
T =dj - - - dj, where each d; is a descending run. We have SCia3(m) = df* - - - d}' rev(dy,) - - - rev(df),
where d}" is the subsequence of d; consisting of the entries that are not the first or last entries in
d; and df is the sequence obtained from d; by deleting d".

To see that all permutations in Sort(SCi23) must satisfy the two conditions, note first that if
abc forms an occurrence of the classical pattern 132 in 7 and a,b, and ¢ are in the descending runs
d;,d;, and dy respectively, then ¢, the second entry of rev(d?), and the first entry of rev(df) form
an occurrence of the classical pattern 231 in SCig3(m). This shows that Sort(SCia3) C Av(132).
For the first part of the second condition, suppose m;m;1---m; is a descending run of length at
least 3 and that 7, is an entry to the right of 7; that is also the first entry of a different descending
run. Then m;_i7,m; is a subsequence of SCia3(7), and we certainly have 7; < m;_;. It follows
that if SCya3(m) € Av(231), then 7y < mj_1. Hence, no entry to the right of 7;_; in 7 is bigger
than m;_1. Finally, the previous two points imply the second part of the second condition. If the
entries 41, ..., Tj—1 are not consecutive integers, then there is some entry m; that is not part of the
descending run containing these entries and that satisfies m; 41 > my > m;_1. Then either mym;m;11
is a 132-subsequence or there is an entry to the right of 7;_; that is bigger than m;_1.

To see that every permutation satisfying these conditions is indeed in Sort(SCi23), again de-
compose 7 into its descending runs and write SCya3(m) = d7* - --d}' rev(df) - - -rev(df). The first
condition ensures that rev(dy)---rev(d{) does not contain an occurrence of the classical pattern
231. The first part of the second condition ensures that di*---dj" is a decreasing sequence, so it
also does not contain an occurrence of 231. Finally, the first condition and first part of the sec-
ond condition ensure that there is no occurrence of the pattern 231 containing entries from both
dl"---di* and rev(dy) - - -rev(d). Indeed, suppose abc is an occurrence such a pattern. As dy" - - - d}"
is a decreasing sequence, the entry a must be in df" - - - d}* while b and c are in rev(dy) - - - rev(df).
Let 4, j,¢ be the indices such that a is in d}*, b is in d;, and c is in dj. Since c appears to the
right of b in SCy93(7), we must have ¢ < j. The first part of the second condition guarantees that
7 <i. However, this implies that cba is an occurrence of the classical pattern 132 in 7, which is a
contradiction. O
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Before enumerating the permutations in Sort(SCja3), we need one more lemma that counts
permutations avoiding 132 classically and 123 consecutively. We obtain this result via a bijection
between Av(132) and Av(231). For our purposes, we only need the existence of this bijection and
one of its properties. The bijection is described in detail in Lemma 4.1 of [14].

Lemma 6.5 ([14]). For each n > 1, there exists a bijection swd : Av,(132) — Av,(231) that
preserves the set of descents. That is, an index i is a descent of w if and only if it is a descent of
swd (7).

Corollary 6.6. For each n > 1, the sets of permutations Av,(132,321), Av,(231,321), and
Av,,(132,123) are in bijection. Consequently, | Av,(132,321)| = M,,.

Proof. Using the previous lemma, we obtain a chain of bijections

Avy, (132,321) =% Av,,(231,321) ©% Av,(132,123).
By Theorem 6.2, | Av,,(132,321)| = | Av,,(132,123)| = M,,. O

We need one final lemma before completing the enumeration of Sort(SCja3).

Lemma 6.7. The number of permutations in Sort,(SCie3) beginning with the entry n is M,_1.

Proof. We proceed by induction on n, noting first that the lemma is trivial if n < 2. Assume
n > 3. Suppose 7 € Sort, (SC123) starts with the entry n, and let 7’ be the permutation obtained
by deleting the leading entry n from 7. It follows from Theorem 6.4 that 7' € Sort,_1(SCia3)
and that 7’ either starts with the entry n — 1 or starts with an ascent. On the other hand, if
T € Sort,—1(SC123) starts with the entry n — 1 or starts with an ascent, then the permutation nr
is in Sort,(SCi23). By the induction hypothesis, there are M,,_o permutations in Sort,_1(SCi23)
that start with n — 1.

We now need to determine the number of permutations 7 € Sort,,—1(SCi23) that start with an
ascent. Let ¢ € {2,...,n—1} be such that 7, = n—1. We may write 7 as A(n —1)B, where A does
not start with a descent (meaning it either starts with an ascent or consists of a single entry). Since
7 must avoid 132 by Theorem 6.4, every entry in A is greater than every entry in B, so the entries
in Aaren—17+2,...,n— 2 and the entries in B are 1,...,n — i+ 1. Since (n — 1)B has length
n — i+ 1 and has the same relative order as (n — i+ 1)B, the number of possibilities for (n — 1)B
is the same as the number of possibilities for (n — i+ 1)B. Now (n — i+ 1)B can be any element
of Sort,—;+1(SCi23) that starts with n —i + 1, so it follows from the induction hypothesis that the
number of possibilities for (n — 1)B is M,,—;. Next, for each possible choice of A, we can subtract
n—i+1 from each entry of A. Theorem 6.4 implies that this operation yields a bijection between the
set of possible choices for A and the set of permutations in Av;_;(132,321) that do not start with a
descent. If i > 3, then since A avoids 132 and starts with an ascent, the first two entries of A must
be consecutive integers. As a result, removing the first entry and standardizing gives a bijection
between permutations in Av;_1(132,321) that do not start with a descent and permutations in
Av,;_9(132,321). This implies that there are M;_o possibilities for A by Lemma 6.6. If i = 2, then
it is also certainly true that the number of choices for A is M;_o = My = 1.

Putting this all together and invoking the Motzkin number recurrence in Lemma 6.3, we find
that the number of permutations in Sort, (SCi23) beginning with n is

n—1 n—3

My 2 + Z M; oMy i = M, 2+ Z M;My,_3_; = My_1. 0
=2 =0
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We can now prove that Sort(SCja3) is enumerated by the first differences of Motzkin numbers,
which form the OEIS sequence A002026 [32].

Theorem 6.8. The permutations in Sort(SCia3) are counted by the first differences of Motzkin

numbers. That is,
’ Sortn(80123)| = Mn+1 — Mn.

Proof. Let X" denote the set of permutations in Sort,(SCi23) in which the ith entry is n. If
m € X', then we may write 7 = AnB, where A has length ¢ — 1 and B has length n —i. By
Theorem 6.4, AnB avoids the pattern 132, so every entry in A is bigger than every entry in B,
meaning that A is a permutation of the numbers n —i+ 1,...,n — 1 and B is a permutation of
1,...,n —i. Moreover, the standardization of A can be an arbitrary element of Av(132,321), so
the number of possibilities for A is M;_1 by Corollary 6.6. Meanwhile, the standardization of nB
can be an arbitrary permutation in Sort,_;+1(SCie3) that starts with n — i + 1, so by Lemma 6.7,
there are M,,_; possibilities for nB. Thus, |X]'| = M;_1M,_;, and

n n—1
| Sort, (SC123)| = Z M;_1M,_; = Z MMy, _1—; = Mpy1 — My, a
i—1 =0

7. DYNAMICS OF THE MAPS S132 AND S319

The set Sort(sisz2) was the primary focus of the recent article [12], where it was shown that
Sort(s132) is equal to the set of permutations avoiding the classical pattern 2314 as well as a certain
mesh pattern. The same article proved that | Sort,(si32)| = Z;é ("gl)Ck, where C}, denotes the
kth Catalan number. In this section, we briefly discuss some dynamical properties of the map si32

and, by complementation, the map s312.

Theorem 7.1. The periodic points of the map s132 : Sp, — Sn are precisely the permutations in
Av,,(132,231). The periodic points of the map ssi12 : S, — Sy are precisely the permutations in
Av,,(213,312). When n > 2, each of these periodic points has period 2. Furthermore, for every
permutation ™ € Sy, we have s}z (1) € Av,(132,231) and s, (m) € Av,(213,312).

Proof. By Lemma 1.2, it suffices to prove the desired properties of si32. Note that if we have
7 € Av(132,231), then si3a(m) = rev(m) € Av(132,231), so s23,(7) = 7. Hence, 7 is a periodic
point of s132, and the period is 2 if n > 2.

It remains to prove that s}, (1) € Av(132,231) for every m € S,. This is trivial if n = 1,
so we may assume n > 2 and induct on n. Consider sending a permutation 7 € S, through a
classical-132-avoiding stack. When the entry 1 enters the stack, the entries below it in the stack
must appear in increasing order from top to bottom. Furthermore, the entry 1 will not leave the
stack until after all entries have entered the stack. This implies that the last ascending run of
s132(7) begins with the entry 1. Therefore, it suffices to prove that if 7 € S, is a permutation
whose last ascending run begins with 1, then s75%(7) € Av(132,231). We prove this by induction
on n, noting first that it is trivial if n = 2. Now suppose n > 3.

For each 7 € S, let 7* be the permutation in .S,,_1 obtained by deleting the entry 1 from 7 and
then decreasing all remaining entries by 1. Observe that if the entries 1 and 2 appear consecutively
in 7, then they also appear consecutively in s132(7) and that (s132(7))* = s132(7*). By induction,
we have s75,°(7*) € Av(132,231). If the last ascending run of 7 begins with 1, then the above
analysis of the classical-132-avoiding stack shows that the entries 1 and 2 appear consecutively
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in s132(7). It then follows that the entries 1 and 2 appear consecutively in s75,%(7) and that
(532 (1))* = 87552 (7%) € Av(132,231). This implies that s]5,°(7) € Av(132,231), as desired. O

Whenever one is confronted with a noninvertible finite dynamical system, it is natural to ask for
the maximum number of iterations of the map needed to send every point to a periodic point. For
example, Knuth [29, pages 106-110] studied this problem for the classical bubble sort map. For
West’s stack-sorting map s, permutations requiring close to the maximum number of iterations to
get sorted into the identity were studied by West and Claesson—Dukes—Steingrimsson [13,37]. Ungar
gave a rather nontrivial argument proving that the maximum number of iterations needed to sort
a permutation in S, using the pop-stack-sorting map is n — 1 [36], and the permutations requiring
n—1 iterations were investigated further by Asinowski, Banderier, and Hackl [1]. Some other papers
that have studied similar questions for other finite dynamical systems include [4,21,23,25,26,35].

Our second result in this section will determine the maximum number of iterations of si39
(equivalently, s312) needed to send a permutation to a periodic point. In what follows, we let
sdiga(m) denote the smallest nonnegative integer ¢ such that si;o(7) € Av(132,231). Note that
sdyga(mr) is also the smallest nonnegative integer ¢ such that s4;,(comp(7)) € Av(213,312).

Theorem 7.2. Forn > 3, we have

ax sd =n—1.
;IéSX 132(m) = n

n

Proof. Theorem 7.1 tells us that m%x sdise(m) < n — 1, so it suffices to find a permutation 7 € S,
S

such that sdisa(m) > n — 1. Let n :n3m + 7, where r € {0,1,2}. Let A\, denote the permutation
in S,_, obtained by taking the skew sum of m copies of the permutation 132. In other words,
Am = &mEm—1- - &1, where & denotes the sequence (3 — 2)(35)(3j — 1). Let

Am if r=0;
T =1 nApy if r =1;
(n—1)n\, ifr=2.

We claim that s75,2(m) ¢ Av(132,231); that is, sdiz2(7) > n — 1. For the sake of simplicity, we will
prove this in the case r = 0; the proofs in the cases r = 1 and r = 2 are similar. Thus, n = 3m and
T = Am. If n =3, then we are done because s132(m) = s132(132) = 231 € Av(132,231). Therefore,
we may assume n = 3m > 6.

It will be helpful to introduce a little more notation. If k& > 1 is odd (respectively, even), we
let Vi denote the permutation in Ss; obtained by listing the odd (respectively, even) numbers in
[3k + 1] in decreasing order and then listing the even (respectively, odd) numbers in [3k + 1] in
increasing order. For example, we have Vi = 3124, Vo = 6421357, and V3 =97531246810. For

i€ {0,1,2}, let D,(;;) be the sequence obtained by writing the elements of {3k + 2,3k +3,...,3m}

m

that are congruent to ¢ modulo 3 in decreasing order. For example, Dé?g = 15129, Dglg = 1310,

and D§25) = 14118. The following two claims can be verified in a straightforward manner using
nothing more than the definition of the map s130; we leave this verification to the reader.

Claim 1: We have s{5,(\y,) = DfT)ano) Virev (Dﬁ)n)

M

Claim 2: For 1 <k <m — 2, we have

sta (DL DinVerey (DR, ) ) = D2, DI Vs ey (DL, ) -
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These two claims imply that s75,2(7) = sty 2(Am) = p? . DOy rev (Dﬁi)_lm) Note

m—1m*~—"m—1,m

that Dgll,m consists of the single entry 3m — 1. Similarly, Dir?)q,m consists of the single entry 3m.
Finally, Dg)—l,m is empty. Thus, s75,2(7) = (3m — 1)(3m)V;,—1 & Av(132,231). O

8. FUTURE DIRECTIONS

We have initiated the study of the consecutive-pattern-avoiding stack-sorting maps SC, and
analyzed them as both dynamical systems and sorting procedures. These maps are generalizations
of West’s stack-sorting map [37] and are variants of the classical-pattern-avoiding stack-sorting
maps studied by Cerbai, Claesson, and Ferrari in [11].

Our main results on SC, as a sorting procedure were the characterization of when Sort(SC,) is
a permutation class and the enumeration of Sort(SC,) summarized in the table below.

o\n 0 1 2 3 4 5 6 7 8 9 OEIS

123 1 1 2 5 12 30 76 196 512 1353 A002006
132 1 1 2 5 14 42 132 429 1430 4862 A000108
213 1 1 2 5 15 50 180 686 2731 11254  unknown
231 1 1 2 6 21 79 311 1265 5275 22431  unknown
312 1 1 2 5 15 50 179 675 2649 10734  unknown
321 1 1 2 4 9 21 51 127 323 835 A001006

It would be interesting to have nontrivial information about the asymptotic behavior of the unknown
sequences in this table. Recall that we also have Conjecture 5.1, which states that Sort(SCas;) is
enumerated by the binomial transform of Fine’s sequence (OEIS sequence A033321).

From the dynamical point of view, we first proved Theorem 3.1, which characterized the periodic
points of SC,, for each ¢ € S3. This theorem has motivated us to formulate the following conjecture,
which we have additionally confirmed when & =4 and n < 8.

Conjecture 8.1. Let o € Sy for some k > 3. The periodic points of the map SC, : S, — Sy, are
precisely the permutations in Avy, (g, rev(a)).

We then asked for the maximum value of | SC, ()| for 7 € S,,. The following table summarizes
what we know about these values; note that by Lemma 1.2, we only need to consider one pattern
from each of the pairs {123,321}, {132,312}, {213,231}.

c\n |1 2 3 4 5 7 8 9 OEIS

123 1 1 2 3 4 7 11 16 26 unknown
132 1 1 2 3 6 10 20 35 70 A001405
231 1 1 2 4 8 16 32 64 128 A011782

It would be interesting to have nontrivial estimates for the numbers Imax | SCi3(m)| appearing in
TESK

the first row of the above table.

In Section 7, we studied the maximum number of iterations of s132 (equivalently, s312) needed
to send a permutation to a periodic point. This line of investigation is completely open for the
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consecutive-pattern-avoiding stack-sorting maps. However, we do have the following conjecture,
which we have verified for n < 9. Recall that the set of periodic points of SCo31 : S, — S, is
Av,(132,231) = Av,(132,231).

Conjecture 8.2. Let n > 3. We have SCany *(r) € Av,,(132,231) for every m € S,,. Furthermore,
there exists a permutation T € S, such that SCag; °(7) & Av,,(132,231).

In [16], the first author showed that the numbers 3,7, 11, 15, 19, 23 are infertility numbers, mean-
ing that there does not exist a permutation 7 such that [s~!(7)| € {3,7,11,15,19,23}. By contrast,
we have the following conjecture for the maps SC, with o € Ss.

Conjecture 8.3. For every o € Ss and every positive integer f, there exists a permutation m such
that | SC, ()| = f.

Section 7 contains the first theorems of a dynamical nature concerning maps of the form s,.
It would be interesting to have other dynamical results for these maps, including analogues of
Theorems 7.1 and 7.2 for the maps s, with o € {123,213,231,321}. In Theorems 7.1 and 7.2,
we proved that every permutation 7 € S, satisfies s75,'(7) € Av(132,231) and that there exists
at least one permutation 7 € S, such that s}3*(7) ¢ Av(132,231). It would be interesting to
obtain nontrivial information about these permutations 7. We also have the following conjecture.
If n is odd (respectively, even), let V,, denote the permutation in S,, obtained by listing the odd
(respectively, even) elements of [n] in decreasing order and then listing the even (respectively, odd)
elements of [n] in increasing order. For example, Vg = 642135 and V; = 7531246.

Conjecture 8.4. If 7 € S, is such that s75,7(7) & Av(132,231), then s75,' (1) = V.

For example, one can check that if 7 € Sg is such that si;,(7) & Av(132,231), then s335(7) =
Ve = 642135.

Of course, it would also be very natural to consider the maps of the form SC,u) ), where
SC, .. s Is defined using a stack whose contents must consecutively avoid all of the patterns

oW, ..., It would also be exciting to have results about the maps SC,, for patterns o of length
at least 4 (such as progress toward Conjecture 8.1).
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